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Volcanoes frequently generate infrasound signals that need to be processed before they can be used to monitor
and track changes in eruptive activity. Unsupervised machine learning is complementary to existing processing
methods and can be used for data exploration to identify features of interest in the data. Here, I examine three
days of infrasound data from Mount Etna, Italy, that encompasses the 24 December 2018 fissure eruption. The
continuous infrasound data is divided into overlapping windows and for each window I extract seven features
in the time and frequency domains that characterize the signal. I apply the k-means clustering algorithm to
group the data into seven clusters and generate a discrete time series of cluster labels. The cluster labels clearly
identify a change in eruptive activity from Strombolian explosions at the summit to lava fountaining at the fis-
sure. Feature distributions and representative waveforms for each cluster are analyzed and source mechanisms
are hypothesized. This work illustrates how advances in unsupervised machine learning can be leveraged to ex-
plore volcano infrasound data sets and demonstrates the potential of these techniques for monitoring eruptive
activity.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Infrasound signals (low frequency acoustic waves in the atmo-
sphere) are commonly recorded at active volcanoes and are increasingly
used in monitoring eruptive activity (Fee andMatoza, 2013; De Angelis
et al., 2019). Infrasound signals are coupled to subaerial processes and
can be used to detect eruptions (Arnoult et al., 2010; Coombs et al.,
2018), estimate volume and height of erupted material (Caplan-
Auerbach et al., 2010; Kim et al., 2015; Fee et al., 2017; Iezzi et al.,
2019), track changes in eruptive activity (Garcès et al., 1999; Fee et al.,
2010b), and provide constraints on magma movements (Richardson
et al., 2014; Johnson et al., 2018; Cannavò et al., 2019; Watson et al.,
2020).

There is a need to develop automatic processing workflows to ana-
lyze continuous volcano infrasound data and identify periods of unrest.
Over the past two decades, there have been massive advances in ma-
chine learning (ML). ML algorithms are now commonly used to analyze
large data sets in a range of disciplines and could be complementary to
conventional processing workflows. ML techniques are becoming in-
creasingly common in seismology (see Kong et al. (2019) for a review)
and there are multiple volcano seismic studies that use ML techniques
(e.g., Malfante et al., 2018; Anzieta et al., 2019; Hajian et al., 2019).
There are far fewer ML volcano infrasound studies. Cannata et al.
(2011a) associated periods of activity with specific vents at Mount
Etna, Italy, using the density-based spatial clustering of applications
with noise (DBSCAN) algorithm (Ester et al., 1996). Witsil and
Johnson (2020) used k-means clustering (MacQueen, 1967) to identify
shifts in eruptive activity at Stromboli, Italy.

Here, I apply the k-means clustering algorithm to three days of contin-
uous infrasound data fromMount Etna. I generate a discrete time series of
cluster labels and investigate how the cluster labels changed during a fis-
sure eruption. This work illustrates the utility of unsupervised ML and k-
means clustering for identifying changes in eruptive activity and extends
thework ofWitsil and Johnson (2020) by demonstrating that these tech-
niques can be applied across different volcanoes.

2. Mount Etna and infrasound data

Mount Etna is a frequently-active open-vent volcano located on the
eastern coast of Sicily, Italy. Activity at Mount Etna is characterized by
strombolian explosions and lava fountaining at the summit along with
fissure eruptions on the flanks (Allard et al., 2006; Behncke et al.,
2014; De Beni et al., 2015) punctuated by occasional sub-plinian parox-
ysmal eruptions (Calvari et al., 2018).

Mount Etna is a prodigious source of infrasoundwithmultiple active
vents (Fig. 1a) (Marchetti et al., 2009; Cannata et al., 2011b, 2013). It is
an open vent volcano and the infrasound signals often display harmonic
peaks due to resonance at the summit craters (Sciotto et al., 2013; Spina
et al., 2015; Cannavò et al., 2019;Watson et al., 2020). Previouswork by
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Fig. 1. (a) Map of Mount Etna showing the location of infrasound sensors (black triangles) and eruptive fracture (red). Inset shows named craters (VOR, Voragine; BN, Bocca Nuova; NEC,
North-East Crater; SEC, South-East Crater; NSEC, New South-East Crater; from Neri et al. (2017)). Infrasound sources at the summit were predominantly located at BN-1 (Cannavò et al.,
2019). (b) Infrasound time series recorded at station EMFO. Red shaded area shows the approximate duration of the explosive portion of the fissure eruption (Cannavò et al., 2019).
Vertical dotted lines and cluster numbers indicate the timing of the time series shown in Fig. 7. Figure after Watson et al. (2020).

L.M. Watson Journal of Volcanology and Geothermal Research 405 (2020) 107042
Ulivieri et al. (2013) related changes in infrasound observations to
changes in eruptive behavior while Ripepe et al. (2018) observed that
sustained eruption columns at Mount Etna are commonly preceded by
violent strombolian activity and used this relationship to develop an
infrasound-based early warning system.

In the second half of 2018, Mount Etna experienced a period of ele-
vated activity (Global Volcanism Program, 2018) that culminated on
24 December 2018 with a fissure eruption on the south-east flank and
intense strombolian activity at the summit craters (Cannavò et al.,
2019; Global VolcanismProgram, 2019; Laiolo et al., 2019). The eruptive
2

fissure opened at 11:11 UTC (Cannavò et al., 2019) and erupted explo-
sively for several hours.

The infrasound amplitude drastically increased after the onset of the
fissure eruption. The peak frequency of the signal also decreased, which
Cannavò et al. (2019) andWatson et al. (2020) interpreted to be caused
by a draw-down of magma from the summit craters during the fissure
eruption; draw-down of magma increased the two-way travel time
for an acoustic wave that propagates from the top of themagma column
and is reflected from crater outlet, and hence decreased the peak fre-
quency (Watson et al., 2019).
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The INGV maintains a network of eight infrasound stations around
Mount Etna (Fig. 1a). Each station is equipped with a GRASS 40AN mi-
crophone that has a flat response in the frequency range of
0.3–20,000 Hz and a sensitivity of 50 mV/Pa. The infrasound data
were sampled at 50 Hz and then re-sampled at 100 Hz in agreement
with previous work on the same data set by Cannavò et al. (2019)
who re-sampled the infrasound data to match seismic observations.
This work focuses on 72 h of infrasound data from 23/12 00:00 to 26/
12 00:00 UTC 2018 (Sciotto et al., 2020), which encompasses the dura-
tion of the fissure eruption, recorded at station EMFO (Fig. 1b), 8.1 km
from Bocca Nuova. Despite being further from the summit, station
EMFO has the highest signal to noise ratio as it is more sheltered
whereas the summit stations are more affected by wind noise during
bad weather. The summit stations also have issues with signal continu-
ity during the winter months.

Cannavò et al. (2019) considered the same three days of infrasound
data examined here and used a grid-searchmethod based on brightness
function for the events and semblance function for tremor (Cannata
et al., 2011b, 2013) to locate events. Eruptive activity was predomi-
nantly centered at Bocca Nuova crater apart from 11:11–13:30 on 24
December when activity was located at the fissure (Cannavò et al.,
2019).
3. Unsupervised machine learning and K-means clustering

Machine learning (ML) techniques are categorized as supervised or
unsupervised. For supervised learning, algorithms are trained on la-
beled data to “learn” the relationship between inputs and outputs.
Once trained, the algorithm can extrapolate to compute output values
for new input data. Rather than try to determine the relationship be-
tween inputs and outputs, unsupervised ML techniques try to infer
the natural structure present within a data set. Unsupervised tech-
niques do not require labeled data or training data sets so are useful
for data exploration.

A commonunsupervisedML technique is clusteringwhere a data set
is grouped into clusters such that objects in the same cluster are more
similar to each other than to objects in other clusters. There are many
different clustering algorithms (for a review of clustering techniques
see Saxena et al., 2017). Here, I use the k-means clustering algorithm,
which is one of themost popular andwidely used clustering algorithms.

k-means is an iterative algorithm that divides the data set into a
specified k number of clusters (MacQueen, 1967). Fig. 2 shows how k-
means clustering can be applied to continuous infrasound data. The
time series is divided into m windows. For each window, n features
are extracted that characterize the signal to create m objects that are
n-dimensional. The k-means algorithm assigns each of the m objects
in the n-dimensional feature space to k clusters.

The k-means algorithm is initialized by randomly placing k cluster
centroids in the feature space. Objects are assigned to the closest cen-
troid. The cluster centroids are then updated to the mean location of
each cluster and the objects are redistributed to the closest centroid.
This process is repeated until convergence or the maximum number
of iterations is reached. Cluster size is quantified by the total within-
cluster sum of squares (TWCSS), which is the sum of the distance be-
tween each object in the cluster and the cluster centroid. The k-means
algorithm aims to minimize the sum of the TWCSS across all clusters,
however, the algorithm can get trapped in local minima. Therefore, k-
means clustering is often repeated multiple times with different initial
cluster centroids to attempt to find the global minimum.

There are two main choices when applying the k-means clustering
algorithm: (1) the features that are used to characterize the data set
and (2) the number of clusters that the signal is categorized into. In
the next two sections, I discuss these issues and the choices used in
this work.
3

3.1. Features

I initially consider 11 different features in both the time and fre-
quency domains that characterize the infrasound signal; (1) standard
deviation, (2) skewness and (3) kurtosis of the time series amplitude
distribution, (4) peak frequency and (5) quality factor, (6) standard de-
viation, (7) skewness and (8) kurtosis of frequency domain amplitude
distribution, and the frequency at the (9) 25th, (10) 50th, and (11)
75th percentile of the cumulative spectral density. With the exception
of the quality factor, these features were previously used by Witsil and
Johnson (2020). The quality factor provides a measure of the amount
of damping in the system and is inversely proportional to the exponen-
tial rate of amplitude decay in the time series (Rossing and Fletcher,
2004). I include the quality factor here because it has been shown to
be diagnostic of eruptive behavior at open-vent volcanoes such as
Mount Etna (Johnson et al., 2018; Watson et al., 2019).

Machine learning algorithms are most efficient without repeated or
duplicate information (Li et al., 2008). Following the treatment ofWitsil
and Johnson (2020), I calculate the correlation between all features and
remove the highly correlated features. The standard deviation and kur-
tosis of frequency domain amplitude distribution and the 25th and 75th
percentiles of the cumulative spectra density are highly correlated with
other features and are therefore removed from the analysis. The seven
remaining features that are used in the clustering analysis are shown
in Table 1 with the time series and histograms of each feature displayed
in Fig. 3. Before applying the clustering algorithm, features are normal-
ized to have amean of zero and standard deviation of one so that all fea-
tures are weighted equally and the clustering algorithm is not
dominated by the features with the largest range.

When applying k-means to other volcanoes, care should be taken to
explore all possible features and to remove redundant information. It is
possible to combine two ormore features to create new engineered fea-
tures that can be more instructive for the clustering process (Garla and
Brandt, 2012). However, this level of complexity is outside of the scope
of this work. Future work could consider using dimension reduction
techniques such as principal component analysis to identify the most
important features (e.g., Celik, 2009). Infrasound amplitudes are not in-
cluded because the amplitude depends strongly on the distance from
the source to the receiver. During the time period considered,
infrasound is generated at both the summit craters and the fissure on
the south-east flank (Cannavò et al., 2019). Therefore, it is unclear if
changes in infrasound amplitude reflect changes in source location or
changes in eruptive activity and hence infrasound amplitude is not in-
cluded as a feature. Note the infrasound amplitude may be a useful fea-
ture in other situations when considering a stationary source and
examining changes in eruptive activity or atmospheric conditions.

In order to extract features, the 72 h of continuous data is divided
into 5 min (300 s) windows with 90% overlap. This results in 8631
unique values for each of the seven features (Fig. 3). Previous work
has used shorter window lengths to examine individual explosions
(Witsil and Johnson, 2020). This work focuses on longer-term trends
and qualitative changes in eruptive activity and hence uses longer win-
dows. Five minute windows provide a balance between computational
cost and efficiency while providing sufficient resolution to accurately
capture changes in eruptive behavior on the time scales of interest. In
this work, the clustering analysis is performed on the unprocessed
infrasound data, which showcases the utility of unsupervised ML for
data exploration. It can be performed early on in the analysis workflow
and the results can inform other conventional processing techniques.

3.2. Number of clusters

A key parameter when applying the k-means clustering algorithm is
how many clusters, k, to divide the data into. This is a challenging pa-
rameter to estimate as it depends on the complexity of the data as
well as the desired resolution. Including too many clusters can make
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the results difficult to interpret but not including enough clusters may
cause important trends in the data to be missed.

When the optimal number of clusters is not known from a-priori in-
formation, there are three techniques that can be commonly used to de-
termine the optimal value of k: (1) the elbowmethod (Thorndike, 1953;
Sugar, 1998; Anzieta et al., 2019), (2) the gap statistic (Tibshirani et al.,
2001; Witsil and Johnson, 2020), and (3) the silhouette method
(Rousseeuw, 1987; Kaufman and Rousseeuw, 1990; Morales-Esteban
et al., 2010; Mato and Toulkeridis, 2017). These methods all involve
performing k-means clustering for a range of candidate k values and
computing different metrics (Fig. 4). Here, I consider values of k be-
tween 2 and 20 as including more than 20 clusters makes interpreting
the results excessively difficultwhile increasing computational expense.
The algorithm is run 25 times with different initial cluster centroids for
each test and the solution with the smallest sum of TWCSS is chosen.

The first method for determining the optimal number of clusters is
the elbow method where the TWCSS is computed for each cluster and
the sum of TWCSS is plotted for each candidate k value. The sum of
TWCSS decreases monotonically with k as increasing the number of
clusters results in smaller clusters. The optimal value of k is where
Table 1
Table of features used in clustering analysis.

Feature Description Domain

1 Standard deviation Time
2 Skewness Time
3 Kurtosis Time
4 Peak frequency Frequency
5 Quality factor Frequency
6 Skewness Frequency
7 Frequency at 50th percentile Frequency

4

there is an inflection (or elbow) in the curve, which indicates the
point where further increasing the number of clusters results in only
marginal improvements to themodel. Unfortunately, the elbowmethod
is inconclusive for the infrasound data analyzed here (Fig. 4a).

The second method is the gap statistic (Tibshirani et al., 2001). For
this method, the clustering algorithm is applied to the observed data
and a randomly generated data set that uniformly spans the feature
space. The gap statistic is computed as the difference between the
sum of the TWCSS for the observed and random data and themaximum
of the gap statistic indicates the optimal number of clusters. This tech-
nique was used byWitsil and Johnson (2020) who analyzed infrasound
data from Stromboli volcano, however, the gap statistic is inconclusive
for the infrasound data analyzed here (Fig. 4b).

The third method is the silhouette method (Rousseeuw, 1987). The
silhouette width measures how similar an object is to the cluster that
it belongs to compared to how similar it is to other clusters. A high av-
erage silhouette width indicates a good clustering and the maximum
of the average silhouette width indicates the optimal number of clus-
ters. Fig. 4c shows that the silhouette result has a maximum at k=7.
In the next section, therefore, I use seven clusters when analyzing the
infrasound data.
4. Clustering analysis

The 72 h of continuous infrasounddata recorded at station EMFO are
divided into 300 s windows with 90% overlap. The seven features listed
in Table 1 are extracted from each window to generate 8631 seven-
dimensional objects. The objects are grouped into seven clusters using
the k-means clustering algorithm. The clustering is repeated 25 times
with different initial cluster centroids and the solutionwith the smallest
TWCSS is chosen. Clusters are labeled by order of appearance.
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The clustering analysis shows a distinct transition in cluster labels
around 12:00 on 24 December (Fig. 5). Before this, the activity is pre-
dominantly K1, K2, K3 andK4. From12:06 to 13:16 on 24December, ac-
tivity is dominated by K5. Afterward, the activity transitions to K6 and
K7.

Properties of each cluster are listed in Table 2. K6 and K7 are the
most common clusters and occur 21.1% and 23.2% of the time, respec-
tively, while K5 is the least common and only occurs 1.9% of the time.
In order to assess the robustness of a cluster designation, Witsil and
Johnson (2020) introduced the cluster quality ratio, which is the per-
centage of cluster labels that are high-quality. They defined a cluster
label as high-quality if it (1) repeated for at least four consecutive win-
dows and (2) was consistent across at least two of the three infrasound
channels. The infrasound data examined here was recorded by a single
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channel receiver and therefore only the first criterion is used in this
study. K5 is the most robust cluster label with a quality ratio of 86.8%
whereas K6 and K7 have the lowest quality ratios of 57.1% and 61.6%.
This indicates that K5 is a stable cluster and activity remains predomi-
nantly in K5 during the cluster duration. By contrast, K6 and K7 are
less stable. Activity frequently switches between these two clusters.
Note that infrasound amplitude is not included in the clustering analy-
sis. The clustering results, however, naturally partition by amplitude;
low amplitude before thefissure eruption (K1, K2, K3, andK4), high am-
plitude during (K5), and moderate amplitude after (K6 and K7).

Feature distributions for the seven clusters are shown in Fig. 6. The
mean and standard deviation for each feature are also listed in
Table 3. Feature distributions are informative for showing similarities
and differences between clusters as well as illustrating which features
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are most diagnostic of a cluster. For example, K5 has a lower skewness
(time) and higher kurtosis (time) and peak frequency than the other
clusters. K1, K2, K3, and K4 have similar standard deviation (time).
However, K4 has a higher quality factor and K2 has a lower peak fre-
quency.Most of the features are similar for K6 andK7 but K6has a larger
quality factor and skewness (frequency) while K7 has a larger standard
deviation (time).

Figs. 7 and 8 showexamplewaveforms for each of the seven clusters.
Fig. 7 shows 300 s windows where the cluster label, which is assigned
for 30 s windows, is constant for the entire 300 s. Three representative
30 s windows for each cluster are shown in Fig. 8 and providemore de-
tail of the waveforms. K1, K2, and K3 are characterized by low ampli-
tude oscillations with intermittent larger amplitude transients. K4 and
K5 display numerous impulsive transients, although the amplitude is
far larger in K5. K6 and K7 have larger amplitude oscillations without
any clear impulsive signals.
5. Discussion

There is a distinct transition in cluster labels on 24December (Fig. 5).
Cluster labels change from predominantly K1, K2, K3 and K4 before
Table 2
Cluster characteristics. Durations are calculated by multiplying the number of cluster la-
bels by the 30 s uniquewindow length. Quality ratio is the percentage of cluster labels that
repeat at least four times in a row. Amplitude values are the mean peak amplitude and
standard deviation for all 300 s windows in that cluster.

Cluster Duration (%) Duration (HH:MM) Quality ratio (%) Amplitude (Pa)

K1 12.3 08:52 67.0 0.43 ± 0.83
K2 18.4 13:14 71.5 0.20 ± 0.10
K3 16.3 11:45 73.5 0.21 ± 0.34
K4 6.7 04:51 72.6 0.74 ± 1.19
K5 1.9 01:23 86.8 7.92 ± 4.61
K6 21.1 15:11 57.1 1.23 ± 0.64
K7 23.2 16:44 61.6 2.14 ± 0.89

6

12:06 to K6 and K7 after 13:16 while K5 dominates in between. The
timing of K5 coincides with the emergence of a fissure on the south-
east flank that erupted explosively for several hours starting at 11:11
(Cannavò et al., 2019; Laiolo et al., 2019), which suggests that K5 repre-
sents explosive activity at the fissure.

The distances between cluster centroids are shown in Table 4. The
centroid of K5 is located far away from all other cluster centroids. This
suggests that the signals in K5 are very different from any other cluster,
which may be related to the source mechanism. This further supports
the hypothesis that K5 is associatedwith explosive activity at thefissure
while the other clusters are related to eruptive activity at the summit.

The diversity of waveforms (Figs. 7 and 8) suggests different source
mechanisms for the different clusters. K1, K2, and K3 do not display any
impulsive transients and can be described as infrasonic tremor (Fee and
Garcès, 2007). Previous studies have observed infrasound tremor dur-
ing lava fountaining at Mount Etna (Cannata et al., 2009), resonance at
Kilauea (Hawaii) and Villarrica (Chile) (Garcés et al., 2003; Richardson
et al., 2014), and gas jetting at Tungurahua (Ecuador) (Fee et al.,
2010b). Mount Etna commonly generates infrasound with harmonic
peaks, which have been attributed to resonance of the summit craters
(Sciotto et al., 2013; Spina et al., 2015). K1 and K3 have similar peak fre-
quency to that hypothesized for crater acoustic resonance (Cannavò
et al., 2019) and may be caused by low-level eruptive activity at the
summit. K2, however, has a much lower peak frequency and may be
due to wind noise or the microbaram peak (Fee et al., 2010a). K4 and
K5 display clear impulsive transients, which are representative of dis-
crete explosions. The lower amplitude signals of K4 are likely from ex-
plosions at Bocca Nuova as they predominantly occur prior to the
onset of the fissure eruption whereas the larger amplitude signals of
K5 are likely caused by vigorous lava fountaining and explosions at
the fissure. K6 and K7 are qualitatively similar to K1 and K3with no im-
pulsive transients. K6 and K7, however, are characterized by lower fre-
quency and larger amplitude. Cannavò et al. (2019) observed that the
peak frequency of the infrasound data decreased after the onset of the
fissure eruption and inferred that this was caused by magma draining
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away from the summit, which increased the length of the resonating
cavity and decreased the peak frequency. Therefore, K6 and K7may re-
flect vigorous eruptive activity at the summit when themagma column
was low in the crater. Future work could combine the clustering results
presented here with event locations to shed more insight onto source
mechanisms.

It is possible that several clusters share the same sourcemechanism.
This does not mean, however, that the k-means clustering algorithm
should have been run with fewer clusters. Due to the complex nature
of the seven-dimensional feature space, it is challenging to predict
how changing the number of clusterswould change the results or inter-
pretations. When using clustering analysis for data exploration the
methods shown in Section 3.2 should be used to determine the optimal
number of clusters. Alternatively, a clustering method that does not re-
quire the number of clusters to be specified could be used, such as
density-based spatial clustering of applications with noise (DBSCAN),
which was used to analyze infrasound signals from Mount Etna by
Cannata et al. (2011a).

In this work, the average quality ratio is 70.0%, which ismuch higher
than the average quality ratio of 5.9% that was calculated by Witsil and
Johnson (2020). There are three reasons for this. First, when defining
Table 3
Mean and standard deviation of all features (in physical units) for each cluster.

Cluster Standard deviation (time) Skewness (time) Kurtosis (time) Pe

K1 0.06 ± 0.12 −0.02 ± 0.16 5.33 ± 2.09 0.
K2 0.03 ± 0.01 0.02 ± 0.24 5.23 ± 2.78 0.
K3 0.04 ± 0.05 0.07 ± 0.16 4.17 ± 1.95 0.
K4 0.06 ± 0.11 −0.15 ± 0.36 15.34 ± 9.00 0.
K5 0.42 ± 0.22 −1.36 ± 0.59 37.01 ± 16.21 0.
K6 0.29 ± 0.13 0.22 ± 0.39 4.02 ± 7.79 0.
K7 0.45 ± 0.14 0.29 ± 0.22 4.45 ± 3.29 0.
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high-quality cluster labels, Witsil and Johnson (2020) applied an addi-
tional criterion that the cluster label had to be consistent across at
least two of the three infrasound channels. This criterion could not be
applied in this work because the infrasound receivers examined here
were single channel. Second, Witsil and Johnson (2020) used much
shorter windows (5 s windows with 90% overlap so that each 0.5 s of
data is assigned a cluster label) to what is used here (300 s windows
with 90% overlap so that each 30 s of data is assigned a cluster label).
Using longer time windows averages over short duration variations in
eruption amplitude or style and results in more stable cluster labels.
Third, Witsil and Johnson (2020) used 16 clusters compared to the
seven clusters considered here. Decreasing the number of clusters re-
sults in fewer clusters labels to alternate between and hence more sta-
ble cluster labels. Future work should examine the sensitivity of the
clustering analysis to the window length.

In this work, k-means clustering is applied to the unfiltered
infrasound data. This is a deliberate choice as the goal of this work is
to showcase how unsupervised machine learning can be used as a
data exploration tool early on in the processing workflow. Future
work could examine how the clustering results depend on the filtering
applied.
ak freq Q factor Skewness (frequency) Freq at 50th percentile

57 ± 0.13 4.73 ± 5.17 7.34 ± 0.82 2.81 ± 0.64
17 ± 0.06 3.14 ± 3.54 9.75 ± 1.95 1.59 ± 0.89
54 ± 0.07 4.51 ± 4.50 9.00 ± 1.06 1.33 ± 0.34
45 ± 0.21 3.91 ± 4.11 5.52 ± 1.20 4.87 ± 0.92
70 ± 0.28 2.57 ± 1.75 4.72 ± 0.92 4.19 ± 0.62
33 ± 0.05 10.61 ± 7.14 15.57 ± 1.76 0.60 ± 0.22
36 ± 0.05 4.61 ± 3.39 13.53 ± 1.27 0.56 ± 0.11
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Table 4
Distance between cluster centroids. The distance is calculated in the normalized feature
space that is used for the clustering analysis.

K1 K2 K3 K4 K5 K6 K7

K1 0 5.82 6.28 4.50 16.58 2.94 7.65
K2 0 2.43 7.58 16.24 5.68 10.95
K3 0 8.27 18.25 6.37 11.64
K4 0 12.66 1.96 3.86
K5 0 14.57 9.95
K6 0 5.53
K7 0

L.M. Watson Journal of Volcanology and Geothermal Research 405 (2020) 107042
The clustering results presented here showa distinct change in cluster
labels associatedwith a change in eruptive behavior due to the opening of
a fissure on the south-east flank of the volcano. This suggests that ma-
chine learning techniques could be used for real-time infrasound-based
volcano monitoring to identify changes in eruptive activity. A simple
clustering-based workflow is to first apply k-means to classify a training
data set into k clusters. Incoming data could then be assigned to existing
clusters. If incoming data is sufficiently different to the existing clusters,
according to a specified distance metric, it would indicate a departure
from the eruptive behavior seen in the training data set. This workflow
could be used to highlight changes in eruptive behavior in real-time.

6. Conclusion

Unsupervised machine learning (ML) is used to categorize continu-
ous volcano infrasound data recorded at Mount Etna. The clustering
analysis performed here captures a distinct change in eruptive behavior
due to a fissure eruption on the south-east flank. Analyzing cluster fea-
ture distributions sheds insight on infrasound source mechanisms and
provides information about eruption dynamics. This work illustrates
how unsupervisedML can be used to explore infrasound data and high-
light changes in eruptive activity. Future research should apply cluster-
ing algorithms in real-time to identify changes in eruptive behavior and
aid in monitoring efforts.

UnsupervisedML algorithms such as k-means clustering are comple-
mentary to existing processing workflows. These methods can be ap-
plied to continuous infrasound data and used to identify trends and
gain an intuitive understanding of the data space, which can inform fur-
ther conventional data processing and analysis efforts. This study builds
upon the work by Witsil and Johnson (2020) at Stromboli and demon-
strates that unsupervised ML can be applied generally to analyze
infrasound signals fromany volcano. Here, I focus on volcano infrasound
observations but clustering algorithms such as k-means are general pro-
cessing tools that can be used to analyze other geophysical data such as
seismic and geodetic data or continuous gas measurements.
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