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Abstract— Localization is a fundamental task in many swarm
robotic applications, such as foraging and exploration. Mag-
netic induction communications, which rely on the magnetic
component of an antenna’s near-field, have gathered interest as
means to perform localization in underground and underwater
environments. MI signals propagate through lossy environments
better than traditional RF signals, and can offer advantages
over acoustics. In prior work, we developed a localization
method based on MI signals to calculate the range between
two moving MI antennas. A core aspect of the method is a
particle filter that relies on the received signal strength and
speed of the antennas to produce location estimates. In this
paper, we first empirically find the amount of noise present in
our signal strength measurements in underwater environments.
Then we propose a model to capture the impact of the noise
on the range calculations and apply it to improve the particle
filter’s location estimations.

I. INTRODUCTION

Subsea localization for autonomous underwater vehicles
(AUV) serves as a gateway enabling many other applications,
including offshore rig inspection and environmental monitor-
ing. These applications are possible through the deployment
of underwater wireless sensor networks (UWSN) with multi-
agent robot systems for data collection or inspection. These
systems have potential advantages in affordability, scalability,
and the lack of single points-of-failure.

Multiple solutions to localization in above-ground environ-
ments exist, relying on methods such as computer vision and
traditional RF communications. However, these methods face
challenges for underground and underwater environments,
where visibility can be non-existent and RF signals atten-
uate quickly due to the lossy characteristics of the media.
Magnetic induction (MI) signals have recently been used
to overcome such difficulties in short range applications,
where they are less susceptible to attenuation. The hardware
required to implement MI communications is also simpler
and cheaper compared to acoustics, a popular technology
underwater.

Our hardware implementation relies on the use of triaxial
coil antennas to estimate the relative location of a robot
based on measured voltage data. These antennas are typically
used for MI communications and have been tested in air
and underwater. In previous work we showed the feasibility
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Fig. 1. Small scale pool setup. A: A BlueROV2 equipped with a triaxial
coil antenna. B: Small-scale experiment setup. C: Circular path with a radius
of 0.6 [m]. D: Circular path with a radius of 1.2 [m]. Measurements were
taken in increments of 22.5 degrees. The range between the antennas is
represented by 7.

of reconstructing the path a robot takes around another in
air using triaxial antennas and a particle filter. However,
noise present in the environment was represented by values
with no experimental basis. In this work, we study how the
inclusion of a noise model based on empirically obtained
values improves localization accuracy.

This work is arranged as follows: In Section II we present
several avenues of research related to this work. The theory
and experiment setup are shown in Section III, and the results
from our experiments are shown in Section IV. We conclude
the work in Section V.

II. RELATED WORK

Using magnetic induction for communications have been
studied over the years as an alternative for underwater
systems. Recent surveys can be found from [1] and [2].

Due to the UWSN applications for MI communications,
localization methods often require multiple nodes to increase
accuracy. This is true not only for MI-based methods but also
for acoustic methods. For example, long-baseline (LBL) sys-
tems, short-baseline (SBL), and ultra-short-baseline (USBL)
positioning systems rely on multiple transponders for posi-
tioning and bearing calculations [3]. Despite its low data rate,
high transmission delay, and expensive deployment costs,
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its high range makes acoustic communications the preferred
approach for underwater communications and localization.

Current research for localization using acoustic commu-
nications include Kalman filters [4], particle filters [5], [6],
and hybrids between acoustic and RF-based methods [7]. The
authors of [5] performed bearing-only localization between
AUVs that have magnetometer and acceleration sensors
installed on the receiver AUV for pose measurements. Their
particle filter then uses these measurements to estimate the
location of the robot that carries the receiver based on
direction information provided by the transmitting robot.
This approach eliminates the requirement for a real-time
clock for synchronization. However, since the transmitter is
required to stay at a fixed position, large errors occur due to
drift and initial conditions.

Alternatively, Erol et al. proposed an AUV-assisted ap-
proach that relies on the robot to gather GPS information
while on the surface before diving and following a predeter-
mined trajectory in order to locate all nodes [8]. The robot
and sensor nodes share a common communication protocol
to transmit location information so that the nodes can localize
themselves using triangulation or the bounding box method,
with pressure sensors installed for depth calculations. This
approach allows sensor nodes to be deployed arbitrarily.
Synchronization between them is not required.

The use of coil antennas solely for localization have
been studied for over fifty years, most notably starting with
Kalmus® work on magnetic guidance and tracking [9] and
Raab’s work using triaxial antennas [10].

For localization with MI communications, two or more
nodes are used to improve accuracy. These nodes, often
named anchor nodes, are stationary and their position is
known with respect to the environment. Adding more anchor
nodes improves accuracy, getting as low as 10 [cm] accuracy
with eight anchor nodes [11].

Our work is related to Huang and Zheng’s paper, which
studies the localization of a single triaxial coil with respect
to two transmitting coils whose position is known [12].
The three coils of each transmitting antenna are excited
sequentially, resulting in sixteen possible solutions for the
location of the coil, which are then reduced by generating
rotation matrices, then applying maximum likelihood esti-
mation. Alternatively, the authors present a distance-based
method, where the minimum mean square error metric is
applied to estimate the location of the coil. While this method
does not completely solve the multiple solutions problem, it
is computationally less complex.

This paper only considers the use of one anchor node to
represent the localization between two robots. This reduces
the accuracy of our estimates and increases the chance
of location ambiguity. By using a particle filter, we can
produce a reasonable estimate of the robot’s state over time
using the data from the triaxial antenna. Furthermore, the
performance of the particle filter improves by considering
data from an onboard sensor, such as using data from an
inertial measurement unit (IMU).

III. METHODS
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Fig. 2. Representation of our MI triaxial antennas.

This paper analyzes the ambient noise in an underwater
medium to extend the work in [13]. Our antennas are com-
posed of three orthogonal wire coils, as shown in Fig.2. We
utilize the same amplifier circuitry for the transmissions.For
the receiver, we use a National Instruments (NI) Com-
pactRIO controller with the NI-9220 voltage input module
to measure the differential voltages induced on the receiving
coils.

A. Fundamental Theory

We paraphrase the theory used in the work from [13]
below. We assume that the magnetic fields are quasistatic
and model our coils as magnetic dipoles.

The magnetic field strength by coil 7 at a point designated
by r is

) = o 7(m - 7) — ml, (1)
where m is the magnetic moment of the dipole. For a coil
antenna, the magnetic moment is m = NI1Au, where N is
the number of wire turns, [ is the current flowing through
the wire, A is the area of the coil and @ is the unit vector
perpendicular to that area.

Since m = |m|m, (1) is rewritten as

||
hi(r) = o
We split the magnetic field strength into its compo-
nents such that h;(r) = |hiy hiy hi,z}. Similarly, 7 =
[re 7y 1] and m = [m;, msy m;.]. If we define
q; = m; - 7, then the x component of the magnetic field
strength due to coil ¢ is given by

[3r(m - 7) —ml, (2)

|m]| .
iz [Bra (M - T) — my 4]
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To extract the magnitude of r, which is the main quantity
required by the particle filter, we begin by finding the norm
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of the magnetic field produced by the transmitting coil 7. The
norm of h; is given by

il = \J (i) + (i g)? + (i 2)?

m

= 47|Tr||3\/(3T1'Qi_mi,w)2+(3TyQi_mi,y)2+(3TzQi_mi,z)2
|m|

= TP 3(qi)? + 1. 4)

Since the three transmitting coils are orthogonal, the vector
q= [ql Q2 Q3] is also a unit vector. By assuming that the
magnitude of the magnetic moment of all three coils is the
same we get the following system of linear equations:

N (N e
3(|h2|>2(%) +(|h2|>2_(3Q1) o

[P\ o (Il o o )
3(ma>(%)+(ma> Ba)"+1
(1) + (g2)* + (g3)> =1

By solving for q the magnitude of r can be calculated
from (4), if the values for the magnetic field components are
known. This results in

1

O 6
r_<hN+WfHMP>’ ©

where C' is the constant related to the magnetic moment
magnitude |m]|.

B. Noise Measurements

We performed tests in three different environments to
obtain the voltage measurements to be analyzed. The first
environment was a small and shallow pool. The receiving
antenna was placed in the center of the pool while the trans-
mitting antenna was moved around it in two circular paths
of different radii. The setup is shown in Fig. 1. The second
environment was a portion of NASA’s Neutral Buoyancy Lab
(NBL), where the antennas were placed at a depth of about 5
[m]. The last environment was an open area in Lake Conroe,
located northwest of the city of Houston, with the receiving
antenna located at varying depths. Measurements from the
receiving antenna were continuously recorded for the last
two environments, with no predetermined paths followed.

To calculate the noise, we considered the cases where we
expect no received signal, such as when the transmitter is off
or a particular receiving coil is orthogonal to the currently
transmitting coil. The voltages measured in such cases corre-
spond in part to the noise present in the environment. Other
effects such as the inaccuracy of our magnetic field model
and measurement errors contribute to the non-zero measured
voltages, but are neglected in this work. The average noise
values for each receiving coil for all environments were
computed.

C. Noise Model

Equation (6) only considers the magnetic field values
h; directly calculated from the voltages measured at the
receiving coils ¢+ = 1,2, 3. In order to incorporate the noise
data, we first modify the magnetic field expressions using
the linear hypothesis [14]

2
Vit + Ooi

hiw = hiy 03 = — S

(7
where v; ; is the noiseless component of the voltage received,
0',[2])2» is the noise component, w is the frequency of the system,

and NV and A are the number of wire turns and face area of
the coils. With the noise taken into account, (6) is now

2 C
r|+op = B2+ h2, 2,

)Gzcaﬂ+m*,®

where H = h2, + h2, + h?, and ¥ = 2(hy 0h. +
hy10hy + bz 10n2) + 05, + 07, + 07 .. We are interested
in extracting the terms containing noise values, since they
are the only terms contributing to O'g. Using the binomial
theorem for negative exponents [15], we obtain the following

approximation (|X|< H)

ok =Ch (—éZH‘g + 77222H—1é“> . 9)

This derivation shows that the uncertainty present in our

range calculation method depends both on the ambient noise

and on the magnetic fields at the receiver. The particle filter

calculates the ideal magnetic fields for the particles being

considered, so there is no issue with H being part of the
expression for o7, .

IV. RESULTS

The noise values calculated from the test data sets are
shown in Table I below. The data sets from the two different
circular paths in the shallow pool are considered as two
different environments. The values cover a range of a few
millivolts, with the noisiest cases less than 7 [mV].

TABLE I
051 ; VALUES
X coil [mV] | Y coil [mV] Z coil [mV]
Pool-0.6 [m] circle 5.21 6.04 6.92
Pool-1.2 [m] circle 4.03 4.54 5.27
Lake Conroe 471 3.19 4.79
NBL 1.99 1.64 1.14

To test the effects of the noise model on localization
performance, we incorporate it into our existing particle
filter. The algorithm reads the data sets from the circular
paths in the shallow pool and estimates the location of the
transmitting antenna as it moves. Additionally, we use data
sets previously obtained in tests performed in a larger pool.
These data sets correspond to a 3 [m] square path and a 3
[m] boustrophedon path, whose setup is shown in Fig.4.
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Fig. 3. Representative final estimations of the particle filter for multiple
paths. From top-down: Circle path with radius 0.6 [m], circle path with
radius 1.2 [m], square path with side length 3 [m], and the boustrophedon
path. With noise (left), the particle cloud is spread out and contains some
good estimates of the antenna. Without noise (right) the particle cloud is
more compact but far away from the true antenna position.

Fig. 3 shows the final estimates produced by the filter for
the 0.6 [m] circular path, the 1.2 [m] circular path, the 3[m]
square path and the 3 [m] boustrophedon path, considering
noise and assuming no noise present. The estimates are
represented by the green/blue cloud of particles. In all
cases, the noise values used are those in the second row
of Table I. Without noise the resulting particle cloud is
considerably compact at the end of the path, but is not
accurate in estimating the final position of the transmitting
antenna. In contrast, with the noise taken into account the
resulting particle cloud is more spread out at the end, but
contains reasonable estimates for both paths. Although the
noise values were computed from data obtained in a different
environment, they work well with the 3 [m] square and 3 [m]
boustrophedon path, indicating that the noise does not vary
enough to impede the performance of the filter.

The effect of the noise value is further demonstrated
in Fig. 5, where the errors between the true state of the
transmitting antenna and the filter’s most likely particle

1.5m.

Fig. 4. Larger pool experiment setup. A: Coils mounted inside waterproof
buckets, carried by two BlueROV2 robots. B: Square path with side length
of 3 [m]. C: Boustrophedon path with side length of 1 [m] and 0.6 [m] step
length.

B C

(MLP) for different scenarios are plotted. Besides the cases
of no noise and noise equal to the calculated ag,i, two more
cases are considered where the calculated ‘712;,1‘ was amplified
and attenuated by a factor of 10. In all cases, the filter was
run 10 times, and the mean and standard error for each of
the 16 measurement locations (iterations) was computed.

The MLPs resulting from using the calculated 012)’1- have a
smaller error by the end of the paths on average. The filter
performs similarly well with the attenuated values, having
only a slightly worse error. For the amplified values, the error
is considerably worse, and its standard deviation is larger.
Not considering noise at all results in an error comparable
to the size of the circular path, and doesn’t change much
through the course of the iterations.

V. CONCLUSION

In this work we derived a model for incorporating the
voltage noise received by a triaxial coil antenna, in different
underwater environments, into an equation used to calculate
the range between two such antennas based on measured
induced voltages. The model parameters for two circular
paths of different radii were obtained by considering certain
data points measured at different locations along said paths,
according to the simplified quasi-static approximation used in
our MI-based approach. We also performed measurements in
larger bodies of water, ultimately showing that the geometry
of the environment did not heavily impact the calculated
noise values

A particle filter recreated the circular paths considering
different values for the noise, as well as other paths per-
formed in a larger pool. The error between the best estimate
and the true state of the antenna was smallest for the values
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Fig. 5. Average error between the filter’s MLP and the true state of the
robot for the 0.6 [m] path (top) and the 1.2 [m] path (bottom). The colors
correspond to no noise (red), 0.1012)7 ; (cyan), 012}7 ; (blue) and 1005’ ; (green).

calculated from the derived noise model, followed closely
by the same values attenuated by a factor of 10. As the
noise values were amplified, the error became much worse.
However, not considering noise at all resulted in worst error
for all paths, indicating a useless estimation. The trend
observed is that noise values equal to and smaller than,
within a certain range, the ones resulting from the model
are beneficial in producing good estimates.
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