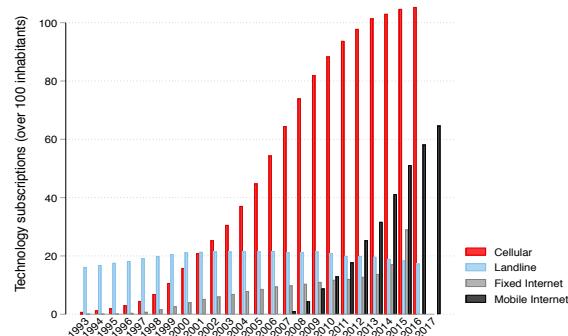


Leveraging Mobile Phones to Attain Sustainable Development

Valentina Rotondi^{a,b,c,1}, Ridhi Kashyap^{a,c,d}, Luca Maria Pesando^e, Simone Spinelli^g, and Francesco C. Billari^{b,f}

^aDepartment of Sociology, University of Oxford, 42 Park End St., Oxford, OX1 1JD, United Kingdom; ^bDondena Centre for Research on Social Dynamics and Public Policy, Bocconi University, Via G. Roentgen 1, 20136, Milano, Italy; ^cNuffield College, University of Oxford, New Rd., Oxford, OX1 1NF, United Kingdom; ^dSchool of Anthropology and Museum Ethnography, University of Oxford, 51–53 Banbury Rd., Oxford, OX2 6PE, United Kingdom; ^eDepartment of Sociology and Centre on Population Dynamics, McGill University, Stephen Leacock Building, Room 821, 855 Sherbrooke Street West, Montreal, Quebec, H3A 2T7, Canada; ^fDepartment of Social and Political Sciences, Bocconi University, Via Roentgen, 1, 20136, Milano, Italy; ^gAlumnus Bocconi University, via G. Roentgen 1, 20136, Milano, Italy

This manuscript was compiled on February 19, 2020


1 **For billions of people across the globe, mobile phones enable relatively cheap and effective communication, as well as access to information and vital services on health, education, society and the economy. Drawing on context-specific evidence on the effects of the digital revolution, this study provides empirical support for the idea that mobile phones are a vehicle for sustainable development at the global scale. It does so by assembling a wealth of publicly available macro- and individual-level data, exploring a wide range of demographic and social development outcomes, and leveraging a combination of methodological approaches. Macro-level analyses covering 200+ countries reveal that mobile-phone access is associated with lower gender inequality, higher contraceptive uptake, and lower maternal and child-mortality. Individual-level analyses of survey data from sub-Saharan Africa, linked with detailed geo-spatial information, further show that women who own a mobile phone are better informed about sexual and reproductive health services and empowered to make independent decisions. Payoffs are larger among the least developed countries and among the most disadvantaged micro-level clusters. Overall, our findings suggest that boosting mobile-phone access and coverage and closing digital divides, particularly among women, can be powerful tools to attain empowerment-related sustainable development goals, in an ultimate effort to enhance population health and well-being, and reduce poverty.**

Mobile phones | SDGs | Gender equality

1 **T**he potential for information and communication technologies (ICTs) to empower marginalized communities and promote sustainable development goals (SDGs) has been recognized among scholars and policymakers (1–3). The digital revolution brought about by the diffusion of mobile phones has allowed several countries with otherwise poor infrastructure — such as countries in sub-Saharan Africa and South Asia — to leapfrog communication technologies such as phone landlines and fixed internet connections (e.g. broadband) (see Figure 1 and S1 in the SI), with immense social implications. Growing evidence from specific contexts has shown that mobile phones — small, relatively inexpensive, yet incredibly powerful devices — can facilitate effective communication and connectivity, as well as access to information and vital services linked to health, education, and the economy.

16 This study is, to the best of our knowledge, the first to grow context-specific evidence about the role of mobile phones in affecting sustainable development to a global scale. We show that access to mobile phones is positively associated with multiple indicators linked to global social development, such as lower gender inequalities, enhanced contraceptive use, and lower maternal and child mortality. We do so by assembling a

Fig. 1. ICT penetration worldwide from 1993 to 2017

Note: Left panel: ICT penetration worldwide 1993–2017. Right panel: ICT penetration by world region 1993–2017. Source: Authors' elaboration from ITU data.

23 wealth of publicly available macro- and individual-level data*,
24 exploring a wide range of demographic and social development
25 outcomes tied to women's decision-making power, health,
26 and well-being, and leveraging a combination of datasets and
27 methodological approaches, some of which (individual-level)

Significance Statement

Although mobile phones have diffused rapidly even in remote parts of the world with otherwise poor infrastructure, digital divides persist. This study provides large-scale evidence that the expansion of mobile phones is associated with lower gender inequalities, higher contraceptive use, and lower maternal and child mortality, with bigger payoffs among the poorest countries. Micro-level analyses further show that the ownership of mobile phones has narrowed the information gap about reproductive and sexual health, and empowered women to make independent decisions. Boosting mobile-phone access and coverage and overcoming digital divides within and among the poorest countries has immense implications for sustainable development. Findings from this study speak to scholars and policymakers interested in the effect of technology on sustainable development goals.

VR, FCB, LMP, RK designed and performed research and wrote the paper. VR and SS analyzed data. VR and RK performed data consolidation.

The authors declare no competing interest (as defined by PNAS policy).

¹To whom correspondence should be addressed. E-mail: valentina.rotondi@sociology.ox.ac.uk

allow us to draw causal inferences.

Mobile phones serve a range of functions across low- and middle-income countries (LMICs). With the maturation of technology and expansion of mobile-data networks, the capabilities of mobile phones have significantly expanded from enabling communication to the provision of information and the delivery of services (4). Mobile-phone-based health-care interventions have been extensively implemented to improve appointment compliance, treatment adherence, and connectivity to enhance the capacity of remote and lesser trained health staff (5–7). Effects of these interventions have been documented on improved antenatal care attendance (8), reduced perinatal mortality (9), improved clinical outcomes of HIV-positive pregnant women (10), and increased contraceptive use (11, 12) and acceptability (13). The increased affordability of mobile phones has the potential to facilitate autonomy and empowerment-related outcomes especially for women, through channels such as enhanced financial independence and better labor-market prospects (14), more decision-making power in domestic and public domains (15), and by effectively releasing women's time in caring and domestic work (16). Studies also point to a link between mobile phones and increased food security and dietary quality (17), and better educational outcomes (18). Thus, if the potential of mobile phones is leveraged adequately, this technology promises to be cost-efficient tool that fosters the realization of several key United Nations (UN) SDGs. Mobile phones can play a crucial role in ensuring healthy lives and promoting individual well-being at all ages (SDG 3 - "Good health and well-being"), and achieving gender equality by empowering girls and women (SDG 5 - "Gender equality"), as ways to ultimately reduce poverty in all its forms (SDG 1 - "No poverty") and achieve key population targets (19, 20).[†]

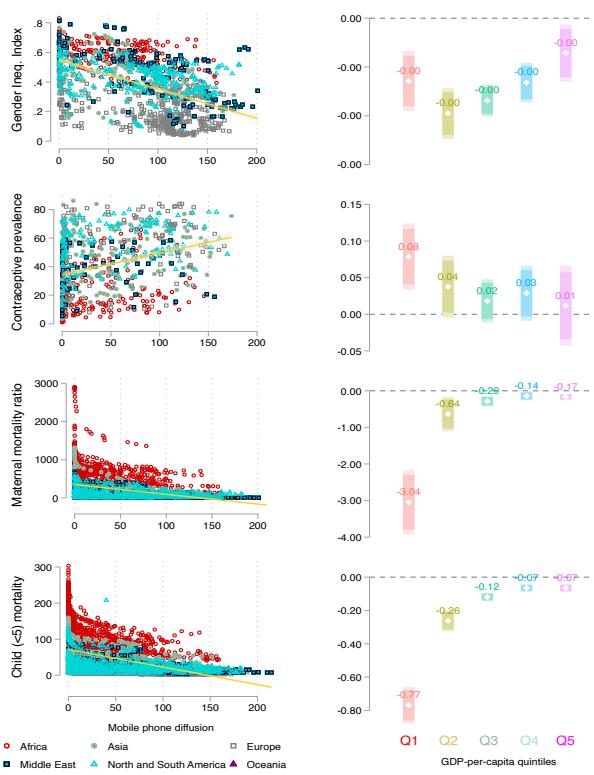
Women's empowerment and sexual and reproductive rights are essential building blocks in sustainable development strategies (21, 22). According to UN estimates, in 2017 just over 50% of women between 15 and 49 years of age who are married or in union are able to make their own decisions about consensual sexual relations and make use of contraceptives and health services (23). The lack of appropriate information and poor connectivity to health services are significant bottlenecks for the uptake of contraceptives (22, 24). The information and connectivity gap combined with a lack of decision-making power and autonomy has significant implications for the health and well-being of women, as well as that of their children (25). Improving access to information can play a crucial role in improving sexual and reproductive health, as informed women can make more conscious choices in terms of contraception, protection from sexually transmitted diseases, and antenatal care. Access to reproductive health care and information is, however, not easy in remote and poor areas around the world. Mobile phones can be instrumental in narrowing the information gap and in enabling service-seeking to people in need. Higher-quality connectivity through mobile phones can also enable lesser trained care providers to better support their target populations.

Previous research has documented the positive impact that media technology, such as TV, has had on promoting women's empowerment through exposure to new attitudes, knowledge

and behaviours (26, 27). Mobile phones offer enhanced capabilities, including the ability to access these benefits privately, which is essential in contexts where social norms are restrictive and might hamper women's access to information resources and ability to connect directly with healthcare providers (28). This potential is explicitly acknowledged within the SDG Goal 5 (Target 5B), which seeks to harness ICTs such as mobile phones as a pathway towards women's empowerment and wellbeing.[†] Drawing on a range of social and demographic outcomes linked to gender inequality, reproductive and sexual health, and women's empowerment, in this study we provide both macro- and individual-level evidence that this is indeed one promising pathway.

Global macro-level evidence

Our macro-level analyses build on pooled data for 209 countries between 1993 and 2017, and seek to provide broad associational evidence between mobile-phone diffusion and global development indicators to further motivate the micro-level investigations that follow. We combine country-level data from the International Telecommunication Union (ITU), the World Bank (WB), and the UN. Outcome measures include the Gender Inequality Index (GII), the prevalence of modern contraceptive methods, the maternal mortality ratio, and under-five child mortality. The GII is a comprehensive macro-indicator of gender inequality comprising three sub-dimensions of human development — reproductive health, empowerment, and economic status — widely used by social scientists to measure gender dynamics and female empowerment (29–31), as well as by policy-makers to track progress towards the attainment of the SDGs (32). Table S2 in the Supplementary Information provides a complete description of the outcome measures.


Figure 2 provides global correlations between a measure of mobile-phone diffusion — defined as the ratio between the number of mobile-phone subscriptions and the total population — and sustainable development outcomes. The left panel shows, for each country-year, the relationship between mobile-phone diffusion and the four outcomes, including the least-squares lines (in yellow). At the global level, mobile-phone diffusion is negatively correlated with gender inequality as measured by the GII ($r=-0.51$; $p\text{-value}=0.000$), positively correlated with contraceptive prevalence ($r=0.31$; $p=0.000$), and negatively correlated with maternal ($r=-0.37$; $p=0.000$) and child ($r=-0.47$; $p=0.000$) mortality. These associations show non-linearities across levels of economic development measured by GDP-per-capita quintiles (right panel), and are on average higher in absolute values for the lowest quintiles. These GDP-gradients take the form of J — or reversed-J — curves, with mobile-phone diffusion being more negatively associated with the GII, maternal, and child mortality, and more positively associated with contraceptive prevalence among the least and less developed countries.

Further analyses adjusting for controls — including panel data fixed-effects models, panel data random-effects models, and instrumental variables (IV) models — corroborate evidence from the above unadjusted associations. For simplicity, we here present results from panel data fixed-effects models only (Table 1), while estimates using different techniques, model specifications, and non-interpolated data are reported

* See Table S1 in the Supplementary Information (SI, henceforth).

[†]<https://www.un.org/sustainabledevelopment/gender-equality/>

Fig. 2. Global correlations between mobile-phone diffusion and sustainable development outcomes.

Note: Left panel: correlations between mobile-phone diffusion and sustainable development outcomes by geographical areas. Right panel: standardized coefficients from univariate models regressing mobile-phone diffusion on sustainable development outcomes by GDP-per-capita quintiles. The gray dashed line corresponds to zero, i.e. no association, while the darker and lighter bands surrounding the white point correspond to the 95 and 90 per cent confidence intervals, respectively.

Source: Authors' elaboration from ITU, World Bank and UN data. Analyses based on all available data for 209 countries from 1993 to 2017.

Table 1. Associations between mobile-phone diffusion and sustainable development outcomes, by GDP per-capita quintiles

	(1) Gender ineq. index	(2) Contraceptive prevalence	(3) Maternal mortality	(4) Child mortality
Panel 1: Q1–Q2				
Mobile ph. sub./pop.	-0.146* (0.073)	0.078* (0.036)	-0.184*** (0.063)	-0.300*** (0.066)
Educ: lower sec., 25+	0.170 (0.244)	0.207** (0.094)	-0.199 (0.218)	-0.152 (0.357)
GDP per capita	-1.682 (1.256)	-0.885 (0.660)	1.143 (0.927)	-0.624 (0.928)
Pop. density	-2.744 (3.610)	1.525 (0.801)	1.577 (1.275)	1.039 (1.956)
N	194	210	241	243
Within R ²	0.247	0.396	0.339	0.399
Panel 2: Q3–Q5				
Mobile ph. sub./pop.	-0.099* (0.020)	0.058* (0.035)	-0.016** (0.006)	-0.063*** (0.012)
Educ: lower sec., 25+	-0.286*** (0.071)	0.018 (0.098)	-0.003 (0.009)	-0.022 (0.019)
GDP per capita	-0.161** (0.078)	-0.225 (0.144)	-0.015 (0.010)	-0.041 (0.030)
Pop. density	-0.171* (0.091)	2.968 (2.178)	0.032** (0.015)	0.130*** (0.036)
N	852	516	911	902
Within R ²	0.559	0.089	0.160	0.447
Panel 3: Overall sample				
Mobile ph. sub./pop.	-0.102*** (0.020)	0.062* (0.033)	-0.014** (0.006)	-0.057*** (0.011)
Q1–Q2	-0.008 (0.063)	-0.016 (0.072)	-0.066 (0.048)	0.022 (0.072)
Q1–Q2 × Mobile ph. sub./pop.	-0.021 (0.038)	0.023 (0.044)	-0.162*** (0.058)	-0.267*** (0.063)
Controls	✓	✓	✓	✓
N	1046	726	1152	1145
Within R ²	0.499	0.153	0.297	0.453

Note: : Panel data fixed effects models (Standardized coefficients). Standard errors robust to heteroskedasticity reported in parentheses. Control variables: educational attainment (lower secondary education, population 25+), GDP per capita, and population density. Time span: 1993–2017. Data linearly interpolated. * p<0.10, ** p<0.05, *** p<0.01

(Panel 3) point to higher absolute returns to technology for less developed countries documented in Figure 2 (right panel). Mobile phone coefficients in Q1–Q2 countries suggests that mobile-phone technology might serve to complement the role of other development processes such as educational expansion and economic growth, rather than substitute for it.

Coefficient estimates are robust across a variety of estimation techniques and model specifications (Table S7) and also to alternative gender inequality indicators such as the UNDP's Gender Development Index, dis-aggregated components of the GII, and the GII indicator purged of the maternal mortality component — an outcome in itself in our analysis (Table S6).

Despite multiple robustness checks, we acknowledge that our ability to make causal claims in the macro-level analyses is limited. Nonetheless, we believe that these analyses offer a novel global-level overview of the links between mobile phones and indicators of sustainable development. In so doing, the macro-level component of this study paves the way for individual-level analyses focusing on a subset of countries at the low end of the J-curve in Figure 2, towards a more causally-oriented understanding of the relationship between technology and sustainable development.

Individual-level regional evidence

In what follows, we provide consistent and more specific evidence from augmented individual-level data in a multi-level perspective. We use nationally-representative samples of women aged 15–49 from the Demographic and Health Surveys (DHS) to study the effects of mobile-phone adoption on (social) sustainable development outcomes. Unlike macro-level data on mobile-phone diffusion, information on individual-level adoption of mobile technologies that can be linked to development outcomes is less readily available (4, 33). The most recent DHS waves in some countries, however, provide data on whether female respondents own a mobile phone and we can exploit this information. The DHS also contain detailed geographical information about where respondents live, which allows us to augment DHS data with geo-coded data. We are therefore able to directly study if women who own mobile phones are more empowered to make independent decisions in their house-

146 in Table S7 in SI. We estimate separate models for the four
147 outcomes (GII, contraceptive prevalence, maternal mortality,
148 and under-5 mortality) as a function of mobile-phone diffusion,
149 controlling for a host of country-specific covariates such as
150 GDP per capita (PPP, constant 2011 international \$), pop-
151 ulation density, and educational attainment — the share of
152 the population (25+ both sexes) that has at least completed
153 lower secondary education (ISCED 2 or higher). Descriptive
154 statistics on explanatory variables are reported in Tables S3
155 and S4 in SI.

156 The standardized coefficients reported in Table 1 (Panel
157 3) confirm the negative and significant associations between
158 mobile phones, gender inequality, and maternal and child
159 mortality previously described. An increase in mobile-phone
160 diffusion by one standard deviation (SD) is associated with
161 a decrease in the GII by 0.10 SD (p<0.01), an increase in
162 contraceptive prevalence by 0.06 SD (p<0.05), a decrease in
163 maternal mortality by 0.01 SD (p<0.01), and in child mortality
164 by 0.06 SD (p<0.01). The sign of the interaction coefficients of
165 mobile-phone diffusion with GDP per capita in categorical form
166 (interaction in continuous form in Table S5) shown in Table 1

206 holds, more knowledgeable about health-seeking behaviours
207 (e.g., where to get tested for HIV), and have improved health
208 outcomes (e.g., contraceptive use, access to antenatal care
209 etc.).

210 Individual-level analyses are limited to Sub-Saharan Africa
211 (SSA) for two reasons. First, the demographic transition is
212 slowly under way in SSA, with slow fertility decline, and infant
213 and maternal mortality remaining at very high levels (34, 35).
214 Relatedly, SSA is the world region with the highest variation
215 in mobile-phone adoption and diffusion.[§] By focusing on SSA
216 we therefore provide evidence from an “extreme-case” scenario
217 where policy interventions related to technology-adoption are
218 likely to be particularly effective — as also suggested by the
219 higher marginal returns to technology for less developed countries
220 documented above. Second, by focusing on a subset of
221 SSA countries we seek to ease comparability and maximize
222 the internal consistency of our findings. In this respect, we are
223 concerned about the potential endogeneity of mobile-phone
224 ownership, our key explanatory variable.

225 Endogeneity can arise as mobile-phone ownership and so-
226 cial development outcomes might be jointly determined by
227 individual characteristics that are not observed. Similarly, we
228 cannot rule out instances of reverse causality whereby more
229 empowered women are more likely to own a mobile phone.
230 To address these concerns, we select from among the avail-
231 able pool of DHS surveys those containing: 1) information on
232 mobile-phone ownership, and 2) GPS coordinates (latitude
233 and longitude) of the respondent’s household. Following these
234 criteria, we select DHS surveys providing individual-level data
235 on women between 2015 and 2017 from seven SSA countries:
236 Angola, Burundi, Ethiopia, Malawi, Tanzania, Uganda, and
237 Zimbabwe. The combined data set includes more than 100,000
238 individual observations — for more details on the sample refer
239 to Table S8 in SI.

240 We augment DHS individual-level geocoded data with in-
241 formation from other sources. First, we link DHS data to the
242 Degree High Resolution Full Climatology (HRFC) Dataset,
243 which contains information on total lightning flash rates seen
244 by the space-borne Optical Transient Detector (OTD) and
245 Lightning Imaging Sensor (LIS). Second, we link DHS data
246 with Afrobarometer data, exploiting the fact that survey enu-
247 merators in the Afrobarometer recorded the availability of
248 specific facilities, including mobile-phone coverage in the local
249 geographical unit of the respondent. This innovative use of
250 linked data enables us to: (i) devise a solid identification strat-
251 egy, as mobile-technology adoption is slower and connectivity
252 is weaker in areas where lightning strikes are more frequent —
253 likely due to damaged antennas on the ground (similarly to
254 (36)) — and (ii) exploit information about mobile-phone cover-
255 age in the area where the respondent lives. These data allow to
256 obtain individual-level instrumental-variable estimates of the
257 effect of mobile-phone ownership on sustainable development
258 outcomes.

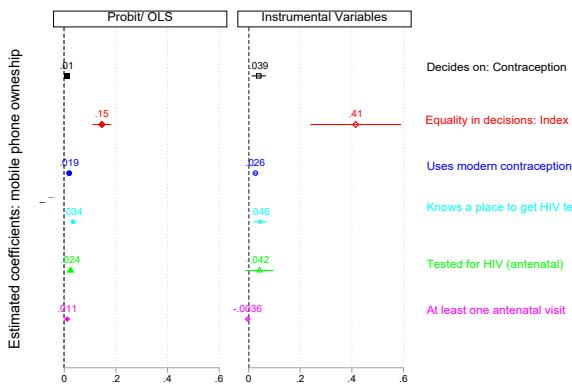
259 An important issue that still hampers the causal interpreta-
260 tion of the estimates is that access to technology might mask
261 wider developmental processes unfolding at the local level. We
262 work around this potential bias by further linking augmented
263 DHS data to the Visible Infrared Imaging Radiometer Suite
264 (VIIRS) Nighttime Imagery dataset, which contains informa-

265 tion about nighttime lights, a well-established proxy for local
266 development (37, 38). We then include this proxy in our
267 model specifications while keeping the level of granularity of
268 the analysis unaltered.

269 To summarize, our final augmented DHS dataset includes
270 information from four different datasets that are linked through
271 GPS coordinates. As all data are publicly available (see Table
272 S1), our analyses are easily replicable.[¶] The SI section provides
273 additional descriptions of the data (S8), variables (S9), and
274 methods used in this individual-level analysis.

275 Figure 3 plots the estimated coefficients from a series of
276 Ordinary Least Squares (OLS) or probit (left panel) and instru-
277 mental variables regression models (right panel). We regress
278 four sets of outcomes on mobile-phone ownership, namely:
279 1) women’s involvement in intra-household decision-making
280 regarding contraception (1a) or women’s involvement in intra-
281 household decision-making as measured by a linear index
282 comprising decisions on health, household large purchases,
283 and visits to family and friends (1b); 2) women’s actual use
284 of modern contraceptive methods; 3) women’s knowledge of
285 health-related outcomes and, specifically, of where to get tested
286 for HIV; and, eventually, 4) information on women’s antenatal
287 visits’ quality during the last pregnancy, proxied by either
288 whether a woman has been tested for HIV (4a), or whether
289 she has undergone at least one antenatal visit (4b). For the
290 last two outcomes we include only women who had at least
291 one birth in the last year and for whom we know that the area
292 in which they live was covered by cellular signal in the year
293 preceding the birth. This information is obtained by combin-
294 ing the interview date and the geographical location of the
295 DHS birth-history data and the Afrobarometer. Alongside the
296 aforementioned proxy for local development (nighttime lights),
297 all models account for standard socio-economic controls — re-
298 spondent’s education, age, household’s size, employment and
299 urban/rural status^{||} — together with indicators of exposure to
300 other media (radio and TV). Models also include country and
301 year fixed effects to account for unobservable country-level
302 heterogeneity.

303 Results indicate that women who own a mobile phone have
304 higher probability of being involved in decision-making pro-
305 cesses about contraception ($\beta=0.01$; $p<0.01$), higher overall
306 decision-making power within the household ($\beta=0.15$; $p<0.01$),
307 higher likelihood of using modern contraceptive methods
308 ($\beta=0.02$; $p<0.01$), and a higher likelihood of knowing where
309 to get tested for HIV with respect to women who do not
310 own a phone ($\beta=0.03$; $p<0.01$). Estimated coefficients are
311 sizable, as for most outcomes the effect of owning a mobile
312 phone is roughly comparable to — if not bigger than — that
313 of living in an urban area. Results are robust to the use of
314 instrumental variables, thus adding confidence in the inter-
315 pretation of the coefficients as causal estimates. Mobile-phone
316 ownership is also associated with a higher chance of being
317 tested for HIV during pregnancy ($\beta=0.02$; $p<0.01$) and to
318 a higher chance of having undergone at least one antenatal
319 visit ($\beta=0.01$; $p<0.01$), yet IV results do not allow us to in-
320 terpret these last two associations as causal as the estimated
321 coefficients are not statistically significant.


322 Lastly, to parallel the macro-level analyses of heterogeneous

[§]The coefficient of variation (CV, henceforth) based on ITU data for Africa is equal to 135.39, against a CV of 117.65 for Asia, of 71.25 for Europe, of 100.12 for the Middle East, and of 95.72 for North and South America.

[¶]DHS datasets can be downloaded directly from <http://dhsprogram.com>.

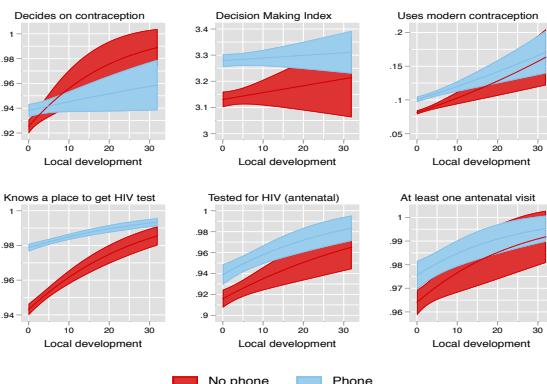

^{||}As a robustness check we also account for wealth at the household level. Results are robust to the inclusion of this control. See Table S16 in the SI.

Fig. 3. Individual-level effects of mobile-phone ownership on sustainable development outcomes in Sub-Saharan Africa

Note: Coefficient estimates for the effect of owning a mobile phone on outcomes related to women's decision-making, knowledge about health-seeking behaviours, and health outcomes. Models are estimated on DHS women's samples from seven Sub-Saharan African countries (2015–2017). Whiskers represent 95% confidence intervals. Covariates used in the models: education, age, household size, employment status, radio and tv ownership, urban, local development (nightlights). Country and year fixed effects. Standard errors clustered at the cluster level. The last two panels report estimates from the subset of women who had at least one birth in the last year and for whom we know that the area in which they live was covered by cellular signal in the year preceding the birth. **Source:** Authors' elaboration from augmented DHS data.

Fig. 4. Marginal effects of the interaction between mobile-phone ownership and local development

Note: The figure plots the marginal effects of the interaction between mobile-phone ownership and local development as proxied by nightlights. Spatial information is converted into a scale (0–60, here truncated at 30 for visual purposes) whereby lower values correspond to lower development and higher values correspond to higher development (note: the scale itself does not matter). **Source:** Authors' elaboration from augmented DHS data.

globe to close digital divides as a way to foster sustainable development. Although we acknowledge that our ability to make causal claims in the macro-level analyses is limited, we see this global-level overview as a novel and essential building block towards a holistic understanding of the relationship between technology adoption and sustainable development. Further research is needed to unravel and understand the mechanisms that underlie these macro-level relationships, thus providing effective guidance to practitioners.

Our individual-level analyses for Sub-Saharan Africa have shown how women who own a mobile phone are better informed about where to access sexual and reproductive health and are better able to make their own decisions in their households, including about contraception. Through these channels of improved knowledge and enhanced decision-making power, our individual-level analyses have suggested a pathway through which the macro-level results emerge. The macro- and individual-level analyses provide consistent and complementary results that support each other to understand the broader implications of the digital revolution on social development processes.

More than twenty years ago in 1995, the Beijing Declaration and Platform for Action reaffirmed that the human rights of women and girls are an inalienable, indivisible, and integral part of the universal human rights. Since then, gender equality has been acknowledged as both a standalone SDG, and one that is inextricably linked with progress on other SDGs, including key targets associated with health and wellbeing (39). Since the 2000s, considerable improvements have been observed through SDG indicators such as contraceptive use and under-five mortality (40). Our study has highlighted how these improvements have been bolstered, among other factors, by the digital revolution, and in particular by the diffusion of mobile phones. Echoing the words pronounced in 2003 by Nobel Peace Laureate Muhammad Yunus at a conference on poverty and information and communication technologies (ICTs) (41), “the quickest way to get out of poverty right now

323 effects by level of development, Figure 4 reports the marginal
324 effects of the interaction between mobile-phone ownership
325 and local development measured through nightlights at the
326 cluster level. Results show significant differences in social
327 development outcomes between women owning (blue) versus
328 not-owning (red) mobile phones, but only at lower levels of
329 local development, i.e., where the two bands do not intersect.
330 Differences are particularly noticeable for the decision-making
331 index, use of modern contraceptive methods, knowledge of a
332 place to get HIV-testing, and actual HIV-testing. Clusters
333 with low local development are typically those that characterize
334 remote areas with poor infrastructure and connection to
335 big cities, thus making mobile phones a powerful tool to
336 enhance access to information and service accessibility relative
337 to higher local-development areas where alternative means
338 make information more readily available. These findings con-
339 firm once again the higher payoffs to technology adoption in
340 less developed micro-level clusters. For full-model estimates
341 for each outcome, together with sensitivity tests, refer to SI
342 Tables S10–S17.

Conclusions and Outlook

By combining a wide-range of datasets, this study has provided large-scale evidence on the positive associations between mobile phones and several key sustainable development indicators. Our macro-level global analyses have shown how the diffusion of mobile phones across countries over time is associated with lower gender inequality, higher contraceptive uptake, and lower maternal and child mortality levels. Importantly, associations are strongest in absolute value for countries in the lowest quintiles of development (following a J- or reversed-J shape), a finding —further corroborated through micro-level analyses — which highlights the importance for policy makers around the

is to have one mobile telephone." This study has provided strong empirical support that boosting mobile-phone access and coverage, and crucially overcoming digital divides and ensuring equitable access to these technologies, is indeed one powerful instrument to get closer to the attainment of the sustainable development goals.

Still, despite the proliferation of mobile networks, digital divides by gender and socioeconomic strata persist in the developing world. Women are less likely to own mobile phones on their own, use them less often when they have access, and have poorer ICT skills compared to men, thus creating second-level (*skill-related*) digital divides on top of first-level (*access-related*) ones (33, 42–44). Given that the costs associated with mobile phones are still significant, those with lower income and education, including women, are less able to access and use mobile phones (42, 45). The full potential of mobile technologies thus cannot be wholly exploited if digital divides persist. Investing in cheaper, equitable access, enabling independent ownership and focusing on ICT skill development, especially among women, can forge an even more promising pathway to leverage mobile phones for attaining sustainable development.

Materials and Methods

The methods used along the empirical analyses are described in detail in the SI and include: panel data fixed effects, random effects, and Instrumental Variables models for global macro-level analysis and OLS, multilevel, probit and IV models for the individual-level regional analysis. The macro-level dataset is deposited in the XXX data collection (<http://XXX>). The codes needed to link the micro data are accessible through the following website: XXX. Macro-level and micro-level data come from different data sources, as detailed in Table S1 in the SI.

ACKNOWLEDGMENTS. We acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement n. 694262), project DisCont – Discontinuities in Household and Family Formation. We acknowledge support through the Global Family Change (GFC) Project (<http://web.sas.upenn.edu/gfc>), a collaboration between the University of Pennsylvania, University of Oxford (Nuffield College), Bocconi University, and the Centro de Estudios Demográficos (CED) at the Universitat Autònoma de Barcelona. Funding for the GFC Project is provided through NSF Grant 1729185 (PIs: Kohler & Furstenberg), ERC Grant 694262 (PI: Billari), ERC Grant 681546 (PI: Monden), the Population Studies Center and the University Foundation at the University of Pennsylvania, and the John Fell Fund and Nuffield College at the University of Oxford. VR and RK would like to thank support from the Leverhulme Trust within the Leverhulme Center for Demographic Science.

1. S Huyer, M Carr, Information and communication technologies: A priority for women. *Gender, Technol. Dev.* **6**, 85–100 (2002).
2. G Walsham, S Sahay, Research on information systems in developing countries: Current landscape and future prospects. *Inf. technology for development* **12**, 7–24 (2006).
3. P Unwin, T Unwin, *ICT4D: Information and communication technology for development*. (Cambridge University Press), (2009).
4. JC Aker, IM Mbiti, Mobile phones and economic development in Africa. *J. Econ. Perspectives* **24**, 207–32 (2010).
5. D Holmes, Rwanda: an injection of hope. *The Lancet* **376**, 945–946 (2010).
6. AC Noordam, BM Kuepper, J Stekelenburg, A Milen, Improvement of maternal health services through the use of mobile phones. *Trop. Medicine & Int. Heal.* **16**, 622–626 (2011).
7. CS Hall, E Fottrell, S Wilkinson, P Byass, Assessing the impact of mHealth interventions in low- and middle-income countries—what has been shown to work? *Glob. Heal. Action* **7**, 25606 (2014).
8. S Lund, et al., Mobile phones improve antenatal care attendance in Zanzibar: A cluster randomized controlled trial. *BMC pregnancy childbirth* **14**, 29 (2014).

9. S Lund, et al., Mobile phone intervention reduces perinatal mortality in Zanzibar: Secondary outcomes of a cluster randomized controlled trial. *JMIR mHealth uHealth* **2** (2014).
10. J Coleman, et al., Effectiveness of an SMS-based maternal mhealth intervention to improve clinical outcomes of HIV-positive pregnant women. *AIDS care* **29**, 890–897 (2017).
11. C Smith, J Gold, TD Ngo, C Sumpter, C Free, Mobile phone-based interventions for improving contraception use. *Cochrane Database Syst Rev* **6**, CD011159 (2015).
12. PM Castaño, JY Bynum, R Andrés, M Lara, C Westhoff, Effect of daily text messages on oral contraceptive continuation: A randomized controlled trial. *Obstet. & Gynecol.* **119**, 14–20 (2012).
13. OL McCarthy, et al., An intervention delivered by text message to increase the acceptability of effective contraception among young women in palestine: Study protocol for a randomised controlled trial. *Trials* **18**, 454 (2017).
14. T Suri, W Jack, The long-run poverty and gender impacts of mobile money. *Science* **354**, 1288–1292 (2016).
15. NT Hoan, A Chib, R Mahalingham, Mobile phones and gender empowerment: Enactment of 'Restricted Agency' in *Proceedings of the Eighth International Conference on Information and Communication Technologies and Development*. (ACM), p. 5 (2016).
16. NN Wekwete, Gender and economic empowerment in Africa: Evidence and policy. *J. Afr. Econ.* **23**, i87–i127 (2014).
17. H Sekabira, M Qaim, Can mobile phones improve gender equality and nutrition? Panel data evidence from farm households in Uganda. *Food Policy* **73**, 95–103 (2017).
18. JC Aker, C Ksoll, TJ Lybrett, Can mobile phones improve learning? Evidence from a field experiment in Niger. *Am. Econ. Journal: Appl. Econ.* **4**, 94–120 (2012).
19. G Abel, B Barakat, S KC, W Lutz, Meeting the sustainable development goals leads to lower world population growth. *Proc. Natl. Acad. Sci.* **113**, 14294–14299 (2016).
20. W Lutz, Global Sustainable Development priorities 500 y after Luther: Sola schola et sanitate. *Proc. Natl. Acad. Sci.* **114**, 6904–6913 (2017).
21. MF Gates, Putting women and girls at the center of development. *Science* **345**, 1273–1275 (2014).
22. J Cleland, et al., Family planning: The unfinished agenda. *The Lancet* **368**, 1810–1827 (2006).
23. United Nations Economic and Social Council, Progress towards the sustainable development goals. report of the secretary-general., (United Nations Economic and Social Council), Technical report (2017).
24. S Singh, JE Darroch, Adding it up: Costs and benefits of contraceptive services. Estimates for 2012., (New York: Guttmacher Institute and United Nations Population Fund (UNFPA)), Technical report (2012).
25. P Pratley, Associations between quantitative measures of women's empowerment and access to care and health status for mothers and their children: A systematic review of evidence from the developing world. *Soc. Sci. & Medicine* **169**, 119–131 (2016).
26. R Jensen, E Oster, The power of TV: Cable television and women's status in India. *The Q. J. Econ.* **124**, 1057–1094 (2009).
27. E La Ferrara, A Chong, S Duryea, Soap operas and fertility: Evidence from Brazil. *Am. Econ. Journal: Appl. Econ.* **4**, 1–31 (2012).
28. J Tacchi, KR Kitner, K Crawford, Meaningful mobility: Gender, development and mobile phones. *Fem. Media Stud.* **12**, 528–537 (2012).
29. TJ Gray, J Gainous, KMA Wagner, Gender and the digital divide in Latin America. *Soc. Sci. Q.* **98**, 326–340 (2017).
30. L Schnabel, Religion and gender equality worldwide: A country-level analysis. *Soc. Indic. Res.* **129**, 893–907 (2016).
31. SA Churchill, AS Nuhu, K Lopez, Persistence of gender inequality: The role of ethnic divisions. *Appl. Econ.* **51**, 781–796 (2019).
32. B Aggarwal, LS Chakraborty, The 2030 Sustainable Development Goals and measuring gender inequality: A technical articulation for Asia-Pacific, (Working Paper No. 859, The Levy Institute), Technical report (2016).
33. M Fatehkia, R Kashyap, I Weber, Using Facebook ad data to track the global digital gender gap. *World Dev.* **107**, 189–209 (2018).
34. J Bongaarts, J Casterline, Fertility transition: Is sub-saharan africa different? *Popul. Dev. Rev.* **38**, 153–168 (2013).
35. J Bongaarts, Africa's unique fertility transition. *Popul. Dev. Rev.* **43**, 39–58 (2017).
36. M Manacorda, A Tsehi, Liberation technology: Mobile phones and political mobilization in africa. *Econometrics* (Forthcoming).
37. N Pokhriyal, DC Jacques, Combining disparate data sources for improved poverty prediction and mapping. *Proc. Natl. Acad. Sci.* **114**, E9783–E9792 (2017).
38. A Bruderle, R Hodler, Nighttime lights as a proxy for human development at the local level. *Plos one* **13**, e0202231 (2018).
39. V Esquivel, C Sweetman, Gender and the sustainable development goals. *Gend. & Dev.* **24**, 1–8 (2016).
40. SS Lim, et al., Measuring the health-related sustainable development goals in 188 countries: A baseline analysis from the Global Burden of Disease Study 2015. *The Lancet* **388**, 1813–1850 (2016).
41. A Saith, ICTs and poverty alleviation: Hope or hype? in *ICTs and Indian Social Change: Diffusion, Poverty, Governance*. (SAGE Publications India Pvt Ltd), pp. 113–159 (2008).
42. J Blumenstock, N Eagle, Mobile divides: Gender, socioeconomic status, and mobile phone use in rwanda in *Proceedings of the 4th ACM/IEEE International Conference on Information and Communication Technologies and Development*. (ACM), p. 6 (2010).
43. A Gillwald, A Milek, C Stork, Gender assessment of ICT access and usage in Africa. *Towards Evidence-based ICT Policy Regul.* **1** (2010).
44. V Frias-Martinez, E Frias-Martinez, N Oliver, A gender-centric analysis of calling behavior in a developing economy using call detail records in *2010 AAAI Spring Symposium Series*. (2010).
45. J Burrell, Evaluating shared access: Social equality and the circulation of mobile phones in Rural Uganda. *J. Comput. Commun.* **15**, 230–250 (2010).