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Abstract

The rapid decrease in Arctic sea ice cover and thickness not only has a linkage with extreme weather in the mid-
latitudes but also brings more opportunities for Arctic shipping routes and polar resource exploration, both of
which motivate us to further understand causes of sea-ice variations and to obtain more accurate estimates of sea-
ice cover in the future. Here, a novel data-driven method, the causal effect networks algorithm, is applied to
identify the direct precursors of September sea-ice extent covering the Northern Sea Route and Transpolar Sea
Route at different lead times so that statistical models can be constructed for sea-ice prediction. The whole study
area was also divided into two parts:  the northern region covered by multiyear ice and the southern region
covered by seasonal ice. The forecast models of September sea-ice extent in the whole study area (TSIE) and
southern region (SSIE) at lead times of 1–4 months can explain over 65% and 79% of the variances, respectively,
but the forecast skill of sea-ice extent in the northern region (NSIE) is limited at a lead time of 1 month. At lead
times of 1–4 months, local sea-ice concentration and sea-ice thickness have a larger influence on September TSIE
and SSIE than other teleconnection factors. When the lead time is more than 4 months, the surface meridional
wind anomaly from northern Europe in the preceding autumn or early winter is dominant for September TSIE
variations but is comparable to thermodynamic factors for NSIE and SSIE. We suggest that this study provides a
complementary approach for predicting regional sea ice and is helpful in evaluating and improving climate
models.
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1  Introduction
The Barents Sea and Kara Sea are both shallow shelf seas

covered by a small amount of ice in summer (Loeng, 1991) or
nearly ice-free. The variations in ice-free area have a fundament-
al influence on local biodiversity, especially in the marginal ice
zone (MIZ) (Hegseth, 1998; Falk-Petersen et al., 2000; Engelsen et
al., 2002; Tamelander et al., 2006). The primary production over
the Barents Sea has a large interannual variability affected by
changes in the ice-edge position (Wassmann et al., 2006). Model
experiments showed that there is an upward trend in primary
production when regional sea-ice cover significantly decreases in
summer (Ellingsen et al., 2008). The fish and other mammals ob-
tain access to the primary production from phytoplankton and
zooplankton through food webs and pelagic–benthic coupling
(Tamelander et al., 2006), and permanent ice-free conditions in
summer are helpful in maintaining these nutrition supplies (En-
gelsen et al., 2002).

The northward shift in the ice edge not only stimulates the
development of fisheries and aquaculture along the coasts of
North Europe and Russia but also provides more chances for Arc-
tic shipping routes, including the Northern Sea Route (NSR)
along the Siberian coast,  Northwest Passage (NWP) and
Transpolar Sea Route (TSR) (Humpert and Raspotnik, 2012). The
abundant oil/gas, mineral and fishery resources in the Arctic
have attracted much attention from more stakeholders. More im-
portantly, the Arctic has a strategic position in economic and mil-
itary affairs. Arctic shipping routes are the shortest seaborne
trade routes linking Asia to Europe and North America relative to
traditional shipping routes, such as the Panama Canal and Suez
Canal, thereby efficiently reducing the commercial shipping cost
(Zhang et al., 2009). Moreover, the Arctic shipping routes can
meet the increasing maritime transportation volume that causes
congestion in the narrow traditional routes. It is estimated that
the recent large loss of Arctic sea ice will increase the potential  
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for Arctic shipping by midcentury, even across the central Arctic
Ocean (Smith and Stephenson, 2013; Melia et al., 2016), which
may break geopolitical limitations along the NSR and NWP.

Sea-ice reduction brings unprecedented opportunities but
causes more climate risks with global warming (Yang et al.,
2016), such as extreme cold winters in the northeastern US,
northwestern and central Europe and even the Far East regions
(Liu et al., 2012; Cohen et al., 2014). The ability to capture sea-ice
variations in advance on subseasonal to seasonal time scales has
pronounced implications for forecasts of fishing seasons, Arctic
shipping routes and extreme weather events. Since 2008, Sea Ice
Prediction Network (SIPN) has encouraged contributors includ-
ing citizen scientists to submit their predicted annual pan-Arctic
and regional sea-ice extent minimum to Sea Ice Outlook (SIO)
managed by SIPN project via an open sea-ice portal (Wayand et
al., 2019) which produces an systematic scientific report on Arc-
tic sea-ice projections from dynamical models, statistical models,
mixed models and heuristic models in June, July, and August
each year (Stroeve et al., 2014) and explores main drivers of
September sea-ice changes by model intercomparison. From SIO
reports, a lot of coupled ice-ocean models (Zhang et al., 2008;
Massonnet et al., 2011; Kauker et al., 2015) and fully coupled ice-
ocean-atmosphere models (Chevallier et al., 2013; Metzger et al.,
2014; MacLachlan et al., 2015; Borovikov et al., 2019; Bushuk et
al., 2017) have been applied to seasonal sea-ice prediction. The
seasonal prediction of dynamical models with the same compon-
ents is affected by different initial conditions (Blanchard-
Wrigglesworth et al., 2011; Msadek et al., 2014; Guemas et al.,
2016). For instance, studies showed that the same coupled global
climate model (NCEP CFSv2), with different initial conditions
(initialized atmospheric and oceanic components with NCEP Cli-
mate Forecast System Reanalysis (Saha et al., 2010) and used ini-
tial sea-ice thickness from Pan-Arctic Ice Ocean Modeling and
Assimilation System (PIOMAS) in Collow et al. (2015) rather than
nudging sea-ice concentration (Wu and Grumbine, 2014)) could
result in large difference in performance. To improve sea-ice pre-
dictions, multivariate data assimilation methods have been also
utilized to integrate more credible observations into dynamical
models (Massonnet et al., 2015; Zhang et al., 2018a; Liu et al.,
2019). In addition, linear and non-linear statistical approaches
are comparable to dynamical models in predicting the Septem-
ber Arctic sea-ice extent (Drobot et al., 2006; Tivy et al., 2011;
Kapsch et al., 2014; Wang et al., 2016; Williams et al., 2016), al-
though their forecast skills are limited due to the lack of observa-

tions and the instability of linkages between predictors and pre-
dictands (Holland and Stroeve, 2011). Examples of statistical
models are: one is provided by Drew Slater, a non-parametric
statistical model of Arctic sea-ice extent, based on the probability
of daily sea-ice concentration at lead 60-90 days; the other is by
Yuan et al. (2016) who used a linear Markov model for sea-ice
concentration and found good forecast performance. These res-
ults indicate that reliable estimates of sea-ice cover can be ob-
tained through statistical models.

This study introduces a novel data-driven approach, the caus-
al effect networks (CEN) algorithm (Runge et al., 2015), to ex-
plore stable and robust precursors of September sea-ice extent
covering both the TSR and the NSR to build statistical forecast
models. Considering the difference in sea-ice floe size and thick-
ness distribution in different regions (Horvat and Tziperman,
2015; Zhang et al., 2015), we divided the study area into two parts,
the southern MIZ (Barents Sea and Kara Sea) covered by season-
al ice and the northern region (part of the central Arctic Ocean)
covered by multiyear ice, and compared their precursors. In fact,
the CEN method has been employed in many climate research
fields, such as the teleconnection among different modes of at-
mospheric low-frequency variability and between Arctic factors
and mid-latitude winter circulation and the prediction of ex-
treme polar vortex events (Ebert-Uphoff and Deng, 2012;
Kretschmer et al., 2016, 2017; Li et al., 2018). Compared with oth-
er statistical methods, this algorithm has two major advantages:
(1) exclusion of false factors due to common drivers or indirect
correlations through other variables and (2) identification of the
specific lead time and location of each precursor.

2  Materials and methods

2.1  Data
According to previous studies on the causes of sea-ice

changes, we chose twelve relevant variables in Table 1. Here, the
long-term means and linear trends for each calendar month were
removed from the sea-ice extent and the twelve variables be-
cause we focus on only the month-on-month influence. Monthly
detrended data over 1980–2017 were used to keep the stationar-
ity of the time series. Although it was proved that Atlantic water
inflow (AWI) has a large impact on Arctic sea-ice variations (Sch-
lichtholz, 2011; Årthun et al., 2012), the AWI index was not in-
cluded because there are no long-term observations nor reana-
lysis products that cover the entire study period.

Table 1.   Variables associated with September sea-ice extent within the whole study area
Name Definition Region

SIC/% sea-ice concentration ice-covered ocean north of 30.98°N

SIT/m sea-ice thickness ice-covered ocean north of 49°N

SST/K sea surface temperature ocean north of 60°N

DLWF/W∙m–2 downward surface longwave radiation flux ocean north of 60°N

DSWF/W∙m–2 downward surface shortwave radiation flux ocean north of 60°N

SSHF/W∙m–2 surface sensible heat flux ocean north of 60°N

SLHF/W∙m–2 surface latent heat flux ocean north of 60°N

SLP/hPa sea level pressure north of 60°N

U 10 m/m∙s–1 zonal component of wind at 10 m north of 60°N

V 10 m/m∙s–1 meridional component of wind at 10 m north of 60°N

VT/K∙m3∙s–1 net atmosphere heat transport 60°–90°N, 15°–100°E

OHC/J ocean heat content integrated from 0 to 700 m North Atlantic (including Arctic Ocean)

OT/J ocean temperature integrated from 0 to 100 m North Atlantic (including Arctic Ocean)

NAO North Atlantic oscillation index

12 Li Sha et al. Acta Oceanol. Sin., 2020, Vol. 39, No. 5, P. 11–25  





Se = − σ
e/σ


c . (5)

2.2.3  Monte carlo resampling
To analyze the impacts of predictors on the uncertainty in the

predicted September TSIE, the Monte Carlo method was intro-
duced. Before resampling, it was required to confirm the probab-
ility distribution of each precursor. For example, sea-ice concen-
trations ranging from zero to one accord with the typical Beta dis-
tribution. Based on the distribution function of each precursor
each year, N=1 000 random numbers were generated and taken
into regression models for the 1 000 estimates of September TSIE
in that year whose standard deviation was
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where Yij′ is the random estimate in the jth year for the ith time

Ȳjand  is the mean of all random estimates in the jth year. The
standard deviation average over 1980–2017 was used to indicate
the contribution of the precursor to the predicted September
TSIE.

3  Results

3.1  Precursors
According to correlation maps of variables with September

TSIE at lead times of 1–11 months, forty statistically significant
regions were selected (Figs S1–S7), including two SIC regions,
nine SIT regions, four SST regions, six DLWF regions, seven SLP
regions, four U10 m regions and eight V10 m regions. The paramet-
ers of the optimal regression models with predictors included at
different lead times are summarized in Table 2, where the min-
imal lead time represents how long the candidate factor is at least
earlier than September. We referred to Eq. (2) and chose the
model with the largest explained variance as the optimal model
at the specific minimal lead time. All predictors in these optimal

Table 2.   Parameters of optimal models of September sea-ice extent within the whole study area at lead times of 1–11 months
Tmin

1) Predictor 2) Description Center coordinates Regression coefficient 3)

1 sic_1 August regional mean sea-ice concentration in the 1st group of 2 SIC
regions

80.82°N, 68.33°E   0.756

slp_1 August regional mean sea level pressure in the 1st group of 7 SLP
regions

76.21°N, 19.51°E   0.186

sst_3 January regional mean sea surface temperature in the 3rd group of 4
SST regions

74.13°N, 17.81°E –0.181

2 sic_2 July regional mean sea-ice concentration in the 2nd group of 2 SIC
regions

79.46°N, 61.92°E   0.636

sit_7 February regional mean sea-ice thickness in the 7th group of 9 SIT
regions

82.99°N, 54.10°E   0.254

v10m_1 July regional mean meridional wind at 10 m in the 1st group of 8 V10 m
regions

82.79°N, 108.87°W   0.204

3 sit_3 June regional mean sea-ice thickness in the 3rd group of 9 SIT
regions

82.72°N, 59.17°E   0.681

v10m_6 December regional mean meridional wind at 10 m in the 6th group of
8 V10 m regions

70.24°N, 36.89°E –0.295

v10m_7 December regional mean meridional wind at 10 m in the 7th group of
8 V10 m regions

82.23°N, 162.58°E   0.235

4 sit_4 May regional mean sea-ice thickness in the 4th group of 9 SIT regions 82.40°N, 60.92°E   0.576

u10m_3 May regional mean zonal wind at 10 m in the 3rd group of 4 U10 m
regions

62.98°N, 110.08°E   0.276

v10m_7 October regional mean meridional wind at 10 m in the 7th group of 8
V10 m regions

82.23°N, 162.58°E   0.235

5 v10m_4 March regional mean meridional wind at 10 m in the 4th group of 8
V10 m regions

73.60°N, 86.35°W –0.377

v10m_3 April regional mean meridional wind at 10 m in the 3rd group of 8 V10 m
regions

77.74°N, 80.28°E –0.325

sst_3 January regional mean sea surface temperature in the 3rd group of 4
SST regions

74.13°N, 17.81°E –0.344

6 v10m_4 March regional mean meridional wind at 10 m in the 4th group of 8
V10 m regions

73.60°N, 86.35°W –0.406

v10m_6 December regional mean meridional wind at 10 m in the 6th group of
8 V10 m regions

70.24°N, 36.89°E –0.433

7 sit_7 February regional mean sea-ice thickness in the 7th group of 9 SIT
regions

82.99°N, 54.10°E   0.655

8 sit_8 January regional mean sea-ice thickness in the 8th group of 9 SIT
regions

82.42°N, 54.40°E   0.595

9 v10m_6 December regional mean meridional wind at 10 m in the 6th group of
8 V10 m regions

70.24°N, 36.89°E –0.569

10 v10m_8 October regional mean meridional wind at 10 m in the 8th group of 8
V10 m regions

79.86°N, 56.64°E –0.496

11 v10m_8 October regional mean meridional wind at 10 m in the 8th group of 8
V10 m regions

79.86°N, 56.64°E –0.496

          Note:1) Tmin represents the minimal lead time for each model. 2) The number after the underline means the group to which each variable
belongs. The specific description of each predictor is shown in the third column. 3) The regression coefficients correspond to normalized
regression models.
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northern region (NSIE) can be predicted well at a lead time of 1
month and is mainly affected by October sst_7 (78.49°N,
181.57°E) ranging from the Beaufort Sea to the Laptev Sea, which
is comparable to the total contribution of v10 m_7 (66.88°N,
38.28°E) and v10 m_8 (75.43°N, 59.36°E) blowing from northern
Europe in the preceding autumn and early winter (Fig. S14) for a
lead time of more than two months. As shown in Fig. S15,
September NSIE is relatively stable with an extremely low value
in 2013, followed by 2012. September Arctic sea-ice cover in 2012
reached a minimum during the whole satellite period, which was
directly correlated with a strong storm in August (Zhang et al.,
2013). Due to positive ice-albedo feedback, less ice cover led to
more open water with increasing solar heating in the upper
ocean, which hindered subsequent sea-ice growth (Perovich et
al., 2007). The positive sst_7 (78.49°N, 181.57°E) anomaly in Octo-
ber 2012 was captured. Accompanied by anomalous southerly
winds, warmer air transported more heat poleward and acceler-
ated sea-ice retreat, which caused a lower NSIE.

Compared with NSIE, September SSIE is much lower during
the whole study period (Fig. S15) but has similar major predict-
ors to TSIE, which indicates that the variability of TSIE reflects
sea-ice changes over the Barents Sea and Kara Sea rather than
those in the central Arctic Ocean. Moreover, it is harder to pre-
dict NSIE than SSIE (Koenigk and Mikolajewicz, 2009), which
may result from the abrupt decline of NSIE in individual years.
Nevertheless, at longer lead times, NSIE and SSIE are both driv-
en by different thermodynamic factors accompanied by south-
erly wind anomalies, so atmospheric circulation factors exist in
all forecast models of September sea-ice extent in different regions.

5  Conclusions
Based on the CEN algorithm, this study investigated the pre-

cursors of September TSIE, NSIE and SSIE at lead times of 1–11
months. The results show that 1- to 4-month-lead models have
robust and stable forecast performances for TSIE and SSIE, while
September NSIE can be well predicted at a lead time of 1 month.
In particular, skillful models of TSIE (SSIE) can explain more
than 65% (79%) of the variance during forecast periods (r>0.9). In
all regression models, local sea-ice concentration and sea-ice
thickness factors have a larger contribution than other predict-
ors, which reveals that the regional sea-ice variability is mostly
governed by local sea-ice conditions. In addition, surface meridi-
onal wind and sea surface temperature anomalies in the preced-
ing seasons have a delay effect on September TSIE. For NSIE and
SSIE, the role of dynamic and thermodynamic factors is compar-
able. Sea surface temperature anomalies stemming from the east
of Greenland have been proved to significantly correlate with
NAO on a decadal time scale (Sandø et al., 2010), but the NAO in-
dex was not filtered out. It is likely that the variability of Septem-
ber sea-ice extent does not depend on NAO at a shorter time
scale. Likewise, the role of heat content and temperature anom-
aly in the upper ocean is surpassed by other significant factors
that may have been neglected or unrecognized before.

The robust forecast skills of models for September TSIE indic-
ate that if the dominant precursors of regional sea-ice extent are
decided, specific models in different subregions can be construc-
ted and estimates of the pan-Arctic sea-ice extent will be more
accurate, both of which have far-reaching implications for Arctic
shipping routes and extreme climate forecasts. In addition, the
teleconnection between precursors and sea-ice extent can be
used to identify the source of model biases to improve the fore-
cast skills of dynamical models. Meanwhile, these predictors may
provide new insights into the causes of sea-ice variations. On the

other hand, some previous studies have found sea-ice cover with
different thicknesses, ocean temperature at deeper levels, melt-
pond fraction, and sea-ice leads, which can be viewed as import-
ant predictors of sea-ice extent (Lindsay et al., 2008; Schröder et
al., 2014; Zhang et al., 2018b), so more candidate factors can be
used in the causal effect networks algorithm to obtain more de-
tailed physical precursors correlated with sea-ice changes.
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Supplementary information:
Fig. S1. Correlation maps of sea-ice concentration with September sea-ice extent over 65°–90°N, 15°–100°E (TSIE) at lead times of 1–11
months. The red and blue colors represent positive and negative correlations respectively. Raster shadings indicate the significantly
correlative regions at the 95% (p<0.05) confidence level.

Fig. S2. Correlation maps of sea-ice thickness with September TSIE at lead times of 1–11 months. The red and blue colors represent
positive and negative correlations respectively. Raster shadings indicate the significantly correlative regions at the 95% (p<0.05)
confidence level.

Fig. S3. Correlation maps of sea surface temperature with September TSIE at lead times of 1–11 months. The red and blue colors
represent positive and negative correlations respectively. Raster shadings indicate the significantly correlative regions at the 95%
(p<0.05) confidence level.

Fig. S4. Correlation maps of downward surface longwave radiation flux with September TSIE at lead times of 1–11 months. The red
and blue colors represent positive and negative correlations respectively. Raster shadings indicate the significantly correlative regions
at the 95% (p<0.05) confidence level.

Fig. S5. Correlation maps of sea level pressure with September TSIE at lead times of 1–11 months. The red and blue colors represent
positive and negative correlations respectively. Raster shadings indicate the significantly correlative regions at the 95% (p<0.05)
confidence level.

Fig. S6. Correlation maps of zonal component of wind at 10 m height with September TSIE at lead times of 1–11 months. The red and
blue colors represent positive and negative correlations respectively. Raster shadings indicate the significantly correlative regions at
the 95% (p<0.05) confidence level.

Fig. S7. Correlation maps of meridional component of wind at 10 m height with September TSIE at lead times of 1–11 months. The red
and blue colors represent positive and negative correlations respectively. Raster shadings indicate the significantly correlative regions
at the 95% (p<0.05) confidence level.

Fig. S8. Frequency of predicted September Arctic sea-ice extent in the limited scope (±0.5 SD) over 2014–2018 for CEN model (blue),
SIO statistical models (brown) and dynamical models (yellow) at lead 2 months. Y Axis labels represent model contributors.

Fig. S9. Frequency of predicted September Arctic sea-ice extent in the limited scope (±0.5 SD) over 2014–2018 for CEN model (blue),
SIO statistical models (brown) and dynamical models (yellow) at lead 3 months. Y Axis labels represent model contributors.

Fig. S10. The uncertainty in the predicted September TSIE caused by January sst_3 (a) , February sit_7 (b), December v10m_6 (c) and
May u10m_3 (d). The black and red lines represent observed and predicted results over 1980–2017 respectively. Red error bars
represent the uncertainty ranges in the predicted results each year.
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Fig. S11. Normalized time series of four predictors of September TSIE over 1980-2017. a. August sic_1 (80.82°N, 68.33°E), b. May sit_4
(82.40°N, 60.92°E), c. January sst_3 (74.13°N, 17.81°E), and d. December v10m_6 (70.24°N, 36.89°E) . Red (blue) dots correspond to the
years when one predictor is one standard deviation (1 SD) greater than its climatological mean in the positive (negative) phase. Black
dots correspond to the years when one predictor is one standard deviation less than its climatological mean in the positive or negative
phase. Dashed lines represent ±1 SD.

Fig. S12. Explained variances of September SSIE models at lead times of 1-11 months. Yellow bars represent regression models,
orange bars represent cross-validation models, and pink bars represent forecast models.

Fig. S13. Composite anomalies of downward surface longwave radiation flux (shade interval: 2 W/m2) when January dlwf_5 (64.06°N,
7°W) is one standard deviation greater than its climatological mean in the negative phase.

Fig. S14. The spatial distribution of October sst_7 (a) , December v10m_7 (b) , and October v10m_8 (c). These factors are main
predictors of September NSIE for the lead time of more than 2 months.

Fig. S15. Time series of September sea-ice extent in the whole study area (blue line), northern region (yellow line), and southern
region (gray line).

The supplementary information is available online at https://doi.org/10.1007/s13131-020-1595-z. The supplementary information is
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authors.
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