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High-Resolution Cervical Auscultation
and Data Science: New Tools
to Address an Old Problem
James L. Coylea,b and Ervin Sejdićc,d
High-resolution cervical auscultation (HRCA) is an evolving
clinical method for noninvasive screening of dysphagia that
relies on data science, machine learning, and wearable
sensors to investigate the characteristics of disordered
swallowing function in people with dysphagia. HRCA
has shown promising results in categorizing normal and
disordered swallowing (i.e., screening) independent of human
input, identifying a variety of swallowing physiological events
as accurately as trained human judges. The system has
been developed through a collaboration of data scientists,
computer–electrical engineers, and speech-language
pathologists. Its potential to automate dysphagia screening
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and contribute to evaluation lies in its noninvasive nature
(wearable electronic sensors) and its growing ability to
accurately replicate human judgments of swallowing
data typically formed on the basis of videofluoroscopic
imaging data. Potential contributions of HRCA when
videofluoroscopic swallowing study may be unavailable,
undesired, or not feasible for many patients in various
settings are discussed, along with the development and
capabilities of HRCA. The use of technological advances
and wearable devices can extend the dysphagia clinician’s
reach and reinforce top-of-license practice for patients with
swallowing disorders.
Why does the use of devices for measuring swal-
lowing function matter? For many years, human
judgment of patient function was solely per-

formed by empirical observation of the patient performing
a target activity or task. In fact, human judgment has been
the gold standard for describing numerous human functions
for many decades. However, with the growth of technologi-
cal advances in computer sciences and sensor technology have
come opportunities to meld two areas of science to accom-
plish two common goals: (a) improving traditTRUNional
AQ3
screening, clinical assessment, and treatment methods by
including technology and (b) developing individualized
treatments designed to address the nuances of a specific
patient’s impairment patterns. The purpose of this study
was to (a) review the current and past use of cervical aus-
cultation (CA) in assessing individuals with dysphagia,
(b) describe the complex underpinnings of high-resolution
cervical auscultation (HRCA) and its application to dyspha-
gia assessment, and (c) describe a current, ongoing project
that integrates collaborative HRCA advances in technology
and clinical findings.

Limitations of CA and Rationale for HRCA
CA to observe swallowing function using ordinary

stethoscopes has been a common clinical practice for many
years by dysphagia clinicians. Up to one fourth of dyspha-
gia clinicians use CA in diagnostic and management activi-
ties (Bateman et al., 2007; Rumbach et al., 2018; Vogels
et al., 2015). The use of CA was implemented following
the observation that sounds emanate from the neck during
swallowing and that these sounds may reflect physiological
events occurring during swallowing (Borr et al., 2007). CA
is based on the principle that a stethoscope can transmit
all available acoustic information from the anterior neck
during swallowing and that a human observer can accurately
Disclosure: The authors have declared that no competing interests existed at the time
of publication.
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interpret those sounds into a timeline of physiological
events. This also assumes the ability to form an impression
as to the “normalness” of those events. This concept is ger-
mane to dysphagia clinical practice, given the longstanding
interest in developing inexpensive and noninvasive methods
of evaluating swallowing function. Support for CA was first
described more than 20 years ago by Cichero and Murdoch
(1998), in a theoretical article in which a cardiac analogy
theory was proposed. Briefly, this theory proposes that the
upper aerodigestive tract is analogous to the heart. Both
consist of several tubes and valves that open and close in a
certain pattern and pumps that squeeze and propel fluids
during the cardiac cycle and during swallowing. Further-
more, the theory suggests that ordinary auscultation with
a stethoscope, as is used in clinical evaluation of cardiac
sounds, should translate to an equivalent interpretation of
swallowing function that would be derived from an imag-
ing study. Because of its convenience and low cost, inter-
est in adding stethoscope-based observations has grown in
the past 20 years, and many clinicians rely on CA in diag-
nostic assessments, sometimes as a replacement for imag-
ing. Several studies have reported data indicating that
specific “sounds” occurring during swallowing represent
discrete physiological and kinematic events and that these
observations may be useful surrogates for videofluoroscopic
imaging studies (Borr et al., 2007; Leslie et al., 2007;
Zenner et al., 1995).

Initially, research regarding CA produced results indi-
cating its ability to identify when a swallow occurred, but
this quickly spawned research into the nature of those
sounds. These studies described and named the sounds, of-
ten using a variety of labels (e.g., “lub,” “dub,” “first and
second sound,” “preclick,” “click,” “swish,” Greek alpha-
bet characters) to reflect what seemed to be associated with
swallowing events. These events were observed with concur-
rent imaging, including opening and closing of laryngo-
pharyngeal valves, ventilatory sounds, and bolus flow (Borr
et al., 2007). Leslie et al. (2007) investigated CA by using
an electronic microphone to standardize data acquisition
during concurrent imaging studies of swallowing. They de-
scribed the many inconsistencies in the assumptions under-
lying CA’s utility. The study identified associations between
some sounds and observed kinematic events, while also not-
ing an astonishingly broad range of patterns of CA sounds
during swallowing in healthy participants. The authors also
demonstrated poor interjudge agreement for CA while
underscoring the conflict between the convenience benefits
of stethoscope-based CA and its accuracy, cautioning
readers that “there is no robust evidence cervical ausculta-
tion of swallowing sounds should be adopted in routine
clinical practice…” (p. 296). Both studies relied on human
interpretation of the sounds produced during the swallows.
Regardless of the obvious limitations of the method, CA
has persisted in clinical dysphagia work.

CA’s limited value as an adjunct to dysphagia assess-
ment lies in the stethoscope’s inability to collect and transmit
the entire spectrum of acoustic and vibratory information
emanating from the pharynx and larynx during swallowing
2 American Journal of Speech-Language Pathology • 1–9
(Nowak & Nowak, 2018), as well as the human auditory
system’s limitations in perceiving and interpreting, in a
standardized manner, the obtained sounds. Stethoscopes
are designed for specific purposes and tuned for specific fre-
quency ranges based on those purposes (e.g., heart sounds,
ventilatory sounds; adults, children), and likewise, the range
of human auditory acuity across independent judges varies
widely. To illustrate the challenges presented by ausculta-
tion with stethoscopes, Favrat et al. (2004) investigated the
accuracy of cardiologists, internists, family practitioners,
and residents in identifying cardiac sounds and generation
of an accurate diagnosis based on chest auscultation. The
expert practitioners were 69% accurate recognizing heart
sounds and correctly diagnosed 62% of the cases, while the
residents were 40% and 24% accurate, respectively. This un-
derscores the degree of observation and interpretation im-
precision based on auscultation for an actual disorder for
which stethoscopes were developed. Since there has been
an explosion in the development of electronic data acquisi-
tion and analyses over the past 10–15 years, potential alter-
natives to stethoscope-based CA have received increased
attention.

The growth of computerized signal processing capa-
bilities and development of a variety of electronic sensors
has delivered an opportunity to investigate the principles
underlying CA using techniques that do not rely completely
on human judgment and to capitalize on advanced algorithm-
based signal processing, machine learning, and artificial
intelligence methods developed by our partners in related
engineering fields. Though other research groups have ex-
plored sensor-based swallowing observation over the past
several years using surface electromyography, piezoelectric
sensors, and accelerometers, Sejdić and colleagues described
the first steps toward development of a sensor-based HRCA
system for use in dysphagia screening (Sejdić, Steele, &
Chau, 2010).

HRCA was described by Dudik et al. (2015) follow-
ing 3 years of research that deployed a tri-axial accelerom-
eter and high-resolution microphone to accrue the signals.
Preliminary studies examining the signal processing of
swallowing accelerometry data indicated significant differ-
ences in signal features obtained during various bolus con-
ditions and bolus head position during swallowing. In
2013, the authors of this article embarked on a long-term
National Institutes of Health–sponsored project that is on-
going, and the results of which have been published or are
under analysis, submission, review, or revisions, as well as
cited elsewhere in this article. In this study, patients with
suspected dysphagia underwent concurrent videofluoro-
scopy and HRCA signal acquisition. The goals of the study
are to (a) develop an autonomous HRCA screening system
and test its efficacy in the clinical setting and (b) compare
the accuracy of autonomous and semi-autonomous HRCA
prediction of various commonly analyzed swallowing tem-
poral and spatial measurements to gold standard human
judgment and raise that accuracy to acceptable levels in an
effort to improve clinical workflow and to provide a surrogate
to videofluoroscopic swallowing study (VFSS) when VFSS
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Figure 1. The sensors on a videofluoroscopic image. AQ5Adapted from
Kurosu et al. (2019).
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is not available, feasible, or desired by the patient. To date,
the study methodology has involved the use of three signal
sources (VFSS, tri-axial accelerometry, high-resolution
microphone) collected simultaneously. Consented partici-
pants were composed of patients referred for a VFSS due to
suspected dysphagia. All participants were from an acute,
tertiary care teaching hospital. From this cohort, approxi-
mately 4,000 imaged swallows were captured and stored.
The authors (J. L. C. and E. S.) continue to collect the same
type of data, using the same methodology, from a cohort
of 200 healthy community-dwelling adults. This collabo-
rative clinical- and engineering-based endeavor permits
the (a) development of an automated dysphagia screen while
speeding clinical workflow of screening (e.g., nurse dyspha-
gia screens) without compromising accuracy, (b) improve-
ment of objectivity of judgments of swallowing function
from imaging data, and (c) capitalization on the advantages
of advanced signal processing techniques within the dyspha-
gia diagnostic process. To develop such a system, tradi-
tional human-mediated manual measurement methods of
VFSS data measurement serve as the gold standard, and
machine learning is deployed to more quickly produce ac-
curate measurements that reflect the same judgments and
measurements performed by the human judges.

Current Project: Protocol
To date, we have accrued data from 274 adult patients

who were referred for VFSS at the University of Pittsburgh
Medical Center campus hospitals and from 80 healthy
community-dwelling, age-matched adults recruited from
community registries. Patients were referred over the course
of routine care due to confirmed or suspected dysphagia,
and the examination procedures were controlled by the ex-
amining clinicians (i.e., speech-language pathologist [SLP],
radiologist). Data accrual was performed by two SLPs
(VFSS) and two engineers (HRCA) during each examina-
tion. All procedures were approved by the institutional re-
view board at the University of Pittsburgh.

After providing informed consent, patients and healthy
participants were prepared to undergo a VFSS (GE Ultimax
System). Prior to initiation of the VFSS, two sensors were
attached to the anterior neck. The tri-axial accelerometer
(ADXL 327, Analog Devices) was positioned at the anterior
midline overlying the arch of the cricoid cartilage (based on
palpation by the speech-language pathology investigators)
The microphone (model C111L, AKG) was placed approxi-
mately 1 cm lateral (right) and inferior to the accelerometer
to avoid interfering with the necessary VFSS imaging of the
upper airway (see Figure 1). For the patient data collection,
bolus administration was dictated by the examining clinical
SLP, and no effort to modify the VFSS protocol was made
by the research team. This ensured that the data set would
be consistent with VFSS data obtained during typical con-
ditions that occur during routine clinical VFSS. Patients
swallowed varying numbers of boluses of multiple standard-
ized textures and volumes of contrast (Varibar products,
Bracco Diagnostics) in a neutral head position, as well as
Coy
in various postural modifications based on clinician inter-
vention efficacy trial needs. Continuous, written logging by
investigators during all data accrual ensured specification
of bolus conditions. For the healthy participants (ages 18–
92 years), a standard research protocol of 10 swallows per
participant was followed to minimize X-ray exposure dura-
tions (average fluoro time = 0.66 min per examination). We
also sought to accrue as much data from healthy participants
as possible that would align with data accrued from patients
to enable a sufficiently robust sample size for the machine
learning components of the research. Healthy participants
were administered 10 boluses each in the neutral head posi-
tion. Trials were composed of the following: (a) five 3-ml
thin liquid (Varibar Thin, Bracco) boluses, administered by
the research SLP from a spoon with a swallow command
used to prompt swallows and (b) five unmeasured, self-
selected volume boluses of thin liquid, self-administered by
participants from a cup without verbal or other prompts to
swallow. These bolus size conditions were included in order
to capture swallowing under both controlled and natural
swallowing conditions, which have been shown to produce
different temporal activity during swallowing (Nagy et al.,
2013). The rationale for inclusion of a 3-ml bolus condition
was that this was the most common bolus condition to
challenge the patient participants. The order of presenta-
tion of the 10 boluses was randomized for each healthy
participant.

Fluoroscopy was performed at a pulse rate of 30 PPS,
and images were accrued to a frame grabber card at 60 FPS
and later down-sampled to 30 FPS to eliminate duplicate
frames (Bonilha et al., 2013; Oppenheim & Schafer, 2014).
Simultaneously, acoustic and accelerometric signals were
accrued directly to a hard drive, time linked to corresponding
le & Sejdic: HRCA and Data Science: Old Problems, New Tools 3
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VFSS imaging data. The sensor placement is illustrated in
Figure 1, and the details of signal acquisition methods
and hardware/software used are described by Dudik
et al. (2018), as well as in other publications by this re-
search group.

Fundamentals of HRCA
The overall aim in developing HRCA is to produce

a system that is capable of independently performing some
temporal, spatial, and kinematic measurements that are
traditionally performed by clinicians. After establishing
HRCA’s accuracy in screening (Dudik, Coyle, & Sejdić,
2015), machine learning algorithms are deployed in order
to test HRCA’s ability to accurately perform some tempo-
ral and spatial measurements as accurately as trained human
judges. Machine learning is an iterative process by which
gold standard data are first generated (e.g., human tem-
poral and spatial measurements), after which some of that
data are used to train computer algorithms to accurately
produce acceptably similar judgments as the human judges,
and the rest of the data, which is novel to the algorithms, is
used to test their accuracy. Training is a computationally
expensive but necessary process required to enable algo-
rithms to detect characteristics of signal features that corre-
spond to human-identified temporal or spatial events. As
we accrue more data, the training sets grow, resulting in in-
creased precision across an expanding range of conditions
and extraneous confounds.

HRCA Data Acquisition
Several commonly used parameters were selected to

characterize swallowing impairments. These parameters
have been widely reported in the literature over the years.
The general scheme of HRCA data acquisition and analysis is
illustrated in Figure 2. All swallow videos were segmented
to identify the swallow segments that would be entered into
the machine learning processes by trained human judges using
image processing software (ImageJ, National Institutes of
Health). Temporal and spatial event measurements were
performed based on the methods of others (Lof & Robbins,
1990) to ensure compatibility of measures with historical,
published data. Data were recorded manually into spread-
sheets and through customized MATLAB modules during
measurement. All judges underwent standardized training
in each measure they were to perform, and their inter- and
intrarater reliability was tested prior to online analysis of
study data. All judges returned high inter- and intrarater
reliability (e.g., 80% exact agreement within three frames
[.1 s; Lof & Robbins, 1990] for frame selection during tempo-
ral analyses, and excellent intraclass correlation coefficients
of .90 or greater for pixel-based spatial measures) for each
measure. These criteria were also applied during data analy-
ses to eliminate judgment drift during ongoing measurement/
judgment. Events and scores from images that have been
coded include categorical measurements (e.g., scores on the
penetration aspiration scale [Rosenbek et al., 1996] and
measurements of vallecular and pyriform sinus residue
4 American Journal of Speech-Language Pathology • 1–9
using the normalized residue ratio scale [Pearson et al.,
2013]). Temporal measurements relying on frame selection
include the video frames indicating first entry of bolus into
the pharynx (bolus crosses ramus of mandible) and comple-
tion of bolus clearance through the upper esophageal sphinc-
ter (UES;segment duration), onset of hyoid displacement,
frame of maximal hyoid displacement, hyoid return to low-
est position at the end of the swallow (duration of hyoid dis-
placement), onset and offset of UES opening, and onset and
offset of laryngeal closure. Specific measurement methods for
performing temporal measures of VFSS images have been de-
scribed by Kurosu et al. (2019). Spatial, pixel-based mea-
surements include the position of the hyoid body on each
frame (hyoid kinematics), the diameter of the UES at maxi-
mal distension, and the position and area of the bolus and
its components on each video frame. This latter measure-
ment is being performed in ongoing efforts to develop algo-
rithms to identify and quantify the proportion of boluses that
enter the esophagus and that are retained in pharyngeal re-
cesses or that enter the airway. After processing the signals,
the VFSS-derived data are entered into the machine learn-
ing process to train algorithms.
HRCA Data Processing: Preprocessing
Deglutition Signals

It is critical to understand the basic data science and
engineering definitions used in signal processing. A signal
typically represents a quantity recorded via various instru-
ments that represents changes in values. In statistics, signals
are typically referred as time series, but in engineering, these
recordings are referred as signals, as they typically represent
a measurable physical quantity. Importantly, signal artifacts
must be considered during signal processing. The two arti-
facts discussed here are related to noise and disturbances.

Signal noise represents physical quantities that con-
taminate information present in these signals. In many cases,
it is assumed that it stems from a random process (e.g., white
Gaussian noise), while disturbances also represent signal
contaminants that are not stemming from a random process
(e.g., coughing, breathing sounds). There is also a major
difference between noise and disturbances. Noise typically
occupies all frequencies captured by signals, while distur-
bances are based in specific frequency bands. Sounds and
vibrations represent vibration signals that are acquired by
microphones and accelerometers, respectively.

Swallowing-related signals such as HRCA signals (i.e.,
swallowing vibrations or swallowing sounds) or surface elec-
tromyography signals are typically contaminated with vari-
ous disturbances and noise (Dudik, Coyle, & Sejdić, 2015).
Noise typically originates in electronic equipment used to
acquire these signals or elsewhere in the immediate vicinity
of data collection, while signal disturbances are caused by
physiological events that occur during the swallowing event
(e.g., displacement of structures, bolus flow, breathing,
head motions, vasomotion of major arteries). All these ad-
ditional and simultaneously occurring signal components
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Figure 2.AQ8 Typical setup of high-resolution cervical auscultation data acquisition and signal processing (top) and examples of acoustic (left)
and vibratory (three axes) signals accrued during a sample swallow. Adapted from Sejdić et al. (2019).
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“contaminate” the targeted swallowing-related signal com-
ponents and make any subsequent analysis difficult to carry
out. This is because it is difficult to understand whether
trends observed in the raw data are due to swallowing or
due to disturbances and/or noise, or the combination of
both. Hence, the first priority is to preprocess these swal-
lowing signals and remove as much as possible the contami-
nating signal components (Sejdić et al., 2019). Steps in the
preprocessing and feature extraction of HRCA signals are
also illustrated in Figure 3.
HRCA Data Processing: Data Reduction
The first task in the signal processing method is to

remove any confounding effects of the data acquisition sys-
tem via a process called “whitening” (Sejdić et al., 2010).
Here, the idea is to develop filters mimicking the frequency
behavior of the data acquisition system, and the inverses of
these filters are then applied to acquired data to remove
any contaminating effects of the data acquisition system.
Next, noise needs to be removed from the deglutition signals,
and this is typically achieved via a process called “denoising”
(Sejdić, Steele, & Chau, 2010). Most efficient denoising al-
gorithms are based on wavelets, which are state-of-the-art
mathematical functions that divide the signal data into
components based on their frequency range to enable each
component to be analyzed using a scale that is matched to
its resolution (Graps, 1995). Once whitening and denoising
steps are completed, one would carry out any normalization
steps (e.g., amplitude normalization), and lastly signal seg-
mentation is completed.

Segmentation is the process of identifying the compo-
nents of the recorded data that represent the event of inter-
est (i.e., a swallow event) and separating the segment from
pre- and postswallow recorded events. For any automated
Coy
method of segmentation to succeed, a segmentation gold
standard must be used to provide the criterion for the onset
and offset of any individual swallow in order to enable com-
parison of the signal-derived predictions to the actual event
duration, to ensure face validity of the electronic measure-
ment predictions, and to facilitate machine learning proce-
dures that, with multiple iterations of cross-validation,
increase the efficiency and accuracy of the algorithms. Seg-
mentation involves human frame-by-frame viewing and
selection of the video frame in which the bolus head enters
the pharynx (crosses the plane of the shadow of the mandi-
ble) and the frame in which the bolus tail clears through
the UES by trained dysphagia researchers in the swallowing
research lab. These results are used to train the algorithms
to detect the duration of the swallow.

A number of different algorithms have been proposed
over the years to segment swallowing signals into individual
swallows (Damouras et al., 2010; Dudik et al., 2015; Sejdić
et al., 2009). The main reason for the variety of algorithms
is that this is one of the crucial steps in the analysis of sig-
nals, since incorrectly identifying a swallowing segment will
obviously skew any subsequent analysis steps.
HRCA Data Processing: Feature Extraction
Once swallowing signals are segmented into individual

swallows, signal features are identified and extracted. Most of
the current literature considers features in various mathemati-
cal domains such as the time domain, frequency domain, or
the time–frequency domain. Features of segmented swallow
signals range in complexity between those that are more com-
mon (e.g., standard deviations of these swallowing signals)
and more advanced features, such as the entropy rate of these
signals, denoting the amount of randomness in these signals.
Extracted features can be then used to form various statistical
le & Sejdic: HRCA and Data Science: Old Problems, New Tools 5



Figure 3.AQ10 Steps in the preprocessing (above) and feature extraction
(bottom) of the signals from each axis of the tri-axial accelerometer
(A–P = anterior–posterior axis; S–I = superior–inferior axis; M–L =
medial–lateral axis). Adapted from Movahedi et al. (2017b).
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models to examine dependence between independent vari-
ables, in this case, signal features, and various dependent
variables, such as penetration–aspiration scores, hyoid bone
displacements in the anterior, posterior, superior, and inferior
directions (Dudik et al., 2016, 2018; Kurosu et al., 2019;
Movahedi et al., 2017b; Rebrion et al., 2019).

On the surface, signal features based on mathematical
domains do not appear germane to analysis of clinical data
traditionally obtained solely through imaging methods and
analyzed by human judges. They are highly relevant from a
computational point of view, because extracting features
that are directly related to various physiological events that
occur during swallowing is of particular relevance to clini-
cians. However, extracting physiologically identifiable fea-
tures from swallowing signals requires the use of modern
data analytics tools, such as machine learning, which will
be described next. Moreover, human judges cannot per-
ceive, nor can their judgment account for, many features of
movement-related signals. That is, there are numerous com-
ponents embedded within signals and images generated
during a swallowing VFSS that a human judge is not capa-
ble of identifying and/or discriminating.

HRCA and Machine Learning: Fundamentals
Machine learning is the study of algorithms and vari-

ous statistical models that can be used to infer about spe-
cific patterns in a data set, in a supervised or unsupervised
6 American Journal of Speech-Language Pathology • 1–9
manner. While this scientific discipline has been around for
more than 50 years, it has gained much more attention in
recent years due to the advances in available computational
resources that make the use of these computationally inten-
sive algorithms to solve various problems possible.

Most machine learning algorithms rely on two phases:
training and testing phases. During the training phase, one
provides data to these algorithms to enable the algorithms to
compute and infer about patterns in the data set, much like
the process of inference. The training data from the VFSS
images have been labeled by human judges (i.e., each data
point is labeled as belonging to one of the classes present in
the data set). These classes represent the VFSS measurement
parameters described earlier. The training phase typically
continues until training conditions, such as the accuracy of
the algorithms in identifying human-identified events above
a certain a priori percentage criterion, are met. Once the
machine learning algorithm achieves desired performance
on the training set, the algorithm is then applied to a testing
set (i.e., novel data to which the algorithms have not previ-
ously been exposed). The performance metrics such as sen-
sitivity, specificity, or recall are then reported.

It is important here to clarify that training and testing
data need to be separate. In other words, we cannot use the
same data points for training and testing phases. In an ideal
situation, the training phase is conducted using a data set
that was initially collected specifically for the purpose of
training the machine learning algorithm, while the testing
phase is conducted on a completely new data set collected
specifically for testing the accuracy of the proposed/used
algorithm.

Unfortunately, this is not always possible, especially
in ordinary and often chaotic clinical settings due to a num-
ber of different issues such as funding, availability of staff,
insufficient numbers of exemplars of the events of interest
(e.g., swallows), and other constraints of clinical setting. In
these cases, one can use a process called “cross-validation”
in which the available data are randomly split into training
and testing data, wherein the training phase is then com-
pleted only using the training data and the testing phase is
completed only using the testing data. This method of de-
veloping training and testing data sets from a large mass of
clinically derived data increases the external validity of the
resultant algorithms and systems because all factors present
in clinical testing environments that are mitigated in con-
trolled studies are present during ordinary data collection
and, therefore, are components of the data sets.

Clinical Application of Machine Learning
While machine learning algorithms are much more

complicated to use and more computationally intensive
than other algorithms, they enable us to achieve various
tasks that otherwise would be impossible to achieve by
humans or other algorithms. For example, machine learning
algorithms have been successfully applied in classifying swal-
lowing signals to identify and differentiate swallows exhi-
biting no aspiration and those with aspiration with a very
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high accuracy (Celeste et al., 2012; Sejdić et al., 2013).
Certainly the ability to noninvasively and continuously
monitor and identify adequate from inadequate airway
protection during swallowing has clinical applications, but
efforts to extend machine learning of HRCA signals to
determine the potential diagnostic utility of the system has
begun to demonstrate compelling results. For instance, it
was recently demonstrated that a combination of machine
learning techniques, using noninvasive HRCA accelera-
tion signals, can track the movement of the hyoid bone
solely from the HRCA signals with a similar accuracy
as trained human judges performing measurements using
VFSS images (Mao et al., 2019). This study represents
seminal work as it offers an alternative and widely avail-
able method for online hyoid bone movement tracking
without any radiation risks and provides a pronounced
and flexible approach for identifying clinically useful char-
acteristics of dysphagia.

Machine learning has other potential applications that
may also increase the speed of interpretation of VFSS imag-
ing data by the clinician. Zhang et al. (2018) recently sought
to determine whether machine learning techniques could
be used as a surrogate to manual spatial analysis to detect
structural features of VFSS data from the video images
themselves, demonstrating that unsupervised (i.e., without
human input) advanced machine learning algorithms can
identify the location of at least half of the body of the hyoid
bone at any point in time of a VFSS sequence. The height
of the human hyoid body ranges from 0.6 to 1.2 cm (across
male and female adults; Loth et al., 2015). We produced
square bounding boxes surrounding the hyoid body on every
VFSS frame based on the human judges’ frame-by-frame
plotting annotations. Through machine learning, a second
bounding box denoting the predicted location of the human-
determined hyoid body bounding box was generated by the
algorithms. The HRCA-generated bounding boxes exhib-
ited > 50% overlap with the human measurement–generated
bounding boxes 89% of the time continuously throughout
the swallow sequences. We acknowledge that routinely 50%
does not sound like a very good value; however, given the
small dimensions of the hyoid body, accurately locating >
50% of a 6- to 10-mm object is a reasonable preliminary re-
sult, which we are refining with additional machine learning.

A benefit to this result is a reduction in the time re-
quired to analyze this date from 15 to 20 min per swallow
required by a human judge to annotate the two hyoid body
landmarks on each frame of the swallow to less than 30 s
per swallow.

Other findings that we have published have demon-
strated that HRCA signals combined with signal processing
and machine learning techniques can detect a variety of
swallow kinematic events with similar accuracy to trained
human judges and can differentiate between safe (scores of
1 and 2) and unsafe swallows (scores of 3–8), as determined
by the penetration–aspiration scale, with a high degree of
accuracy (Dudik et al., 2018; Dudik, Coyle, & Sejdić, 2015;
Dudik et al., 2015; Dudik, Kurosu, et al., 2015; Jestrović
et al., 2013; Movahedi et al., 2017a; Sejdić et al., 2013). We
Coy
have examined the association between HRCA signals
and component scores of various swallow kinematic events
from the Modified Barium Swallow Impairment Profile
(MBSImP; Martin-Harris et al., 2008) and found strong as-
sociations between HRCA signals and anterior hyoid bone
movement (Component 9), pharyngoesophageal segment
opening (Component 14), and pharyngeal residue (Compo-
nent 16; Donohue et al., 2019, 2018; Sabry et al., 2019).
We have also found a strong association between HRCA
signal features and hyoid bone displacement (He et al.,
2019; Rebrion et al., 2019; Zhang et al., 2018).

Conclusions and Future Directions
Incorporation of technology into everyday life is a

common practice. Our smart devices, automobiles, and
numerous other ordinary and common tools continue to
demonstrate that developments in electrical and computer
engineering can positively impact ordinary human activities.
Likewise, wearable, personalized machine learning–based
technologies that provide real-time monitoring of ordinary
activities and health conditions (e.g., smart watches, contin-
uous glucose monitoring systems, wearable sweat sensors
for endurance athletes) and assist with daily clinical work
(e.g., dictation–transcription software) are contributing
real-time information that can improve the accuracy and
depth of health information needed to provide screening,
diagnostic, and treatment data to individuals and clinicians
in health care settings. Many of these technologies produce
similar results as a human judge but significantly more
quickly, and many expand clinician capabilities beyond
the limits of human judgment.

In the same way that we strive to change the disordered
physiology of swallowing in our patients through our obser-
vations, developments in advanced signal processing and
machine learning in a variety of contexts enrich our obser-
vations. These advances show promise in augmenting our
ability to not only perform services and procedures more ef-
ficiently but also perform them with greater depth of infer-
ence. However, adoption of new technologies is often met
with skepticism. During development of our HRCA system
and methods and after collecting a few hundred samples of
acoustic data obtained using HRCA high-resolution micro-
phones, we played these audio files to dysphagia experts
with experience in the use of stethoscope-based CA. Their
response was almost universally “that’s not what swallows
sound like.” The sensors had obtained broader spectral and
frequency ranges than are possible with a stethoscope. This
disbelief is likely rooted in the assumption that the human
auditory system has complete receptive and processing ca-
pabilities and that there is no additional information in the
acoustic signals because “we can’t hear it.” It will take time
for many technological developments to be accepted in
mainstream clinical work and for medicine to embrace the
contributions of these new and relatively unfamiliar fields
of science to our own profession and clinical practice and
to fully develop their potential. We are embarking on a
clinical trial of our HRCA system to assess its screening
le & Sejdic: HRCA and Data Science: Old Problems, New Tools 7
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effectiveness, in an effort to extend screening beyond the
acute care setting. Likewise, we continue testing HRCA’s
accuracy in predicting a variety of temporal and spatial
measurements in an effort to strengthen clinicians’ impact
on patient care. Automated signal processing–based mea-
surements can help shift clinician resources toward actual
intervention by reducing some of the tedium of manual mea-
surements that consume so much of the clinical process while
increasing their depth.

Numerous devices and systems are under development,
which capitalize on advances in other areas of science that
carry the potential of extending the reach of clinicians. Our
own HRCA research is developing results with the hope
that such a system can (in the future) noninvasively analyze
some aspects of deglutition on a swallow-by-swallow basis
in real time. This could be done either with imaging to ex-
pedite measurements and interpretations or without the use
of imaging when it is unavailable, to identify swallowing
disorders and impairments, and to potentially inform the
clinician regarding intervention options when traditional
information (e.g., imaging data) is not available. This will
broaden the clinician’s capacity to interpret more informa-
tion more efficiently while extending deployment of the scope
of practice to patients who (a) have no access to imaging
centers for economic or other logistical reasons, (b) do not
want imaging studies, (c) do not have immediate or any
access to imaging studies (e.g., underserved regions), and
(d) who are physically unable to undergo imaging tests.
Moreover, such developments are promising in that they
enable clinicians to produce top-of-license practice patterns
more efficiently and with comparable accuracy. Collabora-
tions between dysphagia researchers and clinicians, computer
and electrical engineers, and many other disciplines represent
the future of development of personalized methods to im-
prove the screening, diagnosis, and treatment/management
of people with dysphagia.
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