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ARTICLE INFO ABSTRACT

Communicated by Stefanos Zafeiriou Body mass index (BMI) analysis from face images is an interesting and challenging topic in machine learning
and computer vision. Recent research shows that facial adiposity is associated with BMI prediction. In this
work, we investigate the problem of visual BMI estimation from face images by a two-stage learning framework.
BMI-related facial features are learned from the first stage. Then a label distribution based BMI estimator is
learned by an optimization procedure that is implemented by projecting the features and assigned labels to a
new domain which maximizing the correlation between them. Two label assignment strategies are analyzed
for modeling the single BMI value as a discrete probability distribution over a range of BMIs. Extensive
experiments are conducted on FIW-BMI, Morph II and VIP_attribute datasets. The experimental results show
that the two-stage learning framework improves the performance step by step. More importantly, the proposed
BMI estimator efficiently reduces the error. It outperforms regression based methods, two label distribution
methods and two deep learning methods in most cases.
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1. Introduction

Recent research shows that facial adiposity is associated with per-
ceived health and is important for body mass index (BMI) predic-
tion (Coetzee et al., 2009; Wolffhechel et al., 2015). As a body fat
indicator, BMI is widely used in health monitoring and health research.
There are close connections between BMI and some diseases, such
as cancers, unstable angina and type 2 diabetes and cardiovascular
disease (CVD), etc. (Arnold et al., 2016; Wolk et al., 2003; Meigs
et al., 2006). Generally, BMI is measured in person with special devices.
Therefore, automatically estimating BMI from face images is a great
benefit to health monitoring and researchers who are interested in
studying obesity in large populations.

BMI estimation from face images is a challenging problem. First,
different from other human visual tasks, such as face recognition (Guo
et al.,, 2016; Hjelmas and Low, 2001; Yu et al.,, 2019), motion cap-
ture (Moeslund and Granum, 2001; Moeslund et al., 2006) which have
sufficient data for training and testing, it is difficult to collect a database
covering images with all BMI values. Second, the distribution of BMIs
on the database is uneven. According to the BMI values, there are
mainly four BMI categories: underweight (BMI < 18.5), normal (18.5
< BMI < 25), overweight (25 < BMI < 30), obese (BMI > 30). Very
few BMIs distribute on underweight and severe obese categories. It is
hard to ensure each category have enough associated images. Currently,
the number of public databases for visual BMI study is limited. This
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work uses three databases: Morph II (Ricanek and Tesafaye, 2006),
FIW-BMI (Jiang et al., 2019) and VIP_attribute (Dantcheva et al., 2018).
According to the above two reasons, we can see it is difficult to estimate
BMI with limited training data. Finally, the BMI label is ambiguous.
e.g., one person looks like with BMI around 25 which means that some
neighbor values (24.5 or 25.5) can also be used to describe this person;
and some people may look lower than their real BMI, while others may
look higher than their real BMI. Fig. 1 shows some face images from
Morph II and FIW-BMI datasets with corresponding BMI values. We can
see some samples with the same gender and adjacent BMI values but
have different facial appearances.

Single label estimation assumes one image has one label. Regression
based methods directly predict the label from the images which ignores
the ambiguous label that may existing in images. To describe the ambi-
guity associated with the labels of images, a label distribution scheme
is proposed by Geng et al. (2013) to describe such ambiguity. Later on,
other distribution learning based approaches have been proposed for
age estimation and other tasks. These methods utilized label correlation
or entropy model to solve the problem. Geng et al. (2013) proposed
two label distribution based algorithms named IIS-LLD and CPNN.
Comparing with other single label methods, their methods showed good
performances. A multivariate label distribution (MLD) based method
was also proposed by Geng and Xia (2014) for further improving the
performance on head pose estimation. In addition, Xing et al. (2016)
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Fig. 1. Samples from Morph II and FIW-BMI datasets with corresponding BMI values.
Because the images from FIW-BMI dataset are collected from social networks, here we
used a black box to thinly hide the identity of each subject.

used Logistic Boosting Regression (LogitBoost) to learn a general label
distribution model family which can avoid the potential influence of
the specific model.

Some work explored regression based methods for visual BMI es-
timation. Wen and Guo (2013) proposed a computational method
for automatically predicting BMI from 2D face images. This is the
first work on visual BMI estimation from face images. Kocabey et al.
(2017) employed the pre-trained VGG-Face model (Parkhi et al., 2015)
to extract facial representation for BMI estimation. Then a support
vector regression model is learned to map the facial representation
to predicted BMIs. The above two works treated BMI prediction as
a regression problem. Recently, convolutional neural networks (CNN)
have shown promising performance in many applications (Krizhevsky
et al., 2012; Schroff et al., 2015; Cao et al., 2017; Wang et al., 2017). A
method using CNN for BMI estimation is proposed by Dantcheva et al.
(2018), where estimating height, weight, and BMI from single-shot
face images by a regression method based on the 50-layers ResNet-
architecture. Recently, Guo and Jiang (2020) gave a brief overview
of related methods for visual BMI estimation, and presented various
potentials of the developed techniques towards practical applications.

Different from the above work, this work addresses the visual
BMI estimation problem by a label distribution based method. The
label distribution scheme provides a feasible method to learning the
estimator with limited training data. In addition, the label distribution
scheme well defines the increase and decrease of BMI as a “‘continuous”
process. More specifically, a two-stage learning framework is shown in
Fig. 2. First, the BMI-related facial representation is learned by fine-
tuning the pre-trained deep face model. This step is expected to obtain
sufficient visual BMI characteristics and reinforce the learning process
using the limited number of BMI data. More importantly, the label
distribution method models the single BMI value as a discrete prob-
ability distribution over the whole ranges of BMIs. Given the extracted
facial features from the first stage, a BMI estimator is trained by an
optimization procedure that is applied to the features and the assigned
distribution labels. The main contributions of this work include:

1. A two-stage learning framework is presented to address the
visual BMI estimation problem from face images.
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Fig. 2. The pipeline of two-stage learning framework. It consists of BMI-related feature
learning and BMI estimator learning.

2. A label distribution based learning method that regards a BMI
value (label) as a discrete probability distribution is proposed to
learn the BMI estimator.

3. Two label assignment strategies are analyzed to model BMI la-
bels. The output can either be a discrete probability distribution
or a single value.

The remaining of the paper is organized as follows. The details of
the proposed method for BMI estimation are presented in Section 2.
Section 3 describes the three databases used in this work: Morph
II, FIW-BMI and VIP_ attribute. In Section 4, first, we describe the
evaluation metrics and experimental setting; and then we provide the
detailed experimental results and discussion. Finally, the conclusion is
summarized in Section 5.

2. Method

Fig. 2 depicts the two-stage learning framework, which consists of
BMI-related facial features learning and BMI estimator learning. The
BMI-related face model is learned based on a pre-trained deep face
model. Then two different strategies are analyzed for modeling the
BMI labels with probability distributions. And a projection optimization
is achieved by maximizing the correlation between the facial features
and the assigned labels. Finally, the BMI estimator is learned from the
projected features and assigned labels. Below the detailed procedure
and derivation are presented.

2.1. Deep model for BMI-related facial feature

(1) Face model: The face structure is represented by a pre-trained
face model. We utilize the feature extracted from a publicly released
Centerloss face model (Wen et al., 2016). This network improves the
discriminative power of the learned features by using a Centerloss
function to minimize the intra-class variations while maximizing the
inter-class variations by the softmax function. This model performs
impressively in face recognition tasks which achieved face verification
accuracy of 98.28% on Labeled Faces in the Wild Dataset, 94.9% on
YouTube Faces Database. The fully connected layer 5 (fc5) of Center
loss model C is used to extract facial features.

(2) Fine-tuning: This step is implemented by adapting from the
general facial structure model to the BMI-related face model. Our goal
is to estimate BMI values from face images. We tune the pre-trained
Centerloss face model to the BMI face model before extracting features.
FIW-BMI dataset is used to fine-tune the deep model. This step aims
to learn sufficient BMI-related facial features. We replace the last 512-
dimension fully connected layer (fc) with 1-dimension fc, and use
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Fig. 3. Two strategies for modeling the single BMI value.

the Euclidean loss function to fine-tune the network. Euclidean loss
function E computes the sum of squares of differences between two
inputs, which can be written as:

N
1 N
E= 5y 25—l M

where N is the number of samples, y; is the output from the network
and y; is the true BMI value. After the above steps, the fine-tuned face
model is expected to have the capability to capture more BMI-related
facial structures.

2.2. Modeling BMI values with label distribution

BMI value is labeled by a real number. BMI estimation from face
images is different from other traditional regression tasks because there
is ambiguous information among BMI labels. Based on this observation,
we define a single BMI value as a discrete probability distribution over
the range of BMIs. There are two advantages of the label distribution
scheme. First, given one face image, its corresponding label distribution
consists of a set of probabilities. Each probability represents the con-
fidence that the corresponding label describes the image. The largest
probability is corresponding to the true BMI label (value). With this
scheme, one image not only contributes to the learning of its true BMI
label but also provides auxiliary information to learn its adjacent BMI
labels. Second, the label distribution scheme well defines the increase
and decrease of BMI as a process. Similar definition is proposed by Geng
et al. (2013) for age estimation. Different from human age, there is
no exact range for BMIs. According to the BMI distribution of the two
databases, we assume the BMI range is from 13 to 60 in this work. Two
strategies are investigated for modeling the single BMI value, namely
Gaussian distribution, and triangle distribution, which are shown in
Fig. 3.

Specifically, Given an image labeled with the BMI value b, the
BMI label is transformed to a discrete probability distribution p =
[p1.p2s - ,pk]T € R* over the whole range of BMIs which follows a
Gaussian distribution centered at b:

(z; — b)?
262

exp( ), 13 <2z<60, 2

pi =
o\ 2x
where ¢ is the standard deviation of the Gaussian distribution. And
z=[z),2,, ... ,zk]T € R* is a set of discrete values from 13 to 60 with
an interval of 0.1.
For the triangle distribution, the neighbor BMIs are considered with
a length of 4 on each side of the BMI value. The probability p(z;) is
computed by:

L ifb-A<z <b
pi = #, ifb<z;<b+4 3

0, otherwise

A normalization process is applied to the assigned labels, which
defined as: y; = p;/ Y, p;- This leads to a discrete range of BMIs with
different levels of “probabilities™ Y. y; = 1.
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2.3. Learning with assigned labels

The BMI estimator is learned by a label optimization procedure
based on the correlation. The optimization procedure is implemented
by projecting the features and assigned labels to a new domain which
maximizes the correlation between them. Then the BMI estimator
is learned from the projected features and labels as a least square
problem.

Given N training samples, denote x; = [x!,x?, ..., x4 ]T eRYy =
[yhy% .., yl’.‘]T € R* as the feature vector and assigned distribution
label of ith training sample, respectively. Here d is the dimension of the
feature vector x;, and k is the length of the assigned label y;. We assume
that both x; and y; are centered, i.e., Zﬁ  X; =0and Zf: L ¥i = 0. Denote
X = [x1.Xp,....Xx] € RN, Y = [y;.y,.....yn] € ROV, the main idea
of canonical correlation analysis (CCA) (Thompson, 2005) is to project
the two sets of variables into latent variables (a new domain), such that
the correlation p between them is maximized, which can be written
as:

wx' CxyWy

C)

p = max R
Wy ,W T T
XMy /wyT CxxwxWy T Cyy Wy

here wy and wy are projection vectors. Observe that the solution of Eq.
(4) is invariant to re-scaling wy or wy either together or independently:

T T
awy' CxyWy wx CxyWy

(5)

T T ’
2w T T Wy ! CxxWxWy! CyyW
\/a wy CxxWxWyT CyyWy \/ x" ExxWxWy' CyyWy

The solution of Eq. (4) is only related to the direction of the two pro-
jection vectors wy and wy. To obtain a unique solution, the constraints
are added. Thereby, the CCA problem is equivalent to maximizing the
following problem:

TxyT

max wy' XY wy,

W, Wy X Y (6)
stwy XX Twy =1, wyTYY Wy = 1.
Using the Lagrangian multiplier:

A
L(A, Wy, Wy) =Wy | CxyWy — TX(WXTCXXWX -1
A
- TY(WYTCYYWY = 1.

Taking derivatives of wx and wy, respectively:

oL
— =C — Ay C =0, 7
owx xyWy x ExxWx )
oL
— =C — Ay C =0. 8
owy YXWx y CyyWy €))

Then subtracting wy” multiplies Eq. (8) from wyx” multiplies Eq. (7):
0=wx (CxyWy — AxCxxWx) — Wy” (CyxWx — Ay CyyWy)

= Jywy” CyyWy — Axwx" CxxWx-
Taking into account the constraints wy’ XX  wy = 1 and wy” YY  wy =

1, we can obtain that Ay — Ay = 0. Let A = 4y = Ay and assuming Cyy
is invertible, we can obtain:

Cl Cyxwy
wy = X ©
A
substituting Eq. (9) into Eq. (7):
CxyCyy CyxWx = A CxxWy. (10)

Now Eq. (10) is a generalized eigenvalue problem of the form Ax =
ABx. wy can be obtained via solving the following generalized eigen-
value problem. To avoid the singularity problem of YYT and XXT, we
adopt regularized CCA to get wy by the following form:

Cxy(Cyy + 1,17 Cyxwy = 4*(Cxx + 1, Dwy. 11
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Table 1
Characteristics of FIW-BMI dataset. Mean and standard deviations pertained to BMI for
male and female groups.
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Table 2
Characteristics of selected data from Morph II. Mean and standard deviations pertained
to BMI for four gender and ethnicity groups.

Male Female Black male Black female White male White female
#Subjects 3192 1689 #Subjects 6497 1096 1565 535
#Images 5197 2733 #Images 19290 2824 4862 2057
Mean 30.7 31.2 Mean 25.0 25.2 24.6 22.8
Std 7 6.9 Std 4.4 6.0 4.0 5.5
1500 Table 3
Splitting selected Morph II by gender and ethnicity.
Training set Test set
#Subject #lmages #Subject #Images
5 1000 Black male 4568 13574 1929 5716
o Black female 873 2218 223 606
€ White male 1245 3856 320 1006
3 White female 428 1615 107 442
500
10000
0 8000 1
10 20 30 40 50 60
BMI
B 4
o 6000
Fig. 4. Distribution of BMI values on BMI-analysis face database. The BMI values span 'g
a wide range with most of the values distribute between 20 to 50. 5
Z 4000 ]
Let W = [wl, wy, ... ,wq] denotes the matrix of top ¢ eigenvectors of the 2000 1
generalized eigenvalue problem. Here W is the projection vector which
is used to project X into a new domain, such that the correction p is 0 ‘
maximized. For each original feature vector x € R?, we obtain the new 10 20 30 40 50 60

representation x¢¢4 = WTx,

After obtaining the new representations of all N training samples
xiCCA = WTx;, we can obtain the BMI distribution by solve the following
least square problem:

min i HxiTWB - yiTH , 12)
=1

where B € R is a coefficient matrix, which can be shown that the
solution to Eq. (12) is:

B=(X"W) Y7, a3

where (X"W)" denotes the pseudo-inverse of X’ W. Given a test sam-
ple (feature) x,, the corresponding estimated assigned label distribution
can be obtained by:

§=B"W'x,, a4

here § = [yAl V2 );k] is a vector denotes the predicted probabilities
distribution. y' is a factor in vector ¥ which denotes the predicted
probability belongs to the BMI label z;. Then the estimated BMI value
b is computed by:

b= yiz, (15)

z=[z),2,,..., 7] is a set of discrete BMI values from 13 to 60 with the
interval of 0.1.

3. Dataset

We conduct extensive experiments on three datasets. FIW-BMI
dataset (Jiang et al., 2019) is used to fine-tune the deep face model.
Morph II dataset (Ricanek and Tesafaye, 2006) and VIP_attribute
dataset (Dantcheva et al., 2018) are utilized to evaluate the effective-
ness of the proposed method.

Fig. 5. Distribution of BMI values on Morph II. The BMI values mainly distribute
between 15 to 35.

FIW-BMI dataset: It contains 7930 images from 4881 individuals,
along with the corresponding gender, height and weight information.
Among these individuals, there are 3192 males and 1689 females. Each
individual has 1 to 4 images. Details about the dataset are described in
Table 1. It is separated into two groups by gender. Most images in this
dataset are collected from a social network—Reddit posts.! Because this
is a social network displaying people’s progress of weight loss, weight
gain, or essentially any type of body transformation, the BMI values of
these images distribute in a very wide range from 15 to 60 as shown in
Fig. 4. Comparing with the distribution of BMI values on the Morph II
database (as shown in Fig. 5), this dataset has a much wider range of
BMI distribution. Thereby, we use it to fine-tune the deep face model.

Morph II dataset: It contains 55,608 passport-style frontal face im-
ages along with age, gender and ethnicity information. Moreover, there
are 40,330 images have height and weight information. Considering
the uneven distribution of the ethnicity in the database, only 29033
images kept. The images are separated into four groups by gender and
ethnicity. Details about the selected data are described in Table 2. Fig. 5
shows the BMI distribution of the dataset. The BMI values of Morph
II mainly distribute in the range of 15 to 35. Among these, 893 are
underweight, 16,582 are normal, 8237 are overweight and 3321 are
obese. In this work, this dataset is used for evaluating the methods. It is
split into training and test sets as shown in Table 3. The same individual
does not exist in both the training and test sets. Most images from the
same individual have different BMI values.

VIP_attribute dataset: It contains 1026 images from 1026 celebrities
(mainly actors, singers and athletes) collected from the WWW. Among

1 Website: http://www.reddit.com/r/progresspics.
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Table 4
Characteristics of VIP_attribute dataset. Mean and standard deviations pertained to BMI
for male and female groups.

Male Female
#Images 513 513
Mean 25.2 20.9
Std 3.6 3.7

300

Number
- - N N
o (3 o o
o o o o

a
o

10 20 30 40 50 60
BMI

Fig. 6. Distribution of BMI values on VIP_ attributr dataset. The BMI values mainly
distribute between 18 to 30.

them, there are 513 males and 513 females. Table 4 describes the
characteristic of the dataset. Fig. 6 shows the BMI distribution of
the database. It is shown that BMI values mainly distribute between
18 to 30. Comparing with the BMI distributions of the previous two
databases, this database has a much narrow and even distribution of
BMI values. This dataset is used for evaluating the performance of the
methods. It is split into training and test sets. There are 400 male
images and 400 female images in the training set, and 113 male images
and 113 females in the test set.

4. Experiments

We evaluate the proposed methods on two datasets. The perfor-
mance metrics and experimental settings are introduced in this section.
Then the experimental results and analysis are presented in detail.

4.1. Performance metrics

Two measure metrics are utilized for evaluating the performance
of BMI estimators. The first one is mean absolute error (MAE) which
is motivated by that used in age estimation, e.g., Guo et al. (2009). It
is defined as the average of the absolute error between the estimated
BMIs and the ground truth BMIs: MAE = % Z/.AL] |l3j —bj), here b;
is the ground truth BMI for jth image, b ; is the estimated BMI, N is
the number of test images. Another metric is the accuracy of predicted
categories. According to the estimated BMI value, one can predict the
image belong to which category (underweight, normal, overweight or
obese). The accuracy of the predicted category is the proportion of the
total number of predictions that are correct.

Both the two metrics have their advantages and limitations. For
example, given an image with the true BMI value is 24, the estimated
value is 19. Though the absolute error is 5, the predicted category
(normal) is correct. However, if the true BMI of an image is 30 and the
estimated value is 30.5, though the absolute error is 0.5, the predicted
category (obese) is incorrect. Thereby, we combine them together to
evaluate the performance of each method.

4.2. Experimental settings

(1) Data preprocessing: Given the images, we first applied face
detection and landmark localization using the Openface toolkit (Amos
et al.,, 2016). Then the images are aligned by the eye locations and
cropped with the size of 96 x 112. In addition, two geometric facial
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BMI models, namely PIGF and PF, are utilized to further evaluate the
effectiveness of the proposed method. For these two geometric models,
the face images are cropped with the size of 256 x 256.

(2) Implementation details for BMI-related feature learning: The fine-
tuning of Centerloss network is implemented by the Caffe frame-
work (Jia et al., 2014). We fine-tune the network parameters using face
images with BMI labels from FIW-BMI dataset. In this fine-tuning step,
we used mini-batch stochastic gradient descent (SGD) with momentum
settings. The mini-batch size is set to 64 and momentum is set to 0.9.
We initialize the learning rate to 0.00001. The learning rate decreases
in polynomial decay with a power of 0.1. The training procedure stops
after 20 000 iterations. A feature vector of 512 dimensions is extracted
from layer fc5 of the Centerloss. We follow the official usage (Wen
et al., 2016) which extracts the features for each image and its hori-
zontally flipped one, and concatenates them as the representation with
the size of 1024 x 1.

(3) Implementation details for evaluating different BMI estimators: Af-
ter extracting the facial features, five estimators are learned: Support
Vector Regression (SVR) (Drucker et al., 1997), PCA-SVR, Gaussian
Process Regression (GPR) (Williams and Rasmussen, 1996), Canonical
Correlation Analysis (CCA) (Thompson, 2005), and Partial Least Square
analysis (PLS) (Abdi, 2003). Considering the dimension of the deep
facial features, principal component analysis (PCA) (Wold et al., 1987)
is applied to the features before training the SVR, which denoted as
PCA-SVR. The PCA percentage of explained variance for different SVR
is various, but all selected based on the best performance. In our
implementation, SVR is trained with RBF kernel, and GPR is trained
with the rational quadratic kernel. The parameters for each SVR and
GPR lead to the best result are utilized.

(4) Implementation details for label distribution based estimator: For
the label distribution based method, the first step is to convert the BMI
labels to distribution labels as described in Section 2.2. Particularly, the
corresponding BMI range is from 13 to 60 with an interval of 0.1. The
assigned labels are calculated according to the true BMI value. With the
label distribution based method, we train the BMI estimators which are
named LD-CCA and LD-PLS, respectively.

4.3. Experimental results

4.3.1. Evaluation of BMI estimation based on feature learning

First, we conduct the evaluation based on features extracted from
the pre-trained Centerloss face model and fine-tuned BMI-related face
model, respectively. In order to explore the performance based on
different BMI estimators using the deep features, we conduct exper-
iments using five different estimators: SVR, PCA-SVR, GPR, PLS and
CCA. Facial features extracted from the deep network are fed into the
estimators for training. Table 5 presents the experimental results. All
the results are obtained based on separated training and testing on
each of the gender and ethnicity groups. Face model means the feature
directly extracted from the pre-trained Centerloss model. Fine-tuned
means the feature extracted from the fine-tuned facial BMI model. As
described before, FIW-BMI dataset is used to fine-tune the deep model.
From the results, one can see that the performance (MAEs and the
accuracy of predicted category) based on fine-tuned model are all better
than the face model, which shows that fine-tuning the deep model using
facial BMI data derives more robust representations for BMI estimation.
No matter which estimator is used, the errors are all reduced. This
demonstrates that the fine-tuned facial BMI model is more capable of
capturing BMI-related facial features.

Since all the results presented in Table 5 are obtained from the
estimators trained by original BMI labels (the single BMI label for each
face image), they will be compared with the experimental results from
label distribution based methods in the following section.
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Table 5

BMI estimation results using five estimation methods on Morph II dataset.

Computer Vision and Image Understanding 197-198 (2020) 102985

Feature Method Black male Black female White male White female
MAE Accuracy (%) MAE Accuracy (%) MAE Accuracy (%) MAE Accuracy (%)
SVR 2.47 75.7 3.67 66.8 2.48 73.8 2.89 74.4
PCA-SVR 2.50 75.7 3.73 66.8 2.50 73.8 2.86 73.5
Face model GPR 2.54 75.8 3.73 66.3 2.52 75.4 3.09 75.1
PLS 2.52 76.5 4.76 54.1 2.82 70.4 4.64 51.8
CCA 2.51 76.3 4.42 56.1 2.78 70.9 4.05 60.7
SVR 2.45 76.7 3.40 68.6 2.37 76.2 2.78 75.8
PCA-SVR 2.57 75.7 3.56 67.8 2.34 78.1 3.47 69.0
Fine-tuned GPR 2.53 76.8 3.62 68.3 2.38 76.7 2.79 78.1
PLS 2.47 76.5 4.54 56.2 2.71 73.0 4.27 58.4
CCA 2.46 76.6 4.36 55.7 2.67 74.2 3.84 62.9
Table 6
BMI estimation results using label distribution based method on Morph II dataset.
Feature Method Black male Black female White male White female
MAE Accuracy (%) MAE Accuracy (%) MAE Accuracy (%) MAE Accuracy (%)
Face model LD-PLS 2.49 77.0 3.49 66.0 2.48 74.7 2.96 71.5
LD-CCA 2.42 76.5 3.50 67.1 2.38 77.1 2.86 75.9
Fine-tuned LD-PLS 241 76.6 3.69 59.4 2.54 74.3 2.98 72.0
LD-CCA 2.35 77.0 3.40 67.3 2.25 75.6 2.72 73.8
Table 7
BMI estimation results using the label distribution based method on Morph II dataset by geometric features.
Feature Method Black male Black female White male White male
MAE Accuracy (%) MAE Accuracy (%) MAE Accuracy (%) MAE Accuracy (%)
PIGF SVR 2.66 72.7 3.73 65.8 2.71 70.8 2.96 70.7
GPR 2.72 74.2 3.74 66.5 2.74 72.1 2.99 70.7
PLS 2.76 71.9 3.81 67.1 2.74 71.2 3.15 74.5
CCA 2.77 71.8 3.77 67.1 2.74 71.3 3.14 74.5
LD-CCA 2.62 72.4 3.56 66.6 2.62 71.6 2.96 73.4
LD-PLS 2.64 72.5 3.61 67.7 2.70 71.1 2.87 72.0
PF SVR 2.63 73.6 3.65 68.3 2.68 70.8 3.12 72.5
GPR 2.68 75.0 3.79 68.4 2.79 71.0 3.09 73.8
PLS 2.73 73.1 3.69 66.5 2.73 70.9 3.37 72.0
CCA 2.71 73.4 3.68 66.8 2.71 70.9 3.38 72.0
LD-CCA 2.57 73.7 3.52 67.2 2.58 69.5 2.91 76.9
LD-PLS 2.61 73.5 3.50 65.9 2.64 69.4 3.02 75.2

4.3.2. Evaluation of label distribution based methods

Now we conduct the experiment using our proposed estimator
for BMI estimation. The experiment uses the features extracted from
Centerloss face model and fine-tuned facial BMI model. The results
of applying label distribution based methods to the facial feature are
presented in Table 6. The estimated BMI values are obtained based
on separated training and testing on each of the gender and ethnicity
groups. Note that the method is based on the Gaussian distribution
model as mentioned in Section 2.2. The comparison of the perfor-
mance between the two label assignment strategies will be analyzed
in Section 4.3.3.

Comparing with the results given in Table 5, LD-CCA and LD-PLS
outperform the previous five estimators-SVR, PCA-SVR, GPR, PLS and
CCA. More specifically, with the features extracted from the face model,
MAEs of CCA and PLS are 2.51 and 2.52, respectively; while MAEs of
LD-CCA and LD-PLS are 2.42 and 2.49, respectively. With the features
extracted from the fine-tuned model, MAEs of CCA and PLS are 2.46
and 2.47, respectively; while MAEs of LD-CCA and LD-PLS are 2.35 and
2.42, respectively. This result shows the advantages of the proposed
estimator when utilizing the label distribution schemes. Since the num-
ber of databases for visual BMI study is very limited, it is challenging
to learn a good BMI estimator with limited training data. The label
distribution scheme provides a feasible method to learn estimator with
limited training data. More specifically, given a face image labeled
with BMI value 20, its corresponding label distribution consists of a
set of probabilities. Each probability represents the confidence that
the corresponding label describes the image. The largest probability is

corresponding to BMI label 20. With this scheme, one image not only
contributes to the learning of its BMI label but also provides auxiliary
information to the learning of its adjacent BMI labels. In addition, the
label distribution scheme well defines the increase and decrease of BMIs
as a process.

To further evaluate the performance, Fig. 7 shows the overall MAE
of the estimated BMI values in each step of the two-stage learning
method. The overall MAE is calculated from the four test sets. From
this figure, one can see that the MAE is reduced step by step using
the proposed method on deeply learned representations. The MAE
of applying CCA to Centerloss face feature is 2.75. After the feature
learning stage, it drops from 2.75 to 2.71. Then by applying LD-CCA
to deeply learned BMI features, the MAE significantly drops to 2.42.
This further demonstrates the effectiveness of the proposed two-stage
learning method.

4.3.3. Performance of different label assignment strategies

As mentioned in Section 2.2, there are two strategies for modeling
BMI values with label distributions: Gaussian distribution and triangle
distribution. We compare the performance of the two label assignment
strategies. Three facial features are used in this experiment, they are
Centerloss, PIGF and PF. Note that Centerloss features are extracted
from the fine-tuned BMI face model. Two label distribution methods,
LD-CCA and LD-PLS, are implemented for the comparison. The results
are shown in Fig. 8. One can see that the Gaussian distribution performs
better than the triangle distribution in the three cases. This result
indicates that the Gaussian distribution is more suitable for defining
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Fig. 7. Comparison of overall MAE on Morph II dataset in each step of our proposed
method.

BMI labels than the triangle distribution. Because changes in facial
appearance are non-rigid, the BMI-related changes in facial appearance
are non-linear. The correlation between facial appearance and BMI
is related to ages and genders (Pham et al., 2011). This means with
different age or gender the BMI-related changes in facial appearance are
different. However, the triangle distribution describes the BMI-related
changes in facial appearance as a linear process. Thereby, the Gaussian
distribution is more suitable for defining BMI labels than the triangle
distribution. In addition, it can be observed that in most cases LD-
CCA method shows better performance than LD-PLS by both two label
assignment strategies.

To further analyze the two label assignment strategies, we evaluate
their performances with different parameters. This experiment uses the
features extracted from the fine-tuned BMI face model. Fig. 9 shows
the experimental results. It can be seen that the best performance is
achieved by setting o to 4, 4 to 3 for LD-CCA, and setting ¢ to 5, 4 to
2 for LD-PLS.

4.3.4. Evaluate label distribution based estimators on geometric features
To further evaluate the effectiveness of the proposed label distribu-
tion based estimator, we apply it to two geometric features: psychology
inspired geometric feature (PIGF) (Wen and Guo, 2013) and pointer
feature (PF) (Jiang et al., 2019). PIGF consists of seven facial metrics:
cheek-to-jaw-width ratio (CJWR), face width-to-height ratio (WHR) and
face perimeter to area ratio (PAR), metrics—eye size (ES), lower face
to face height ratio (LF/FH), face width to lower face height ratio
(FW/LFH) and mean of eyebrow height (MEH). PF is the geometric
facial representation that can well define the facial shape. It consists of
coordinates of 68 facial landmarks which are extracted by the Openface
toolkit (Amos et al., 2016). The coordinates of detected landmarks are
simply concatenated as: [xy, Y|, ..., X, Vs -+ » X8> Ve | - The dimension
of the feature is 136. The experimental results are given in Table 7.
It can be seen that LD-CCA and LD-PLS perform better than the other
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four methods in most cases. This demonstrates that the proposed BMI
estimator performs well on geometric features.

4.3.5. Comparing with label distribution based methods

We compare our methods with two label distribution learning meth-
ods, namely LDL-IIS and LDL-CPNN (Geng et al., 2013) on Morph II
dataset. The two methods are first proposed for facial age estimation.
One assumption made in the IIS-LLD is the derivation of conditional
probability p(y|x) as the maximum entropy model (Berger et al., 1996).
A strategy similar to improved iterative scaling (IIS) (Della Pietra et al.,
1997) is used to optimize the cost function. Different from LDL-IIS,
LDL-CPNN uses a three-layer network to approximate p(y|x) to replace
the above assumption. The results of the comparison are presented
in Table 8. One deep feature and two geometric features are utilized
for this experiment. The deep features are extracted from the fine-
tuned BMI face model. From Table 8, one can see that among the two
compared methods, LDL-IIS performs better than LDL-CPNN. Though
LDL-IIS achieves the best performance on the black female set, our
methods outperform LDL-IIS and LDL-CPNN in most other cases.

4.3.6. Comparing with deep learning based methods

We further compare the proposed method with two deep learning
methods on VIP_attribute dataset. One is a regression based BMI esti-
mation method proposed by Dantcheva et al. (2018). It is based on a
50-layers ResNet architecture which replaces the last 1000-dimension
fc with the 1-dimension fc. And L1 loss is used to fine-tune the deep
network. The weights of the pre-trained ResNet-50 (He et al., 2016) are
used to initialize the network. Another is an ordinal regression based
method for BMI category classification, namely native noisy binary
search (NNBS) (Polania et al., 2019). Noisy binary search algorithms
based pairwise comparisons are utilized to exploit the ordinal rela-
tionship among BMI categories. Table 9 shows the comparisons of the
BMI estimation. For a fair comparison, the four methods (LDL-IIS, LDL-
CPNN, LD-PLS and LD-CCA) utilize the deep features extracted by the
Centerloss model (Wen et al., 2016) without the BMI feature learning
stage. Because NNBS is a BMI category classification method, it outputs
a predicted BMI category for each image rather than an estimated BMI
value. Here we report its accuracy of predicted categories. For BMI
value estimation (MAE), the proposed LD-CCA method outperforms the
two label distribution based methods. And it performs slightly better
than the ResNet based method. For BMI category prediction (accuracy),
the NNBS method achieves the best accuracy (74.3%) on the male
set, and ResNet based method achieves the best accuracy (85.8%) on
the female set. All of the above experimental results demonstrate the
effectiveness of the proposed method.

Centerloss PIGF PF
3.2 | LD-ccA 3.2 [[IHIILD-CCA 3.2 | LD-CCA 311
[ip-pLs [TILo-PLS | 5 5306 COLD-PLS | 5 00F1
3 3 3
2.8 28 271274 238 2.711
L<ItJ 2.642.65 l<lt-l l<lt-l 2.65
= 26 2.49 =26 =26
2.42
24 24 2.4
2.2 2.2 2.2
2 2 2
Normal Triangle Normal Triangle Normal Triangle

Fig. 8. Comparison of BMI estimation results on Morph II dataset using the two label assignment strategies.
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Fig. 9. The performance of the two label assignment strategies with different parameters.

Table 8

Comparison of BMI estimation between the proposed methods and two label distribution based methods on Morph II dataset.

Feature Method Black male Black female White male White female
MAE Accuracy (%) MAE Accuracy (%) MAE Accuracy (%) MAE Accuracy (%)

LDL-IIS 2.48 75.6 3.33 69.0 2.39 76.5 2.89 73.4

. LDL-CPNN 7.60 30.4 4.20 60.1 3.73 59.8 4.66 54.0
Fine-tuned

LD-PLS (ours) 2.41 76.6 3.69 59.4 2.54 74.3 2.98 72.0

LD-CCA (ours) 2.35 77.0 3.42 67.3 2.25 75.6 2.72 73.8

LDL-IIS 2.99 85.6 4.10 74.4 3.08 77.2 3.34 66.8

PIGF LDL-CPNN 2.98 80.0 4.70 50.9 3.19 78.4 3.26 66.4

LD-PLS (ours) 2.64 72.5 3.61 67.7 2.70 71.1 2.87 72.0

LD-CCA (ours) 2.62 72.4 3.56 66.6 2.62 71.6 2.69 73.4

LDL-IIS 3.40 60.7 4.50 72.4 3.45 59.5 3.75 64.1

PF LDL-CPNN 3.70 54.7 5.24 24.5 4.47 30.5 6.45 13.4

LD-PLS (ours) 2.61 73.5 3.50 65.9 2.64 69.4 3.02 75.2

LD-CCA (ours) 2.57 73.7 3.52 67.2 2.58 69.5 2.91 76.9

Table 9
Comparison of BMI estimation between the proposed methods and other four methods
on VIP_attribute dataset.

Method Male Female All
MAE Accuracy (%) MAE Accuracy (%) MAE Accuracy (%)

LDL-IIS 4.75 55.8 4.04 69.0 439 624
LDL-CPNN 5.37 51.3 4.02 70.0 4.69 60.6
ResNet based 2.32 708 2.30 85.8 2.36 76.6
NNBS (VGG) - 74.3 - 80.5 - 77.4
LD-PLS (ours) 2.25 72.6 228 814 226 77.0
LD-CCA (ours) 2.19 72.6 2.27 85.0 2.23 78.8

5. Conclusion

In this work, we study the problem of BMI estimation from face
images by a two-stage learning framework. More specifically, first, a
BMI-related face model is fine-tuned to learn more BMI-related facial
features. Then we model the BMI labels with discrete probability dis-
tributions. Finally given the BMI-related facial features from the first
step and the probability distributions, a BMI estimator is learned by
maximizing the correlation between them. Two different label assign-
ment strategies are presented in this work. Extensive experiments are
conducted on three datasets: FIW-BMI, Morph II and VIP_attribute. The
experimental results show that the two-stage framework reduces the
estimated errors step by step. The proposed label distribution based
estimator shows more robustness than regression based methods and
methods without label distribution schemes. We also evaluated the
effectiveness of the estimator on two geometric features. Furthermore,
our method outperforms the two label distribution based methods and
two deep learning based methods.
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