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Toolpath choice in metal-based additive manufacturing (AM) affects local thermal environment. We use
Hamiltonian paths to systematically enumerate time- and space-continuous toolpaths on example n x n
grid geometries. This framework broadens the toolpath design space by establishing a finite and search-
able number of AM toolpaths for any discretized geometry. We characterize toolpaths by extracting tool-

path internal structures, e.g., the number of corners and pairs of parallel tracks. The enumerated
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predictions.

toolpaths serve as an input to thermal simulations to obtain solidification cooling rate statistics, which
strongly correlate to the number of internal structures. Hence, toolpath can be linked to microstructural

© 2020 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.

1. Introduction

Additive manufacturing (AM) allows for the design of process
parameters and part properties. Unlike in traditional manufactur-
ing, the pointwise thermal histories of a metal-based additive
manufactured part differ widely within small spatial scales. Local
variability in thermal histories leads to local variability in the
microstructure and mechanical properties [1], so resultant
microstructures and properties are spatially heterogeneous even
if global processing parameters such as laser power or speed
remain constant [2,3].

Toolpaths define the pointwise material activation order in time
and space, and therefore introduces great variability to the AM pro-
cess. Three common space-continuous toolpaths (with 2D cross-
section, solid infill) are the bi-directional raster (serpentine), offset
(spiral), and fractal (crimped) patterns [2]. Although raster pat-
terns are easier to implement, spiral and crimped patterns produce
less part distortion and cracking [4-6]. Toolpath also affects resid-
ual stress distribution and mechanical properties [7,8]. Attempts to
optimize toolpaths often focus on accommodating complex cross-
section geometries [9,10] or assume pre-selected patterns for each
“island” [11].

The toolpath design space is much larger than the common pat-
terns mentioned above. Generating irregular toolpaths widens the
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search space to enable better process parameter optimization.
Here, we show a general algorithm for enumerating AM toolpaths
on discretized geometries. We characterize these toolpaths based
on their internal structures and build multiple linear regression
models to evaluate their impact on thermal history attributes.

2. Methodology: Hamiltonian path algorithms for generating
AM toolpaths

A geometric object with finite volume can be discretized into a
finite number of sub-volumes, e.g. by mesh generation into ele-
ments. The AM build process requires that each sub-volume of
the given geometry be activated exactly once by the heat source.
Thus, for a discretized geometry with n sub-volumes, there is a
maximum of n! activation sequences. Since the number of permu-
tations of a finite set is finite, the number of AM toolpaths for a
specific geometric discretization has an upper bound. By modeling
a toolpath as permutations of activated sub-volumes, we expand
the toolpath design space to a much larger yet finite and countable
number of toolpaths. To minimize build time and melt pool insta-
bilities [12], this study is limited to space- and time-continuous
toolpaths, e.g., no jumps in space nor dwell times.

To enumerate space- and time-continuous AM toolpaths, we
find an equivalent algorithm in graph theory. The problem of gen-
erating AM toolpaths on a discretized geometry is equivalent to
that of generating Hamiltonian paths on a graph. In graph theory,
paths are a sequence of distinct edges connecting a sequence of
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distinct vertices. A Hamiltonian path visits each vertex of the graph
once. By representing the target discretized geometry as a graph,
where each vertex represents a sub-volume and each edge con-
nects pairs of neighboring sub-volumes, we use established back-
tracking Hamiltonian pathfinding algorithms to enumerate AM
toolpaths. Fig. 1 shows examples of discretized geometries, graphs,
and Hamiltonian paths. Our toolpath enumeration process pro-
duces a data set of toolpaths. For practicality, the dimensions of
the discretized sub-volumes are assumed equal to a constant melt
pool track width and height.

For demonstration, we chose grids of n x n square sub-volumes
to verify the toolpath enumeration algorithm. The number of tool-
paths generated matches the theoretical number of directed
Hamiltonian paths on an n x n grid graph [13]. Because of rota-
tional and reflectional symmetries in square geometries, the num-
ber of unique toolpaths for square grids reduces by a factor of
eight. Each toolpath is encoded as a sequence of vertices of length
n x n, which is the number of sub-volumes in the discretized
geometry.

3. Toolpath internal structures for thermal attribute prediction

The number of possible toolpaths grows with the geometry size.
To describe irregular toolpaths, we establish quantitative measures
for characterization. We find that internal structures such as L-
turns, U-turns, and parallel/antiparallel pairs of straight tracks
can be used to characterize toolpaths. L-turns are 90° corners in
the toolpath; U-turns are two subsequent left or right L-turns. Par-
allel tracks are adjacent tracks with the heat source traveling in the
same direction, whereas antiparallel tracks are of opposing direc-
tions. These toolpath internal structures affect the local thermal
environment of AM builds; for example, melt pools are more stable
in the middle of tracks than at turning ends because instabilities
occur at velocity changes [14,15], leading to keyhole pore forma-
tion [16]. Our hypothesis is that if two toolpaths have similar inter-
nal structures, their thermal histories and properties may be
similar as well.

We use contact maps [17,18] as a tool for quantifying internal
structures. In our 2D regular grid geometry, each vertex i has four
neighboring vertices. The corresponding contact map records each
pair of neighboring vertices, i and j, as an entry in row i column j.
Because of symmetry, only the upper triangular matrix is needed.
Each toolpath has a unique contact map representation; three
common toolpaths and their corresponding contact maps are illus-
trated in Fig. 2. Patterns formed in the contact map correspond to
the aforementioned internal structures of interest, which are iden-
tified and counted from the contact map using 8-way connected-
region labeling [19] in OpenCV [20].

Multiple linear regression will be used to find correlations
between the number of internal structures and their effect on ther-
mal attributes. To generate thermal attributes, we performed tran-
sient thermal simulations of single-layer 5x5 square plates built by

(a) (b)
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a Directed Energy Deposition (DED), a powder-blown AM process.
The process parameters of track width and height, laser radius,
speed, and power are taken from [21], which are 3 mm, 0.5 mm,
1.75 mm, 1000 mm/min, and 2000 W, respectively. The build was
resolved with a 40 x 40 x 5 mesh. Material properties of Inconel
625 and finite element solver details are found in [22]. Each simu-
lation takes a toolpath as input and outputs the 4D thermal history
within the build. Velocity changes are assumed to be near-
instantaneous.

Our chosen thermal attribute for analysis is the Solidification
Cooling Rate (SCR), which is linked to microstructural distribution
such as porosity and dendrite spacing [23,24]. Higher cooling rates
cause finer grain microstructures [25]. SCR is a local scalar variable
calculated using:

T -Ts
t—ts

SCR =

(2)

where T; and Ts, and t; and ts are the temperatures and times at lig-
uidus and solidus, respectively, at a time resolution of 1e-4s. We
aggregate SCR data for each build by calculating the arithmetic
mean and the fraction of SCR outliers according to the interquartile
rule for outliers. For our data set, SCR values above 2140 [K/s] are
considered outliers. Because cooling rate is the product of thermal
gradient and solidification front velocity [26], toolpaths with higher
SCR mean will have finer average grain sizes. Toolpaths with higher
SCR outlier fractions may have larger populations of defects or
regions of ultra-fine grains.

4. Results and discussion

Multiple linear regression analysis was used to study the impact
of toolpath internal structures on SCR statistics. The chosen inter-
nal structures are the numbers of L-turns and U-turns, and the
numbers of sub-volumes participating in parallel and antiparallel
tracks (i.e., total length). The chosen SCR statistics are SCR mean
and outlier fraction. To prevent overfitting, each instance of the
model was trained on a randomly-selected 70% of the total data;
the regression analysis was repeated 100 times. Both predictor
and response variables were standardized using z-scores.

Table 1 shows the model results. The low p-values indicate sig-
nificance in the impact of the internal structures on SCR statistics.
The R? values indicate that the internal structures are strongly cor-
related to SCR mean and weakly correlated to outlier fraction, also
suggesting that SCR mean is only loosely correlated to the outlier
fraction. This demonstrates a need for models and parameters that
capture the behavior of extreme values and inhomogeneity.

The standardized regression coefficients reveal a negative cor-
relation between internal structures and SCR statistics. For exam-
ple, the number of L-turns is the strongest predictor of SCR
statistics. This is because corner structures in the toolpath tend
to concentrate heat in localized regions and prevent material from
cooling off between neighboring depositions. Conversely, straight

(c)

Fig. 1. (a) A single-layer square geometry can be represented by a 5 x 5 grid graph, where each sub-volume is represented by a graph vertex and four neighboring sub-
volumes are connected by edges (in dashed lines). Examples of Hamiltonian paths on (b) a 5 x 5 grid graph and (c)a 5 x 5 x 2 grid graph (in solid lines) shows that this
concept is extendible to multi-layer builds. For the 5 x 5 grid geometry, there are 1081 toolpaths each of length 25.
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Fig. 2. Common toolpaths (a) spiral, (b) serpentine, and (c) crimped, with their associated contact maps. In these three toolpaths, node 0 is neighbor to, or adjacent to, nodes
15, 9, and 3 in subfigures a-c, respectively. Adjacency is marked as entries in the corresponding columns in row 0 in the contact maps. Diagonal lines with negative slope
correspond to pairs of parallel tracks; diagonal lines with positive slope to antiparallel tracks. L-turns correspond to pairs of entries separated by one unit of distance, whereas

U-turns correspond to single-entries on the order 3 diagonal.
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Fig. 3. (a) SCR mean and (b) SCR outlier fraction calculated from simulations vs. as predicted by one instance of the multiple linear regression model. Each point on the scatter
plot represents a toolpath. Toolpaths of interest are highlighted in the regression results and visualized (1-6).

Table 1

Average multiple linear regression model standardized coefficients, intercept, and R? values for models of SCR statistics (mean and outlier fraction) vs toolpath internal structures,

collected over 100 runs of the model, each run trained on 70% of the total data set.

Predictor variables

Response variables L-turns U-turns Parallel tracks length Antiparallel tracks length Intercept R?

SCR mean [K/s] Mean standardized coefficient (B) -20.2 -9.92 -6.98 -14.6 1100 0.84
Mean p-value <0.001 <0.001 <0.001 <0.001

SCR outlier fraction [%] Mean standardized coefficient (B) —45.0 -19.3 -8.69 -23.7 3.85 0.28
Mean p-value 1.64e-3 0.0578 0.769 0.0669

31



P. Cheng, W.K. Liu, K. Ehmann et al.

track structures (especially parallel tracks) increase the likelihood
of depositing next to cooled material, resulting in higher thermal
mismatch, higher SCR, and finer grains. These cooling rates will
also impact the residual stresses in the build.

Fig. 3 plots SCR statistics from simulations against those pre-
dicted by multiple linear regression. Six toolpaths with the same
number of L-turns are highlighted to demonstrate the range of
the toolpath enumeration process. Spiral-like toolpaths, dominated
by L-turns and parallel track pairs, tend to have higher SCR mean,
and therefore finer grain sizes, than serpentine-like toolpaths,
dominated by U-turns and antiparallel track pairs. Toolpaths that
are neither spiral or serpentine have unique mechanical properties
(such as anisotropy and residual stress) and can be easily substi-
tuted into island strategies or for complex microstructural designs.

5. Conclusions and future works

Expanding the toolpath design space improves AM parameter
optimization. We present a method for enumerating AM toolpaths
on discreditable geometries and characterizing irregular toolpaths
by their internal structures. Even if all builds have same global AM
parameters and global energy density (GED), variations in toolpath
internal structures produce variations in cooling rates, allowing for
new possibilities for microstructural design. Future work includes
generalization of this method to larger geometries and more com-
plex characterization of internal structures. The interaction
between different internal structures should also be studied.
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