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Abstract— Localization is a fundamental task in many swarm
robotic applications, such as foraging and exploration. Mag-
netic induction communications, which rely on the magnetic
component of an antenna’s near-field, have gathered interest as
means to perform localization in underground and underwater
environments. MI signals propagate through lossy environments
better than traditional RF signals, and can offer advantages
over acoustics. In prior work, we developed a localization
method based on MI signals to calculate the range between
two moving MI antennas. A core aspect of the method is a
particle filter that relies on the received signal strength and
speed of the antennas to produce location estimates. In this
paper, we first empirically find the amount of noise present in
our signal strength measurements in underwater environments.
Then we propose a model to capture the impact of the noise
on the range calculations and apply it to improve the particle
filter’s location estimations.

I. INTRODUCTION

Subsea localization for autonomous underwater vehicles

(AUV) serves as a gateway enabling many other applications,

including offshore rig inspection and environmental monitor-

ing. These applications are possible through the deployment

of underwater wireless sensor networks (UWSN) with multi-

agent robot systems for data collection or inspection. These

systems have potential advantages in affordability, scalability,

and the lack of single points-of-failure.

Multiple solutions to localization in above-ground environ-

ments exist, relying on methods such as computer vision and

traditional RF communications. However, these methods face

challenges for underground and underwater environments,

where visibility can be non-existent and RF signals atten-

uate quickly due to the lossy characteristics of the media.

Magnetic induction (MI) signals have recently been used

to overcome such difficulties in short range applications,

where they are less susceptible to attenuation. The hardware

required to implement MI communications is also simpler

and cheaper compared to acoustics, a popular technology

underwater.

Our hardware implementation relies on the use of triaxial

coil antennas to estimate the relative location of a robot

based on measured voltage data. These antennas are typically

used for MI communications and have been tested in air

and underwater. In previous work we showed the feasibility
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Fig. 1. Small scale pool setup. A: A BlueROV2 equipped with a triaxial
coil antenna. B: Small-scale experiment setup. C: Circular path with a radius
of 0.6 [m]. D: Circular path with a radius of 1.2 [m]. Measurements were
taken in increments of 22.5 degrees. The range between the antennas is
represented by r.

of reconstructing the path a robot takes around another in

air using triaxial antennas and a particle filter. However,

noise present in the environment was represented by values

with no experimental basis. In this work, we study how the

inclusion of a noise model based on empirically obtained

values improves localization accuracy.

This work is arranged as follows: In Section II we present

several avenues of research related to this work. The theory

and experiment setup are shown in Section III, and the results

from our experiments are shown in Section IV. We conclude

the work in Section V.

II. RELATED WORK

Using magnetic induction for communications have been

studied over the years as an alternative for underwater

systems. Recent surveys can be found from [1] and [2].

Due to the UWSN applications for MI communications,

localization methods often require multiple nodes to increase

accuracy. This is true not only for MI-based methods but also

for acoustic methods. For example, long-baseline (LBL) sys-

tems, short-baseline (SBL), and ultra-short-baseline (USBL)

positioning systems rely on multiple transponders for posi-

tioning and bearing calculations [3]. Despite its low data rate,

high transmission delay, and expensive deployment costs,
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its high range makes acoustic communications the preferred

approach for underwater communications and localization.

Current research for localization using acoustic commu-

nications include Kalman filters [4], particle filters [5], [6],

and hybrids between acoustic and RF-based methods [7]. The

authors of [5] performed bearing-only localization between

AUVs that have magnetometer and acceleration sensors

installed on the receiver AUV for pose measurements. Their

particle filter then uses these measurements to estimate the

location of the robot that carries the receiver based on

direction information provided by the transmitting robot.

This approach eliminates the requirement for a real-time

clock for synchronization. However, since the transmitter is

required to stay at a fixed position, large errors occur due to

drift and initial conditions.

Alternatively, Erol et al. proposed an AUV-assisted ap-

proach that relies on the robot to gather GPS information

while on the surface before diving and following a predeter-

mined trajectory in order to locate all nodes [8]. The robot

and sensor nodes share a common communication protocol

to transmit location information so that the nodes can localize

themselves using triangulation or the bounding box method,

with pressure sensors installed for depth calculations. This

approach allows sensor nodes to be deployed arbitrarily.

Synchronization between them is not required.

The use of coil antennas solely for localization have

been studied for over fifty years, most notably starting with

Kalmus’ work on magnetic guidance and tracking [9] and

Raab’s work using triaxial antennas [10].

For localization with MI communications, two or more

nodes are used to improve accuracy. These nodes, often

named anchor nodes, are stationary and their position is

known with respect to the environment. Adding more anchor

nodes improves accuracy, getting as low as 10 [cm] accuracy

with eight anchor nodes [11].

Our work is related to Huang and Zheng’s paper, which

studies the localization of a single triaxial coil with respect

to two transmitting coils whose position is known [12].

The three coils of each transmitting antenna are excited

sequentially, resulting in sixteen possible solutions for the

location of the coil, which are then reduced by generating

rotation matrices, then applying maximum likelihood esti-

mation. Alternatively, the authors present a distance-based

method, where the minimum mean square error metric is

applied to estimate the location of the coil. While this method

does not completely solve the multiple solutions problem, it

is computationally less complex.

This paper only considers the use of one anchor node to

represent the localization between two robots. This reduces

the accuracy of our estimates and increases the chance

of location ambiguity. By using a particle filter, we can

produce a reasonable estimate of the robot’s state over time

using the data from the triaxial antenna. Furthermore, the

performance of the particle filter improves by considering

data from an onboard sensor, such as using data from an

inertial measurement unit (IMU).

III. METHODS

Fig. 2. Representation of our MI triaxial antennas.

This paper analyzes the ambient noise in an underwater

medium to extend the work in [13]. Our antennas are com-

posed of three orthogonal wire coils, as shown in Fig.2. We

utilize the same amplifier circuitry for the transmissions.For

the receiver, we use a National Instruments (NI) Com-

pactRIO controller with the NI-9220 voltage input module

to measure the differential voltages induced on the receiving

coils.

A. Fundamental Theory

We paraphrase the theory used in the work from [13]

below. We assume that the magnetic fields are quasistatic

and model our coils as magnetic dipoles.

The magnetic field strength by coil i at a point designated

by r is

hi(r) =
1

4π|r|3 [3r̂(m · r̂)−m], (1)

where m is the magnetic moment of the dipole. For a coil

antenna, the magnetic moment is m = NIAû, where N is

the number of wire turns, I is the current flowing through

the wire, A is the area of the coil and û is the unit vector

perpendicular to that area.

Since m = |m|m̂, (1) is rewritten as

hi(r) =
|m|

4π|r|3 [3r̂(m̂ · r̂)− m̂], (2)

We split the magnetic field strength into its compo-

nents such that hi(r) =
[
hi,x hi,y hi,z

]
. Similarly, r̂ =[

rx ry rz
]

and m̂ =
[
mi,x mi,y mi,z

]
. If we define

qi = m̂i · r̂, then the x component of the magnetic field

strength due to coil i is given by

hi,x =
|m|

4π|r|3 [3rx(m̂i · r̂)−mi,x]

=
|m|

4π|r|3 [3rxqi −mi,x].

(3)

To extract the magnitude of r, which is the main quantity

required by the particle filter, we begin by finding the norm
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of the magnetic field produced by the transmitting coil i. The

norm of hi is given by

|hi| =
√
(hi,x)2 + (hi,y)2 + (hi,z)2

=
|m|

4π|r|3
√

(3rxqi−mi,x)
2+(3ryqi−mi,y)

2+(3rzqi−mi,z)
2

=
|m|

4π|r|3
√
3(qi)2 + 1. (4)

Since the three transmitting coils are orthogonal, the vector

q =
[
q1 q2 q3

]
is also a unit vector. By assuming that the

magnitude of the magnetic moment of all three coils is the

same we get the following system of linear equations:

3

( |h1|
|h2|

)2

(q2)
2 +

( |h1|
|h2|

)2

= (3q1)
2 + 1

3

( |h1|
|h3|

)2

(q3)
2 +

( |h1|
|h3|

)2

= (3q1)
2 + 1

(q1)
2 + (q2)

2 + (q3)
2 = 1

(5)

By solving for q the magnitude of r can be calculated

from (4), if the values for the magnetic field components are

known. This results in

|r|=
(

C

|hx|2+|hy|2+|hz|2
) 1

6

, (6)

where C is the constant related to the magnetic moment

magnitude |m|.

B. Noise Measurements

We performed tests in three different environments to

obtain the voltage measurements to be analyzed. The first

environment was a small and shallow pool. The receiving

antenna was placed in the center of the pool while the trans-

mitting antenna was moved around it in two circular paths

of different radii. The setup is shown in Fig. 1. The second

environment was a portion of NASA’s Neutral Buoyancy Lab

(NBL), where the antennas were placed at a depth of about 5

[m]. The last environment was an open area in Lake Conroe,

located northwest of the city of Houston, with the receiving

antenna located at varying depths. Measurements from the

receiving antenna were continuously recorded for the last

two environments, with no predetermined paths followed.

To calculate the noise, we considered the cases where we

expect no received signal, such as when the transmitter is off

or a particular receiving coil is orthogonal to the currently

transmitting coil. The voltages measured in such cases corre-

spond in part to the noise present in the environment. Other

effects such as the inaccuracy of our magnetic field model

and measurement errors contribute to the non-zero measured

voltages, but are neglected in this work. The average noise

values for each receiving coil for all environments were

computed.

C. Noise Model

Equation (6) only considers the magnetic field values

hi directly calculated from the voltages measured at the

receiving coils i = 1, 2, 3. In order to incorporate the noise

data, we first modify the magnetic field expressions using

the linear hypothesis [14]

hi,r = hi,t + σ2
h,i =

vi,t + σ2
v,i

μ0ωNA
, (7)

where vi,t is the noiseless component of the voltage received,

σ2
v,i is the noise component, ω is the frequency of the system,

and N and A are the number of wire turns and face area of

the coils. With the noise taken into account, (6) is now

|r|+σ2
|r| =

(
C

h2
x,r + h2

y,r + h2
z,r

) 1
6

= C
1
6 (H +Σ)−

1
6 , (8)

where H = h2
x,t + h2

y,t + h2
z,t and Σ = 2(hx,tσh,x +

hy,tσh,y + hz,tσh,z) + σ2
h,x + σ2

h,y + σ2
h,z . We are interested

in extracting the terms containing noise values, since they

are the only terms contributing to σ2
ρ. Using the binomial

theorem for negative exponents [15], we obtain the following

approximation (|Σ|< H)

σ2
|r| = C

1
6

(
−1

6
ΣH− 7

6 +
7

72
Σ2H− 13

6

)
. (9)

This derivation shows that the uncertainty present in our

range calculation method depends both on the ambient noise

and on the magnetic fields at the receiver. The particle filter

calculates the ideal magnetic fields for the particles being

considered, so there is no issue with H being part of the

expression for σ2
|r|.

IV. RESULTS

The noise values calculated from the test data sets are

shown in Table I below. The data sets from the two different

circular paths in the shallow pool are considered as two

different environments. The values cover a range of a few

millivolts, with the noisiest cases less than 7 [mV].

TABLE I

σ2v,i VALUES

X coil [mV] Y coil [mV] Z coil [mV]
Pool-0.6 [m] circle 5.21 6.04 6.92
Pool-1.2 [m] circle 4.03 4.54 5.27

Lake Conroe 4.71 3.19 4.79
NBL 1.99 1.64 1.14

To test the effects of the noise model on localization

performance, we incorporate it into our existing particle

filter. The algorithm reads the data sets from the circular

paths in the shallow pool and estimates the location of the

transmitting antenna as it moves. Additionally, we use data

sets previously obtained in tests performed in a larger pool.

These data sets correspond to a 3 [m] square path and a 3

[m] boustrophedon path, whose setup is shown in Fig.4.

Authorized licensed use limited to: University of Houston. Downloaded on April 19,2021 at 21:07:56 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Representative final estimations of the particle filter for multiple
paths. From top-down: Circle path with radius 0.6 [m], circle path with
radius 1.2 [m], square path with side length 3 [m], and the boustrophedon
path. With noise (left), the particle cloud is spread out and contains some
good estimates of the antenna. Without noise (right) the particle cloud is
more compact but far away from the true antenna position.

Fig. 3 shows the final estimates produced by the filter for

the 0.6 [m] circular path, the 1.2 [m] circular path, the 3[m]

square path and the 3 [m] boustrophedon path, considering

noise and assuming no noise present. The estimates are

represented by the green/blue cloud of particles. In all

cases, the noise values used are those in the second row

of Table I. Without noise the resulting particle cloud is

considerably compact at the end of the path, but is not

accurate in estimating the final position of the transmitting

antenna. In contrast, with the noise taken into account the

resulting particle cloud is more spread out at the end, but

contains reasonable estimates for both paths. Although the

noise values were computed from data obtained in a different

environment, they work well with the 3 [m] square and 3 [m]

boustrophedon path, indicating that the noise does not vary

enough to impede the performance of the filter.

The effect of the noise value is further demonstrated

in Fig. 5, where the errors between the true state of the

transmitting antenna and the filter’s most likely particle

Fig. 4. Larger pool experiment setup. A: Coils mounted inside waterproof
buckets, carried by two BlueROV2 robots. B: Square path with side length
of 3 [m]. C: Boustrophedon path with side length of 1 [m] and 0.6 [m] step
length.

(MLP) for different scenarios are plotted. Besides the cases

of no noise and noise equal to the calculated σ2
v,i, two more

cases are considered where the calculated σ2
v,i was amplified

and attenuated by a factor of 10. In all cases, the filter was

run 10 times, and the mean and standard error for each of

the 16 measurement locations (iterations) was computed.

The MLPs resulting from using the calculated σ2
v,i have a

smaller error by the end of the paths on average. The filter

performs similarly well with the attenuated values, having

only a slightly worse error. For the amplified values, the error

is considerably worse, and its standard deviation is larger.

Not considering noise at all results in an error comparable

to the size of the circular path, and doesn’t change much

through the course of the iterations.

V. CONCLUSION

In this work we derived a model for incorporating the

voltage noise received by a triaxial coil antenna, in different

underwater environments, into an equation used to calculate

the range between two such antennas based on measured

induced voltages. The model parameters for two circular

paths of different radii were obtained by considering certain

data points measured at different locations along said paths,

according to the simplified quasi-static approximation used in

our MI-based approach. We also performed measurements in

larger bodies of water, ultimately showing that the geometry

of the environment did not heavily impact the calculated

noise values

A particle filter recreated the circular paths considering

different values for the noise, as well as other paths per-

formed in a larger pool. The error between the best estimate

and the true state of the antenna was smallest for the values
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Fig. 5. Average error between the filter’s MLP and the true state of the
robot for the 0.6 [m] path (top) and the 1.2 [m] path (bottom). The colors
correspond to no noise (red), 0.1σ2v,i (cyan), σ2v,i (blue) and 10σ2v,i (green).

calculated from the derived noise model, followed closely

by the same values attenuated by a factor of 10. As the

noise values were amplified, the error became much worse.

However, not considering noise at all resulted in worst error

for all paths, indicating a useless estimation. The trend

observed is that noise values equal to and smaller than,

within a certain range, the ones resulting from the model

are beneficial in producing good estimates.
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