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LS-CNN: Characterizing Local Patches at Multiple
Scales for Face Recognition

Qiangchang Wang

Abstract—Faces in the wild may contain pose variations, age
changes, and with different qualities which significantly enlarge
the intra-class variations. Although great progresses have been
made in face recognition, few existing works could learn local and
multi-scale representations together. In this work, we propose a
new model, called Local and multi-Scale Convolutional Neural
Networks (LS-CNN). First, since similar discriminative face
regions may occur at different scales, it is necessary to learn
multi-scale features. To this aim, we introduce a new backbone
network, namely Harmonious multi-Scale Network (HSNet),
which extracts rich multi-scale features from two harmonious
perspectives: utilization of different kernel sizes in a single layer,
and concatenation of multi-scale feature maps from different
layers. Second, identifying similar local patches is important
when global face appearances have dramatic changes. Mean-
while, different face regions have different discriminative abilities.
To capture critical local similarities and weigh adaptively on
different local patches, a spatial attention is proposed. Third,
channels have different convolutional kernels which can detect
different features with various importance. Besides, hierarchical
channels concatenated from different layers contain diverse infor-
mation: channels from low layers describe local details or small-
scale parts, and channels in high layers represent high-level
abstraction or large-scale parts. To emphasize important chan-
nels and suppress less informative ones automatically, channel
attention is used. Due to the complementary characteristics of
channel attention and spatial attention, they are fused to form
the Dual Face Attentions (DFA). To the best of our knowledge,
this is the first effort to employ attentions for the general face
recognition task. The LS-CNN is developed by incorporating DFA
into HSNet model. Experimental results on various face matching
tasks show its capability of learning complex data distributions.

Index Terms—Local patch, multi-scale, pose variations, age
variations, face quality, face recognition.

I. INTRODUCTION

IGNIFICANT improvements have been achieved in com-
puter vision and biometrics by applying deep learning
techniques [1]-[5]. Face recognition has also been improved
using robust features learned by convolutional neural net-
works (CNNs). For example, the verification accuracy on
LFW dataset [6] has been improved to 99.78% [7]. Although
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Fig. 1.
and their corresponding class activation maps (CAMs) [8] learned by the
proposed LS-CNN model. Faces are affected by several challenging factors,
such as pose, aging, occlusion, resolution, blur, expression and illumination.
Column 1: Similar mouths with different sizes. Column 2: Similar mouths
with different sizes. Column 3: Similar eyes with different sizes. Column 4:
Similar mouth parts. Column 5: Similar pointy noses. Column 6: Similar eyes.

Some positive pairs from CFP, CALFW and 1JB-A quality datasets

great progresses have been made in face recognition, few
existing works could incorporate multi-scale representations
and characterize local regions together to describe faces.

Learning multi-scale information is necessary to boost the
face recognition performance. Discriminative face regions may
occur at multiple scales. For example, as shown in Fig. 1
Columns 1, 2 and 3, even though faces have dramatic changes,
some local regions remain to be similar but have different
sizes. Thus, perceiving information from multiple scales is
important for understanding local facial regions. Different
from the prior work [9] that concatenates multi-scale fea-
tures from the last two layers, we propose the Harmonious
multi-Scale Networks (HSNet) which covers a wide range
of receptive fields. It learns multi-scale features from two
harmonious perspectives. On one hand, Inception [10], [11]
extracts multi-scale representations in a single layer by kernels
of different sizes. On the other hand, DenseNets [1] form
multi-scale information from different layers because each
layer is directly connected to each preceding layer. Besides,
due to good information and gradient flow, the HSNet model
can scale naturally hundreds of layers. Because very deep
models have a better representational ability than shallower
ones [12], the HSNet has a good representational power
without optimization difficulties, modeling complex faces
like Fig. 1.
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Fig. 2. Some challenging faces and their corresponding class activation maps
(CAMs) [8] learned by LS-CNN model. Faces are influenced by illumination
changes (Columns 1, 2), occlusions (Columns 3, 4), and pose variations
(Columns 5, 6). MTCNN [13] fails to detect landmarks, while our LS-CNN
model can locate discriminative face regions (Row 2).

Spatial attention is introduced to characterize informative
regions automatically. Global face geometry and appearances
may be significantly different. As a consequence, identify-
ing similar facial regions is of vital importance. As shown
in Fig. 1, some local regions remain similar despite pose
variations (mouths in Column 4), aging (noses in Column 5)
and face quality changes (eyes in Column 6). To learn local
representations, several works train CNNs on cropped patches
around face landmarks [9], [14]-[16]. However, face landmark
detection may fail in some cases, as illustrated in Fig. 2.
[lumination changes make detailed face texture missing (Row
1, Columns 1, 2); occlusions cause some face organs to be
invisible, such as microphone on the mouth (Row 1, Columns
3, 4); poses are self-occlusion and can lead to some face
regions completely missing (Row 1, Columns 5, 6). Besides,
we notice two observations. First, different face regions exhibit
different discriminative abilities. As presented in [17], areas
between eyes and eyebrows are more discriminative than those
between the nose and mouth in frontal faces. Second, a con-
volution kernel is considered as a feature detector [18]. It can
detect specific features, while may have noisy responses on
distraction parts, such as an uncontrolled background in Fig. 9
Column 5. Based on the discussion above, we propose an
attention mechanism, i.e. local aggregation network (LANet),
to localize the most discriminative face regions. Moreover,
background information is filtered flexibly to reduce distrac-
tion. As illustrated in Fig. 2, our model can not only locate
faces, but also focus on useful face regions and filter out
distraction regions.

Further, channel attention is incorporated into the Har-
monious multi-Scale CNN (HSNet) which highlights impor-
tant channels and suppresses less informative ones. When
employing a CNN to extract features, channels that contain
information with various importance are extracted. This obser-
vation comes from the fact that different convolution kernels
detect different features. As observed in Fig. 3, four channels
correspond to different face parts for each face image. Besides,
hierarchical channels from multiple layers in the HSNet should
have different discriminative abilities. This is mainly based on
the following two reasons. First, channels from low layers
may contain local face details, and high layers tend to have
high-level representations. Second, local discriminative face
regions from different face images may have different sizes
(e.g. Fig. 1 Columns 1, 2 and 3), which may appear at different

1641

)
.
0.12 0.17 0.67 0.67
: . P -
= .
0.22 0.24 0.67 0.75
Fig. 3. Four channels are visualized for a positive pair with similar eyes,

where purple areas correspond to essential areas, and green areas mean less
important ones. Different weights are assigned through the channel attention.
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layers. To overcome these problems, the SENet module [19] is
incorporated into our HSNet model to assign weights for each
channel, where discriminative channels are enhanced while
irrelevant channels are suppressed. For example, the similar
eyes of faces in Fig. 3 are useful information to verify that
these two faces belong to the same subject. Through the SENet
module, these less informative channels are assigned with
smaller weights (Columns 2, 3) and important channels that
capture eye information have larger weights (Columns 4, 5).

Since SENet model works locally and LANet model applies
globally on channels, it is intuitive to combine them together to
form the Dual Face Attentions (DFA). Attention mechanisms
have been widely used in various tasks [19]-[21]. However,
to the best of our knowledge, this is the first time to apply
the attention module for the general face recognition task
except for video face recognition which aggregates multiple
frames into one representation. Thus, Local and multi-Scale
Convolutional Neural Networks (LS-CNN) model is developed
by integrating the DFA into HSNet model. As demonstrated
in Fig. 1, the LS-CNN model can locate discrminative local
regions despite their various sizes.

The proposed Local and multi-Scale Convolutional Neural
Networks (LS-CNN) model is studied for the unconstrained
face recognition task. Our major contributions include:

1) We propose the Harmonious multi-Scale Network
(HSNet), which allows us to learn multi-scale features
from different perspectives: utilization of different ker-
nel sizes in a single layer; combination of multi-scale
feature maps from different layers. It outperforms many
backbone networks in terms of accuracy, model capacity
and parameter efficiency.

2) Channel and spatial attentions are incorporated to form
the Dual Face Attentions (DFA). As far as we know, this
is the first time to use attention modules for the general
face recognition task. The SENet module is integrated
to learn what features to emphasize: more informative
channels are highlighted and less important ones are
inhibited. The LANet module is proposed to decide
where to focus: discriminative local patches are assigned
with larger weights, and less useful ones have smaller
weights. Combining the DFA with the HSNet results
in the proposed Local and multi-Scale Convolutional
Neural Networks (LS-CNN) model.
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3) Trained on publicly available CASIA-WebFace
or VGGFace2 dataset, the proposed LS-CNN model
yields better results than state-of-the-art methods on
cross-age, cross-pose and cross-quality face matching.
It also achieves a comparable performance on the LFW
dataset.

II. RELATED WORK

Typical approaches for face recognition and some popular
deep architectures in object classification are reviewed briefly.

A. Face Recognition

CNNs have achieved good performances in face recognition
recently [17], [22]-[24]. They only use softmax loss to learn
features which are not discriminative enough. To alleviate
this problem, several loss functions are proposed [7], [14],
[25]-[28], to encourage minimal intra-class separation and
maximal inter-class distance. However, most of them do
not take multi-scale and local face representations into
consideration.

1) Multi-Scale Representations: Two broad multi-scale
approaches exist: hand-crafted ones with low-level features
and CNNs with high-level features. As for the former one,
some extract local binary pattern based on either multi-
scale Gabor wavelets [29] or faces of different scales [30].
Other features like scale-invariant feature transform [31] and
short-time fourier transform [32] are used. However, feature
extraction and classification stages are not optimized jointly.
In contrast, CNNs can learn multi-scale features in an end-to-
end way. For example, features from the last two layers are
concatenated [9], achieving better results than a single layer.
However, it only covers a small range of receptive field, which
tends to be inferior to representing small-scale face parts.

2) Local Representations: Patch-based methods can handle
age and pose variations effectively. Several methods are pro-
posed to learn features in an unsupervised way. A structured
dictionary learning is introduced to learn a robust occlu-
sion dictionary [33]. Two sparse graphs are constructed to
model relationships among different local patches [34]. Local
binary feature learning and encoding are learned jointly [35].
A deep multi-quantization network is designed to learn a data-
dependent binarization in [36].

Multiple CNNs are trained on many facial regions [9], [14].
However, holistic face representation is ignored. In [15],
each CNN is trained separately on global faces and cropped
facial patches around face landmarks, which ignores different
importance when fusing features from each CNN. To alleviate
this problem, TBE-CNN [16] integrates CNNs for the global
face and multiple facial regions into one model by sharing low-
and middle- layers. It is noticed that these methods rely on face
landmarks. However, face landmark detection may fail under
illumination changes, occlusions or pose variations. Moreover,
they lack the flexibility to enhance discriminative regions and
suppress less informative face parts or noisy background.

B. Deep Architectures

Recent years have witnessed CNNSs that obtain state-of-the-
art performances on many vision tasks.
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1) Multi-Scale Representations: There is a trend to extract
multi-scale representations. A shared network is trained
on multi-scale images [37] or Gabor images [38]. Mul-
tiple CNNs with various receptive field sizes are trained
simultaneously [39]. These models use either multiple
inputs or networks, which tend to be a little sophisticated
and time-consuming. Skip-layer networks fuse features from
different layers [40]-[42]. However, they only contain a small
range of receptive fields, which are sub-optimal to represent
small-scale objects.

It is widely known that the coarse-to-fine design allows
CNNs to learn multi-scale features naturally. AlexNet [43]
gains a breakthrough in visual recognition. Using smaller ker-
nels, VGG [44] has twice more layers compared to AlexNet.
However, kernels are stacked linearly in AlexNet and VGG,
which only covers limited receptive fields. GoogLeNet [10]
combines channels produced by kernels of different sizes.
Inception-v3 [11] stacks more parallel kernels in the path
of GoogleNet to enlarge the receptive field. On the other
hand, short connections in ResNets [45] combine features from
different scales. Dense connections allow DenseNets [1] to
capture objects in a wider range of scales. Based on the discus-
sion above, it is valuable to integrate the Inception model into
the DenseNets by taking advantages of both, i.e. Harmonious
multi-Scale Network, which learns multi-scale features from
two perspectives: the Inception learns multi-scale features with
different kernel sizes in a single layer; DenseNets combine
multi-scale feature maps from different layers. In contrast,
DPN [46] combines ResNets and DenseNets, where both learn
multi-scale features from different layers.

2) Attention Mechanisms: Another trend is investi-
gated: attention, which plays an important role in human
perception [47]. Several attempts have been explored in vari-
ous tasks. SENet [19] introduces a compact model to explore
channel-wise inter-dependencies, utilizing average-pooled fea-
tures. CBAM [20] further combines max-pooled features to
infer better channel attention. Besides, spatial attention is used
to emphasize where to focus. BAM [21] also uses spatial
and channel attentions, where dilated convolution [48] is used
in spatial attention. In this work, both channel and spatial
attentions are exploited. To the best of our knowledge, we are
the first one to apply attention modules to the general face
recognition task. We propose a well-designed architecture, i.e.
Dual Face Attentions (DFA), which experimentally outper-
forms recent attention mechanisms [19]-[21].

III. A NEw DEEP NETWORK

Our proposed deep network, called Local and multi-Scale
Convolutional Neural Networks or simply LS-CNN mainly
contains four modules: Inception, DenseNet, SENet, and
LANet. We will describe them in the following.

A. Inception Module

The Inception [10] maps cross-channel and spatial corre-
lations simultaneously by using different convolution kernels.
Following the Inception-v3 [11], two consecutive 3 x 3 filters
are used to replace 5 x 5 filters. This can reduce about 28%
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LS-CNN-D
hxwxk hxwxk
hxwx(mxk) hxwx(mxk)
LANet SENet 1x1
iconv
hxwx(mxk) hxwx3k hxwxk
DFA hxwxk Inception

Fig. 4. LS-CNN-Dense block (LS-CNN-D): the composite operation of the
DFA-Inception module in dense blocks of DenseNets, where 7 and w refer
to height and width of channels, respectively. k and m mean the growth rate
and my, layer within a dense block, respectively. DFA consists of LANet and
SENet.

LS-CNN-T

hxwxc hxwxc

DLANet DSENet @
C,

1x1
conv

hxwxc

hxwxc/2

DFA h/2xw/2xc/2 Inception

Fig. 5. LS-CNN-Transitional (LS-CNN-T): the implementation of the
DFA-Inception module in the transitional layer of DenseNets, where A, w
and c refer to height, width and number of channels, respectively. S-2 means
stride 2. DFA consists of LANet and SENet.

parameters as well as computation time without loss of the rep-
resentation ability. As the Inception shown in Fig. 4, we have
three branches: 1 x 1 convolution, 3 x 3 convolution and two
3 x 3 convolutions. Meanwhile, the bottleneck layer (i.e. 1 x 1
convolution) is used in the branch wherever computational
requirements would dramatically increase otherwise.

To reduce the channel size in a multi-scale way, a max-
pooling branch and two convolution branches with stride 2
for each are used. The bottleneck layer is first used to reduce
the number of channels. See the Inception in Fig. 5 for an
illustration.

B. DenseNet Module

In order to improve the information and gradient flow, dense
connections are proposed in [1]. Each layer is directly con-
nected to each preceding layer. Namely, the output of the my,
layer can be stated as x,, = H,([x0, X1, ..., Xn—1]), Where
[x0, X1, ..., xm—1] represents channel concatenation from pre-
ceding layers (i.e. 0, 1,...,m — 1). Hy, is the composite LS-
CNN-D operation shown in Fig. 4, which outputs k channels.
As a result, the my;, layer has (m — 1) x k + ko input channels
and outputs k channels, where k(o is the number of input
channels for the dense block. Let k refer to the growth rate,
which controls the width of the network. Like [11], [49],
the bottleneck layer is used before the 3 x 3 convolution
to reduce the number of input channels to 4k, improving
parameter efficiency.
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On the other hand, as an essential part of CNNs, the pooling
operation reduces the channel size to produce more robust
features. The pooling is used between two dense blocks,
which is referred as the transitional layer. To improve the
computational efficiency, the transitional layer outputs c/2
channels if the previous dense block produces ¢ channels.

Because of dense connections, rich hierarchical features
from different layers contain multi-scale representations.
Meanwhile, intermediate layers contain middle-level visual
features about object parts, and high layers detect high-level
representations about objects [18], so different levels of visual
semantic features (e.g. local details) may be combined to
benefit face recognition.

C. Harmonious Multi-Scale Networks

On one hand, the Inception module characterizes faces
at various scales in a single layer. On the other hand,
the DenseNet module concatenates hierarchical features from
different layers with various receptive fields. Therefore, a new
backbone network, i.e. Harmonious multi-Scale Networks
(HSNet), which integrates the Inception with the DenseNet
is proposed. It extracts multi-scale features from two comple-
mentary perspectives. Besides, the HSNet model has identity
mapping and deep supervision, enabling it to have a good
generalization capacity for complex faces.

As shown in Fig. 4, the Inception module is used in
dense blocks of the DenseNet. Inception module contains
three branches: 1 x 1, 3 x 3, and two 3 x 3 convolutional
kernels. The 1 x 1 branch outputs k channels, where k refers
to the growth rate. The other two branches first output 4k
channels by a bottleneck layer (i.e. 1 x 1 kernel) to improve
parameter efficiency. Then different convolutional kernels are
applied in each branch to output k channels, respectively. Next,
a concatenation operation is conducted among three branches
to output 3k channels. Finally, a bottleneck layer is used to
output k£ channels.

The Inception module is also applied in transitional layers of
DenseNets. As shown in Fig. 5, the grid size reduction method
in [11] is used. Let ¢ represent the number of input channels
of the transitional layer. A bottleneck layer is first employed
to output c/2 channels. After that, a max-pooling and two
different convolutional operations with stride 2 are used in
every branch to reduce the channel size. In the following,
channels from three branches are concatenated together to
output 3¢/2. Last, another bottleneck layer is applied to reduce
the number of channels from 3¢/2 to ¢/2.

D. LANet Module

To characterize local regions automatically, the local aggre-
gation network (LANet), shown in Fig. 6, is proposed. It has
two consecutive 1 x 1 convolutional layers to aggregate spatial
information across channels to one channel. The first convo-
lutional layer outputs c¢/r channels, where ¢ and r refer to the
number of input channels and reduction ratio, respectively,
followed by a ReLU function [43]. Then, another 1 x 1
convolutional layer outputs 1 channel with a sigmoid function,
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LANet

hxwxc/r hxwx1

hxwxc

hxwxc

Fig. 6. The LANet module, where i, w and c refer to height, width and
number of channels, respectively.

SENet

Excitation
1€ T >
5&' 1x1 xcl: -

hxwxc

1x1xc

Scale

.

hxwxc

Fig. 7.  The SENet module, where i, w and c refer to height, width and
number of channels, respectively.

namely spatial attention. Finally, every channel is scaled by the
spatial attention.

Since every unit in the spatial attention corresponds to a
local patch of the input image, more informative local regions
are expected to have higher weights and less important ones
are pushed to have smaller values. Since the input and output
channels have the same size, the LANet can be easily plugged
into any existing CNNs.

E. SENet Module

The SENet [19] module is used to select informative
channels and suppress less discriminative ones on demand.
For example, when we want to verify a positive face pair
with similar eyes, SENet module assigns higher weights on
channels which have effective eye information, illustrated
in Fig. 3.

It mainly consists of two operations, as shown in Fig. 7:
squeeze and excitation. The squeeze operation is used to
squeeze global channel information into a one channel descrip-
tor, which is achieved by a global average pooling opera-
tion. Formally, the signal z of channel ¢ is generated by
averaging across spatial locations w x h as following: z; =
wlxh hal Z?:l u;(i, j), where u,(i, j) is an element of
channel ¢ at position (i, j). The excitation operation is fol-
lowed, which aims at modelling the channel-wise dependen-
cies flexibly. Two fully-connected (FC) layers are employed:
s = o(w2g(w1z)), where o refers to the sigmoid function
and g is a ReLU function, w; € R7*¢ and wy € RY<7 with
the number of channels ¢ and reduction ratio r. In order to
avoid overfitting and aid generalization, w; is a dimension-
reduction layer and w; is a dimension-increasing layer. Finally,
the scale operation is used to rescale every channel by the
transformation with learned activations, which is dynamically
conditioned on inputs. x; = s; X u;, where s; represents a
scalar about the i;; channel and u; € R“*" means the i,
channel.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

TABLE I

THE ARCHITECTURE OF THE LOCAL AND MULTI-SCALE CONVO-
LUTIONAL NEURAL NETWORKS (LS-CNN) MODEL, WHERE k
REFERS TO THE GROWTH RATE OF HARMONIOUS MULTI-
SCALE NETWORKS MODEL. (Nj, N, N3) REFERS TO THE
REPEATED TIMES IN THE FIRST, SECOND AND THIRD
DENSE BLOCKS, RESPECTIVELY. LS-CNN-D AND
LS-CNN-T REFER TO THE ARCHITECTURE IN FIG. 4
AND FIG. 5, RESPECTIVELY

Size,

Layer Type Stride, Pad Output Size
Convolution 3,1, 1 128 x 128 X k
Convolution 3,1, 1 128 X 128 X k
Max Pooling 3,2,0 63 X 63 X k
Convolution 3, 1,1 63 X 63 X 2k
Convolution 3,1, 1 63 X 63 X 2k
Max Pooling 3,2,0 31 x 31 x 2k
N xLS-CNN-D | - 3Ix 3L x (2+ Nk
LS-CNN-T 15 x 156 X (2+ N,) X 0.5k
N> xLS-CNN-D 15X 15 X ((2+ Ni) X 0.5 + No)k
LS-CNN-T 7x7x((24 Ni) x 0.5+ N,) x 0.5k
N3xLS-CNN-D | - 7x7x (((24+ N;) x 0.5+ Ny) x 0.5+ N3)k
Average Pooling 7,1,0 1Xx1x (((24+ Ny)x0.5+ N,) x 0.5+ N3)k
Fully Connected | - 512
Softmax # of subjects

F. Local and Multi-Scale Convolutional Neural Networks

We use both channel and spatial attentions in the
Harmonious multi-Scale Networks (HSNet), as shown
in Figs. 4 and 5. First, channel attention (i.e. SENet mod-
ule) is applied to learn what features to emphasize. More
useful channels are assigned with higher weights, and less
important ones have smaller weights, as illustrated in Fig. 3.
Second, spatial attention (i.e. LANet module) is proposed to
decide where to focus. Informative regions are emphasized
and less important ones are suppressed. As demonstrated
in Figs. 9, 10 and 11, different weights are assigned to areas
with different discriminative abilities. The LANet and SENet
modules are combined to form the Dual Face Attentions (DFA)
where the LANet module is used before the SENet module,
refining local face details fist before weighing the channel-
wise representation. As a result, a new model is created for
face recognition, called Local and multi-Scale Convolutional
Neural Networks (LS-CNN). It can learn rich multi-scale and
local representations by integrating DFA with HSNet models.

The overall framework of LS-CNN model is shown
in Fig. 8. Its details are presented in Table I. We start testing
the DFA-Inception modules at higher layers for better memory
efficiency, keeping lower layers in the traditional convolutional
fashion. In earlier layers, two 3 x 3 convolutional layers
are used, followed by a max-pooling layer as suggested by
VGG [44]. This can reduce the number of parameters without
loss of representational ability. We repeat this procedure
twice before the first dense block. After that, the proposed
LS-CNN-D module, as shown in Fig. 4, is repeated N times,
which learns multi-scale representations, characterize local
patches and model channels-wise importance from multiple
layers. The LS-CNN-T module, shown in Fig. 5, is used
to reduce the channel size and output more robust features.
Repeating LS-CNN-D and LS-CNN-T several times until a
global average pooling layer, which minimizes overfitting
by reducing the number of parameters. There is one fully
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@ : LS-CNN-D operation @ : LS-CNN-T operation
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Fig. 8. The overall framework of the Local and multi-Scale Convolutional Neural Networks (LS-CNN) model.

Fig. 9. Class activation maps (CAMs) [8] with/without LANet module on
three positive pairs from CFP dataset. Column 1 & 4: frontal and profile
faces of the same subject with various challenging factors (e.g. pose, makeup
and expression). Column 2 & 5: CAMs generated by SENet-HSNet model.
Column 3 & 6: CAMs generated by Local and multi-Scale Convolutional
Neural Networks (LS-CNN) model. Note that the fully connected layer before
the final layer is removed in both models.

Fig. 10. Class activation maps (CAMs) [8] with/without LANet module
on three positive pairs from CALFW dataset. Column 1 & 4: Input faces of
the same subject with various challenging factors (e.g. pose, occlusion, aging
and expression). Column 2 & 5: CAMs generated by SENet-HSNet model.
Column 3 & 6: CAMs generated by Local and multi-Scale Convolutional
Neural Networks (LS-CNN) model. Note that the fully connected layer before
the final layer is removed in both models.

connected (FC) layer with 512 units before the softmax layer.
It is clear that (Ny, N2, N3) in Table I controls the depth of
network. Softmax loss L is used to extract discriminative fea-
tures and minimize the classification error with the following
formulation:

N
L==7" yilogpi, (1)
i=1
where N is the number of subjects, y; represents whether the
face belongs to subject i, and p; means the probability of
belonging to subject i.

IV. EXPERIMENTS

Experimental results of our proposed Local and multi-
Scale Convolutional Neural Networks (LS-CNN) are pre-
sented. We first introduce data and preprocessing methods and

Fig. 11. Class activation maps (CAMs) [8] with/without LANet module on
three positive pairs from IJB-A quality dataset. Column 1 & 4: high- and
low-quality faces of the same subject with various challenging factors (e.g.
pose, illumination, blur, resolution and expression). Column 2 & 5: CAMs
generated by SENet-HSNet model. Column 3 & 6: CAMs generated by Local
and multi-Scale Convolutional Neural Networks (LS-CNN) model. Note that
the fully connected layer before the final layer is removed in both models.

then perform ablation studies. Next, we compare the proposed
Harmonious multi-Scale Network (HSNet) with other popular
networks. Then, we compare the Dual Face Attentions (DFA)
with recent attention mechanisms. Finally, the proposed model
is compared with state-of-the-art methods for face recognition.

A. Data and Preprocessing

1) Training Datasets: Two training datasets are used,
including CASIA-WebFace [50] and VGGFace2 [51] datasets.

CASIA-WebFace It contains 494,414 face images
of 10,575 identities. The authors claimed that not all faces
were detected and annotated correctly.

VGGFace2 It has 3,141,890 images of 8,631 identities.
Human verified bounding boxes around faces are provided.
It covers a large range of poses, ages, professions, and
ethnicities.

2) Test Datasets: LFW [6], CACD-VS [52], CALFW [53],
IJB-A [54] quality, FaceScrub [55] quality and CFP [56]
datasets are employed for testing.

LFW 1t contains 13,233 images collected online from
5,749 identities. Following the 10-fold verification protocol,
experimental results are reported accordingly.

Cross-pose Face Matching There are 500 subjects in
the CFP dataset. Each subject has 10 frontal and 4 profile
faces. Frontal-frontal (FF) and frontal-profile (FP) verification
protocols are considered. Each protocol consists of 10 folds
with 350 positive pairs and 350 negative pairs.

Cross-age Face Matching The CACD-VS dataset is used
for age-invariant face recognition with varying illumination,
pose variations and makeup. Following the configuration [52],
we use the 10-fold cross-validation on 2,000 positive pairs
and 2,000 negative pairs. The CALFW dataset consists
of 4,025 subjects. Each subject has 2, 3 or 4 images. There

Authorized licensed use limited to: West Virginia University. Downloaded on April 19,2021 at 14:45:03 UTC from IEEE Xplore. Restrictions apply.



1646

are large age gaps between positive pairs to increase intra-
subject variations. For negative pairs, only face pairs with the
same gender and race are selected to reduce the influence of
attribute differences. It has 10 folds with 3,000 positive pairs
and 3,000 negative pairs.

Cross-quality Face Matching' The IJB-A and FaceScrub
datasets have images of different qualities. Follow the work
in [57], we assess the face image quality and select low- and
high-quality face images for cross-quality face matching. For
IJB-A dataset, there are 1,543 high-quality images of 500 iden-
tities and 6,196 with low-quality images from 489 identities.
For FaceScrub dataset, there are 10,089 high-quality images
of 530 subjects and 362 low-quality images of 232 subjects.

3) Preprocessing: The face detection method is the
MTCNN [13]. In the training process, face images are resized
to 144 x 144 and then randomly cropped to 128 x 128.

B. Implementation Details

The proposed Local and multi-Scale Convolutional Neural
Networks (LS-CNN) model is implemented in PyTorch [58].
In training on WebFace dataset, the learning rate begins at 0.1
and is divided by 10 every 10 epochs. The training process
stops at the 25y epoch. In training on VGGFace2 dataset,
the learning rate begins at 0.1 and is divided by 10 every
4 epochs. The training process stops at the 10y, epoch. The
weight-decay and momentum are le —4 and 0.9, respectively.
Two Harmonious multi-Scale Network (HSNet) backbone
networks are mainly used: HSNet-61 and HSNet-97 models.
Their growth rates k and depths (N, N2, N3) in Table I are
48, (3, 3, 5) and 80, (6, 6, 8), respectively.

C. Ablation Study

In this subsection, we first show the importance of four con-
tributing modules: Inception, DenseNet, SENet, and LANet.
Then we show the effect of different model widths and depths.
Finally, we compare different ways to combine SENet and
LANet modules.

1) Importance of four Contributing Modules

In order to obtain a deep insight into our pro-
posed Local and multi-Scale Convolutional Neural Net-
works (LS-CNN) model, four contributing modules are
analyzed: Inception, DenseNet, SENet, and LANet.
We compare different module combinations and show
results in Table II. To compare fairly, these models have
the same number of layers and channels.

The performance of the Inception model lags behind
the DenseNet significantly. For example, the DenseNet
obviously boosts the performance on the relatively easy
LFW task (about 3.4%). This is because, although
the Inception model concatenates channels generated
by multi-scale kernels, it has few layers and channels
to have a strong representational capacity. In contrast,
dense connections in the DenseNet encourage multi-
scale feature propagation and reuses, thus resulting in
a better performance.

IThese protocols will be released soon.
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TABLE II

TRAINED ON VGGFACE2 DATASET, PERFORMANCE COMPARISON (%)
OF DIFFERENT MODULE COMBINATIONS ON LFW, CALFW, 1JB-A
QUALITY AND CFP DATASETS. THE GROWTH RATE k Is 48.
(N1, No, N3) INTABLE L IS (3,3,5)

Model LFW | CALFW |prpos o CEP
001 | 0001 | FF | FP
Tnception | 947 | 705 | 466 | 167 [ 905 | 863
DenseNet | 98.1 | 861 | 702 | 461 | 969 | 920
FISNet 988 | 903 | 814 | 653 | 986 | 950
SENer-HSNet | 99.1 | 899 | 843 | 688 | 988 | 950
LANet-HSNet | 990 | 900 | 824 | 663 | 986 | 952

DFA-HSNet

(LSCNN) | 993 | 905 | 852 | 703 | 99.0 | 960

When the Inception module is incorporated into
DenseNet module, namely Harmonious multi-Scale Net-
work (HSNet), it outperforms the individual Inception
and DenseNet by a large margin. This proves the
necessity of incorporating the Inception with DenseNet.
On one hand, the Inception module learns features
with parallel kernels with different sizes in a single
layer. On the other hand, dense connections enable the
DenseNet module to combine features from multiple
layers. Therefore, two complementary multi-scale learn-
ing modules explains why the HSNet model has a bet-
ter representation ability compared with the individual
Inception or DenseNet model.
The SENet further improves performance by weighing
the importance of different channels. It is plugged into
dense blocks (Fig. 4) and transitional layers (Fig. 5)
before the multi-branch operation in Inception module.
Important channels are emphasized and less informative
ones are suppressed, as shown in Fig. 3. This is the
reason why the SENet-HSNet performs slightly better
than the HSNet, as indicated in Table II.
A global feature vector tends to pay attention to overall
appearances rather than local discriminative regions,
which may ignore discriminative local facial details.
The LANet module is introduced to characterize local
patches automatically. To show the effectiveness of the
LANet module, it is first integrated into the HSNet
model, i.e. LANet-HSNet. In most cases, the LANet-
HSNet has a better performance than the HSNet model.
Since channel attention (i.e. SENet) applies globally and
spatial attention (i.e. LANet) module works locally on
channels, it is intuitive to combine them together, taking
advantage of each other. We apply LANet module first,
followed by SENet module as shown in Figs. 4 and 5.
As indicated in Table II, the LS-CNN outperforms the
LANet-HSNet and SENet-HSNet, verifying the comple-
mentarity of SENet and LANet modules.

2) Sensitivity to Model Capacity There are generally two
ways to increase model capacity: width and depth.
As for the width, we change the growth rate k in
DenseNets module in Table I to have different widths.
The growth rate k means the number of channels that
each layer outputs in dense blocks. Since each previous
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TABLE III

TRAINED ON WEBFACE DATASET, PERFORMANCE COMPARISON (%) OF
THE HSNet MODEL WITH DIFFERENT GROWTH RATES k& ON LFW,
CALFW, IJB-A QUALITY AND CFP DATASETS.

(N1, Na, N3) INTABLEL IS (3,3,5)

DB-A CFP
Model | LFW | CALFW | o=
001 | 0001 | FF | FP
32 [ 975 | 825 63.6 | 400 | 974 [ 92.7
48 | 981 84.8 670 | 448 | 980 | 93.0
64 | 980 | B4l 679 | 460 | 980 | 93.6
80 | 98.1 85.3 692 | 479 | 983 | 936
9 | 982 | 860 703 | 480 | 983 | 940
112 | 984 | 3864 710 | 505 | 986 | 943
TABLE IV

TRAINED ON WEBFACE DATASET, PERFORMANCE COMPARISON (%) OF
THE HSNet MODEL WITH DIFFERENT DEPTHS ON LFW, CALFW,
1JB-A QUALITY AND CFP DATASETS. THE GROWTH RATE k IN
HSNet MODEL IS 48. (N1, N, N3) REFERS
TO THE CONFIGURATION IN TABLE I

Depth | (Ni, N2, N3) | LFW | CALFW | tiot o CrP
001 | 0001 | FF | FP
3 @12 970 | 818 | 593 | 350 [ 967 | 909
61 335 980 | 848 | 670 | 448 | 980 | 93.0
o7 6,68) 983 | 860 | 703 | 491 | 983 | 935
177 (12,012,016 | 984 | 868 | 730 | 523 | 986 | 947

layer is concatenated together in a dense block, we can
see the growth rate k controls the width of the network.
The effect of k is investigated in Table III. The table
indicates that the performance tends to be better under
four test datasets as the k increases.

We have models with different depths by changing
(N1, N2, N3) in Table I. (N{, N2, N3) means how many
times the LS-CNN-D in Fig. 4 repeats in Table I.
Experimental results are shown in Table IV. The table
shows that performance benefits from deeper models.
These experiments indicate that our model can uti-
lize the increased model capacity of wider and deeper
models. On one hand, deeper CNNs can extract richer
and more descriptive features for complex face distri-
butions. Meanwhile, wider CNNs are able to capture
more local features [59], characterizing fine-grained face
details. On the other hand, they do not suffer from
overfitting or optimization problems. The explanation
for this observation is that implicit supervision signals
with shorter connections to loss functions can benefit
individual layers, guiding early and intermediate layers
to learn more discriminative features.

3) Different Ways to Form Dual Face Attentions (DFA)
We study different ways to combine LANet and SENet
modules into DFA, which could differ in two aspects:
1) order; 2) location. For the first aspect, there are three
options: first LANet then SENet (‘LANet+SENet’), first
SENet then LANet (‘SENet+LANet’) and parallel use of
SENet and LANet (‘SENet&LANet’). As for the second
aspect, we compare two locations of applying LANet
and SENet modules: ‘Before Inception’ (used in Figs. 4
and 5) and ‘After Inception’. ‘After Inception’ refers to
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TABLE V

TRAINED ON VGGFACE2 DATASET, PERFORMANCE COMPARISON (%)
OF DIFFERENT WAYS TO COMBINE SENet AND LANet MODULES
ON LFW, CALFW, IJB-A QUALITY AND CFP DATASETS. THE
HSNet-61 MODEL IS USED AS THE BACKBONE NETWORK

Model LFW | CALFW — AR=HB>A; ARS CEP
0.01 0.001 FF FP
SENet
(Before Inception) 99.1 89.9 84.3 68.8 98.8 95.9
LANet
(Before Inception) 99.0 90.0 82.4 66.3 98.6 95.2
SENet+LANet
(Before Inception) 99.3 90.7 85.1 70.1 98.8 96.0
SENet&LANet
(Before Inception) 99.3 90.4 84.4 69.1 99.0 96.0
LANet+SENet
(After Inception) 99.1 90.4 85.1 69.9 989 | 954
LANet+SENet
(Before Inception) 99.3 90.5 85.2 70.3 99.0 96.0

applying SENet and LANet modules after the Inception
module in Figs. 4 and 5.

Table V summarizes the experimental results. The SENet
learns what features to emphasize, and LANet focuses
on which facial parts to focus, which complement each
other. This explains why all ways to combine SENet and
LANet modules achieve better performances than using
LANet or SENet independently. Besides, we observe
that the ‘LANet+SENet’ performs slightly better than
‘SENet+LANet” and ‘SENet&LANet’. We attribute this
observation to the reason that more benefits are learned
by refining local facial representations before learning
global channel-wise inter-dependencies. We find the best
location to apply LANet and SENet modules is ‘Before
Inception’, where rich hierarchical channel information
in DenseNets needs to be recalibrated. In contrast, less
channel information needs to be weighed in ‘After
Inception’. More specifically, channels with size h x w x
(m x k) in ‘Before Inception’ are weighed, compared
with & x w x 3k channels in ‘After Inception’ in LS-
CNN-D, as shown in Fig. 4; channels with size h x w x ¢
in ‘Before Inception’ are readjusted, compared with
h/2 x w/2 x 3c/2 channels in ‘After Inception’ in
LS-CNN-T, as shown in Fig. 5.

D. Comparison With Different Backbone Networks

In this work, we study the integration of the DenseNet [1]
and the recent Inception module [11] into the Harmonious
multi-Scale Network (HSNet). Several popular CNNs are com-
pared, including AlexNet-v2 [60], VGG-16 [44], Inception-
v3 [11], ResNet-50, ResNet-101 [45], DenseNet-121 [1] and
DPN-92 [46]. Detailed hyper-parameter settings and experi-
mental results are shown in Table VI. The growth rates k and
depths (N1, N2, N3) in Table I of the HSNet-61 and HSNet-
97 models are 48, (3, 3, 5) and 80, (6, 6, 8), respectively.

The HSNet-61 model has the second fewest parameters.
However, it achieves the highest accuracy on LFW, CALFW
and IJB-A quality datasets except CFP dataset. More specifi-
cally, both HSNet-61 and ResNet-101 models achieve the sec-
ond best accuracy (98.3%) on LFW dataset, lagging behind
the HSNet-97 model, while the ResNet-101 model has almost
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TABLE VI

PARAMETER SETTINGS AND PERFORMANCE COMPARISON (%) OF DIFFERENT MODELS. TRAINED ON WEBFACE DATASET AND TESTED ON LFW,
CALFW, IJB-A QUALITY AND CFP DATASETS. THE iter MEANS THE GLOBAL STEP DURING TRAINING. THE MOMENTUM IS 0.9. THE m
REFERS TO MILLION. THE ITERATIONS PER EPOCH (ipe) = # OF IMAGES / (BATCH S1ZE). THE (k, (N|, N», N3)) IN THE HSNET-61 AND
HSNET-97 MODELS ARE (48, (3, 3,5)) AND (80, (6, 6, 8)), RESPECTIVELY, WHERE (N, Ny, N3) IS FROM TABLE I, AND k MEANS
THE GROWTH RATE. THE LS-CNN MODEL USES HSNET-97 MODEL AS THE BACKBONE

Batch Input o ] i Weight TJB-A CFP ] Speed
Model size Size Learning rate Epochs decay LFW CALFW FAR= FAR= Params (ms)
0.01 | 0001 | FF FP

0.0T*

AlexNet-v2 256 224 | 0.1(ftoor(iter/(21xipe))) 96 Se-4 97.6 69.6 29.1 119 | 90.4 | 80.8 | 100.4m 46
0.1F

DenseNet-121 40 224 | 0.1(ftoor(iter/(10xipe))) 30 le-4 97.8 80.4 58.8 331 | 976 | 935 | 17.8m 196
0.1%

DPN-92 48 224 | 0.1(ftoor(iter/(30xipe))) 90 le-4 975 75.0 60.2 353 | 97.8 | 934 | 63.4m 467

0.045%

Inception-v3 25 299 | 0.94(floor(iter/(2xipe))) 100 4e-4 97.9 81.8 51.3 282 | 98.1 | 944 | 43.5m 309
0.TF

ResNet-50 50 224 | 0.1(ftoor(iter/(28xipe))) 128 le-4 98.2 76.8 62.3 389 | 98.1 | 940 | 452m 178
0.T%

ResNet-101 50 224 | 0.1(floor(iter/(28xipe))) 128 le-4 98.3 784 65.8 420 | 986 | 944 | 642m 276
0.1%

VGG-16 128 224 | 0.1(ftoor(iter/(17xipe))) 74 Se-4 97.6 79.2 473 237 | 965 | 89.8 | 177.6m 261
0.1%

HSNet-61 128 128 | 0.1(teor(iter/(10xipe))) 25 le-4 98.3 86.0 70.3 491 | 983 | 935 | 18.5m 234
0.1%

HSNet-97 128 128 | 0.1(ftoor(iter/(10xipe))) 25 le-4 98.5 87.3 72.9 521 | 986 | 947 | 41.2m 441

[ 1 - [ - ] - ] 1 [ 1 - T -1 -1 - o8]

3.5x parameters. This indicates that HSNet model has better
parameter efficiency. There are several factors which can
explain this observation: the bottleneck layer used in the
DenseNet module; factorizing larger convolutions (5 x 5 con-
volutions) into smaller convolutions (two 3 x 3 convolutions)
without loss of expressiveness adopted in the recent Inception
module; dimension reduction (i.e. the bottleneck layer) used
in the Inception module. Besides, the HSNet model obviously
boosts the accuracy on CALFW dataset (5.5%) and IJB-A
quality dataset (4.5%, 7.1% when FAR=0.01, 0.001) than
ResNet-101 model. IJB-A quality dataset contains faces influ-
enced by many challenging factors, like poses, expressions,
resolution and occlusions. In such cases, discriminative facial
information may exist at various scales, making it necessary
to learn multi-scale features. Further, although HSNet-61 only
has 61 layers, dense connections in HSNet model incorpo-
rate multi-scale representations with local details which may
appear at various scales.

However, HSNet-61 model has a slightly worse performance
(98.3%) than ResNet-101 model (98.6%) under the CFP-FF
test scenario and performs worse than Inception-v3, ResNet-
50 and ResNet-101 models under the CFP-FP test scenario.
One possible explanation is that the growth rate k and depth
(N1, N>, N3) is too small, which is insufficient to obtain
comprehensive fine-grained features to describe profile faces.
Therefore, the growth rate k and depth (N, No, N3) are
increased from 48 to 80 and from (3, 3, 5) to (6, 6, 8), respec-
tively, namely HSNet-91. It has the third fewest parameters,
followed by the DenseNet-121 and HSNet-61 models. HSNet-
91 model improves the accuracy on all datasets, which shows
its powerful generalization ability.

We explain why HSNet models achieve better performances
than other models. First, AlexNet and VGG models only have
a small range of receptive fields, which is insufficient to

capture local face patches with various sizes. Second, ResNet
and DenseNet models concatenate features from different
layers similarly by the short connection and dense connections,
respectively. DPN model combines ResNet and DenseNets,
sharing a similar way to extract multi-scale features. Third,
Inception model learns multi-scale features in a single layer
using parallel kernels of different sizes. However, our HSNet
model extracts multi-scale features from two harmonious
perspectives: parallel multi-scale kernels in a single layer (e.g.
Inception-v3); multi-scale feature maps from different layers
(e.g. ResNet, DenseNet, DPN).

We also measure the speed of the HSNet model. The
system configuration is Ubuntu 16.04.3 LTS. Other hardware
information includes: Intel(R) Core(TM) i7-6850K CPU @
3.60GHz, 32GB RAM, 512GB SSD, and Titan X (Pascal).
The PyTorch version is 0.3.1. We average the running time
of 2,000 iterations with a batch-size 32. In the HSNet model,
due to dense connections in DenseNets and multiple branches
in Inception, HSNet-61 ranks the fourth and HSNet-91 has the
penultimate running time among different backbone networks.
We also show that the LS-CNN model which uses HSNet-97 as
the backbone has a higher running time.

To sum up, the HSNet model has a good representation
capacity to perform well under complex data distributions and
utilizes parameters effectively to be less prone to overfitting.
However, because of complex operations, its running speed
is slightly slower. Thus, the HSNet and LS-CNN models are
suitable for some tasks where accuracy is more important than
speed, like the highly confidential access control and anti-
terrorism video surveillance.

E. Comparison With Different Attention Modules

We compare our proposed Dual Face Attentions (DFA) with
several recent attention modules, i.e. SENet [19], CBAM [20]
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TABLE VII

TRAINED ON VGGFACE2 DATASET, PERFORMANCE COMPARISON (%) OF
DIFFERENT ATTENTION MODULES ON LFW, CALFW, [JB-A QUALITY
AND CFP DATASETS. THE HSNet-61 MODEL
Is USED AS THE BACKBONE NETWORK

1JB-A CFP
Model LFW | CALFW | —prp=—"pre
0.01 0.001 FF FP
[ SENet[19] [ 99.1 [ 899 [ 843 [ 688 [ 988 [ 959 |
CBAM [20] 99.0 88.5 81.4 62.8 98.5 | 94.9
DFA
(Max&avg pool) 98.8 86.4 79.9 59.6 98.0 | 94.0
BAM [21] 99.1 90.3 83.9 67.9 989 | 95.8
DFA
(Dilated conv) 99.3 90.2 85.0 70.3 98.8 | 95.9
[ DFA [ 993 ] 905 ] 82 [ 703 ] 99.0 [ 96.0 ]

and BAM [21], which are proposed for general classification
tasks. We integrate these attention modules into the same
HSNet model and report experimental results in Table VII.

The SENet only uses channel attention, while ignores spatial
attention. Therefore, local facial details may be failed to
be captured. In contrast, our DFA module aims at learning
channel and spatial attentions simultaneously, demonstrating a
better performance.

The CBAM has both channel and spatial attentions to
learn what and where to emphasize or suppress in channels,
in which max- and average-pooling are used. As demonstrated
in Table VII, our proposed DFA module outperforms the
CBAM. To explain this result, we replace the average pooling
with the max & average pooling used in the CBAM and remain
the same for other parts in the DFA, i.e. DFA (Max&avg
pool). However, its performance is worse than the DFA,
demonstrating that the max-pooling is not appropriate. The
max-pooling encodes the most salient parts, which may be
influenced by the background noise, such as the background
person in Fig. 3 Row 1 Column 1.

The BAM also uses channel and spatial attentions. The
dilated convolution [48] is employed in spatial attention to
enlarge the receptive field. We remain unchanged in the SENet
and use the dilated convolution in the LANet, namely the
DFA (dilated conv). One explanation for its slightly worse
performance is that as the network goes deeper, the receptive
field size is enlarged exponentially by the dilated convolution,
corresponding to more coarse face information. This inevitably
leads to loss of local details and be more sensitive to pose and
age variations.

FE. Experiments on Cross-Pose Face Matching

We compare the performance of the Local and multi-Scale
Convolutional Neural Networks (LS-CNN) model with the
state-of-the-art on CFP dataset in Table VIII. Fig. 9 shows
class activation maps (CAMs) [8] with/without LANet module
on three positive pairs from CFP dataset.

Global learning methods (Deep features [56], TDE [61]
and FV-DCNN [62]) accept whole channels as the input
without filtering out the background information of profile
faces and emphasizing important regions. More specifically,
deep features [56] extract CNN features directly, which has
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TABLE VIII

TRAINED ON VGGFACE2 DATASET, PERFORMANCE COMPARISON (%) OF
THE LS-CNN MODEL WITH STATE-OF-THE-ART METHODS ON CFP
DATASET. THE HSNet-97 MODEL IS USED AS THE
BACKBONE NETWORK

CFP
Methods (FP)
Deep features [56] | 84.91
TDE [61] 89.17
FV-DCNN [62] 91.97
PIM [63] 93.10
DR-GAN [64] 93.41
DR-GANawm [65] 93.89
DA-GAN [66] 95.96
p-CNN [67] 94.39
NoiseFace [68] 96.40
ArcFace [7] 97.15
[ Human [ 9457 |
[ LS-CNN [ 97.17 ]

84.91% accuracy. TDE [61] learns low-dimensional embed-
dings using triplet probability constraints, which improves to
89.17%. FV-DCNN [62] combines Fisher vector and CNN for
unconstrained face verification, achieving 91.97%.

There are several methods that extract pose-invariant rep-
resentations and perform face frontalization simultaneously.
PIM [63] trains a frontalization network that perceives global
structures and local details and a discriminative network that
learns discriminative representations jointly, achieving 93.10%
accuracy. DR-GAN [64] proposes an encoder-decoder struc-
ture for the generator and disentangles face representation
from pose variations, which improves the performance to
93.41%. DR-GANaMm [65] extends DR-GAN [64] to improve
the model generalization during training, reaching 93.89%.
DA-GAN [66] combines a prior data distribution and domain
knowledge to synthesize photorealistic and identity-preserving
profile faces. The accuracy is 95.96%. p-CNN [67] introduces
the stochastic routing scheme to different paths for faces with
various poses, which obtains 94.39%. NoiseFace [68] weighs
training samples using angular margin based loss to train
CNNs on large-scale noisy data. Its accuracy is 96.40%. Arc-
Face [7] model maximizes the decision boundary in angular
space based on normalized weights and features, achieving
97.15% when trained on VGGFace2 dataset.

Is is noticed that due to self-occlusion in profile faces,
discriminative local face parts have smaller sizes than those in
frontal faces. The powerful HSNet backbone network can cap-
ture rich multi-scale information. However, local face regions
in lower channels may fail to propagate as the network goes
deeper. To alleviate this problem, SENet-HSNet model empha-
sizes important channels in lower layers by using SENets,
as illustrated in Fig. VIII, Columns 2, 5. Further, the LANet
module is introduced to alleviate the effect of background
inconsistency, especially for profile faces. As shown in Fig. 9,
compared to the SENet-HSNet model, class activation maps
(CAMs) generated by the LS-CNN model tend to locate more
discriminative parts in frontal faces (Column 3 to 2) and
suppress less informative regions in profile faces (Column
6 to 5). Finally, compared to the state-of-the-art which either
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TABLE IX

TRAINED ON VGGFACE2 DATASET, PERFORMANCE COMPARISON (%)
OF THE LS-CNN MODEL WITH STATE-OF-THE-ART METHODS ON
CALFW AND CACD-VS DATASETS. THE HSNet-97 MODEL Is
USED AS THE BACKBONE NETWORK

[ Methods [ CACD-VS [ CALFW |
VGGFace [22] 96.00 86.50
Center loss [26] 97.48 -

Marginal loss [69] 98.95 -
Noisy Softmax [70] - 82.52
CCL [71] 99.23 91.15
DeepVisage [12] 99.13 -
LF-CNN [72] 98.50 -
AFJT-CNN [73] 99.00 85.20
OE-CNN [74] 99.20 -
DAL [75] 99.40 -
Human, Average [76] 85.70 -
Human, Voting [76] 94.20 -
[ LS-CNN [ 99.50 [ 92.00 ]

requires complex data augmentation (DR-GAN, DR-GANaw,
PIM, DA-GAN) or multi-task training (p-CNN) or a noise-
tolerate paradigm (NoiseFace) or a more advanced loss func-
tion (ArcFace), our approach is simple and effective.

G. Experiments on Cross-Age Face Matching

It is well known that age-invariant face recognition (AIFR)
is very meaningful for various applications, such as looking
for missing children after years. However, large age variations
make the AIFR problem challenging. We compare the perfor-
mance of the proposed Local and multi-Scale Convolutional
Neural Networks (LS-CNN) model with the state-of-the-art on
CACD-VS and CALFW datasets in Table IX.

There are several approaches that propose advanced loss
functions. VGGFace [22] learns a face embedding using a
triplet loss. Center loss [26] learns a center for deep features
of each subject to increase the intra-subject compactness.
Marginal loss [69] minimizes the intra-class distances and
maximizes the inter-class variances based on marginal sam-
ples. Noisy Softmax [70] injects annealed noise in softmax
to mitigate the early saturation behavior of the softmax.
CCL [71] encourages face samples to distribute dispersedly
across the coordinate space and pushes classification vectors
to lie on a hypersphere. DeepVisage [12] introduces a feature
normalization before the softmax loss, ensuring that features
have an equal distribution.

There are several approaches proposed to solve the AIFR
problem. More specifically, LF-CNN [72] couples learning of
the CNN and latent identity analysis parameters to extract
age-invariant features. AFJT-CNN [73] trains the identity
discrimination model and the age discrimination model jointly
by sharing the same feature layers to extract cross-age identity
features. OE-CNN [74] decomposes face features into age-
related and identity-related components using A-Softmax loss
[27]. DAL [75] introduces a linear feature factorization based
algorithm to regularize decomposed feature learning.

We can see that our LS-CNN model achieves better perfor-
mances than the state-of-the-art on CACD-VS and CALFW
datasets. Besides, the LS-CNN model surpasses human per-
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TABLE X

TRAINED ON VGGFACE2 DATASET, PERFORMANCE COMPARISON (%)
OF THE LS-CNN MODEL WITH STATE-OF-THE-ART METHODS ON
IJB-A QUALITY AND FACESCRUB QUALITY DATASETS. THE
HSNet-97 MODEL IS USED AS THE BACKBONE NETWORK

Methods 1JB-A FaceScrub

FAR= | FAR= | FAR= | FAR=
0.01 0.001 0.01 0.001

VGGFace [22] 60.5 36.7 59.5 38.9

LightCNN [23] 56.6 40.2 50.3 33.0

Center loss [26] 52.1 31.3 49.3 34.1

SphereFace [27] 54.8 39.6 45.8 34.3

[ LS-CNN [ 87.5 [ 75.5 [ 80.5 [ 70.4 ]

formance on CACD-VS dataset significantly. Unlike some
models (LF-CNN, AFJT-CNN, OE-CNN, and DAL), LS-CNN
model is not specifically designed for the AIFR problem,
demonstrating its good generalization ability. In addition,
the LS-CNN model only uses the softmax loss without fea-
ture normalization. Therefore, performance improvement is
expected by adopting more advanced loss functions or feature
normalization.

It is observed that humans tend to pay more attention to
more salient parts instead of the whole scene when localiz-
ing objects [77]. Intuitively, this is applicable to the AIFR
problem, because some local regions remain the same, despite
aging affect the global face appearances. As demonstrated
in Fig. 10, although the age gap is large among these face
pairs, some facial regions still look similar, such as pointy
noses (Row 1, Columns 1, 4), intraocular regions (Row 2,
Columns 1, 4) and mouths (Row 3, Columns 1, 4). We show
class activation maps (CAMs) [8] generated by SENet-HSNet
and LS-CNN models in Fig. 10. We can observe that LS-CNN
model tends to emphasize more discriminative face regions
than SENet-HSNet model. Like the SENet-HSNet model,
these methods under comparisons are likely to model less
informative facial patches, which inevitably leads to a sub-
optimal performance.

H. Experiments on Cross-Quality Face Matching

In unconstrained scenarios like video surveillance and
access control, face matching may be conducted between low-
quality faces captured in real-world environments and high-
quality mugshots. We show three positive pairs in [JB-A
quality dataset in Fig. 11 with various challenging factors (e.g.
pose, blur, resolution and expression).

We compare the performance of the Local and multi-Scale
Convolutional Neural Networks (LS-CNN) model with several
methods on IJB-A quality and FaceScrub quality datasets
in Table X. Results of VGGFace [22], LightCNN [23] and
Center loss [26] models are from [57]. We use the publicly
available SphereFace [27] model to conduct the same experi-
ments.

As shown in Table X, we obtain significantly better accu-
racies on both the IJB-A and FaceScrub datasets at different
false accept rate (FAR) measures. The performance is greatly
improved, improving 21% at least and 35.3% accuracy at most.
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TABLE XI

TRAINED ON VGGFACE2 DATASET, PERFORMANCE COMPARISON (%) OF
THE LS-CNN MODEL WITH SEVERAL STATE-OF-THE-ART METHODS
ON LFW DATASET. THE HSNet-97 MODEL IS USED AS THE
BACKBONE NETWORK

[ Methods [ LFW |
LF-CNN [72] 99.10
OE-CNN [74] 99.47

DAL [75] 99.47

[ p-CNN [67] [ 98.27 ]
Marginal loss [69] 98.95
VGGFace [22] 99.13
Center loss [26] 99.28
LightCNN [23] 99.33
Feature transfer [78] | 99.37
SphereFace [27] 99.42
Noisy Softmax [70] 99.48
CCL [71] 99.58
DeepVisage [12] 99.62
CosFace [28] 99.73
ArcFace [7] 99.78

[ LS-CNN [ 99.52 ]

This proves the benefits of learning multi-scale representations
by two complementary ways to characterize a complex data
distribution under different image qualities. Besides, the SENet
module enhances useful channels and suppresses noisy chan-
nels. Furthermore, the LANet module is especially useful to
characterize faces of different qualities. We visualize the class
activation maps (CAMs) [8] generated by SENet-HSNet and
LS-CNN models in Fig. 11. Note that CAMs of LS-CNN
model emphasize representational patches (Column 3 to 2) and
suppress less informative parts (Column 6 to 5) than SENet-
HSNet model. The compared methods in the Table are similar
to SENet-HSNet model without characterizing discriminative
facial regions and filtering out less informative parts.

1. Experiments on the LFW Dataset

To show the generalization ability, we compare with other
approaches on the LFW dataset. Table XI demonstrates the
experimental results.

Compared with LF-CNN [72], OE-CNN [74] and DAL [75]
models which are proposed to learn age-invariant deep face
representations, the proposed LS-CNN model achieves a better
performance.

The p-CNN [67] model is proposed for face images with
different poses. However, almost all faces in the LFW dataset
are frontal or close to frontal views. This explains why its
performance is worse than our proposed LS-CNN model.

The Marginal loss [69], VGGFace [22], Center loss [26],
LightCNN [23], Feature transfer [78], SphereFace [27], Noisy
Softmax [70], CCL [71], DeepVisage [12], CosFace [28]
and ArcFace [7] models are generic models which aim at
the generic unconstrained face recognition problem. As we
can observe, our proposed LS-CNN model has a better
performance than these models except the CCL, Deep Visage,
CosFace and ArcFace models, demonstrating its excellent
generalization ability. The performance of ArcFace model
(99.78%) is based on the VGGFace2 dataset. Since our
LS-CNN model is trained only using the softmax loss,
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we expect that the performance can be improved by using
some advanced loss functions in CCL, CosFace and ArcFace
models.

V. CONCLUSION

We have developed a new network structure for face recog-
nition, based on the integration of rich multi-scale feature
learning, correlating and weighing different channels, and
automatic characterizing local face regions. The proposed
model, called Local and multi-Scale Convolutional Neural
Networks, or simply LS-CNN, has the capability of charac-
terizing complex face images to reduce intra-class variations.
It generalizes well across multiple datasets. Experimental
results on several databases have shown that the LS-CNN
model can achieve a better performance than the state-of-
the-art methods for cross-quality, cross-age and cross-pose
face matching and obtain a competitive performance on LFW
dataset. In future, several more advanced loss functions will
be validated to further improve the recognition performance.
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