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Abstract

The rapid decrease in Arctic sea ice cover and thickness not only has a linkage with extreme weather in the mid-
latitudes but also brings more opportunities for Arctic shipping routes and polar resource exploration, both of
which motivate us to further understand causes of sea-ice variations and to obtain more accurate estimates of sea-
ice cover in the future. Here, a novel data-driven method, the causal effect networks algorithm, is applied to
identify the direct precursors of September sea-ice extent covering the Northern Sea Route and Transpolar Sea
Route at different lead times so that statistical models can be constructed for sea-ice prediction. The whole study
area was also divided into two parts: the northern region covered by multiyear ice and the southern region
covered by seasonal ice. The forecast models of September sea-ice extent in the whole study area (TSIE) and
southern region (SSIE) at lead times of 1-4 months can explain over 65% and 79% of the variances, respectively,
but the forecast skill of sea-ice extent in the northern region (NSIE) is limited at a lead time of 1 month. At lead
times of 1-4 months, local sea-ice concentration and sea-ice thickness have a larger influence on September TSIE
and SSIE than other teleconnection factors. When the lead time is more than 4 months, the surface meridional
wind anomaly from northern Europe in the preceding autumn or early winter is dominant for September TSIE
variations but is comparable to thermodynamic factors for NSIE and SSIE. We suggest that this study provides a
complementary approach for predicting regional sea ice and is helpful in evaluating and improving climate

models.
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1 Introduction

The Barents Sea and Kara Sea are both shallow shelf seas
covered by a small amount of ice in summer (Loeng, 1991) or
nearly ice-free. The variations in ice-free area have a fundament-
al influence on local biodiversity, especially in the marginal ice
zone (MIZ) (Hegseth, 1998; Falk-Petersen et al., 2000; Engelsen et
al., 2002; Tamelander et al., 2006). The primary production over
the Barents Sea has a large interannual variability affected by
changes in the ice-edge position (Wassmann et al., 2006). Model
experiments showed that there is an upward trend in primary
production when regional sea-ice cover significantly decreases in
summer (Ellingsen et al., 2008). The fish and other mammals ob-
tain access to the primary production from phytoplankton and
zooplankton through food webs and pelagic-benthic coupling
(Tamelander et al., 2006), and permanent ice-free conditions in
summer are helpful in maintaining these nutrition supplies (En-
gelsen et al., 2002).

The northward shift in the ice edge not only stimulates the
development of fisheries and aquaculture along the coasts of
North Europe and Russia but also provides more chances for Arc-
tic shipping routes, including the Northern Sea Route (NSR)
along the Siberian coast, Northwest Passage (NWP) and
Transpolar Sea Route (TSR) (Humpert and Raspotnik, 2012). The
abundant oil/gas, mineral and fishery resources in the Arctic
have attracted much attention from more stakeholders. More im-
portantly, the Arctic has a strategic position in economic and mil-
itary affairs. Arctic shipping routes are the shortest seaborne
trade routes linking Asia to Europe and North America relative to
traditional shipping routes, such as the Panama Canal and Suez
Canal, thereby efficiently reducing the commercial shipping cost
(Zhang et al., 2009). Moreover, the Arctic shipping routes can
meet the increasing maritime transportation volume that causes
congestion in the narrow traditional routes. It is estimated that
the recent large loss of Arctic sea ice will increase the potential
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for Arctic shipping by midcentury, even across the central Arctic
Ocean (Smith and Stephenson, 2013; Melia et al., 2016), which
may break geopolitical limitations along the NSR and NWP.
Sea-ice reduction brings unprecedented opportunities but
causes more climate risks with global warming (Yang et al.,
2016), such as extreme cold winters in the northeastern US,
northwestern and central Europe and even the Far East regions
(Liu et al., 2012; Cohen et al., 2014). The ability to capture sea-ice
variations in advance on subseasonal to seasonal time scales has
pronounced implications for forecasts of fishing seasons, Arctic
shipping routes and extreme weather events. Since 2008, Sea Ice
Prediction Network (SIPN) has encouraged contributors includ-
ing citizen scientists to submit their predicted annual pan-Arctic
and regional sea-ice extent minimum to Sea Ice Outlook (SIO)
managed by SIPN project via an open sea-ice portal (Wayand et
al., 2019) which produces an systematic scientific report on Arc-
tic sea-ice projections from dynamical models, statistical models,
mixed models and heuristic models in June, July, and August
each year (Stroeve et al., 2014) and explores main drivers of
September sea-ice changes by model intercomparison. From SIO
reports, a lot of coupled ice-ocean models (Zhang et al., 2008;
Massonnet et al., 2011; Kauker et al., 2015) and fully coupled ice-
ocean-atmosphere models (Chevallier et al., 2013; Metzger et al.,
2014; MacLachlan et al., 2015; Borovikov et al., 2019; Bushuk et
al., 2017) have been applied to seasonal sea-ice prediction. The
seasonal prediction of dynamical models with the same compon-
ents is affected by different initial conditions (Blanchard-
Wrigglesworth et al., 2011; Msadek et al., 2014; Guemas et al.,
2016). For instance, studies showed that the same coupled global
climate model (NCEP CFSv2), with different initial conditions
(initialized atmospheric and oceanic components with NCEP Cli-
mate Forecast System Reanalysis (Saha et al., 2010) and used ini-
tial sea-ice thickness from Pan-Arctic Ice Ocean Modeling and
Assimilation System (PIOMAS) in Collow et al. (2015) rather than
nudging sea-ice concentration (Wu and Grumbine, 2014)) could
result in large difference in performance. To improve sea-ice pre-
dictions, multivariate data assimilation methods have been also
utilized to integrate more credible observations into dynamical
models (Massonnet et al., 2015; Zhang et al., 2018a; Liu et al.,
2019). In addition, linear and non-linear statistical approaches
are comparable to dynamical models in predicting the Septem-
ber Arctic sea-ice extent (Drobot et al., 2006; Tivy et al., 2011;
Kapsch et al., 2014; Wang et al., 2016; Williams et al., 2016), al-
though their forecast skills are limited due to the lack of observa-

tions and the instability of linkages between predictors and pre-
dictands (Holland and Stroeve, 2011). Examples of statistical
models are: one is provided by Drew Slater, a non-parametric
statistical model of Arctic sea-ice extent, based on the probability
of daily sea-ice concentration at lead 60-90 days; the other is by
Yuan et al. (2016) who used a linear Markov model for sea-ice
concentration and found good forecast performance. These res-
ults indicate that reliable estimates of sea-ice cover can be ob-
tained through statistical models.

This study introduces a novel data-driven approach, the caus-
al effect networks (CEN) algorithm (Runge et al., 2015), to ex-
plore stable and robust precursors of September sea-ice extent
covering both the TSR and the NSR to build statistical forecast
models. Considering the difference in sea-ice floe size and thick-
ness distribution in different regions (Horvat and Tziperman,
2015; Zhang et al., 2015), we divided the study area into two parts,
the southern MIZ (Barents Sea and Kara Sea) covered by season-
al ice and the northern region (part of the central Arctic Ocean)
covered by multiyear ice, and compared their precursors. In fact,
the CEN method has been employed in many climate research
fields, such as the teleconnection among different modes of at-
mospheric low-frequency variability and between Arctic factors
and mid-latitude winter circulation and the prediction of ex-
treme polar vortex events (Ebert-Uphoff and Deng, 2012;
Kretschmer et al., 2016, 2017; Li et al., 2018). Compared with oth-
er statistical methods, this algorithm has two major advantages:
(1) exclusion of false factors due to common drivers or indirect
correlations through other variables and (2) identification of the
specific lead time and location of each precursor.

2 Materials and methods

2.1 Data

According to previous studies on the causes of sea-ice
changes, we chose twelve relevant variables in Table 1. Here, the
long-term means and linear trends for each calendar month were
removed from the sea-ice extent and the twelve variables be-
cause we focus on only the month-on-month influence. Monthly
detrended data over 1980-2017 were used to keep the stationar-
ity of the time series. Although it was proved that Atlantic water
inflow (AWI) has a large impact on Arctic sea-ice variations (Sch-
lichtholz, 2011; Arthun et al., 2012), the AWI index was not in-
cluded because there are no long-term observations nor reana-
lysis products that cover the entire study period.

Table 1. Variables associated with September sea-ice extent within the whole study area

Name Definition Region
SIC/% sea-ice concentration ice-covered ocean north of 30.98°N
SIT/m sea-ice thickness ice-covered ocean north of 49°N
SST/K sea surface temperature ocean north of 60°N
DLWF/W-m-2 downward surface longwave radiation flux ocean north of 60°N
DSWF/W-m-2 downward surface shortwave radiation flux ocean north of 60°N
SSHF/W-m2 surface sensible heat flux ocean north of 60°N
SLHF/W-m-2 surface latent heat flux ocean north of 60°N
SLP/hPa sea level pressure north of 60°N
Uyp/m-st zonal component of wind at 10 m north of 60°N
Viom/m-s! meridional component of wind at 10 m north of 60°N
VT/K-m3s-1 net atmosphere heat transport 60°-90°N, 15°-100°E
OHC/] ocean heat content integrated from 0 to 700 m North Atlantic (including Arctic Ocean)
OT/] ocean temperature integrated from 0 to 100 m North Atlantic (including Arctic Ocean)

NAO North Atlantic oscillation index
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The daily and monthly gridded sea-ice concentrations (Com-
iso, 2017) are obtained from National Snow and Ice Data Center
(NSIDC). Similar to the way that NSIDC processed data, the daily
sea-ice concentration greater than 15% was firstly used to gener-
ate daily sea-ice extent, which was averaged over the month into
the monthly sea-ice extent. Hereinafter, September sea-ice ex-
tent in the whole study area (Fig. 1) is the predicted variable. The
sea-ice thickness data set was obtained from Pan-Arctic Ice
Ocean Modeling and Assimilation System (PIOMAS) which
couples a 12-category thickness and enthalpy distribution (TED)
sea-ice model and Parallel Ocean Program (POP) ocean model
(Zhang and Rothrock, 2003, 2005).
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Fig. 1. The whole study area (blue shading) includes the Bar-
ents Sea and Kara Sea (65°-81°N, 15°-~100°E) and the central Arc-
tic Ocean north of 81°N. Red arrows represent TSR and purple ar-
rows represent NSR.

To investigate the effects of atmospheric and oceanic factors
on Arctic sea ice, near-surface fields from ERA-Interim reanalys-
is (Dee et al., 2011) were used, including sea surface temperature,
downward surface longwave and shortwave radiation fluxes,
sensible and latent heat fluxes at the surface, sea level pressure,
and zonal and meridional components of wind at 10-m height.
The net atmosphere heat transport was calculated through the
integral of the product of meridional wind and air temperature
vertically from 1 000 hPa to 700 hPa in the study area. Ocean heat
content and vertically averaged ocean temperature anomaly data
are available from Global Ocean Heat and Salt Content database
(Levitus et al., 2012). We only used ocean heat content integrated
from 0 to 700 m and ocean temperature anomaly integrated from
0 to 100 m, both of which are limited in the North Atlantic basin,
including the Arctic Ocean. The monthly North Atlantic Oscilla-
tion (NAO) index (Wallace and Gutzler, 1981) was obtained from
Climate Prediction Center (CPC)/National Oceanic and Atmo-
spheric Administration (NOAA).

2.2 Methodology

2.2.1 Causal effect networks algorithm

Similar to Li et al. (2018), lagged correlation fields were first
constructed for each relevant variable at lead times of 1-11
months (Figs S1-S7) because this study focuses on the influence
of different factors on September TSIE within one year. The stat-
istically significant regions that consist of a broad range of adja-
cent grids with the same sign on the correlation fields were re-
cognized, and the regional variables were weighted by the correl-

ation coefficients at each grid. Note that several variables (DSWF,
SSHF, and SLHF) have no significant-correlative regions. Then,
based on the CEN method (Runge et al., 2015), these correlation-
weighted regional mean factors and other potential variables
(VT, OHC, OT, and NAO) were investigated to determine the dir-
ect precursors related to September TSIE through different com-
binations of minimal and maximal lead times (1< T,; <T,, <
11). The essence of the CEN algorithm is to iteratively test the
conditional independence of each factor. That is, given any con-
ditions, partial correlation coefficients of September TSIE with
each candidate factor are generated. With the increase in factors
as prescribed conditions, the candidate factor was excluded once
when any partial correlation coefficient was nonsignificant at the
95% confidence level, which means no robust direct correlation
between September TSIE and the candidate factor exists or they
have indirect links through some prescribed conditions. Finally,
those significant factors directly correlated with September TSIE
were retained as predictors in multiple linear regression models.

2.2.2 Forecast skill scores

In light of the approach adopted by Lindsay et al. (2008), any
consecutive 30 years over 1980-2017 were selected as the fitting
period followed by the subsequent two years as the forecast peri-
od. Until the 1987-2016 subset, 2017 was the only forecast period.
Therefore, 15 values of September TSIE in total were estimated
based on the same CEN precursors of regression models at differ-
ent lead times, and the error variance in these forecasts was

N

J?zZ(Yi—i/i)z/Nﬁ Np =15, M

i

where Y; and Y; represent the observed and predicted values of
the ith forecast sample, respectively. To evaluate the forecast per-
formance, the explained variance in the forecast model relative to
climatology was computed by

Se=1-0f/al. @)

where 6.2 was the total variance relative to climatology:

o2=3"(%-Y)/nt, nt=38, 3)

where Y is the observation in the jth year and Y is the climatolo-
gical mean over 1980-2017.

Additionally, to evaluate the stability of regression models,
Leave-One-Out cross-validation models were rebuilt on predict-
ors for 1- to 11-month-lead models during the training period
after one-year data were removed. The September TSIE in the ex-
cluded year was estimated based on its corresponding cross-val-
idation model. The error variance in the cross-validation model
was

nt

2=3 (Yj - i/j)z/nt, (4)

J

where Y; and i’} represent the observed and predicted values in
the jth year, respectively. Similar to Eq. (2), the explained vari-
ance in the cross-validation model was
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2.2.3 Monte carlo resampling

To analyze the impacts of predictors on the uncertainty in the
predicted September TSIE, the Monte Carlo method was intro-
duced. Before resampling, it was required to confirm the probab-
ility distribution of each precursor. For example, sea-ice concen-
trations ranging from zero to one accord with the typical Beta dis-
tribution. Based on the distribution function of each precursor
each year, N=1 000 random numbers were generated and taken
into regression models for the 1 000 estimates of September TSIE
in that year whose standard deviation was

where Y}/ is the random estimate in the jth year for the ith time

and Yj is the mean of all random estimates in the jth year. The
standard deviation average over 1980-2017 was used to indicate
the contribution of the precursor to the predicted September
TSIE.

3 Results

3.1 Precursors

According to correlation maps of variables with September
TSIE at lead times of 1-11 months, forty statistically significant
regions were selected (Figs S1-S7), including two SIC regions,
nine SIT regions, four SST regions, six DLWF regions, seven SLP
regions, four U, regions and eight V,,  regions. The paramet-
ers of the optimal regression models with predictors included at
different lead times are summarized in Table 2, where the min-
imal lead time represents how long the candidate factor is at least
earlier than September. We referred to Eq. (2) and chose the
model with the largest explained variance as the optimal model
at the specific minimal lead time. All predictors in these optimal

Table 2. Parameters of optimal models of September sea-ice extent within the whole study area at lead times of 1-11 months

T Predictor? Description Center coordinates ~ Regression coefficient 3)
1 sic_1 August regional mean sea-ice concentration in the 1st group of 2 SIC 80.82°N, 68.33°E 0.756
regions
slp_1 August regional mean sea level pressure in the 1st group of 7 SLP 76.21°N, 19.51°E 0.186
regions
sst_3 January regional mean sea surface temperature in the 3rd group of 4 74.13°N, 17.81°E -0.181
SST regions
2 sic_2 July regional mean sea-ice concentration in the 2nd group of 2 SIC 79.46°N, 61.92°E 0.636
regions
sit_7 February regional mean sea-ice thickness in the 7th group of 9 SIT 82.99°N, 54.10°E 0.254
regions
vl0m_1 Julyregional mean meridional wind at 10 m in the 1st group of 8 V;,,,  82.79°N, 108.87°W 0.204
regions
3 sit_3 June regional mean sea-ice thickness in the 3rd group of 9 SIT 82.72°N, 59.17°E 0.681
regions
vl0m_6  December regional mean meridional wind at 10 m in the 6th group of 70.24°N, 36.89°E -0.295
8 V) regions
vl0m_7 December regional mean meridional wind at 10 m in the 7th group of =~ 82.23°N, 162.58°E 0.235
8 Vo, regions
4 sit_4 May regional mean sea-ice thickness in the 4th group of 9 SIT regions 82.40°N, 60.92°E 0.576
ul0m_3 May regional mean zonal wind at 10 m in the 3rd group of 4 U, ,, 62.98°N, 110.08°E 0.276
regions
vl0m_7  October regional mean meridional wind at 10 m in the 7th group of 8 82.23°N, 162.58°E 0.235
Viom regions
5 vl0m_4  March regional mean meridional wind at 10 m in the 4th group of 8 73.60°N, 86.35°W -0.377
Viom regions
vl0m_3  April regional mean meridional wind at 10 m in the 3rd group of 8 V,, . 77.74°N, 80.28°E -0.325
regions
sst_3 January regional mean sea surface temperature in the 3rd group of 4 74.13°N, 17.81°E -0.344
SST regions
6 vl0m_4  March regional mean meridional wind at 10 m in the 4th group of 8 73.60°N, 86.35°W -0.406
Viom regions
vl0m_6 December regional mean meridional wind at 10 m in the 6th group of 70.24°N, 36.89°E -0.433
8V, regions
7 sit_7 February regional mean sea-ice thickness in the 7th group of 9 SIT 82.99°N, 54.10°E 0.655
regions
8 sit_8 January regional mean sea-ice thickness in the 8th group of 9 SIT 82.42°N, 54.40°E 0.595
regions
9 vl0m_6  December regional mean meridional wind at 10 m in the 6th group of 70.24°N, 36.89°E -0.569
8V, regions
10 vl0m_8  October regional mean meridional wind at 10 m in the 8th group of 8 79.86°N, 56.64°E -0.496
Viom regions
11 vl0m_8  October regional mean meridional wind at 10 m in the 8th group of 8 79.86°N, 56.64°E -0.496
Vo m regions
Note:V T, , represents the minimal lead time for each model. 2 The number after the underline means the group to which each variable

belongs. The specific description of each predictor is shown in the third column. 3) The regression coefficients correspond to normalized

regression models.
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models significantly correlate with September TSIE (p<0.05).

From Table 2, August sea-ice concentrations sic_1 (centered
on 80.82°N, 68.33°E; hereinafter, the geometric center coordin-
ates of each precursor follow in the parentheses) and July sic_2
(79.46°N, 61.92°E) highly correlate with September TSIE (r>0.8),
while sea-ice thickness factors near the study area, June sit_3
(82.72°N, 59.17°E) and May sit_4 (82.40°N, 60.92°E), are closely
relevant to September TSIE. Apart from these two kinds of local
factors associated with sea-ice physical characteristics, meridion-
al winds at 10-meter height (V;, ) in different regions at differ-
ent lead times have some impacts on September TSIE. Among all
of V,, ., factors, v10m_6 (70.24°N, 36.89°E) from northern Europe
to Barents Sea, v10m_7 (82.23°N, 162.58°E) north of Laptev Sea
and v10m_8 (79.86°N, 56.64°E) near the study area in the previ-
ous winter months are viewed as important predictors in over-2-
month-lead models, but the effect of October v10m_7 (82.23°N,
162.58°E) on September TSIE is opposite to that of other two
V,om factors.

3.2 Model evaluation

Based on CEN precursors, multiple linear regression models
of September TSIE for a lead time of 1-11 months were construc-
ted. To evaluate their fitting performance, root-mean-square er-
rors (RMSEs) of regression models, persistence models and cli-
matology model were compared (Fig. 2a). The persistence model
is based on autocorrelations between the preceding and Septem-
ber TSIE. The climatology model is represented by the long-term
mean of September TSIE from 1980 to 2017. The results show that
the RMSEs of regression models are less than those of the other
two models (RMSE < 0.18x106 km?2), which means that regres-
sion models have good capability to simulate September TSIE
over 1980-2017. However, the fitting skill of the climatology mod-
el is worse due to higher RMSE than that of the other two models,
which indicates that the variability of September TSIE during the
entire study period is very large.

The effects of different combinations of CEN precursors on
September TSIE were analyzed. Figure 2b indicates explained
variances of regression models, cross-validation models and
forecast models, which have the same CEN precursors. The fore-
cast models applied any consecutive 30 years as the fitting peri-
od and estimated the September TSIE in the subsequent two
years, and finally, 15 predicted values were obtained and used to
calculate the explained variances of models (S?). Yet the cross-

0.3 1

[ | regress
M persist
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RMSE/10¢ km?
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Lead time/month

validation models were constructed with one-year data removed
and then September TSIE in the removed year was estimated
each time. The results show that explained variances of forecast
models are more than 65% when the lead time is less than six
months, although the model-building R? of the regression model
over 1980-2017 decreases with increasing lead time. Further-
more, at lead times of 1-4 months, all explained variances in re-
gression models, cross-validation models based on the leave-
one-out cross-validation technique and forecast models are
above 50%. Except for 2-month-lead models, other forecast mod-
els can explain at least 70% of the variance in September TSIE,
which indicates that these models have robust and stable fore-
cast skills for September TSIE.

Figure 3 shows that in either regression models or cross-val-
idation models, there are high correlations between observed
and predicted September TSIE (r>0.9). Although models at lead
times of 3-4 months overestimate September TSIE when the ob-
served values are approximately 1x10¢ km?, as a whole, observa-
tions and forecasts are significantly correlated at the 95% confid-
ence level. In addition, at the same lead time, the predicted res-
ults of regression models and cross-validation models are very
close, which implies the high stability of models built on CEN
precursors.

To clarify that the CEN method is effective to predict Septem-
ber Arctic sea-ice extent further, we applied +0.5 standard devi-
ation (SD) of observed September Arctic sea-ice extent over
1980-2013 as the limited scope and evaluated the frequency of
predicted values in the limited scope over 2014-2018 for our stat-
istical model based on CEN method (hereinafter referred to as
CEN model) and some common SIO dynamical and statistical
models over 2014-2018. For example, if the frequency is one, it
means only one predicted value for a specific model is in the lim-
ited scope during the forecast period (2014-2018), and so on. As
is shown in Figs S8 and S9, the frequency of predicted values in
the limited scope for CEN models at lead time of 2-3 months is
five, which means the difference between predicted and ob-
served September Arctic sea-ice extent over 2014-2018 is still less
than 0.5 standard deviation regardless of the lead times.
Moreover, only one statistical model provided by Slater (SPIE) is
comparable to the CEN model. Apart from them, statistical mod-
els provided by Walt Meier and Lamont (Yuan et al. 2016 ) are
more stable respectively at lead 2 and 3 months. As a whole, the
forecast skills of statistical models are better than those of dy-
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Fig. 2. Fitting and forecast skills of September TSIE models at lead times of 1-11 months. a. Root-mean-square errors. Yellow bars
represent regression models, green bars represent persistence models, and black line represents the climatology model. b. Explained
variances. Yellow bars represent regression models, orange bars represent cross-validation models, and purple bars represent forecast

models.
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Fig. 3. The observed and predicted September TSIE over 1980-2017. a-d. Results at lead times of 1-4 months respectively. Blue points
represent regression models, while red points represent cross-validation models. The blue/red lines indicate linear correlations

between observations and forecasts.

namical models. Through comparisons with all of SIO models,
the CEN model shows an excellent forecast skill. In contrast to Li
et al. (2018), September sea-ice extent in the current study area
can be predicted well one month earlier than that in the pan-Arc-
tic region. So we suggest the CEN algorithm is a scientific and
competitive prediction method for September sea-ice extent in
the pan-Arctic region and other subregions.

3.3 Uncertainty analysis

Based on the probability distribution features of different
factors, the Monte Carlo resampling technique was applied to all
predictors in 1- to 4-month-lead models, where uncertainty
ranges caused by predictors with the largest contributions are
shown in Fig. 4. These predictors are all local factors related to
sea-ice physical characteristics, which result in more than 20%
uncertainty in the predicted September TSIE (+0.2x106 km?). In-
terestingly, sea-ice thickness factors have a larger contribution
than sea-ice concentration factors before 2007. Moreover, in the
4-month-lead model, May sit_4 (82.40°N, 60.92°E), sea-ice thick-

ness covering the central Arctic Basin towards the Barents Sea
and Kara Sea is the most important precursor to predicted
September TSIE, with an average uncertainty contribution of ap-
proximately 30% (Fig. 4d).

The impacts of predictors with the second largest contribu-
tion on the uncertainty in the predicted September TSIE in 1- to
4-month-lead models are shown in Fig. S10. Except for February
sit_7 (82.99°N, 54.10°E) in the 2-month-lead model, external dy-
namic and thermodynamic factors begin to affect sea-ice
changes, but they have much smaller contributions to the uncer-
tainty (below 10%) than those in Fig. 4. It should be emphasized
that since 2000, the influence of January sea surface temperature
from the east of Greenland to the Barents Sea sst_3 (74.13°N,
17.81°E) is comparable to the local factor of sit_7 (82.99°N,
54.10°E) in February, which indicates that seawater near the
North Atlantic can lead to variations in September TSIE by affect-
ing the local sea-ice thickness. Compared with U10m factors in
Central Asia in May, vl0m_6 (70.24°N, 36.89°E) from northern
Europe to the Barents Sea in the preceding December has a
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slightly greater contribution to the uncertainty in the predicted
September TSIE. It is likely that the anomalous atmospheric cir-
culation in higher latitudes is helpful for poleward heat transport
to accelerate ice melting.

3.4 Physical explanation

According to the uncertainty analysis, local factors related to
sea-ice physical characteristics play the most prominent roles in
1- to 4-month-lead models, where sea-ice concentration factors
at lead times of 1-2 months or sea-ice thickness factors at lead
times of 3-4 months have similar effects. From these factors, only
two local factors with relatively larger contributions, August sic_1
(80.82°N, 68.33°E) in August and May sit_4 (82.40°N, 60.92°E),
were chosen and investigated for their physical relationships
with September TSIE. In addition, the impacts of January sst_3
(74.13°N, 17.81°E) and v10m_6 (70.24°N, 36.89°E) in the preced-
ing December on predicted September TSIE were discussed. The
locations of these four precursors are shown in Fig. 5.

Figure S11a shows the normalized time series of August sic_1
(80.82°N, 68.33°E) in the northern Barents Sea and Kara Sea from
1980 to 2017. When this precursor is one standard deviation
greater than its climatological mean in the positive (negative)
phase, it is regarded as the high (low) year. During the period of
the late 1980s and mid-1990s, high values of this precursor al-
ways appeared, and the precursor was even nearly three stand-
ard deviations greater than its climatological mean in 2003. On
the other hand, when August sic_1 (80.82°N, 68.33°E) was ap-
proximately two standard deviations less than its climatological
mean, the extremely low years appeared more than once before
the 21st century. In the recent decade, minimal values seldom
arose and did not reach an extremely low level.

The causal effect networks algorithm belongs to big data ana-
lysis, so it is important to demonstrate how those CEN precurs-
ors are linked to September TSIE. Here, a composite analysis was
introduced to explore their connections. The composite patterns
in Fig. 6 show that in the negative phase of sic_1 (80.82°N,
68.33°E), in the northern Barents and Kara Seas, there exists an
extremely negative sea-ice concentration anomaly in August,
which leads to the loss of September sea-ice extent in the corres-
ponding region due to its persistence. By contrast, in the positive
phase, Arctic sea-ice concentrations obviously increase. It is clear
that the local sea-ice concentration factor in August has a direct
and pronounced influence on September sea-ice changes in the
whole study area.

In Table 2, for a lead time of 3 to 4 months, sea-ice thickness
factors become predominant. This study reveals that these pre-
cursors related to sea-ice thickness at different lead times almost
cover the eastern Arctic, so they can also be viewed as crucial loc-
al factors affecting September TSIE. We use May sit_4 (82.40°N,
60.92°E) as an example to unravel the correlation between the
previous sea-ice thickness factor and September TSIE in detail.
The normalized sit_4 (82.40°N, 60.92°E) in May from 1980 to 2017
is shown in Fig. S11b, where high and low values are marked with
red and blue dots, respectively. Similar to that in the August sic_1
(80.82°N, 68.33°E), high years in the May sit_4 (82.40°N, 60.92°E)
mainly occurred in the late 1980s and mid-1990s, while low val-
ues appeared in the early 1980s, with one rare minimum sea-ice
thickness in the recent decade.

When May sit_4 (82.40°N, 60.92°E) is in the negative phase,
sea ice covering the north of Canada Archipelago and Greenland
and most of the study area is substantially thinner (Fig. 7c),
which weakens the internal sea-ice stress so that thinner ice is
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susceptible to atmospheric and oceanic forcing. This finding has  trend with sea-ice reduction north of the Barents and Kara Seas
been confirmed in Fig. 7d because the extensive September sea- most noticeable. The connection between sea-ice thickness in
ice concentration in the corresponding years has a downward the previous spring and sea-ice concentration in summer is also
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greater than its climatological mean in the positive (negative) phase.

captured in the positive phase of May sit_4 (82.40°N, 60.92°E).
The positive sea-ice thickness anomaly in the whole study area
helps to maintain the thicker ice and make sea ice difficult to
melt (Figs 7a, b). Tilling et al. (2015) also found that the increase
of sea-ice thickness northwest of Greenland in Spring led to the
restoration of sea-ice cover in autumn 2013 and 2014.

Other than the two local factors related to sea-ice physical
characteristics above, January sst_3 (74.13°N, 17.81°E) anti-cor-
relates with September TSIE. Figure S11c reveals that maximal
values of the precursor were usually present from the early 1980s
and mid-1990s, while minimal values had a dispersed distribu-
tion. Since 2005, both high and low years have appeared few
times. Nevertheless, to illustrate the connection between Janu-
ary sst_3 (74.13°N, 17.81°E) and September TSIE, composite pat-
terns when this factor is one standard deviation greater than its
climatological mean in the positive and/or negative phase were
also delineated. During high years of sst_3 (74.13°N, 17.81°E), sea
surface temperature east of Greenland and in the Barents Sea is
anomalously warm, and this signal lasts for six months until the
following summer (Figs 8a-c). It is obvious that the extremely
warm regions are located in the entrance where the North At-
lantic Current flows into the Arctic, so we suspect that the warm
signal of sea surface temperature could be propagated to the
Eurasian coast through the flow of seawater (Sakshaug, 1997).
This speculation has been corroborated in Fig. 8d because both
the strength and the extent of positive sea surface temperature
anomaly along the Eurasian coast increase sharply, which is be-
neficial to sea-ice melting in the study area. In contrast, in the
negative phase of January sst_3 (74.13°N, 17.81°E), seawater
along the Eurasian coast becomes colder, which impedes sea-ice
melting and even accelerates sea-ice growth (Fig. 9). The lagged
effect of the North Atlantic Current on Arctic sea ice has been

confirmed in other studies using observation measurements
(Vinje, 2001) and model experiments (Winton, 2003; Arthun et
al., 2012).

Similar to January sst_3 (74.13°N, 17.81°E), v10m_6 (70.24°N,
36.89°E) in the preceding December has a negative correlation
with September TSIE. Figure S11c and S11d show that the high
and low years of these two precursors are similar, but the variab-
ility of regional mean meridional wind at 10-meter height is more
striking. In the positive phase of December v10m_6 (70.24°N,
36.89°E), the composite results of meridional wind at 10-meter
height and the sea level pressure from the preceding winter to
summer are shown in Figs 10a-d, where the low-pressure center
east of Greenland in the previous December moves southeast-
wards with the low-pressure trough intruding into a closed high-
pressure system in Central Asia. Until the following September,
the high-pressure system shifts to coastal areas of eastern China
with a high-pressure ridge northward to the central Arctic Basin,
and a closed low-pressure system appears in the vicinity of
northern Europe and the Barents Sea. With the development of
troughs and ridges, the locations of anomalous sea-ice concen-
trations vary continually. As shown in Figs 10e-h, sea ice east of
Greenland still has a downward trend affected by the concurrent
atmospheric circulation (Hilmer et al., 1998). With the low-pres-
sure trough southeastwards, the Barents Sea and Kara Sea are
located before the trough and after the ridge in September, so the
anomalous southerly wind is helpful in transporting warm air
from lower latitudes to the study area causing the large loss of
September sea-ice extent (Fig. 10h). Based on the atmospheric
data from Atmospheric Infrared Sounder (AIRS), Boisvert et al.
(2016) considered that the anomalously warm and wet Barents
Sea and Kara Sea region was affected by an Arctic cyclone east of
Greenland in December 2015, which in turn increased the re-
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gional downwelling longwave radiation (Huang et al., 2019) and
led to the thinning and loss of sea ice.

4 Discussion

Due to differences in sea-ice structure, the whole study area
was also divided into two parts: the southern region (Barents Sea
and Kara Sea) covered by thinner seasonal ice and the northern
region (central Arctic Ocean) covered by thick multiyear ice. The
causal effect networks method was applied to investigate the pre-
cursors of September sea-ice extent in these two separate re-
gions. Compared with TSIE, statistical models of September sea-
ice extent in the southern region (SSIE) have higher forecast skills
with explained variances over 79% (Fig. S12). For SSIE, August

sic_1(79.41°N, 70.40°E) and May sit_4 (81.31°N, 60.79°E) are the
same as the corresponding predictors in Figs 5a and b, although
the latter have a slightly larger spatial distribution. Another two
major predictors of SSIE, July sic_2 (77.75°N, 64.19°E) and June
sit_3 (81.81°N, 59.71°E), have similar patterns to those of TSIE.
Except for these four major predictors, other predictors of SSIE
and TSIE are different at the same amount of lead time, but the
proportion of them is much less than that of major predictors in
the explained variance in each model at lead times of 1-4
months. For a lead time of more than 4 months, the downward
longwave radiation flux (DLWF) anomaly close to the Atlantic
Ocean in late winter and spring has a strong positive correlation
with September SSIE. When the regional mean DLWF anomaly
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between Iceland and Norway in January is negative, September
SSIE reduces with a positive DLWF anomaly over the Barents Sea
and Kara Sea (Fig. S13). Model experiments show that a positive
DLWF anomaly in spring motivates earlier ice melt onset, which

leads to several radiation feedbacks associated with humidity
and cloudiness in the succeeding months and accelerates sea-ice
reduction in September (Kapsch et al., 2013, 2016).

Different from SSIE and TSIE, September sea-ice extent in the
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northern region (NSIE) can be predicted well at a lead time of 1
month and is mainly affected by October sst_7 (78.49°N,
181.57°E) ranging from the Beaufort Sea to the Laptev Sea, which
is comparable to the total contribution of v10 m_7 (66.88°N,
38.28°E) and v10 m_8 (75.43°N, 59.36°E) blowing from northern
Europe in the preceding autumn and early winter (Fig. S14) for a
lead time of more than two months. As shown in Fig. S15,
September NSIE is relatively stable with an extremely low value
in 2013, followed by 2012. September Arctic sea-ice cover in 2012
reached a minimum during the whole satellite period, which was
directly correlated with a strong storm in August (Zhang et al.,
2013). Due to positive ice-albedo feedback, less ice cover led to
more open water with increasing solar heating in the upper
ocean, which hindered subsequent sea-ice growth (Perovich et
al., 2007). The positive sst_7 (78.49°N, 181.57°E) anomaly in Octo-
ber 2012 was captured. Accompanied by anomalous southerly
winds, warmer air transported more heat poleward and acceler-
ated sea-ice retreat, which caused a lower NSIE.

Compared with NSIE, September SSIE is much lower during
the whole study period (Fig. S15) but has similar major predict-
ors to TSIE, which indicates that the variability of TSIE reflects
sea-ice changes over the Barents Sea and Kara Sea rather than
those in the central Arctic Ocean. Moreover, it is harder to pre-
dict NSIE than SSIE (Koenigk and Mikolajewicz, 2009), which
may result from the abrupt decline of NSIE in individual years.
Nevertheless, at longer lead times, NSIE and SSIE are both driv-
en by different thermodynamic factors accompanied by south-
erly wind anomalies, so atmospheric circulation factors exist in
all forecast models of September sea-ice extent in different regions.

5 Conclusions

Based on the CEN algorithm, this study investigated the pre-
cursors of September TSIE, NSIE and SSIE at lead times of 1-11
months. The results show that 1- to 4-month-lead models have
robust and stable forecast performances for TSIE and SSIE, while
September NSIE can be well predicted at a lead time of 1 month.
In particular, skillful models of TSIE (SSIE) can explain more
than 65% (79%) of the variance during forecast periods (r>0.9). In
all regression models, local sea-ice concentration and sea-ice
thickness factors have a larger contribution than other predict-
ors, which reveals that the regional sea-ice variability is mostly
governed by local sea-ice conditions. In addition, surface meridi-
onal wind and sea surface temperature anomalies in the preced-
ing seasons have a delay effect on September TSIE. For NSIE and
SSIE, the role of dynamic and thermodynamic factors is compar-
able. Sea surface temperature anomalies stemming from the east
of Greenland have been proved to significantly correlate with
NAO on a decadal time scale (Sando et al., 2010), but the NAO in-
dex was not filtered out. It is likely that the variability of Septem-
ber sea-ice extent does not depend on NAO at a shorter time
scale. Likewise, the role of heat content and temperature anom-
aly in the upper ocean is surpassed by other significant factors
that may have been neglected or unrecognized before.

The robust forecast skills of models for September TSIE indic-
ate that if the dominant precursors of regional sea-ice extent are
decided, specific models in different subregions can be construc-
ted and estimates of the pan-Arctic sea-ice extent will be more
accurate, both of which have far-reaching implications for Arctic
shipping routes and extreme climate forecasts. In addition, the
teleconnection between precursors and sea-ice extent can be
used to identify the source of model biases to improve the fore-
cast skills of dynamical models. Meanwhile, these predictors may
provide new insights into the causes of sea-ice variations. On the

other hand, some previous studies have found sea-ice cover with
different thicknesses, ocean temperature at deeper levels, melt-
pond fraction, and sea-ice leads, which can be viewed as import-
ant predictors of sea-ice extent (Lindsay et al., 2008; Schroder et
al.,, 2014; Zhang et al., 2018b), so more candidate factors can be
used in the causal effect networks algorithm to obtain more de-
tailed physical precursors correlated with sea-ice changes.
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Supplementary information:

Fig. S1. Correlation maps of sea-ice concentration with September sea-ice extent over 65°-90°N, 15°-100°E (TSIE) at lead times of 1-11
months. The red and blue colors represent positive and negative correlations respectively. Raster shadings indicate the significantly
correlative regions at the 95% (p<0.05) confidence level.

Fig. S2. Correlation maps of sea-ice thickness with September TSIE at lead times of 1-11 months. The red and blue colors represent
positive and negative correlations respectively. Raster shadings indicate the significantly correlative regions at the 95% (p<0.05)
confidence level.

Fig. $3. Correlation maps of sea surface temperature with September TSIE at lead times of 1-11 months. The red and blue colors
represent positive and negative correlations respectively. Raster shadings indicate the significantly correlative regions at the 95%
(p<0.05) confidence level.

Fig. S4. Correlation maps of downward surface longwave radiation flux with September TSIE at lead times of 1-11 months. The red
and blue colors represent positive and negative correlations respectively. Raster shadings indicate the significantly correlative regions
at the 95% (p<0.05) confidence level.

Fig. S5. Correlation maps of sea level pressure with September TSIE at lead times of 1-11 months. The red and blue colors represent
positive and negative correlations respectively. Raster shadings indicate the significantly correlative regions at the 95% (p<0.05)
confidence level.

Fig. $6. Correlation maps of zonal component of wind at 10 m height with September TSIE at lead times of 1-11 months. The red and
blue colors represent positive and negative correlations respectively. Raster shadings indicate the significantly correlative regions at
the 95% (p<0.05) confidence level.

Fig. S7. Correlation maps of meridional component of wind at 10 m height with September TSIE at lead times of 1-11 months. The red
and blue colors represent positive and negative correlations respectively. Raster shadings indicate the significantly correlative regions
at the 95% (p<0.05) confidence level.

Fig. $8. Frequency of predicted September Arctic sea-ice extent in the limited scope (+0.5 SD) over 2014-2018 for CEN model (blue),
SIO statistical models (brown) and dynamical models (yellow) at lead 2 months. Y Axis labels represent model contributors.

Fig. 9. Frequency of predicted September Arctic sea-ice extent in the limited scope (+0.5 SD) over 2014-2018 for CEN model (blue),
SIO statistical models (brown) and dynamical models (yellow) at lead 3 months. Y Axis labels represent model contributors.

Fig. $10. The uncertainty in the predicted September TSIE caused by January sst_3 (a) , February sit_7 (b), December v10m_6 (c) and
May ulOm_3 (d). The black and red lines represent observed and predicted results over 1980-2017 respectively. Red error bars
represent the uncertainty ranges in the predicted results each year.
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Fig. S11. Normalized time series of four predictors of September TSIE over 1980-2017. a. August sic_1 (80.82°N, 68.33°E), b. May sit_4
(82.40°N, 60.92°E), c. January sst_3 (74.13°N, 17.81°E), and d. December v10m_6 (70.24°N, 36.89°E) . Red (blue) dots correspond to the
years when one predictor is one standard deviation (1 SD) greater than its climatological mean in the positive (negative) phase. Black
dots correspond to the years when one predictor is one standard deviation less than its climatological mean in the positive or negative
phase. Dashed lines represent +1 SD.

Fig. S12. Explained variances of September SSIE models at lead times of 1-11 months. Yellow bars represent regression models,
orange bars represent cross-validation models, and pink bars represent forecast models.

Fig. $13. Composite anomalies of downward surface longwave radiation flux (shade interval: 2 W/m?2) when January dlwf_5 (64.06°N,
7°W) is one standard deviation greater than its climatological mean in the negative phase.

Fig. S14. The spatial distribution of October sst_7 (a) , December v10m_7 (b) , and October vl0m_8 (c). These factors are main
predictors of September NSIE for the lead time of more than 2 months.

Fig. S15. Time series of September sea-ice extent in the whole study area (blue line), northern region (yellow line), and southern
region (gray line).
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