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1 Introduction

The Brunn-Minkowski theory and the dual Brunn-Minkowski theory are two
core theories in convex geometric analysis that center on the investigation of global
geometric invariants and geometric measures associated with convex bodies. The
two theories display an amazing conceptual duality that involves many dual con-
cepts in both geometry and analysis such as dual spaces in functional analysis,
polarity in convex geometry, and projection and intersection in geometric tomog-
raphy; see Schneider [49, p. 507] for a lucid explanation.

In the conceptual duality, a central role is assumed by the radial Gauss image
a g (defined immediately below) of a convex body K in euclidean n-space, R”.
The radial Gauss image is a map on the unit sphere, S”~1, of R” whose values
are subsets of the unit sphere. It is known that Aleksandrov’s integral curvature
on S”~! and spherical Lebesgue measure are “linked” via the radial Gauss image,
and so are the classical surface area measure of Aleksandrov-Fenchel-Jessen and
Federer’s (n— 1) curvature measure (see Schneider [49, theorem 4.2.3] and [27]).
The importance of the radial Gauss image was made more evident in the recent
work [27], in which the long-sought dual curvature measures (the dual counterparts
of Federer’s curvature measures) were unveiled. In [27] new links were established
between the Brunn-Minkowski theory and the dual Brunn-Minkowski theory by
making critical use of the radial Gauss image. Motivated by the manner in which
these new geometric measures are defined via the radial Gauss image, it becomes
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natural to introduce a general new concept—the Gauss image measure associated
with a convex body. Among other things, this concept bridges the classical and the
recently discovered geometric measures of convex bodies.

In light of the role that the radial Gauss image plays in connecting various spher-
ical Borel measures, a central question regarding Gauss image measures is: Given
two spherical Borel measures, under what conditions does there exist a convex
body so that one measure is the Gauss image measure of the other? We call this
the Gauss image problem and state it more precisely immediately below.

Let X" denote the set of convex bodies (compact, convex subsets with nonempty
interior) in n-dimensional euclidean space, R”, with K denoting the bodies that
contain the origin in their interiors.

If K € K and x € 0K is a boundary point, then the normal cone of K at x is
defined by

NK.x)={veS"':(y—x)-v<Oforall y € K},

where (y — x) - v denotes the standard inner product of y — x and v in R”. The
radial map rg : S~ ! — 0K of K is defined foru € S"! by rg(u) = ru € 9K,
where r > 0. For @ C S"7!, the radial Gauss image of w is defined by

ag@) = |J NK.x)cs"
xerg (w)

The radial Gauss image is the composite of the multivalued Gauss map and the
radial map. It is well-known (see Schneider [49]) that for a Borel measurable
w C S"!, the set ag(w) C S™ ! is spherically Lebesgue measurable but not
necessarily Borel measurable.

Recall (see, e.g., [30, p. 1117]) that a submeasure differs from a measure in
that the countable additivity in the definition of a measure is replaced by countable
subadditivity. (See Section 3 for precise definitions.)

DEFINITION. Suppose A is a submeasure defined on spherical Lebesgue measur-
able subsets of S”71, and K € K”. Then A(K,-), the Gauss image measure of A
via K, is the submeasure on S”~! defined by

MK, 0) = AMag(w))
for each Borel w C S"7L.

When we write that a Borel measure p on "1 is absolutely continuous, we
shall always mean that it is absolutely continuous with respect to spherical Le-
besgue measure. Obviously, the completion of an absolutely continuous Borel
measure is defined on all spherically Lebesgue measurable subsets of $”~!. When
we speak of Borel measures on S”~!, we shall always assume them to be finite,
nonnegative, and nonzero.

As will be shown, when A is an absolutely continuous Borel measure on S n—1
and K € K, then A(K,-), is a Borel measure on S™"=1 When A is Lebesgue mea-
sure on "1, then A(K, -) is simply Aleksandrov’s integral curvature of the body
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K (see, e.g., [2]). Moreover, the classical surface area measures of Aleksandrov-
Fenchel-Jessen [1,49], and the recently discovered, in [27], dual curvature mea-
sures are all Gauss image measures. This makes the Gauss image measure an
object of significant interest that requires extensive study.

It is the aim of this work to introduce and attack the Gauss image problem:

The Gauss image problem. Suppose A is a submeasure defined on the Lebesgue
measurable subsets of S, and  is a Borel submeasure on S"~'. What are the

necessary and sufficient conditions, on A and 1, so that there exists a convex body
K € K such that

(1) MK, ) =
on the Borel subsets of S"~1? And if such a body exists, to what extent is it unique?

When A is spherical Lebesgue measure, the Gauss image problem is just the
classical Aleksandrov problem. Note that since obviously ax (S?~1) = S*~1 a
solution to (1.1) is only possible if [A| = |u|;i.e., A(S?™1) = u(S™1).

Purely as an aside, we note that for the special case in which u is a measure that
has a density, say f, and A is a measure that has a density, say g, the geometric
problem (1.1) is the equation of Monge-Ampere type,

Vh+ ht
1.2 oA
(1.2) g(th+ht|

where h: S~ — (0, 00) is the unknown function. In (1.2), I is the standard
Riemannian metric on S”~!, the map «: S*~! — S$”~1 is the identity, while VA
and V2h are, respectively, the gradient and the Hessian of & with respect to .

The focus of this work will be on solving the general question posed by (1.1).
Special cases, such as (1.2), shall be ignored. Our approach in attacking equation
(1.1) uses convex geometric methods of a variational nature. What will be needed
are delicate estimates for geometric invariants in order to solve an associated max-
imization problem. The techniques developed in this work in order to obtain these
critical estimates are new and different from those developed in [16,27].

If K € K7, then its radial function pg: R \ {0} — R is defined, for each x # 0,
by px(x) = max{r > 0 : rx € K}. If j1 is a Borel measure on S”~!, then for a
real ¢ # 0, define the g™ dual volume of K with respect to i by

)|Vh + hi| " hdet(V2h + hl) = f,

(L g
na®) = (o [ ko ducn)

Recall that 114 (K) is monotone nondecreasing and continuous in g. Define the log-
volume of K with respect to it by o(K) = limg—0 g (K). If p is the spherical
Lebesgue measure, then the dual volume p, (K) is just the normalized classical g™
dual volume. Dual volumes associated with the spherical Lebesgue measure are
fundamental geometric invariants. Their connections to dual curvature measures
and the dual Minkowski problem were discovered in [27]. Surprisingly, as will be
seen, log-volumes are closely related to the Gauss image problem.
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For Q € K2, let Q* = {x € R" : x-y < 1forall y € K} denote the polar
of Q. As will be shown, the solutions of the Gauss image problem are closely tied
to the following:

Maximizing the log-volume-product. If i1, A are Borel measures on S™! of the
same total mass, what are the necessary and sufficient conditions on A and | so
that there exists a convex body K € K}, such that

sup 10(Q)Ao(Q%) = po(K)Ao(K™)?
QeKky

If o ¢ S" ! is contained in a closed hemisphere, then the polar set w* is
defined by

(13) o*={vesS" ' :y.-v<Oforallu € w} = ﬂ{v eS" iu.-v<o).
UeEw®
A critical new concept introduced here is that of two Borel measures on S”~!
being Aleksandrov related.

DEFINITION. Two Borel measures 1 and A on "1 are called Aleksandrov related
if

A" = u(S" > Me™) + pw)
for each compact, spherically convex set w C S™~1.

This relationship is easily seen to be symmetric since ®** = w for each com-
pact, spherically convex set @ C S~ !. If u is Aleksandrov related to spherical
Lebesgue measure, then the measure u is said to satisfy the Aleksandrov condition,
which is an important well-known notion.

The following solution to a critical case of the Gauss image problem will be
presented:

THEOREM 1.1. Suppose i and A are Borel measures on S™~' and A is absolutely
continuous. If p and A are Aleksandrov related, then there exists a body K € K},
such that p = A(K,-).

It will be shown that when the measure A is strictly positive on nonempty open
sets, the requirement that the measures be Aleksandrov related is also necessary.
Moreover, it will be shown that the convex body in the solution is unique up to
dilation.

When the measure A is spherical Lebesgue measure, Theorem 1.1 is origi-
nally due to Aleksandrov. New proofs were presented by Oliker [47] and later
by Bertrand [10]. The approach taken below is different from these.

It will be shown that in an important case, the Gauss image problem and the
problem of maximizing the log-volume-product are equivalent.

THEOREM 1.2. Suppose A and ju are Borel measures on S™™1, and A is both
absolutely continuous and strictly positive on nonempty open sets. If || = |A|,
then the following statements are equivalent:
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(1) There exists a body K € K} such that A(K,-) = .
(2) There exists a body K € K such that

sup po(Q)Ao(Q) = no(K)Ao(K™).
Qeks

(3) wand A are Aleksandrov related.

Moreover, if the convex body K exists, then it is unique up to dilation.

It can be shown that two even Borel measures with the same total mass are
always Aleksandrov related (a Borel measure is even if its value is the same for
each Borel set and its antipode).

THEOREM 1.3. Suppose  is an even Borel measure on S™~! that is not concen-
trated on any great hypersphere, and X is an even Borel measure on S"~! that is
absolutely continuous and strictly positive on nonempty open sets. If || = |A|,
then there exists an origin-symmetric convex body K € K, unique up to dilation,
such that

(1) AMK,-) = u, and

(2) the maximum of po(Q)Ao(Q*) over Q € K72 is attained at K.

It is necessary to contrast the Gauss image problem with the various Minkowski
problems and dual Minkowski problems that have been extensively studied (see,
e.g., [14,16-18, 27-29, 37-42,45-47, 54, 56-59]). A good way to do that is to
contrast the Gauss image problem with a specific Minkowski problem, say the log-
Minkowski problem. The cone volume measure of a convex body has been of
considerable recent interest (see, e.g., [9, 12,13, 16,25,26,43,44,54]). The cone-
volume measure Vi of a convex body K is a Borel measure on the unit sphere,
defined for Borel @ C §”~! as the n-dimensional Lebesgue measure of the cone

{tx :0<t <1land x € dK with N(K,x) Nw # T}.

The log-Minkowski problem asks: Given a Borel measure u, does there exist a
convex body K such that 4 = Vg? And if the body exists, to what extent is it
unique? (For recent work on this, see, e.g., [6-8, 16,25,26].) It is precisely here
that we can see the difference between Minkowski problems and the Gauss image
problem. In the Gauss image problem, a pair of submeasures is given and it is asked
if there exists a convex body “linking” them via its radial Gauss image. Thus, we
need to construct a convex body whose radial Gauss image “links” the two given
submeasures. On the other hand, in a Minkowski problem, only one measure is
given, and the question asks if this measure is a specific geometric measure of
a convex body, such as the cone-volume measure of a convex body. To solve a
Minkowski problem, we are attempting to construct a convex body for a specific
geometric measure of convex bodies. However, the Gauss image problem could
be a Minkowski problem. For example, if A is spherical Lebesgue measure, then
A(K,-) is just Aleksandrov’s integral curvature of K. Here we are dealing with a
Minkowski problem, namely, the Minkowski problem for Aleksandrov’s integral
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curvature: Given a Borel measure w, does there exist a convex body K such that
uw = A(K,-); i.e., does there exist a convex body K whose integral curvature is
the given measure ;«? And if the body exists, to what extent is it unique? In this
sense, the Gauss image problem broadens the study of Minkowski problems. But
the essence of the problem is an attempt at a deeper understanding of the Gauss
image map.

2 Preliminaries

For x € R”, let |x| = /X - x be the euclidean norm of x. For x € R" \ {0},
define ¥ = x/|x|. For asubset E C R”,let E = {X : x € E \{0}}. The
origin-centered unit ball {x € R” : |x| < 1} is always denoted by B.

Lebesgue measure in R” is denoted by V', which is also called “volume.” Write
w,, for the volume of B. We shall write H"~! for (n — 1)-dimensional Hausdorff
measure.

For the set of continuous functions defined on S”~!, write C(S”~!), and for
f e C(S" N, write || flloo = maxyegn—1 | f(v)|. We shall view C(S"7!) as
endowed with the topology induced by this max-norm. We write C*(S"~1) for
the set of strictly positive functions in C(S"~1), and C;t(S™~!) for the set of even
functions in C T (S™~1).

Let K" denote the set of compact, convex subsets of R”. For K € K", the
support function ig : R” — R of K is defined by hg(x) = max{x-y :y € K}
for x € R”™. The support function is convex and homogeneous of degree 1. A
compact convex subset of R” is uniquely determined by its support function. The
set K" is viewed as endowed with the Hausdorff metric. So, the distance between
K,L € K" is simply d(K, L) = ||hg — hp|lco- If A is a compact subset of R”,
then conv A, the convex hull of A, is the smallest convex set that contains 4. It is
easily seen that its support function is given by

(2.1) heonva(x) = max{x -y :y € A},

for x € R”.

A convex body in R" is a compact convex set with nonempty interior. Denote
by int K the interior of the convex body K. Denote by K7 the class of origin-
symmetric convex bodies in R”. Obviously, K7 is a subspace of K", and £} is a
subspace of K.

The radial function pg: S"~! — R of a compact set K that is star-shaped, with
respect to the origin, is defined by px(x) = max{a : au € K} foru € S*°L.
A compact star-shaped set with respect to the origin is uniquely determined by
its radial function. The radial function of a convex body in X7 is continuous and
positive. If K € K7, then obviously

0K = {px(u)u :u € "1}
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The radial metric defines the distance between K, L € K7 as |[px — pL|co- We
shall use the well-known fact that on K]}, the Hausdorff metric and radial metric
are topologically equivalent.

For a Borel measure ;2 on S”~!, define

1 » )I/P
=(— d , 0,
Hp(f) (W /Sn_lf I PF
and

ho(f) = exp(i | logfdu)
] Jsn—1

for each f € C*(S"™1). When f = pg, for some K € K7, then p,(f) will be
written as up, (K). When p is spherical Lebesgue measure, then the 1, (K) are the
normalized dual volumes from the dual Brunn-Minkowski theory—a theory that
played a critical role in the ultimate solution of the Busemann-Petty problem (see,
e.g.,[19,21,31,32,55]).
If K € K7, then it is easily seen that the radial function and the support function
of K are related by
hg (v) = max,cgn—1(u -v) px (), veS"L,
and
1/px (u) = max,cgn—1(u-v)/hg(), ueS" L
From the definition of the polar body, we see that

(2.2) pk = 1/hg+ and hg =1/pg+

on "1,
For K, L € K" andreal a, b > 0, the Minkowski combination, aK + bL € K",
is the compact convex set defined by

aK +bL ={ax+by:xe Kandy € L},
and its support function is given by
hag+pL = ahg + bhr.

Suppose Q C S”7! is closed and not contained in any closed hemisphere of
S"=1 For a function f:Q — (0, c0), define ( ) to be the convex hull in R”,

(f) =conv{ f(u)u : u € Q}.
Since f is strictly positive and €2 is not contained in any closed hemisphere of

§"=1 it follows that (f) € K”. Note that {(af) = a{f) for a > 0. From (2.1),
we see that the support function of { /) is given by

(2.3) hiry(x) = maxyeq(x - u) f(u),

for x € R”. We shall make use of the fact that if fy, f1,... € CT(S"1), then

@4 lim ft = founiformlyon S = (fi) — (fo)inK".
—00
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See, e.g., [27, p. 345] for a proof.
If o ¢ S™7 1, define cone w, the cone generated by w, as

conew :={tu:t>0andu € w}
and define @, the restricted cone generated by w, as
®=4{tu:0<t<1andu € w}.

A subset o C S™7!is spherically convex, if cone w is a nonempty proper con-
vex subset of R”.This definition implies that a spherically convex set on S"~! is
nonempty and is always contained in a closed hemisphere of S”~!. A spherically
convex set  C S~ is said to be strongly spherically convex if it is contained in
an open hemisphere.

If @ is a compact spherically convex set in S” !, then w is strongly spherically
convex if and only if w N (—w) = &, or equivalently w does not contain a pair
of antipodal points. Indeed, when w C S”~! is compact spherically convex and
o N (—w) = @, then conv w and conv(—w), the convex hulls in R”, are disjoint. If
this were not the case, then this would immediately imply that the origin belongs to
conv w. But, to see that this is impossible write the origin as a convex combination
of uy,...,u, € w with strictly positive coefficients. This would imply that the
point —u1 € conew, and since —u; € S"~1 it would follow that —u; € w,
thus contradicting the fact that u; € w. Since conv w and conv(—w) are disjoint
compact convex sets in R” that do not contain the origin, the hyperplane separation
theorem tells us that convw and conv(—w) are contained in the opposite open
sides of a hyperplane passing through the origin. Thus, w is contained in an open
hemisphere.

For a subset @ C S™~! that is contained in a closed hemisphere, its polar set
™ is defined by

o*={veS" 1 :u-v<Oforallu € w}.
The spherical convex hull, (»), of w is defined by
(w) = S™! N conv(cone w).
The polar set w™* is always convex and
(2.5) w* = (w)*.

For recent work on spherical convex bodies, see Besau and Werner [11].

As is well-known, the Hausdorff metric can be extended to the set of all non-
empty compact subsets of R”. If K and L are nonempty compact subsets of R”,
then the Hausdorff distance between them can be defined by

max{ sup inf |x — y|, sup inf |x —y|}.
xeK yeL yelL xeK

Let O™~ denote the set of spherically compact convex sets of S”~! endowed
with the topology of the Hausdorff metric. It is easily verified that a sequence
w; € O™ converges to w € O™ if and only if @; converges to @.
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Let @ C S” ! be a closed set that is not contained in a closed hemisphere
of "1 Let f:Q — R be continuous and § > 0. Let 1;: Q2 — (0,00) be a
continuous function defined for each ¢t € (-4, §) by

logh; =logh +1tf +o(t,-),

where o(t,-): Q2 — R is continuous and lim;—g o(z,-)/t = 0 uniformly on .
Denote by
[h:]={x eR":x-v < hy(v) forallv € Q}

the Wulff shape determined by /. We shall call [;] a logarithmic family of Wulff
shapes formed by (h, ). On occasion, we shall write [h;] as [k, f], and, if &
happens to be the support function of a convex body K, perhaps as [K, f] or
[K, f.t] or [K, f,o0,t], if required for clarity. We call [K, f] a logarithmic family
of Wulff shapes formed by (K, f).

Let g: 2 — R be continuous and § > 0. Let p;: 2 — (0, c0) be a continuous
function defined for each ¢ € (-6, §) by

logp; =logp+tg +o(t,-).
where again o(z,-): 2 — R is continuous and lim;—¢ o(¢,-)/t = 0 uniformly on
2. Denote by
(pr) = conv{p; (u)u :u € S" 1}

the convex hull generated by p;. We will call {p;) a logarithmic family of convex
hulls generated by (p, g). On occasion, we shall write {po;) as {p, g,t), and if p
happens to be the radial function of a convex body K € K7 as (K, g) or (K, g, 1)
or (K, g,0,t), if required for clarity. We call (K, g) alogarithmic family of convex
hulls generated by (K, g).

From [27] we will use the easily established fact that if K € ] and f: Q — R
is continuous, where Q@ C S”~! is a closed set that is not contained in a closed
hemisphere of S”~1, then

(2.6) (K. f)* =I[K*.~f].

It will be important to recall the fact that every Borel measure that is absolutely
continuous vanishes on the boundaries of spherically convex subsets of the sphere.

Schneider’s book [49] is our standard reference for the basics regarding convex
bodies. The books [20,22] are also good references.

3 The Gauss Image Measure
Let K be a convex body in R”. For each v € S”~!, the hyperplane
Hx() ={x eR":x-v=hg(v)}

is called the supporting hyperplane to K with unit normal v. For ¢ C 0K, the
spherical image of o is defined by

vg(0) ={v e S" l:x € Hg(v) for some x € 0} C S"7 L.
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For n C §"~1, the reverse spherical image of n is defined by
xg(n) ={x € 0K : x € Hg(v) for some v € n} C oK.

Let oxg C 90K be the set consisting of all x € dK for which the set vg ({x}),
abbreviated as v (x), contains more than a single element. The points in dK \ og
are called regular points of dK. It is well-known (Schneider [49, p. 84]) that the
(n — 1)-dimensional Hausdorff measure of the set of singular (i.e., nonregular)
points of a convex body is 0; i.e., "~ (0g) = 0. The function

v 0K \ oxg — S" L,

defined by letting vk (x) be the unique element in vg (x) for each x € K \ ok, is
called the spherical image map (also known as the Gauss map) of K and is known
to be continuous (see lemma 2.2.12 of Schneider [49]).

The set ng C S™ ! consisting of all v € S”~! for which the set x g (v) contains
more than a single element is of H"~!-measure 0 (see theorem 2.2.11 of Schneider
[49]). The function

xg: 8"\ nx — 0K,
defined, for each v € "7\ g, by letting xx (v) be the unique element in x g (v),
is called the reverse spherical image map. The vectors in S”*~1 \ ng are called the
regular normal vectors of K. Thus, v € S"~! is a regular normal vector of K if
and only if 0K N Hg (v) consists of a single point. The function xg is well-known
to be continuous (see lemma 2.2.12 of Schneider [49]).
For K € K7, define the radial map of K,

rx: ST 3K by rr(u) = px(u)u € 0K

for u € S"~1. Note that the mapping rlzlz 0K — S"1 is just the restriction of

the map =:R” \ {0} — S"~! to the set K. The radial map is bi-Lipschitz.
For w C ™!, define the radial Gauss image of @ by

ag(w) =vg(rg(w)) C S"71.
Thus, foru € S*71,
agx({u}) = {v e S" Lirg(u) € Hg(v)}.
We will need the fact that & ¢ maps closed sets of S "=Linto closed sets of S”~1.

LEMMA 3.1. Ifo C S" 1 is closed, then ag (w) is also closed.

PROOF. Suppose the points v; € ag(w) are such that v; — vo. We will show
that vg € ag(w). Now v; € vk (rg(w)) means that v; is a unit outer normal to K
at rx (u;) for some u; € w;i.e.,

3.1 x-v; <rg(u;)-v; forall x € K.

Since @ C S™1 is compact, u; €  has a convergent subsequence, which we
will again denote by u;, that is, u; — ug € w. Since rg is a continuous function,
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rx(ui) — rx(uo), and together with v; — vg and (3.1) gives
x-vg <rg(up)-vg forallx € K.
Hence, vg € vg(rx(w)) = ag(w). O
Define the radial Gauss map of the convex body K € K7

ag : S" I\ wg - S*! byax = vk ork,

where wg = 0g = rEl(aK). Since rlzl = = is a bi-Lipschitz map between

the spaces 0K and S”~!, it follows that wg has spherical Lebesgue measure 0.
Observe that if u € S"~! \ wg, then ag ({u}) contains only the element g (u).
Note that since both v and rg are continuous, g is continuous.

From [27] Lemma 2.2, if Ko, K1, ... € K}, then

(3.2) Ki > Ko = ok, = ak,,

almost everywhere, with respect to spherical Lebesgue measure.
For n C §"~1, define the reverse radial Gauss image of n by

(3.3) ax () = rg' (xx () = xx ().
Thus,
(3.4 ax(n) = {X : x € 9K where x € Hg(v) for some v € n}.

Define the reverse radial Gauss map of the convex body K € K,
ap:S" "\ g — S"1 by af =rg!oxk.

Note that since both rEl and xg are continuous, a}"( 1s continuous.

If n € "1 is a Borel set, then ax(n) =xx(n) C S§"~1is spherical Lebesgue
measurable. This fact is lemma 2.2.14 of Schneider [49]; an alternate proof was
given in [27]. It was shown in [27] that if v ¢ ng and @ C S”~!, then

(3.5) v € ag(w) ifandonlyif ax(v)€w.

Hence (3.5) holds for almost all v € S™~!, with respect to spherical Lebesgue
measure. It was also shown in [27] that if K € K7, then the reverse radial Gauss
image of K and the radial Gauss image of the polar body, K*, are identical; i.e.,

(3.6) ax(n) = ag+(n),

for each n € S"1. Tt follows that for K € K7, the set ag+() is spherical
Lebesgue measurable whenever n C S”~! is a Borel set. Since K** = K, this
shows that et (w) is spherically Lebesgue measurable whenever © C S” ! is a
Borel set and K € K7. From (3.6) we also see that for K € K7,

(3.7) ap = ok

almost everywhere on S ™!, with respect to spherical Lebesgue measure.
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If Ko, K1,... € K are such that K; — Kp, then Ki* — K(’)". This and
(3.2) give us « K = Ok almost everywhere with respect to spherical Lebesgue
measure. Now (3.7) allows us to conclude that

(3.8) Ki— Ky = ozl’k{i — 0‘1*(0’

almost everywhere, with respect to spherical Lebesgue measure.

For K € K, Aleksandrov’s integral curvature, Co(K, - ), is a Borel measure on
S§"~1 defined, for Borel o C ™!, by

(3.9) Co(K,w) = H" Nak(0));

i.e., Co(K, w) is the spherical Lebesgue measure of ag(w). The total measure
Co(K, S"~1) of integral curvature of each convex body K is nwj, the surface area
of the unit sphere S” ! in R”.

The solid-angle measure CN’O(K ,+), also known as the 0" dual curvature mea-
sure, introduced in [27], can be defined by

(3.10) nCo(K, 1) = H" (e (n)
for each Borel n C S™=1 From (3.9), (3.10), and (3.6), we have
Co(K,-) = nCo(K*,").

The (n — 1)™ area measure S,_1(K,-) is the classical surface area measure
S(K,-), which is defined, for each Borel n C S"~!, by

(3.11) Sn—1(K.n) = H" " (xx (n)).

Federer’s (n — 1)™ curvature measure C,,_1 (K, -) on $”~! can be defined, for each
Borel o C S"1, by

(3.12) Co-1(K.0) = H" ' (rx ().

From (3.11) and (3.12), and the definition (3.3) that a} = rEl o xg, we see that

the (n—1)™ curvature measure C,,_1 (K, -) on S”~! and the (n — 1)™ area measure
Sp—1(K,-) on "1 are related by

(313) Cn—l(K,a?((n)) = Sn—l(Kv 77)

for each Borel  C S™=1._See Schneider [49, theorem 4.2.3].
The following lemma establishes a fundamental property of the radial Gauss
image.

LEMMA 3.2. Let K € K™. If o C S"" ! is a spherically convex set, then
(3.14) ag(w) C S\ o*,

and furthermore the set (S"~1\ w*) \ ax (w) has interior points.
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PROOF. Consider an arbitrary ¥ € w and an arbitrary v € ag(u); i.e., v is an
outer unit normal of K at rg(u). From the definition of the support function, we
see that

po < hx(v) = px(W)u-v < pru - v,
which implies

(3.15) u-v=>po/p1,

where py is the minimum of pgx on S”~! and p; is the maximum of pg on S*~1,
The definition of w* and the fact that ¥ € w now give us that v ¢ w™, which yields
(3.14).

Now (3.14) is just ag(w) N w* = @&. When w is spherically convex, ™ is
nonempty. However, (3.15) implies that if we choose 8¢ € (0, po/p1), then the set

ws, = ﬂ{veS”_l:v-u<80}\w*

uew

is disjoint from a g (w). Note that a)éo has nonempty interior. Therefore, the set

(S"\ o)\ ag (@)

has interior points. O

A spherical submeasure . B — [0, 00), defined on a o-algebra B of subsets of
S"=1 s a function that satisfies the following:
(1) u(@) = 0.
(2) If A, B € Baresuchthat A C B, then u(A) < w(B).
(3) If A1, Az, ... € B, then u(UT® Ai) = 2277 pu(Ai).

Our interest will be limited to spherical Lebesgue submeasures and spherical
Borel submeasures, where B is the collection of spherical Lebesgue measurable
subsets of "1 and spherical Borel subsets of S”~!, respectively.

Suppose A is a spherical Lebesgue submeasure and K € K]. The Gauss image
measure A(K,-) of A via K is the spherical Borel submeasure defined by

(3.16) MK, 0) = Mag(w))
for each Borel set  C S 1. To see that A(K, - ) is indeed a submeasure, we recall
the basic properties of the Gauss image ag of a body K € K:

(1) ax(2) = 2.
(2) If w,w’ € "1 are such that v C @/, then ag () C ag ().
(3) Ifwr,ws,... C S" 1 then ax (U wi) = UT ek (wi).

4) If w1, wz,... C S"1 are pairwise disjoint, then up to a set of spherical
Lebesgue measure 0, the sets ¢ g (w1), g (w2), . .. are pairwise disjoint as
well.

Properties (1) and (2) are completely trivial, while Property (3) follows directly
from the trivial lemma 2.3 in [27] together with (3.6). Property (4) is lemma 2.4
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in [27]. The reverse Gauss image measure A*(K,-) of A via K is the Borel sub-
measure on S” 1 defined by

(3.17) VK, 0) = Mag (@) = Aag+(w))

for each Borel set @ C S”~!. Note that the second identity in (3.17) is from (3.6).
Since for @ > 0 obviously eqx = ak and &), = a¥, it follows, from their
definitions, that

AMaK,-) =A(K,-) and A*@K,-)=A*(K,-)

for all @ > 0; i.e., the Gauss image measure and the reverse Gauss image measure
of a convex body are invariant under dilations of the convex body. From (3.16),
(3.17), and (3.6), we immediately obtain

(3.18) A*(K,-) = A(K*,-).

When A is spherical Lebesgue measure 7—["_1| gn—1> it follows from (3.9) and
(3.10) that the Gauss image measure A(K, -) is integral curvature and the reverse
Gauss image measure A* (K, -) is n times the solid-angle measure, i.e.,

A=H"Yg1 = AK,-)=Co(K,-) and A*(K,-)=nCo(K.-).

If A is the curvature measure C,,—1 (K, -) of a convex body K, then, by (3.13),
the reverse Gauss image measure A* (K, -) is the surface measure S,,—1(K, ), i.e.,

k:Cn—l(Kv') = A*(Kv'):Sn—l(K")

When A is an absolutely continuous Borel measure, the Gauss image measure is
a Borel measure, for which we have the following integral representation.

LEMMA 3.3. If A is an absolutely continuous Borel measure and K € K7, then
(3.19) [, rwakn = [ faponde

for each bounded Borel f:S"! — R.

PROOF. Let ¢ be a simple function on S”~! given by
=2 cilo,
i

where ¢; € R, where w; C S~ ! are Borel sets, and where 1, is the indicator
function of w;. Since ng has spherical Lebesgue measure 0, we can conclude from
(3.5) that

(320) ﬂaK(wi)(U) = ]la),‘ (al*((v))a

for almost all v € S"~!, with respect to spherical Lebesgue measure. Since A is
absolutely continuous, (3.20) gives

(3.21) /S"—l log (@) (V) dA(v) = /Sn_l 1o, (g (v)) dA (V).
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We now use (3.16) and (3.21), and get

/S  pdA(K.u) = /S . Xi:ciﬂwi w)dA(K,u)
=Y MK, o)
=Y cidlax (@)

= [ X el d2w)
_ / Y il @ )dAw)

= [, #@renare.

This establishes (3.19) for simple functions. Given a bounded Borel f, we
now choose a sequence of simple functions ¢ — f uniformly. Then ¢ o ag
converges to f o oy a.e. with respect to spherical Lebesgue measure, and thus a.e.
with respect to A. Since f is a Borel function on S” ! and the inverse radial Gauss
map a is continuous on S n=1\ ng, the composite function f o o is a Borel
function on S”~1\ ng. Since ¢ — f uniformly and f is bounded, the functions
¢y are uniformly bounded. Note that both A and A (K, -) are finite measures. By the
dominated convergence theorem, we take the limit k — oo to establish (3.19). [

When the measure A is an absolutely continuous Borel measure, we can (and
will) speak of its Gauss image measure (as opposed to submeasure). The Gauss
image measure as a functional from the space K to the space of Borel measures
on S~ is weakly convergent with respect to the Hausdorff metric.

LEMMA 3.4. If A is an absolutely continuous Borel measure on S™~! and the
bodies Ko, K1, ... € K2 are such that K; — Ko, then A(K;,-) — A(K, ) weakly.

PROOF. Since K; — Ky, from (3.8) we see that O‘I*(,- — cxl*(o almost everywhere
with respect to spherical Lebesgue measure. Then for each continuous function f
on S”~1, wehave f o O‘I*(,- — fo a}"(o almost everywhere with respect to spherical
Lebesgue measure, and thus almost everywhere with respect to A. Since | f o oz}’;i |
is obviously bounded by max,cgn—1 | f(v)|, we have

/ Flok, )dA®w) — / Flo, 0)AA).
Sn—l Sn—l
This and Lemma 3.3 show that

[ Fa)dAKr ) — / FdA(Ko.u)
Sn—l Sn—l



16 K. BOROCZKY ET AL.

for each continuous f:S"~! — R. Thus, A(K;, ) — A(Kp, ) weakly. g

LEMMA 3.5. If A is an absolutely continuous Borel measure on S™1, then for
each K € K[, the Gauss image measure A(K,-) is absolutely continuous with
respect to the surface area measure S(K*, ) of the polar body K* of K.

PROOF. Since the polar of the polar is the original body, from (3.18) we see that
all we need show is that the reverse Gauss image measure A*(K, -) is absolutely
continuous with respect to the surface area measure S(K, -) of K.

Suppose n C S" ! is such that S(K,n) = 0. Then from the definition of
S(K,-) we know that "1 (xx(n)) = 0. But since the map : 90K — S"7 ! is
bi-Lipschitz, we have H”~!(xx (1)) = 0. This, in turn, can be rewritten using the
definition (3.3) of &%, as

H' Nk () = 0.
This, (3.17), and the fact that A is absolutely continuous imply
A*(K,n) = Aag () =0. O

Taking A to be spherical Lebesgue measure in Lemma 3.5 and using definition
(3.9) give the following:

COROLLARY 3.6. The integral curvature Co(K,-) of K is absolutely continuous
with respect to the surface area measure S(K*,-) of the polar body K* of K.

The following lemma shows that an absolutely continuous Borel measure A that
is positive on nonempty open subsets of S”~! and its Gauss image measure A (K, )
are always Aleksandrov related. As will be seen, this turns out to be a critical

property.

LEMMA 3.7. Suppose A is an absolutely continuous Borel measure that is strictly
positive on nonempty open subsets of S"1. If K € K2, then the Gauss image
measure A(K, -) satisfies

(3.22) MK, ) < A(S" 1\ %)
for each spherically convex set w C S™ 1.

PROOF. Lemma 3.2 tells us that ag(w) C S™!\ w* for each convex set
w C S™7 1 and that (S"~1 \ w*) \ ag(w) has interior points. Thus,
Mag (@) < A(S"71\ 0),
and since A is strictly positive on open sets, we also know that
A(S"\ o)\ ag(@)) > 0.
Thus,
Mag () < A(S" 1\ o).

This and (3.16), the definition of the Gauss image measure, A(K, - ), immediately
yield (3.22). O
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The following lemma establishes uniqueness, up to dilation, for the Gauss image
measure. The proof below is in the spirit of Aleksandrov’s proof for the case of
integral curvature.

We shall use the fact that if the convex bodies K and L have parallel support
hyperplanes at the points rx (#) and ry, (#) whenever both points are regular, then
K and L are dilates (of one another).

LEMMA 3.8. Suppose A is an absolutely continuous Borel measure on S"~! that
is strictly positive on open sets. If K, L € K}, are such that A(K,-) = A(L,-),
then K and L are dilates (of one another).

PROOF. We will show that K and L have parallel support hyperplanes at points
rx (1) and rz (1) that are regular. Assume that there exists a ug € S™~! so that
rx (uo) and rz (up) are regular and the support hyperplane of K at rg (1o) and the
support hyperplane of L at rz (ug) are not parallel; i.e., ax(uo) # ar(ug). Let
¢ > 0 be such that crg (ug) = rr.(up), and let K’ = ¢K. Define the regular point
xo = rg/(uo) = rr(uo).

Define the disjoint decomposition $”~1 = &’ U @ U wy by letting

o ={ueS" ' pgr(u) > pr(u)},
w={ueS" " px(u) < pLu)}
wo=1{u € gn—1 s pxr(u) = pr(u)}.

Suppose u € w’ and &7, is a support hyperplane of L at rz,(u). Obviously, rg/ (o)
is not completely contained in the half-space containing L that is generated by
€r,. Thus, there is a support hyperplane g/ of K’ at some point of rx/(w’) that is
parallel to &7,. This implies that

(3.23) ar (o) Cag(0) = ag (o).
from which follows
(3.24) AML,0") < MK, o).

To obtain the contradiction, we shall show that the inequality (3.24) is strict.

The continuity of the radial function and the definitions of @ and @’ show that
the sets w U wg and @’ U wy are closed, and thus by Lemma 3.1 the Gauss images
ax (w Uwg) and oy (' U wg) are closed as well. Thus S~ \ ag/(w U wp) and
S\ a7 (0’ U wg) are open. Observe that, from the definitions of w, wg, and '’
and the definition of the Gauss image, we have

(3.25) S I\ agr(w Uwg) C ag (o)

and

(3.26) (S" I\ az (0 Uwy)) Near(0) = 2.
Let

B=(S"""\ag(wUwy)) N(S" !\ ar(@ Uwp)).



18 K. BOROCZKY ET AL.

Then B is an open set, and from (3.26) and (3.25) we obviously have
(3.27) BNap(w)=@ and B Cag (o).

Let £, be the support hyperplane of K at the regular point xo = rg(ug) € K’
with outer unit normal ag (1¢), and let £y be the support hyperplane of L at the
regular point xo = rr(ug) € dL with outer unit normal oy (u#¢). Recall that we
assumed that the point u is such that & F# fg'(/). Note that ag (1) and oy, (ug)
cannot be opposite of each other, since both K and L contain the origin in the
interior.

Consider the hyperplane P that is orthogonal to

v1 = (ak (uo) + ar(uo))/lak (uo) + ar(uo)l

and passes through the point xo. Note that vy - ag (ug) > 0 and vy - ay (1) > 0.
Let P be the half-space defined by

Py ={xeR":x-v; >x¢-v1}.

Since xg is a regular point for both K" and L, the intersections P+ N K" and P+ NL
must be nonempty.
Observe that if rg/(u) € Hgs(v1) then u € w’. To see this, note that

(3.28) rg(u) = x' + cvy
for some x’ € P and ¢ > 0. By definition of support function,
xo - g’ (uo) = hx (e (uo)) = rg/(u) - ags(uo)
= x"-ag/(uo) + cv1 - agr(uo).

Since vy -ags(ug) > 0, we have x’ - ag/ (1) < xo - ag/(ug). This, combined with
the fact that x” - v{ = xg - vq (since x’, xo € P) and the definition of vy, implies

(3.29) x"-ap (ug) > xo - ar (ug).
By (3.28), (3.29), and the fact that v; - @ (4g) > 0,
ri(u) - ap (uo) = x" - ap (uo) + cvy - g (ug) > xo - op (uo) = hy (o (uo)).

This implies that rg(u) ¢ L, which in turn gives pg/(u) > pr (u) or u € ’. This
implies that v1 ¢ ag/(w U wp).
The same argument gives vy ¢ ar (o’ U wg). Hence, vy € B. Therefore, § is a
nonempty open set. Since A is by hypothesis positive on open sets, A(8) > 0.
From (3.23) and (3.27),

(3.30) ar(@) =ar(@)\ B C ag/(0)\B.
Thus, (3.30) and A(B) > 0, give
ML, ') = Mer (@) < Mok (@) \ B)
< AMag (@)\ B) + A(B) = Mok (o) = A(K, o),
which contradicts A(L,-) = A(K, ). O
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It is easily seen that the integral curvature of a convex body is not concentrated in
any closed hemisphere, and the total measure of the integral curvature of a convex
body is the surface area of the unit sphere. Then it is natural to find a complete set
of properties that characterize the integral curvature. The following result shows
that, when A is an absolutely continuous Borel measure, then the Gauss image
measure as a functional from the space K] of convex bodies to the space of Borel
measures is a valuation. The theory of valuations has seen explosive growth in the
last quarter century (see, e.g., [3-5, 15,23, 24,33-36, 50-53], and the references
therein). It would be interesting to characterize this valuation.

PROPOSITION 3.9. If A is an absolutely continuous Borel measure on S™"~1, then
the Gauss image measure of A is a valuation; i.e., for K, L € K7,

MK, )+ AL, )=MKUL,. )+ A(KNL,-),
whenever K U L € K.

PROOF. Since rg and ry, are bijections between S”~! and 0K and 9L, respec-
tively, we have the following disjoint partition of S”~! = Q¢ U Q7 U Qk, where

Qo =rg (0K NAL) = r; (0K NAL) = {u € S" ' : px(u) = pr(u)},
Qr =rg' @K NintL) = rp '(R* \ K) N L) = {u € S" ' : px(u) < pr ()},
Qg =rg' (KN (R™\ L)) = r; '(intK NIL) = {u € S"~': pg(u) > pr(u)}.
Since K U L is a convex body, we have, for H"1.almost all u € Qk,
ag(u) = agur(u) and orp(u) = agnr(u);
for H*1-almost all u € Qp,,
ag(u) =agnr(u) and op(u) =agur(u):
and for #"~!-almost all u € Qy,
ak(u) = ar () = agnr () = agur ).
Since A is absolutely continuous, for a Borel set w C S n=1 we have
MK, 0 NQk) = Mag(w N Qk)) = Aagur(o N L))
=AMKUL,0wNQg),
and also
AML,oNQg)=AMKNL,wNQK).
Adding the last two, we obtain
MK,oNQg)+AL,oNQg) =AMKUL,oNQg)+AMKNL wNQk).
Similarly, we have
MK,oNQp) +AL,oNQ)=AMKUL,oNQr)+AMKNL,wNQL),
MK, 0N Qo)+ AL, oNQy) =AMKUL,oNQy)+AKNL,wN Q).

Summing up the last three gives the desired valuation property. U



20 K. BOROCZKY ET AL.

4 Variational Formulas for the Log-Volumes of Convex Bodies

Let A be a Borel measure on S”~!. The log-volume Ao(K) of a convex body
K € K with respect to A is defined by

1
Al

We require the following lemma established in [27].

4.1) Mo(K) = exp{ /Snl log px (vV)dA(v);.

LEMMA 4.1. Suppose Q C S" 1 is a closed set that is not contained in any closed
hemisphere of S"~1. Suppose po: Q2 — (0,00) and g: Q2 — R are continuous. If
{0z} is a logarithmic family of convex hulls of (pg, g), then

logh v) —logh v

t—0 t

g@fy ()

forallv e S"1\ N(po): i-e., for all regular normals v of (po). Hence (4.2) holds
a.e. with respect to spherical Lebesgue measure. Moreover, there exists 6o > 0 and
M > 0 so that

|10gh(pt)(v) — logh(po)(v)| < M|t
forallv e S" Yandallt € (=8¢, 8o).

We require the following lemma. When the measure is spherical Lebesgue mea-
sure, it was established in [27].

LEMMA 4.2. Suppose A is an absolutely continuous Borel measure on S™~'; the
body K € K" and f,g:S""! — R are continuous. If (K, g) is a logarithmic
family of convex hulls generated by (K, g), then

d i 1
@3 glegho(K g0 = [ sdiKu).

If[K, ] is a logarithmic family of Wulff shapes formed by (K, f), then

1
= — ar* .
a /S A (K. v)

PROOF. Write p; = px +tg+o(t,-). Note that (K, g,¢) = {p;). In particular,

po = pk and {po) = K.
From Lemma 4.1, the dominated convergence theorem, and (3.19), we have

. 1 log h(p,y(v) —log hp) (V)

—lim —
t=0 t—0 |A] Jgn—1 t

1
- [, €@y @A)
1

d
(4.4) 7 logho(IK. D] _

dA(v)

d
—logAo((K.g.1)")

=5 Joy SWOAAK 0.
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From (2.6) we know that (K*, — f)* = [K, f], so (4.3) gives
d 1
—log Ao([K = — AMK*
SloedoK fd| _ = o [ rwaato,
which using (3.18) now gives the desired (4.4). [l

5 Strengthening the Aleksandrov Relation
Let Oy (u) be the spherical cap on S”! that is centered at u and is of radius «;
ie.,
Oq(u) ={veS" ' u-v>cosal.
For a nonempty compact set @ C S"! that is contained in some closed hemi-
sphere, the outer parallel set wy, where a € (0, Z], is defined by

(5.1) Wy = LJ{veS”_1 TU-V > COSA).
UEW

(Observe that, as defined, @, may not be contained in any closed hemisphere.)
Obviously, wg is open and increasing (with respect to set inclusion) as a function
of a. Also obvious is the fact that, by (1.3),

(5.2) Wrjp = S"'\w*, orequivalently, w* = S""'\w,,.

From (2.5), we see that

(5.3) Wr/2 = (W) z/2-
From definition (5.1), we immediately have the following:
LEMMAS5.1. Letwy, ..., wx C S™1 be nonempty compact sets that are contained
in some closed hemisphere, and let a € (0, Z]. Then
k k
( U wj) = U(wj)a-

For a nonempty compact set w on S”~! that is contained in some closed hemi-
sphere and « € [0, 7), define

(5.4) wy = S" \wz_,

o
or, equivalently,
w, =1{v e S" 1 y.v <sinaforallu € w}

= m{v e Sy v <sinal.
ucw
Obviously, the sets w,, are compact and increasing (with respect to set inclusion)
as a function of «. Also obvious is the fact that

(5.5) wy =o* andthus o C o,.
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LEMMA 5.2. Suppose w; C S™"! is a sequence of nonempty compact sets, each
contained in some closed hemisphere such that w; — o, and a; € (0, %) isa
sequence such that a; — 0. Then, if

o
i = @iy,
i=j

it follows that
o0

w* = ﬂ(a)* Un;).
j=1

PROOF. To see that ﬂj’il(a)* Unj) C o*, suppose v ¢ w*. By definition (of
™) there exists aug € w such thatug-v = 2¢ > 0. Since w; — w, we may choose
a sequence u; € w; such that u; — ug. Hence lim; oo 4; - v = ug - v = 2¢ > 0.
This and the fact that o; — 0 show that there exists jo such that u; -v > & > sinq;
foralli > jo. Therefore, v ¢ (w;)g, foralli > jo. Therefore, v ¢ 1j,, and thus
v ¢ w* U nj,, which show that v ¢ ﬂ}’il(w* U n;), as desired.

That w* C (72 (@™ U n;) is obvious. O

We recall the definition of being Aleksandrov related: If p and A are Borel
measures on S~ !, then the measures ;1 and A are said to be Aleksandrov related
provided

(5.6) A" = w(s"h > @) + p(w)
or, equivalently,
A" = w($"h > M) + p@”)

for each compact, spherically convex @ C S™~!. (Recall that each w is required
to be contained in a closed hemisphere.)
If || = |A|, it is easily seen, from (5.2), that condition (5.6) is equivalent to

(@) < AS" I\ 0%) = M)

If the set w is a closed hemisphere, then S”~! \ w is an open hemisphere and the
set ™ consists of a single point. Since A(w*) > 0, condition (5.6) shows that

n(S" 1\ w) >0,

which means that . must be strictly positive on open hemispheres. Thus, con-
dition (5.6) implies that p (and hence A) cannot be concentrated on any closed
hemisphere. For quick future reference, we state this in the following:

LEMMA 5.3. If A and ju are Borel measures on S"~! that are Aleksandrov related,
then neither A nor | can be concentrated in any closed hemisphere of S"~1.

For convenience, we restate Lemma 3.7 in terms of being Aleksandrov related.



THE GAUSS IMAGE PROBLEM 23

LEMMA 5.4. Suppose K € K]} and A is an absolutely continuous Borel measure
on S™71 that is strictly positive on nonempty open sets. Then ) and the Gauss
image measure A(K, -) are Aleksandrov related.

LEMMA 5.5. Let A be a Borel measure on S™~! that vanishes on all great hyper-
spheres. For nonempty compact @ C S™"~! contained in a closed hemisphere,

(5.7) 0N (—0) # B = Mwogn) = A"\ w*) = Al

PROOF. If w N (—w) # @, then there exists u; € S”~! so that both uy, —u; €
w. Thus, forany v € o*, we have u;-v < 0and —uq-v < 0. Thus, ™ is contained
in the great hypersphere orthogonal to #1. Since A vanishes on great hyperspheres,
we have A(w*) = 0. This and (5.2) give (5.7). O

The next lemma tells us that, under mild assumptions, even measures are Alek-
sandrov related.

LEMMA 5.6. Let ju be an even Borel measure on S"~! that is not concentrated on
any great hypersphere, and let A be an even Borel measure that vanishes on great
hyperspheres and is strictly positive on nonempty open sets. If ||| = |A|, then u
and A are Aleksandrov related.

PROOF. First, assume that  is strongly spherically convex on S”~!; that is,
w is contained in an open hemisphere €. The spherically convex set w* is con-
tained in a closed hemisphere

Since we are given that ;2 and A are even and that A(9(S"~! \ Qp) =0, we
have

1 1
(58) () < p(Q0) < Ikl = M = A"\ 2) < A"\ o).

If w contains only one point, then pu(w) < %l,u| because p is not concentrated
on a pair of antipodal points. If w contains at least two points, then w* is contained
in the intersection of two closed hemispheres, and thus (S”~!\ w*)\ (S771\ Q)
contains nonempty open sets. Since A is strictly positive on open sets,

AS"TI\ Qp) < AM(S"T1\ w*).

We have just shown that equality in both of the inequalities u(2g) < %| | and
A(S"1\ Qp) < A(S" 1\ w*) cannot hold simultaneously in (5.8). Thus, from
(5.8) we get

p(@) < A"\ ),
as desired.

Suppose w is not strongly convex; then w N (—w) # @. From Lemma 5.5, we
know that

A" 0*) = |4
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Since || = |A|, to show that i and A are Aleksandrov related, we need to show
that u(w) < |u|. Suppose this were not the case; i.e., u(w) = |u|. Thus,

1] = p(@ U (~0)) = u(@) + p(~0) — wo N (-0)).

Since  is even, it follows that || = w(w N (—w)). The fact that w is spherically
convex tells us that w N (—w) is contained in a great hypersphere, and hence pu is
concentrated on a great hypersphere. This provides the desired contradiction. [

Let w C S"~!. Obviously,
(5.9 onNS" =,
and u € w if and only if there exists ¢ € (0, 1] such that fu € @. In particular,
(5.10) lo() = 15(zu),

for each u € S"~!. We shall make use of the fact that a proper subset  C §"~1
is spherically convex if and only if @ is convex in R”. Let {w; } be a sequence of
spherically convex sets in S”~1. Recall that w; converges to a spherically convex
set w C S 1 in the Hausdorff metric if @; converges to @ in the Hausdorff metric
in R”,

We shall need the following trivial facts.

LEMMA 5.7. If K; is a sequence of compact convex sets in R" that converges to a
compact convex set K C R" in the Hausdorff metric, then

(5.11) lim 1g, (x) =0 ifx ¢ K.

Moreover, if int K is not empty, then
(5.12) lim lg, (y) =1 ify €intK.
1—>00

PROOF. Consider a fixed x ¢ K. Since K is compact, we know the Haus-
dorff distance d(x, K) > 0. Since K; converges to K in the Hausdorff metric,
d(x, K;) > 0 for sufficiently large i, and thus x ¢ K; for sufficiently large i.
From this (5.11) follows.

Assume int K is not empty. Consider a fixed yo € int K. Let § be such that
Bs(y0) C K, where Bg(yp) is the closed ball of radius § > 0 centered at yo. Then
vo + Bs(o) C K. Thus,

yo-v <hg(v)—34

for all v € S"~!. We are given that hx, — hg, uniformly on S”~!. Thus, there
exists ig > 0 such that

)

yo-v < hi, (v) = 3

forall v € S"! and for all i > iy. This shows that yo € K; fori > iy, which
gives (5.12). Il
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The following lemma concerns the continuity of finite Borel measures on S 1
when regarded as defined on spherical compact convex sets endowed with the
Hausdorff metric. For o C $"71, we write dw to denote the boundary of the
set  viewed as a subset of §”71,

LEMMA 5.8. Let A be a Borel measure on S™', and w; be a sequence of compact,
spherically convex sets in S~ that converges to the compact, spherically convex
set w in the Hausdorff metric. If A vanishes on the boundary of w, then

lim A(w;) = AMw).

PROOF. From the definition of spherical convex set, the sets @ and @; are
nonempty compact convex sets, and since w; converges to w in the Hausdorff met-
ric, it follows that @; converges to @ in the Hausdorff metric. We claim that

1, uea)\ga),

5.13 lim 1, =
5-13) i—00 w: (1) 0, u¢ow.

First, assume u ¢ w. Then u ¢ ®. Since @; converges to @, from Lemma 5.7
we have

(5.14) lim 14, (1) = 0.
1—>00

From (5.9) we know that 15 («) = 14, (1) forall u € §"~1. Hence (5.14) can be
rewritten as

(5.15) lim 14, (1) =0
1—>00

when u ¢ w.

Suppose u € w \5a). (Ifw \5(0 = @, then (5.13) hold by vacuous implication.)
From the definition of @, we can conclude that %u € int®. Since ®; converges to
@, from Lemma 5.7 we have

(5.16) lim 15, (3u) = 1.

i—>00 2
Now (5.9), (5.10), and (5.16) imply
lim 1y, (u) = lim 1g, (u) = lim 1g, (%u) = 1.
1—>00 1—>00 1—>00

This and (5.15) yield (5.13).

By assumption, A vanishes on the boundary of w; i.e., k(ga)) = 0. This and
(5.13) give us

(5.17) lim 1y, (u) = 14 ()
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almost everywhere with respect to A. Since A is finite, it follows by the dominated
convergence theorem and (5.17) that

lim A(w;) = lim / Lo, ()dA(u) = / lo)dA(u) = M),
i—o00 Jgn—1 Sn—1

i—00
which is the desired result. U
The following lemma establishes uniform continuity of - A(wq) ata = 7.

LEMMA 5.9. Let A be a Borel measure on S"~! that vanishes on the boundary of

. . . ]T
a}fl compact, spherically convex sets. Then, given € > 0, there exists « € (O, 7) S0
that

(5.18) A(w%) — )L(a)%_a) <e,
for each nonempty compact set w C S™ 1 contained in some closed hemisphere.

PROOF. Assume that (5.18) does not hold. Then there exists g9 > 0, a sequence
o € .(O, %) converging tF) 0, and a sequence w; C S~ of nonempty compact sets
contained in closed hemispheres so that

(5.19) )&(a)i,%) — )L(a),-’%_al.) > g0

for all i, where w; o is used to abbreviate (w;)q. Since the set of compact subsets
of $”~1 is compact when endowed with the topology of the Hausdorff metric, w;
has a convergent subsequence, which we again denote by w;, that converges to a
nonempty compact set @ in the Hausdorff metric. But w; — o implies (w;) —
(w), which, together with (2.5) shows that w — ™.
From Lemma 5.8 and the fact that polar sets are spherically convex, it follows

that

lim AM(w]) = Mo™),

1—>00

or via (5.2),
(5.20) lim A(S""\w;,z) = lim A(0]) = A(0®).
1—>00 1—>00
Next we will show that
(5.21) lim AS" '\ w; z_,.) = A(w*).
i—>00 2

Since w; — w and ; € (0, Z) is such that ; — 0, Lemma 5.2 states precisely
that

00 o0
(5.22) o* = (@ Uny) wheren; = o,
j=1 i=J

where o; o 18 used to abbreviate (w;),,. Since 7; is a decreasing sequence, we
have

(5.23) x( ((@*u n,-)) = lim A(w* Un,)).
j=1 J—>00
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From (5.20), the fact that a)]’.“ C a’j_a,- from (5.5), the fact that a)j_aj C n; from
the definition of 7;, (5.23), and (5.22), we have

AM@*) = lim AMw]) < lim Mw;,.) < lim A(n;) < lim A(0* Unj)
j—oo J j—o0 Jo%j j—o00 : j—o0

(N un)
=1

J
= AMw™).

This establishes

lim A(w; ) = AMo¥).

i—00 ”
But this establishes the promised (5.21), as can be seen after recalling that w;” o is
defined in (5.4), to be S7*~1 \ W} T g,

Together, (5.20) and (5.21), give
k(wi,%) — A(a)i,%_ai) — 0 asi — oo.

This contradicts (5.19), and thus establishes (5.18). O

Foru € S" lande € [0, 71, let Q¢ (u) denote the closed spherical cap of radius

Z — ¢ centered at u. The open spherical cap of radius - — & centered at u will be

denoted by Q/(u).

LEMMA 5.10. Let A be a Borel measure that is not concentrated in any closed

hemisphere of S*1. Then there exist a real co > 0 and a real gg > 0 such that
A(Qe(u)) > co

forallu € S"~ ! and for all 0 < & < &,.

PROOF. It is sufficient to prove that there exist cg, &9 > 0 such that
(5.24) A(Qg (1)) > co

for all u € S™!. To that end, suppose (5.24) does not hold. Then there exists
a strictly decreasing, strictly positive sequence ¢; with limit 0, and a sequence of
spherical caps Qg (u;), with u; € S"71, so that A(Qg; (u;)) — 0. A standard
compactness argument allows us to conclude that 2, (1;) has a convergent subse-
quence, which we again denote by g, (;), that converges to a closed hemisphere
Q0(up) in the Hausdorff metric. Let §; be a strictly decreasing, strictly positive
sequence with limit 0. Since Qg (4;) — R0(uo), for every §; there is an ¢; >0
so that Q/gj (ug) C Qs,-j (u;;). Then

0< )\(Qfg/_ (0)) < A, (ui;)) - 0 as j — oo.

Note that ¢ (uo) = U; Qfsj (up), and that the sequence ng (up) is increasing,
with respect to set inclusion, as §; | 0. Thus,

MR(wo)) = Tim A(2, (o)) = 0.
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Thus, A is concentrated in the closed hemisphere S7~1 \ Q¢ (uo), in contradiction

to the hypothesis of the lemma. O

LEMMA 5.11. Suppose j and A are Borel measures on S"~1 such that A vanishes
on the boundary of all compact, spherically convex sets. If L and A are Aleksandrov
related, then there exist a 6 = §(u,A) € (0,1) and an o = a(u, A) € (0, 1) such
that

(5.25) ) < (1=8HMwz_g)
for every nonempty compact set  C S™! contained in some closed hemisphere.

PROOF. We first show that it is sufficient to demonstrate that there exists § €
(0, 1) so that

(5.26) @) < (1-89)A(wz)

for each compact, spherically convex set w C S*~1.
From Lemma 5.10, we know that there exists a ¢ > 0 so that

(5.27) AMQ) > ¢

for each closed hemisphere 2. From definition (5.1), we see that w,/, always
contains an open hemisphere. Since A vanishes on all great hyperspheres, from
(5.27), we see that

(5.28) Mog) > c.

Let0 < ¢ < %min{l,g/(l — g)} and § = § — e(l — g)% > 0. Then, since
obviously

(5.29) G- 8)% — (1-3)s,
Lemma 5.9 guarantees the existence of an « € (0, Z) such that
(5.30) )L(a)%) — )L(w%_a) <e¢

for each nonempty compact set @ C S”~! contained in some closed hemisphere.
From (5.28), (5.30), and that 0 < ¢ < £,

c
Mog—o) > 5.
Rewriting this using (5.29) gives
(5.31) G = HMwz—a) > (1= D).
From (5.26), (5.3), (5.30), and (5.31), we have
w() < p(@)) < (1=HA((w)z) = (1 —HA(wz)

<=9+ Moz-0) <
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<@G-Hrg-0) + (1 - HA5-0)
= (1 - H)Awg—y).
This shows (5.25) would follow from (5.26). It now remains to establish (5.26).

Suppose (5.26) does not hold. Since A and u are Aleksandrov related, there
exists a sequence of compact, spherically convex w; C S™~! such that

. k(a)i,%)
(5.32) lim =1
i—oo f(w;)

A standard compactness argument allows us to assume that

(5.33) w; converge to a compact, spherically convex set w C S” -1,
Then w* converges to w™*. Using Lemma 5.8, we see that
lim A(w;) = Mw) and lim A(w]) = A(0™).
1—>00 1—>00
The second of these together with (5.2) shows that
(5.34) lim AMw; z) = Mwz).
i—00 02 2

The spherical convex set w can either satisfy w N (—w) # @ or be strongly
spherically convex. We shall show that in both possible cases we are led to a
contradiction.

First, suppose w N (—w) # &. Then (5.2) and Lemma 5.5 give

(5.35) ST\ 0%) = Moz) = A(S"7).

This gives A(w*) = 0, and the hypothesis that y and A are Aleksandrov related
gives (w) < A(S™71).

Since w,, is a monotone nonincreasing sequence of Borel sets with a limit of w as
o decreases to 0 and p is a finite Borel measure, we know that lim,_, o+ pt(wy) =
(). Now pu(w) < A(S™1) yields the existence of an ag > 0 such that u(wy,) <
A(S"1). Since w; —  and wy, is an open set containing w, there exists an io
such that w; C wg,, foralli > ip, and hence from (5.35), (5.34), and (5.32) coupled
with (5.28), we have

AS") = Mog) = lim Moig) = lm wer) < wow) < A",

which provides the desired contradiction.

For the case that w is strongly spherically convex when i is sufficiently large,
the w; from (5.33) are also contained in the open hemisphere that contains w. Let
®; = (wUw;), the spherical convex hull of w Uw;. Observe that @; also converges
to . There is a subsequence ®;, so that

(5.36) w C 0, C 1.

Since w 1 is a decreasing sequence that converges to @, and y is a finite measure, it
follows that limy _, oo /L(a)%) = u(w), and thus, from (5.36), we see that u(w) =
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limg _, o0 4(®;, ). This, together with (5.32) coupled with (5.28), (5.34), and (5.2),
gives

p(w) = kli)rréou(wik) > kli)rréou(wik) = kli)rréoz\(wik,g) = Moz).
This shows that () = A(S”~!\ w*), which contradicts the fact that A and . are
Aleksandrov related.

We have shown that in both the cases where w is strongly spherically convex and
where it is not, we are led to a contradiction if (5.26) is presumed not to hold. [

6 Estimates for the Log-Volumes of Convex Bodies

This section presents estimates for the log-volumes of convex bodies with re-
spect to a Borel measure. These estimates will be crucial to solving the problem of
log-volume-product maximization.

LEMMA 6.1. If u is a Borel measure on S"~1, then the set
Q={ues" ' uS" 'nut) >0}
has spherical Lebesgue measure zero.

PROOF. Let G,  be the Grassmann manifold of k-dimensional subspaces in
R”, and fork = 1,...,n — 1, define Q, as

{EeGup:pnEN S 1) > 0 but (€’ N S™ 1) = 0 for each subspace &’ < £ }.
For each u € S"~1 with ;(S"' Nut) > 0, there exists a subspace £ C ut

such that £ belongs to some Q. Using this and the observation that § C uL is
equivalent to u € £+, we can write

Q={ues" . usS" 'nut) >0}
n—1
(6.1) = {ueS" ' g Cutforsome £ € Q)

S X
_—

= YJwes T uegt

k=1£&eQy

Obviously, forany & € G, x, theset{u € § n=1:y e g1} is of spherical Lebesgue
measure zero. Thus, to show that the set €2 is of spherical Lebesgue measure zero,
it suffices, by (6.1), to show that 24 is countable.

If&y, ..., &, € Qp are distinct, then

6.2) ul = Y & ns™h.

i=1
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To see this observe that

ulzp( | ensm)

£eQy

= u(Uensm)

i=1

=Y uE&EnSH Y DTN YT wE neeng st
i=2

i=1 1<ji<-<ji<m

m
=> uEns'h,
i=1
where the last equality follows from the fact that §;, N---N§;, is a proper subspace
of &;, € Q. For any positive integer j, inequality (6.2) implies that the set

{6 € QppEnS" > |ul/j}
cannot have more than j elements. Hence,

o0
Q= | JtE € Q&N S" > |ul/j}
j=1
is countable. O

Lemma 6.1 yields immediately the following lemma.

LEMMA 6.2. Let ju be a Borel measure on S"~', and let £y be a codimension 1
subspace of R". Then the set

A=1{4eS0n): u(A& N S" 1 >0}
has Haar measure zero.
PROOF. As in the previous lemma, let
Q={ueS" :usS" nut)> o}
Let& = u(J; and for each u € §"~1, define

u={AeS0(m): A& = ut} = {4 € SOn) : Auy = u™}.

A= [ A

ueQ2
With the usual identifications, the space S”~! is isometric to the quotient space
SO(n)/ SO(n —1). Let g5, denote the Haar measure of SO(n), and let 0,1 denote
the Haar measure of SO(n — 1) when transferred to .4,,. When suitably normalized,
0n, On—1, and spherical Lebesgue measure, denoted here by du, are related by

Thus,

do, = doy_1du
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(see, e.g., Santal6 [48, (12.10)]). Each set A, is a coset of SO(n — 1), and thus
on—1(Ay) = 0,—1(SO(n — 1)). We have

(fn(A)=/Ad0n =/Q( 5 dan_l)du =Un_1(SO(n—1))/Qdu,

with Lemma 6.1 telling us that the last integral is 0. Hence, the Haar measure of A
is 0, as claimed. O

To estimate the log-volumes of convex bodies with respect to a measure &, we
need to use a partition of closed hemispheres. The following lemma allows us to
partition a closed hemisphere in a manner suitable for the measure p.

LEMMA 6.3. Let ju be a Borel measure on S~ and Q be a closed hemisphere
of S"7L. Then for each & > 0, there exist m = m(u, &, ) compact, spherically
convex subsets w1, . .., Wy such that

m
Ua)i=Q,

1=

and, for each j,

(6.3) lu—v|<e forallu,vewj,
while

(6.4) w(on(Je)) =0

i#j

PROOF. Divide each of the (n —1)-dimensional faces of the n-dimensional cube
[—1,1]" into (2k)*~! small (n — 1)-dimensional cubes whose edge lengths are all
1/ k, where the integer k is chosen so that the diameter of each small cube is equal
to o/n —1/k < e. Denote by T the collection of all these (n — 1)-dimensional
cubes on the boundary of the cube [—1, 1]".

For each (n — 1)-dimensional cube C € 7T, consider an (n — 2)-dimensional
face E of C. Since C is on one of the faces of the cube [—1, 1]", we know that
the subspace span E generated by E is of dimension # — 1. Denote by L the set
of all (n — 1)-dimensional subspaces generated in this manner. Thus, an (n — 1)-
dimensional subspace £ € L if and only if there exists C € 7T such that § = span E
for some (n — 2)-dimensional face E of C. Obviously, L is a finite set.

For each £ € L, let

As = {4 €S0(n) : u(A6 N S" 1) > 0},

which, by Lemma 6.2, has Haar measure 0. Since L is finite, the union Uge r Ag
has Haar measure 0 as well. Therefore there exists an A9 € SO(n) so that

(6.5) w(AgEN S 1y =0 forall & € L.

Define the partition B
P={CNQ:C e AT}
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where, as before, = : [—1, 1] — S~ is the radial projection map. Note that P is
a finite partition of §2 whose cardinality depends only on u, ¢, 2.

The partition P satisfies (6.3) because the radial projection map is a contraction
and the diameter of each C € Ay7T is at most &.

In order to see that P satisfies (6.4), take any two elements w = C NQ and

o' = C’ N Q from P, where C, C' € AgT. Then
wNw' Cspan(C NC')yN S 1.

Note that C N C’ is contained in some (n — 2)-dimensional face of C. Hence, (6.5)
gives p(span(C N C’) N S*~1) = 0, which in turn gives u(w N @’) = 0. O

LEMMA 6.4. Let A be a Borel measure on S"~! that is not concentrated in any
closed hemisphere. Suppose K; € K is a sequence whose members are contained
in the unit ball and such that h; = min{hg;(v) : v € S~y — 0. Then there

exists a ¢ > 0 so that
log2o(Ki) _

lim inf
i—oo  logh;

PROOF. Without loss of generality we may assume that none of the K; is the
unit ball B. For each K;, choose a v; € S”~! such that hk;(vi) = h;, and let

Qi=fueS" tiu-v > 1/log ;-}.
By using Lemma 5.10, we know that there exists a real ¢; > 0 so that
(6.6) A(2;) > c1

for sufficiently large i.
Foru € Q;,

1
1 < pKi(M)M ‘v = hKl‘(vi) = hj,

6.7) pi; (1)
log 7

where the first inequality comes from the definition of €2;, and the second from
the definition of the support function and the fact that pg, (u)u € Kj, from the
definition of the radial function. From (6.7) we immediately obtain
1 1 1 1
(6.8) log pg; ()~ = log ——— = log — —loglog —
hi log m h; h;
forall u € Q;.
From the fact that K; C B, the definition of ;, (6.8), h; — 0, and (6.6), we
have

a1 (u)dA log pk; (u) 1 dA(u)
lim inf L5771 108 PK; (0) dA.G1) zliminffg’ £p (
i—00 log hi i—00 log hi

Jq, (log hi —loglog %)d/\(u)
> lim inf == L : d =
i—00 log I
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loglog -~
= liminf)L(Q,-)(l - —lh)
i—00 logh—i
= liminf A(£2;)
1—>00
= (1. O

LEMMA 6.5. Let i be a Borel measure on S"~! and K; € K be a sequence such
that K; C B and h; = min{hg,(v) : v € S"=1Y 5 0. Assume that there exists a
co > 0, and there exist x; € K; so that |x;| > co > O for sufficiently large i and
x;j — x. Then

fgzé)(x) log hk; (v)du(v) _

li =0,
i2>00 log h;

where Qy(x) = {v e S" 1 v-x > 0}.

PROOF. Without loss of generality, we may assume that none of the K; is B.
Fori =1,2,..., define
1
& = max {|)? — Xil, h;og]og(l/hi)}

’

andlet Q; = {v e §"!: v.X; > g} Since x; — x we know X; — X. Since
h; — 0, we have lim;_, o &; = 0. Using the fact that x; € K; and the definition of
&;, we see that for v € Q;,

VX =v-X—v- (X —X)>¢& — X —X;] >0,

which implies that Q; C Q(x). Since we are given that |x;| > co > 0 for
sufficiently large i, we see that for v € 2;,

1
loglog(l/hi)

hg;(v) > v-x; = [x;|v-X;i > cosi = coh,

for sufficiently large i. Thus,

1 logy

<log — + — i
hk; (v) £ o loglog ;-

(6.9) log
for sufficiently large i. The facts that 0 < h; < hg,(v) < 1 forallv € S"~! and
h; — 0, together with (6.9), implies that

1
CJalog ey dn(v)
0 < lim -

i—00 log hl
1

(6.10)

log 1
< lim ;L(Qi)( 2+ - ) =0.
i—00 log i loglog n
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Let &y, be a strictly decreasing sequence of reals in the open interval (0, 1) whose
limit is 0, and let

Qs, :{UESn_l TV X > 6t

The €25, are obviously monotone increasing, with respect to set inclusion, and their
union is obviously €25 (x), hence

Jim p () = 1(Qp(x))
or

(6.11) Jim w(Qp(x) \ 2s,) = 0.

From the definition of €;, it follows that for v € Q5 (x) \ Q;,
O<v-x=v-x54+v-(x—x3) <¢e +|x— x|

Since lim; o0 (g; + |X — X;|) = 0, it follows that for fixed k, when i is sufficiently
large, &; 4+ |X — Xi| < 8. Thus, v-X < 8k, and v € Q((x) \ 25,. Hence, for
fixed k, when i is sufficiently large,

Qo(x) \ i C Qp(x) \ Qs, .
In light of (6.11), this gives
(6.12) lim pu(Q5(x) \ i) = 0.
i—00
Since 0 < h; < hg,(v) < 1forallv € S"!, we get

1
Jayong; 102 7wy 4V

(6.13) 0 < lim : < lim u(Qyx)\ i) =0
i—o00 log e i—00
from (6.12).
To obtain our desired result, we now combine (6.10) and (6.13) to complete the
proof. g

We shall require the fact that for K € K7 such that K C rB, where r > 0, we
have

(6.14) lhg (1) —hg ()| < rlu —v|

for all u,v € S"~1. That this is the case follows trivially from the fact that the
support function hg: R” — R is always subadditive; specifically,

hg(u) < hg(u—v)+hg@) < hyp(u —v) + hg(v) =rlu—v|+hg).

Note that the §, € (0, 1) in the hypothesis below are guaranteed to exist by
appealing to Lemma 5.11.
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LEMMA 6.6. Suppose i and A are Borel measures on S~ such that A vanishes
on the boundary of all compact, spherically convex sets and suppose also that |
and M are Aleksandrov related. Let §,a € (0, 1) be such that

) < (1 -8)Mwz_q)

for every nonempty compact set @ C S"~! contained in some closed hemisphere,
and let

(6.15) co = min{e3 8§ 1} € (0, 1).
Suppose also that K; € K7, is a sequence such that K; C coB and
hi = min{hg, (v) :v € "7} — 0.

Then for every closed hemisphere 2, there exists an integer ig such that, for each

i> i().
1 1) 1
/Qlog e, () du(v) < (1 - 5) /Sn—' log o, () dA(u).

PROOF. Lemma 6.3 guarantees that for each positive integer i there exists a

partition of 2 into m; compact, spherically convex sets w; 1, ..., ;i m; such that
(6.16) lu—v| <h? forallu,v € w;
and
(6.17) M(wi,,- N ( U w,-,k)) — 0,
k#j

forj =1,...,m;.
Let v;,; € w;,;, and abbreviate ; ; = hg, (vi,j). From the definition of ;, the
fact that K; C coB, and the definition of ¢(, we have

1
0<hi§hi,j§c’0§—<l.
e
From this and the fact that lim; oo h; = 0, we get h; j — cohi2 > 0 and

h2
log (1-54)
— 2| = lim

logh; i—00

Coh?
hilogh;

This and #; — 0 imply that there exists a positive integer o such that when i > iy,

h2
log(1 - 52 )

2
. coh;
lim L < =
i—00 i—00

hi,jlogh;, j

§
6.18 0 -
(6.18) = logh; =3
and
o
(6.19) h? < 3

where «, § are from the hypothesis.
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Throughout the remainder of the proof, we will assume thati > ig. From (6.16),
we have

(6.20) 0< hi,j —C()hl-2 < hi’j —CO|Ui,j — U| forv € Wi, j-

Now v; j € w;,j and h; ; = hg;(v;,;), together with K; C coB and (6.14),
(6.20), and (6.18), show that for v € w;_;

1 1 1
log ——— = log < log
hg; (v) hi,j — (hi,j — hg; (v)) hi,j — colvi,j —v
1

S 2
hl,] Cohl

1 Cohi2
=logh”—log 1_h~~
1,] L,J

< 1+8 lo !
— 4 ghl’j‘

Suppose v € w;, JE—a Then by definition (5.1), there is some u € w; ; such
that u - v > sina. But from knowing o € (0, 1), an easy estimate shows that
sina > 7. Together with (6.16) and (6.19), we have

< log
(6.21)

(6.22) v-v;; =v-u+v-(vi,j—u)>sina—|vi,]~—u|>%—hiz>%.

Since pk; (v)v € Kj, from the definition of support function, we have
(6.23) (pk; (V)V) - vij < hg; (vi,j) = hi ;.

From the fact that K; C cgB and the definition of c¢(, we have

(6.24) hij = hig; (vi,j) < o < e3¢ E,

Now (6.23) together with (6.22) and (6.24) yield

) 1
+logg> (1——)10g

6.25 |
( ) 08 /’li,j 8 4 hi,j

> log

1
PK; (U)
forv e Wi j,T—q- . .

For each i, we reindex in w; ; so that we have

1 1
(6.26) logh > ... >log .

i1 i,m;

For simplicity, abbreviate
Bij = n(wi,j) =0,
and hence (6.21) yields

1 5 1
(6.27) / lo du() < (1—|——) ;. j log —.
o i ) ) 3)Patoeg
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Recalling that w; 1, ..., w;m,; is a partition of §2 into m; compact, spherically
convex sets and summing in (6.27) shows that for each i,

1 8§\
(6.28) /Q log @ du(v) < (1 + Z)]; Bijlog —

For each i, define

®ll —C()l 1, 7—o¢7

®l',' wl], a\(lel,z—C{)’ j=2,,m,

Then for fixed i, the ©; ; are disjoint, and

k k
(6.29) U ©i; = U Wi, j, %~
j=1 j=1

foreachk = 1,2,...,m;. Abbreviate
Yi,j = MO ;) = 0.

From (6.25) we have

1 8 1
(6.30) / lo dA(u) > (1 — —) ,jlo .

For fixed i, using (6.17), Lemma 5.11, Lemma 5.1, and (6.29), and the fact that the
©;,; are disjoint, we deduce that, fork =1,...,m;,

k

k k
> iy = i) = (U
j=1 j=1

j=1

<(1—8)k((Uw,])

j=1

S

(6.31)

)

- (1—8)A(Uw,,,2 .)

j=1

k
= —8)1( U @,,J) = —5)2%,/

j=1
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For fixed i > iy, it follows from (6.28), (6.26), (6.31), (6.30), and the fact that
the ®;1,...,0;m; C S"~1 are disjoint that

| 1og; .1( S du(o)
=(1+3) Do
(i

mi—1 k

+ > Z,B,j(log——loghlk+l))

k=1 j=1

< (1 + %)(1—5)((2 J/i,j) log

mi—1 k

w2 S (e o)
1

k=1 j=1
)
= (1+Z)(1—5)Z%,]‘10gh—
(l—i- )(1— __Z/@ log ox( d)t(u)

) 1
< (1 — 5) /Sn_l log ok, 1) dA(u),

which completes the proof. U

7 Maximizing the Log-Volume Product: Existence of Solutions

Let i and A be Borel measures on S”~! with |u| = |A|. For K € K, we define
the functional ®,, ;: K — R by ®,, ; (K) = log j1o(K*) 4 log Ao(K). However,
since || = |A|, we shall simply define it by

S A(K) = —/S”_l loghKa’,u—i—/S"_1 log px d A

and omit the |u| and |A|. Note that from the definition of @, 3 (K) and (2.2), it
follows immediately that

(7.1) D, A (K) =Dy, (KF)
forall K € K7.
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Obviously, the functional @, ; is homogeneous of degree 0; i.e.,
(Du,)c(aK) = q)u,A(K)’

for every a > 0. Since the radial metric is equivalent to the Hausdorff metric on

the space K7, the functional @, ; is continuous on 7.

Maximization of the log-volume-product. Let i and A be Borel measures on
S"=1 with || = |A|. Under what conditions does there exist a convex body
Ko € K} such that

sup CD,M,A(K) = CD,M,A(KO)?
KeK?

Existence for this problem is provided by the following lemma.

LEMMA 7.1. Let ju and A be Borel measures on S™~! that are Aleksandrov related.
If either A or u vanishes on the boundary of all compact, spherically convex sets,
then there exists Ko € K], such that

®p1(Ko) = sup @, 3(0Q).
Qeky

PROOF. We begin with the trivial observation that for the unit ball B € K], we
have ®,, 3 (B) = 0.

We first suppose that A vanishes on the boundary of all compact, spherically
convex sets. Let K; be a maximizing sequence. Since @, 3 is homogeneous of
degree 0, we may dilate the K; such that both K; C coB” and so that there exists
an x; € K; N coS™ ! where cq is defined by (6.15). By taking subsequences
(twice), we may further assume that K; converges to a nonempty compact convex
set Ko C R” and that x; — x € coS" L.

If o € int Ko, then Ko € K. The continuity of ®, 3 would assure us that
@, 1(Ki) = @, ,(Ko), and we would be done. In order to show o € int Ko, we
argue by contradiction. Assume that this is not the case; i.e., the origin 0o € 9K.
Then, h; = min{hg, (v) : v € S"~1} converges to 0.

Let

Q_.={ves"liv.x<0, Qr={weS"':v.x>0.

From Lemmas 6.4, 6.5, and 6.6, we easily deduce that there exist ¢1,8 > 0 such
that when i is sufficiently large,

1 c
lo dA(u) > —log —,
/s & oG M = ey

1 6‘15 1
lo du() < —log —
/Q+ ghK,.(v) p(v) < g —

1 ) 1
fo o = (1-5) [ e g i
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where ¢; > 0 is a constant provided by Lemma 6.4 and § is from Lemma 6.6. The
above inequalities, together with the fact that #; — 0, imply that

1
P, (Ki) = lo du(v —i—/ lo
wrtki = [ toa s dnw + [ ow gt

1
0 dp(v)

1
— dA
[ o

5 1 618 1
B lo dA(u) + — log —
( 2)/s 8 ok, G MO T g ey
/ log !

st pk; (1)

018 1 8/ 1
= —log— — = lo dA(u
8 085 72 Jout 08 oy M0

< @ lo i - @ lo L
- 8 g hi 4 g hi
c16 1 1
=3 og » — —00.
This contradicts the fact that K; is a maximizing sequence for ®,, ;.

Having established Lemma 7.1 for the case where A vanishes on the boundary
of all spherical compact convex sets, we turn to the case where p is the measure
that vanishes on the boundary of all spherical compact convex sets. We now use
the previously established case of Lemma 7.1 but with the maximum taken over all
0* € K, together with (7.1), and the fact that a body in K7 is equal to the polar

of its polar. O

dA(u)

An immediate consequence of Lemma 7.1 is the following:

THEOREM 7.2. Suppose i and A are Borel measures on S™ ! that are Aleksandrov
related. If either A or | is a measure that vanishes on the boundary of all spherical
compact convex sets, then the maximum of the log-volume-product j1o(Q)Ao(Q*),
taken over all Q € K7, is attained at a convex body in K.

In the symmetric case, in view of Lemma 5.6, arguments similar to those in the
proof of Theorem 7.2 give the following result:

THEOREM 7.3. Let ;v and A be even Borel measures on S™1 satisfying |j1| = |A|.
Suppose that | is not concentrated on any great hypersphere and A vanishes on the
boundary of all compact, spherically convex sets and that it is strictly positive on
all nonempty open sets. Then the log-volume-product Lo(Q*)Ao(Q), taken over
all Q € K}, attains its maximum at a body in K.

This theorem is easily proved in a manner almost identical to that of Theorem
7.2, but Lemma 5.6 is required to conclude that i and A are Aleksandrov related
and thus justify our ability to invoke Lemma 6.6.
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8 The Gauss Image Problem: Existence of Solutions

Let A be a finite measure defined on the o-algebra of Lebesgue measurable sets
on S”7! and p be a Borel measure on S”~! such that || = |A|. Recall that
Ct(S™1) is the class of strictly positive continuous functions on S”~!. Define
the functional

D, CT(ES"H >R

for f € CT(S™!) by letting
8.0 ()= [ togfandua— [ toghiyoidae)

where (f) = conv{ f(u)u : u € S""1} € K since f is strictly positive. Observe
that, from (2.2) we have

. (f) = |ullog no(f) + [Allog Ao(pgry*)-

Since {(af) = a(f) fora > 0, and thus hy,ry = ah(y), it follows from
the definition of ®,, 3 that &, 3 (af) = @, ,(f); ie., @, ; is homogeneous of
degree 0. The continuity of ®,, 3 follows immediately from (2.4).

LEMMA 8.1. Suppose A and y are Borel measures defined on S*~'. The supre-
mum, taken over all Q € K7, of

/Snl log po (u)du(u) — [Snl logho(u)dA(u)
is attained at K € K7, if and only if
sup{®,, 1 (f) : f € CT(S"™1)} = @ alpk).

PROOF. Note that in the maximization problem
(8.2) sup{®y i (f) 1 f € CT(S" T},
we have for the convex hull { /) = conv{ f(u)u : u € S"!} that p(fy = f and

that (p(ry) = (f) s0 h(p ,y) = h(s) foreach f € C*(S"1). Thus, directly
from definition (8.1), it follows that

D, 2 (f) = @ualpry)-

This tells us that in searching for the supremum in (8.2) we can restrict our attention
to the radial functions of bodies in }; i.e.,

sup{®,,2(f) 1 f € CT(S"™1)} = sup{®y 1 (po) : O € K7}
This yields the desired result. U

THEOREM 8.2. Let i1 be a Borel measure on S™ 1 and let A be a Borel measure
on S"~! that is absolutely continuous. If the supremum, taken over all Q € K" of

/ log po (u)dp(u) —/ logho(u)dA(u)
Ssn—1 Sn—1
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is attained at Ko € K7, then
n = )&(Ko, )

PROOF. Since (pg) = Q, foreach Q € K the fact that K is a solution of the
maximization problem can be rewritten, in light of (8.1), as

(8.3) ®,,.1(pky) = sup{®, 2 (pg) : O € Ky}

Lemma 8.1 and the fact that Ky is a solution of the maximization problem (8.3)
tells us that

@1 (PKo) = sup{®u A (f) 1 f € CT(S"HL
Suppose g € C (8™~ 1) is fixed. For real ¢, define p; : S"~! — (0, 00) by

pr = p(t.-) = pxye’E.
that is,
(8.4) log p; = log pk, +1g.
From Lemma 4.2 we know

d
85 WG oeree))| == [ s0drKow.

From (8.4) we see that

|| log po(ps) = /Sn_l log ps dp = [gn_l([g+1°ng°)d“‘

Therefore,
d
(8.6) il - log tolpr) | _ =/ gu)dp(u).
t=0 sn—1
The Euler-Lagrange equation,

L o,at00| _ = (M08 A0 ((pr)") + lullog o(pr))|_ =0

dt t=0 dt 1=0 ’
together with (8.5) and (8.6), gives
87 [, gwdrEon = [ gduto.

Since (8.7) holds for all positive g, it holds for differences of these functions and
thus for all continuous functions. The conclusion is that u = A(Ko, - ). Il

THEOREM 8.3. Suppose i is a Borel measure on S"~1, while A is a Borel measure
on S™ 1 that is absolutely continuous. If ju is Aleksandrov related to A, then there
exists a convex body Ko € K7 so that u = A(Ko,-). Moreover, if A is strictly
positive on nonempty open sets, then the convex body K is unique up to dilation.
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PROOF. Theorem 7.2 and the fact that u is Aleksandrov related to A tells us that
the log-volume-product j19(Q)Ao(Q*), taken over all Q € K7, attains a maximum
at a convex body K € K7. From Theorem 8.2, together with || = |A| (since
and A are Aleksandrov related), we know that u = A(K,-). Uniqueness follows
from Lemma 3.8. 0

If the measure A assumes positive values on all nonempty open sets, then the
following statements are equivalent:

THEOREM 8.4. Suppose [ is a Borel measure on S™~1, while A is a Borel measure
on S"1 that is absolutely continuous and strictly positive on nonempty open sets.
If || = |A|, then the following statements are equivalent:

(1) There exists a body Ko € K, such that A(Ko,-) = .
(2) There exists a body Ko € K} such that

quirc)" po(Q)Ao(Q™) = po(Ko)Ao(Ky).

(3) The measures | and A are Aleksandrov related.

Moreover, the convex body Ky is unique up to dilation.

PROOF. Theorem 7.2 gives (3) = (2). Theorem 8.2 gives (2) = (1). Lemma
3.7 gives (1) = (3). Uniqueness follows from Lemma 3.8. O

For the origin-symmetric case, in view of Lemma 5.6 and Theorem 7.3, we have
the following:

THEOREM 8.5. Suppose [ is an even Borel measure on S~ that is not concen-
trated on any great hypersphere, and A is an even Borel measure on S"~! that is
absolutely continuous and strictly positive on nonempty open sets. If || = |A|,
then there exists an origin-symmetric convex body Ko € K}, unique up to dilation,
so that both

(1) the Gauss image measure A(Ky,-) = i and
(2) the log-volume-product j1o(Q)Ao(Q¥), taken over Q € K2, attains its
maximum at Ko € K.
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