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Abstract A biophysical model shows that Beaufort Gyre ( BG) intensification in 2004-2016 is followed by
relaxation in 2017-2018, based on a BG variability index. BG intensification leads to enhanced downwelling
in the central Canada Basin (CCB) and upwelling along the coast. In the CCB, enhanced downwelling
reduces nutrients, thus lowering primary productivity (PP) and plankton biomass. Enhanced upwelling
along the coast and in parts of the Chukchi shelf/slope increases nutrients, leading to elevated PP /biomass in
the Pacific Arctic Ocean (PAQ) outside of the CCB. The overall PAQ PP/biomass is dominated by the
shelf/slope response and thus increases during BG intensification. As the BG relaxes in 2017-2018, these
processes largely reverse, with increasing PP/biomass in the CCB and decreasing PP/biomass in most of the
shelf/slope regions. Because the shelf/dope regions are much more productive than the CCB, BG relaxation
has the tendency to reduce the overall production in the PAQ.

1. Introduction

Large-scale circulation in the Pacific Arctic Ocean (PAQ; see Figure 1a for definition) is closely associated
with the anticyclonic Beaufort Gyre (BG) located over the Canada Basin. Observations and model results
indicate that the BG intensified in recent years; this intensification is associated with increased ocean velo-
city and freshwater content (FWC) in much of the PAQ because of enhanced Ekman transport convergence
and downwelling in the Canada Basin (CB) and enhanced upwelling in the Chukchi and Beaufort shelf and
slope region (e.g., Giles et al, 2012; Krishfield et al., 2014; McPhee, 2013; Proshutinsky et al., 2009; Regan
et al, 2019; Yang, 2009). However, there have been signs that the BG circulation began to stabilize in
2008 or 2009 { Armitage et al., 2017; Zhang et al., 2016).

The enhanced downwelling in the CB and upwelling in the Chukchi and Beaufort shelf and sope region
likely have an impact on the planktonic ecogystem in the PAQ. For example, based on observations taken
in 2008, Coupel et al. (2015) reported that the CB during BG intensification showed a reduction in primary
productivity (PP) because of a deepened nitracline (also see McLaughlin & Cammack, 2010), whereas areas
with reduced freshening exhibited relatively high PP and phytoplankton biomass because of a shallower
nitracline. While the impact of sea ice decline on Arctic PP and the planktonic ecosystem has been well
recognized (eg., Arrigo et al., 2008; Zhang et al., 2010; Jin et al,, 2016), the impact of BG intensification
and associated changes in the upwelling/downwelling pattern on PP and the planktonic ecosystem in the
PAO hasnot been analyzed in a systematic manner on a decadal time scale. Even less known is the impact
on the PAD planktonic ecosystem if significant BG relaxation occurs. Here a pan-Arctic biophysical model,
the Biology-Ice-Ocean Modeling and Assimilation System ( BIOMAS, Zhang et al., 2015), is used to examine
changes in BG circulation and upper ocean physics during the period 1992-2018 and to assess how these
changes affect the spatiotemporal variability of the planktonic ecosystem.

2. Brief Model Description

BIOMAS has been included in a number of community ecosystem model intercomparison studies (e.g., Jin
etal., 2016; Lee et al.. 2016). It consists of a sea ice model, an ocean circulation model, a pelagic biological
model, and a s=a ice algae model. The pelagic biological model has 11 components two phytoplankton
classes (diatoms and flagellates), three zooplankton classes (microzooplankton, copepods, and predatory
zooplankton), dissolved and defrital particulate organic nitrogen, detrital particulate organic silica, nitrate,
ammonium, and silicate (Zhang et al,, 2015). The sea ice algae model, based on Jin et al. (2006), has two ice
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Figure 1. 1992-2018 mean CFS reanalysis SLP (mbar) (a) and the differences in SLP between the 2004-2016 mean and the 1992-2018 mean (b) and between the
2017-2018 mean and the 1992-2018 mean (¢} simulated 1992-2018 mean Beman upwelling velocity (wg = Vardof, cm duy_i}{d} and the differences in Ekman
upwelling velocity between the 2004-2016 mean and the 1992-2018 mean (¢) and between the 2017-2018 mean and the 1992-2018 mean (f). the thin black lines
represent isobaths of 100 and 3,600 m, respectively, based on the international bathymetric chart of the Arctic Ocean (IBCAQ, Jakobsson et al., 2008} For the

purpose of analysis, the Pacific Ardic Ocean isdefined as the area endosed by Bering Strait and a thick black line in (a)} major topogra phic regions also are shown,

algal components (diatoms and flagellates), with nitrate, ammonium, and silicate as limiting nutrients for
ice algal growth I a 2-cm layer at the sea ice bottom. The ocean model is based on the Parallel Ocean
Program (Smith et al, 1992). The sea ice model is adapted from the Pan-arctic lce-Ocean Modeling and
Assimilation System (Zhang & Rothrock, 2003), with melt ponds incorporated (Zhang et al., 2018).
BIOMAS assimilates satellite observations of sea ice concentration and sea surface tempemature. It is
forced by the National Oceanic and Atmospheric Administration ‘s Climate Forecast System (CFS)
reanalysis data (Saha et al., 2010) over the period 1979-2018. More BIOMAS details are given in Zhang
et al. (2015), Jin et al (2016), and Lee et al. (2016), including model components, configuration, and
initial conditions. Results over 1992-2018 are analyzed.

3. Model Evaluation and Results

In addition to assimilating satellite observations of sea ice concentration and sea surface temperature,
BIOMAS sea ice velocity is calibrated with buoy drift data (http://iabp.aplwashington.edu) over the period
1992-2010, with a mean model ice speed bias of —6% and model-buoy speed correlation of 0.82. BIOMAS-
simulated ischaline (salinity = 31 psu) depth has a mean bias of ~7 m (supporting information Figure S1)
when compared to comresponding CTD { conductivity, temperature, and depth) observations in the central
CB over the period 2003-2013 (Timmemmans et al., 2014). The bias may be an indication that the model over-
estimates vertical mixing, in turn leading to a bias in PP. However, BIOMAS is able to capture most of the
interannual variability of the CTD-derived ischaline depth, a measure of BG variability (Timmermans
et al., 2014). When compared to available National Aeronautics and Space Administration IceBridge obser-
vations of sea ice thickness over the period 2012-2018 (supporting information Figure 52), BIOMAS shows a
mean bias of 0.13 m ( 5%), with a model-observation correlation B = 0.64.
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A comparison of BIOMAS-simulated chlorophyll ¢ (mg m™2) integrated over the upper 100 m with
corresponding observations compiled by the PacMARS project (Grebmeier et al., 2015) over 1993-2012
indicates that most model results are relatively close to observations, especially in the region under study
{supporting information Figure S3). However, the model also substantially overestimates or underesti-
mates chlomophyll biomass in the upper 100 m at many observation locations, resulting in a large scatter
in the plot of Figure S3. In particular, the model’s inability to reproduce many of the observed large bio-
mass values indicates the difficulty in comparing grid-cell-scale model results with point measurements.
This was also reflected in the model-data intercomparison study of Lee et al. (2016) that used 21 biophy-
sical models and a range of Arctic observations. This difficulty is often an important source of model bias,
in addition to model uncertainties in forcing and parameterization. Overall, the model has a mean bias of
—21.8 mgm " or 23% and the model-observation comelation is 0.35. A comparison of BIOMAS-simulated
maximum chiorophyll a (mg m ™) in the water column with corresponding observations compiled by the
PacMARS pmject over 1993-2012 (supporting information Figure $4) has smilar features to those shown
in Figure §3. The model has a mean bias of —1.3 mg m ™ or 30%, and the model-observation correlation
is 0.42,

BIOM AS simulates a general increase in the speed of ocean cuments in the upper 100 m of the PAO (defined
in Figure 1a) over 1992-2018 (Figure 2a). This is consistent with previous reports of stronger geostrophic cur-
rents in the CB in recent years (e.g., McPhee, 2013; Zhong et al., 2018). In particular, the simulated cumrent
speed increases in 2007, remains high until 2011, decreases in 2012-2013, and then climbs again in 2014,
agreeing qualitatively with the 2003-2014 observations of Armitage et al. (2017). The general increase in cur-
rent speed is largely due to BG intensification, that is, the Ekman convergence of freshwater into the center
of the BG which enhances the large-scale lateral density gradients and thus geostrophic currents (e.g.,
McPhee, 2013; Zhong et al., 2018).

This BG intensification is driven by changes in the atmospheric forcing, characterized in the PAO by a
Beaufort high-pressure cell (Figure 1a) with an anticyclonic surface wind circulation. After a sharp increase
in the Climate Forecast System reanalysis sea level pressure (SLP) over the PAO in 2004, there are more
strongly positive annual mean SLP anomalies {defined here as higher than 1 mbar) during 2004-2016 (six
in total) than 1992-2003 (one only) (Figure 2b). This indicates an intensified Beaufort high in the later period
(Figure 1b) (e.g., Wood et al., 2015), with strengthened anticyclonic BG circulation reflected in relatively
high magnitudes of current speed and relative vorticity (defined as —V ® u, where u is horizontal ocean velo-
city averaged over the upper 100 m) (Figure 2a). Note that although the average SLP in the PAQ is often
higher in 2004-2016 than in 19922003, it drops considerably in 2015 (Figure 2b). However, the magnitudes
of current speed and vorticity only decrease moderately in 2015, likely due to the long time scale of geos-
trophic cumrent change in responding to changes in lateral density gradients (Johnson et al, 2018). In
2016, the average SLP remains low, so that the magnitude of vorticity continues to decrease in contrast to
the current speed, which rebounds to some degree.

The average SLP in the PAO continues to drop to near the lowest level of the whole study period in 2017,
although it rebounds a little in 2018 (Figure 2b; also see Figure 1c). The sustained decrease in SLP from
2015 to 2018 (Figure 2b) leads to a noticeable reduction in the magnitude of both ocean cument speed and
vorticity in 2017-2018 (Figure 2a). This perod can be contrasted with the briefer reduction in SLP seenin
2012-2013, when current speed is reduced (also see Ammitage et al., 2017) but ocean vorticity is
relatively unchanged.

To help describe changes in BG circulation, a BG variability (BGV) index (Figure 2c) is constructed based on
the depth of an ischaline (§ = 31 psu) averaged over the area within 135-160"W and 74-83°N in the central
CB. The BGV index is defined as the anomaly of annual mean depth of the isohaline in the area normalized
by dividing the largest absolute value of the anomaly. The calculation of the BGV index is straightforwand
because of the fived area, and moderately adjusting the area would not mdically change the outcome. The
BGV index (Figure 2c) shows mostly negative values in 1992-2003 and mostly positive values in 2004~
2016, a sign of BG intensification. [n 2017-2018, the index becomes negative again, a sign of BG relaxation
(Figure 2c). Thus the two periods (2004-2016 and 2017-2018) are useful to highlight spatiotemporal
changes related to BG intensification and relaxation. The BGY index is well correlated with PAO ocean
speed (R = 0.95) and vorticity (R = 0.86) averaged over the upper 100 m (Figure 2a).
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Fgure 2. Annual mean time serbes for () simulated ocean current speed and relative vortid oy over the upper 100 m (or from the surface to the bottom if shallower
than 100 m}), (b} CFS reanalysis sea level pressure (SLP) anomaly and simulated Ekman upwelling velocity (wg), (c) Beaufort gyre variability (BGV) index defined as
the anomaly of anmual mean depth of the ischaline (5= 31 psu) normalized by dividing the largest absolute value of the anomaly, (d) simulated sea foe volume and
CFSreanalysis surface air temperature (SAT), and simulated () photosynthetical ly active radiation (PAR) at the ocean surface and ocean temperature in the upper
100 m, (f) freshrwater content (FWC) above the isohaline of § = 34.8 psu in the upper 100 m and annual ie melt from may o September, (g) nitrate concentration
and primary productivity (FF) in the upper 100 m, and (h) phytoplankton and zooplankton in the upper 100 m, all averaged over the entire Pacific Ardic Ocean
defined in Figure 2a except the BGV index that is averaped over the area within 135-160"W and 74-83°N. some correlation valuesare listed in (b) and (d)-(g) with p
values at or below 0,02 Horizontal lines represent zero values for ocean vorticity (a) SLF anomaly (b}, and BGV index {c} vertical dashed and dash-dotted lines
represent years 2004 and 2017,

Changes in SLP and the anticyclonic wind circulation affect upwelling and downwelling caused by the diver-
gence (upwelling) or convergence (downwelling) of Ekman transport within the surface layer (Yang, 2000).
The simulated Ekman upwelling velocity is calculated as wg = Vixr/gf, where tis ocean surface stress calcu-
lated following Martin et al. (2014), p is water density, and fis the Coriolis parameter. This method was
shown by Zhong et al. (2018) to be highly correlated with similar methods that explicitly take into account
the recent acceleration of geostrophic currents in the BG. The upwelling velocity is negative on average in
the PAO (Figure 2b), indicating that downwelling dominates. Although the srmulated wg is characterized
by negative values (downwelling) over a large area of the CB, positive values {upwelling) occur over a
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much narrower region along the coast, with patches of negative and positive values in the Chukchi shelf and
slope region (Figure 1d). Overall, the PAO-averaged wg is negative and is negatively correlated with the
PAQ-averaged SLP (R = —0.46, p value = 0.02; Figure 2b), for example, a stronger atmospheric Beaufort
High leads to stronger downwelling in the central CB.

As the BG intensifies over 2004-2016 with more positive SLP anomalies than in 1992-2003, there are more
years of relatively strong downwelling on average over the PAO, such as 2005, 2007, and 2013-2015
(Figure 2b). Ekman downwelling is enhanced in the CB and upwelling is enhanced along the coast during
2004-2016 (Figure le), when compared to the 1992-2018 mean. In part of the Chukchi shelf and slope
region, upwelling is increased. However, in 2017-2018, downwelling is reduced in most of the CB and
upwelling is reduced along the coast (Figure 1f). In part of the Chukchi shelf and slope region, upwelling
remains increased. Because the CB has a larger area than the coast, the magnitude of the PAD-averaged
W is reduced considerably (Figure 2b).

The model also shows decreasing sea ice extent, sea ice volume, and snow volume in the PAO during
1992-2018, in conjunction with increasing surface air temperature forcing (Figure 2d). Compared to
1992-2018, ice is thinner in most of the PAO except the central CB in 2004-2016 (Figures 3a-3b) and
continues to thin in 201 7-2018, most strongly in the central CB{Figure 3c). The decrease in sea ice and snow
leads to an increase in light penetration through ice (Figure 2e). The increasing photosynthetically active
radiation (PAR) at the ocean surface, averaged over the PAOQ, is comrelated negatively (R = —0.82) with
decreasing ice volume (Figure 2e). Spatially, the increase in PAR is closely comrelated with the decrease in
ice thickness (not shown).

The declining sea ice cover contributes to a general increase in upper ocean temperature in the PAQ over
1992-2018 (Figure 2e). In 2004-2016, the water temperature increases mostly in the shelf regions. There is
a slight decrease of the mean ocean temperature over the upper 100 m in the central CB, forced by enhanced
convergence and downwelling of cold surface waters there (Figures 3d and 3e). In 2017-2018, water tem-
perature rebounds in the central CB because of BG relaxation (Figure 3f). Water temperature continues to
increase over the shelves, owing 0 a decrease in sea ice and enhanced downward atmospheric heat fluxes
(Figures 2d and 3e), which is favorable for phytoplankton growth.

Increasing summer ice melt and changes in Ekman dynamics jointly lead to increasing FWC in the PAO
since 2005 (Figure 2f). The simulated FWC is relatively high in the central CB and low elsewhere
(Figure 3g) because of surface convergence. As the BG intensifies in 2004-2016, FWC becomes much
higher in the central CBE and somewhat lower in surmunding areas because of enhanced water conver-
gence toward the central CB (Figure 3h). As the BG relaxes in 2017-2018, the opposite occurs, with the
central CB losing freshwater and the surmunding areas gaiming freshwater (Figure 3i). Thus, Elkman
dynamics provides only a simple spatial redistribution of FWC over the total PAO region. On the other
hand, FWC in the upper 100 m of the PAD keeps increasing (Figure 2f) over this time period, owing to
a general increase in ice melt, with particularly strong increase in 2015-2016 (Figure 2f) right before
BG relaxation in 2017-2018. The increasing FWC is comelated (R = —0.71) with decreasing ice volume
(Figure 2f).

Increasing FWC is also correlated with generally decreasing nitrate concentration in the upper 100 m of the
PAQ over 1992-2018 (R = —0.54) (Figure 2g) because of a deepened nitracline {(e.g., Coupel et al., 2015;
McLaughlin & Carmack, 2010). The simulated nitrate concentration is lower in the central CB and the
East Siberian Sea and higher in the Chukchi Sea (Figure 4a). As the BG intensifies durin g 2004-2016, nitrate
concen tration is reduced in the CB and increased in the Chukchi Sea and coastal areas in the Beaufort Sea
(Figures 4a and 4b), owing to enhanced downwelling in the basin and upwelling along the coast and in part
of the Chukchi shelf and slope region. Note that enhanced downwellingin the deep basin is associated with
enhanced lateral fluxes (Ekman transport convergence) towand the basin from adjacent areas (shelf/slope
regions). In the North Atlantic subtropical gyre, such enhanced lateral fluxes may lead to an increase in
nutrients in the central area of the gyre (Doddridge & Marshall, 2018; Williams & Follows, 1998). In the
BG, however, this increase does not happen because lateral nutrient fluxes are small due to the low level
of simulated nitrate concentration in much the East Siberian Sea (Figure 4a) and high consumption of nutri-
ents in the shelf/slope regions of the Chukchi and Beaufort seas as reflected in the elevated PP and plankton
biomass (Figures 4e, 4h, and 4k).
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Figure 3. Simulated 1992-2018 mean sea joe thickness m(a) and the differences in sea joe thickness between the 2004-2016 mean and the 1992- 2018 mean (b) and
between the 200 7-2018 mean and the 1992-3018 mean (c); same for the simulated mean and differences in ocean temperature (°C) in the upper 100 m (d-f) and
freshwater content (m) above the isohaline of § = 34.8 psu in the upper 100 m (g=i).

When the BG relaxes in 2017-2018, the situation largely reverses, with the CB gaining nitrate and the
Chukchi/Beaofort shelf region and the Beaufort slope region losing nitrate (Figure 4c). Meanwhile, nitrate
inthe Chukchi slope region is higher than the 1992-2018 mean, likely due to the fact that upwelling in 201 7-
2018 remains increased in part of the Chukchi shelf and slope region (Figure 1), Because of BG relaxation,
nitrate concentration averaged in the upper 100 m of the PAO rebounds in 2018 (Figure 2g), but not in 2017
when the model simulates a large drop in ice volume to its lowest level { Figure 2d), with a concurrent sharp
increase in FWC (Figure 2f). This may have delayed the response of nitrate concentration in the upper ocean
to the BG relaxation.

Although nutrient availability in the upper 100 m of the PAO is decreasing over 1992-2018, the simulated PP

before 2017 is generally increasing (Figure 2g). The PP is comrelated with PAR(R = 0.79; Figure 2e), the BGV
index {0.75; Figure 2c), ocean speed (0.79; Figure 2a), vorticity (0.54; Figure 2a), and sea ice volume {(—0.49, p
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Figure 4. Simulated 1992-3018 mean nitrate concentration (mmol-N m_3} {a)and the differences in nitrate concentration between the 2004-2016 mean and the
1992-2018 mean (b) and between the 201 7-2018 mean and the 1992-3018 mean (c), averaged in the upper 100 m; same for the simulated mean and differencesin
primary productivity (mmel-N m ™~ day ") (d-f), phytoplankion (mmol-N m ™) (g—i), and zooplankton (mmol-N m ™} (j-1), integrated in the upper 100 m.
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value = 0.01; Figure 2d). However, it is only weakly correlated with ocean temperature (0.34, p value = 0.08;
Figure 2e). The insignificant correlation with ocean temperature indicates that the impact of changes in
temperture on PP is limited in the PAO. The estimated temperature-dependent growth rate does not
change significantly (<3%) in the temperature range of the region.

Increasing PP leads to generally increasing phytoplankton and zooplankton biomass before BG relaxation
startsin 2017 (Figure Zh). Not surprisingly, the PP is well correlated with phytoplankton (R = 0.92) and zoo-
plankton (0.86). During BG intensification in 2004-2016, PP and plankton biomass decrease in the central
CB and increase elsewhere in the PAQ, particularly in the shelf regions (Figures 4d, 4e, 4g, 4h, 4j, and
4k). This is likely because of the combined effect of the increase in light availability and changes in water
tempemmture (Figure 3e) and nitrate distribution (Figure 4b). During BG relaxation in 201 7-2018, the model
shows a large drop in average PP in 2017 and little rebound in 2018 (Figure 2g). The decreases in PP occur
mostly in the areas away from the central CB, particularly in the shelf regions (Figure 4f) mainly because of
reduced nutrdent availability (Figure 4c). In the central CB, PP tends to increase because of reduced down-
welling. These changes in PP are translated to changes in plankton biomass, which show increases in the
central CB and decreases elsswhere, including most of the shelf region (Figures 4i and 41). These increases
in plankton biomass in the central CB are even somewhat more pronounced than the increase in PP. The
concumrent increase in both phytoplankton and zooplankton biomass suggests a lack of grazer control of
phytoplankton biomass, which & supported by previous studies in this region (Campbell et al., 2009;
Sherr et al., 2009).

4. Concluding Remarks

This model study examines the response of the planktonic ecosystem in the PAO to the BG intensification
and relaxation, including regional (e.g., shelf vs. basin) responses. Consistent with various previous studies
(e.g., Armitage et al, 2017; Gileset al, 2012; Krishfield et al, 2014; McPhee, 2013; Regan et al., 2019; Zhang
et al, 2016; Zhong et al., 2018), the model shows strong BG intensification during roughly the period 2004~
2016. The BG intensification results from more frequent occurrence of a strong Beaufort high-pressure atmo-
spheric cell driving a strengthened anticyclonic wind and ocean circulation, as reflected in mostly positive
values of the BGY index constructed based on the depth of a isohaline (§ = 31 psu) in the central CB.
Model results further suggest that a significant relaxation of the BG has begun over the recent years 2017-
2018. The BG relaxation is marked by negative values of the BGV index, with low SLP, ocean current speed
and vorticity in the PAQ.

The changesin BG circulation occurred ata time of sea ice decline, with a general increase in light availabil-
ity at the ocean surface and in upper ocean temperature in the PAO, favorable for biological growth. The BG
intensification with strengthened anticyclonic ocean circulation in 2004-2016 leads to enhanced Ekman
transport convergence and downwelling in the central CB and enhanced upwelling along Alaskan coast.
In the central CB, the enhanced Ekman transport convergence of surface cold waters reduces water tem-
perature and increases FWC, while the enhanced downwelling reduces nutrient availability because of a
deepened nitracline {e.g., Coupel et al., 2015; McLaughlin & Carmack, 2010), resulting in reduced PP and
plankton biomass. In most of the shelf and slope regions of the PAO, the enhanced Ekman transport conver-
gence of surface waters toward the central CB and the general decreases in ice thickness cause an increase in
water temperature. The enhanced upwelling along the coast and in some Chukchi shelf and slope regions
causes an increase in nutrient availability, which, together with increasing light availability and water tem-
perature, leads to elevated PP and plankton biomass in most of the PAQO away from the central CB.

As the BG relaxes and the anticyclonic ocean cirulation weakens in 2017-2018, the physical processes are
largely reversed. The model simulates reduced Ekman transport convergence and downwelling in the cen-
tral CB and reduced upwelling along the coast, when compared with 2004-2016. The reduced Ekman trans-
port convergence causes a reduction in FWC in the central CB and an increase in most of other areas of the
PAQ. There is no significant drop in the total FWC in the upper 100 m of the PAQ in 201 7-2018 because of
continued freshwater contribution from a thinning sea ice cover. In addition, the smulated water tempera-
ture continues to increase throughout the PAD, including the central CB. These physical changes in turn
result in enhanced PP and plankton biomass in the central CB and reduced PP and biomass in most of other
areas of the PAO including most of the shelf and slope regions, even though water tempemture and PAR
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keep increasing there. Because the shelf and slope regions are much more productive than the central CB,
BG relaxation in these recent years has the tendency to reduce the overall production in the PAO, as
reflected in a drop in PP and biomass in 2017-2018 (Figures 2g and 2h). If the BG continues to relax in
the future, we speculate that it may cause PP and plankton biomass to continue downward in the PAD,
This could affect the CO, sink to the PAO and exacerbate warming of the PAO.

While model studies can shed light on changes in sea ice and upper ocean physics and how the changes may
impact PP and the planktonic ecosystem in the PAO, it is essential to monitor the biophysical changes and
possible interactions through satellite and in situ observations Knowledge about the integrated system of
sea ice, the upper ocean, and the planktonic ecosystem is still imited. It i necessary to learn more about
the intertwining physical and biogeochemical processes in the PAO, for example, the close correlation
between the BGV index and PP. This may be achieved by measuring changes in some of the key biophysical
properties and linkages, such as changes in PP and the functioning of the planktonic ecosystem relative to
changes in upwelling or downwelling and light or nutrient availability. These observations will enhance
our understanding of the behavior of the integrated sea ice-ocean-biology system in a changing PAO with
decreasing sea ice, increasing water temperature and FWC, and varying ocean cimulation including BG
intensification and relaxation. They will also help improve model representation of biophysical processes.
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