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Abstract—In the emerging Internet-of-Things (IoT) paradigm,
the lifetime of energy-constrained devices (ECDs) cannot be
ensured due to the limited battery capacity. In this article,
unmanned aerial vehicles (UAVs) are served as carriers of wire-
less power chargers (WPCs) to charge the ECDs. Aiming at
maximizing the total amount of charging energy under the con-
straints of the UAVs and WPCs, a multiple-period charging
process problem is formulated. To address this problem, bipartite
matching with one-sided preferences is introduced to model the
charging relationship between the ECDs and UAVs. Nevertheless,
the traditional one-shot static matching is not suitable for this
dynamic scenario, and thus the problem is further solved by
the novel multiple-stage dynamic matching. Besides, the wireless
charging process is history dependent since the current match-
ing result will influence the future initial charging status, and
consequently, the Markov decision process (MDP) and Bellman
equation are leveraged. Then, by combining the MDP and ran-
dom serial dictatorship (RSD) matching algorithm together, a
four-step algorithm is proposed. In our proposed algorithm, the
local MDPs for the ECDs are set up first. Next, using the RSD
algorithm, all possible actions can be presented according to
the current state. Then, the joint MDP is built based on the
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local MDPs and all the possible matching results. Finally, the
Bellman equation is utilized to select the optimal branch. Finally,
simulation results demonstrate the effectiveness of our proposed
algorithm.

Index Terms—Dynamic matching, energy-constrained
Internet-of-Things (IoT) device, Markov decision process
(MDP), unmanned aerial vehicle (UAV), wireless charging.

I. INTRODUCTION

THE PROMISING Internet of Things (IoT) has introduced
enormous devices into the Internet environment, such

as laptops, refrigerators, vehicles, and wireless sensors [1].
However, some of the devices are constrained by limited bat-
tery capacity [2], which restricts the development of IoT. As
presented in [3], in order to collect critical information, the
wireless sensors are distributed in certain harsh environments
(e.g., desert and rain forest), but they will be powered off
someday because of limited battery lives. Unfortunately, cer-
tain harsh places are not easily reached by the human beings
for battery replacement. Another application restricted by lim-
ited energy is illustrated in [4]. As described in [4], some
sensors are embedded into a bridge to monitor its health, and
in that case, the bridge collapses disaster will not happen.
Nonetheless, it is unrealistic to charge these embedded sensors
by wired way or change battery manually. From the above two
cases, the problem of charging the energy-constrained devices
(ECDs) in IoT is nontrivial [5]. Furthermore, charging the
ECDs by a periodic way makes it possible that the IoT network
becomes a sustainable one [6].
As mentioned above, charging the ECDs in IoT by wires

is unrealistic. Fortunately, one emerging technique, wireless
power transfer (WPT), provides a promising way to charge
these devices [7], as shown in [8], WPT can be utilized to
power electric vehicle. Until now, WPT technologies have
been researched extensively, e.g., inductive coupling, elec-
tromagnetic radiation, and magnetic resonant coupling [9].
For the inductive coupling technique, it is conducted over
a short distance, which is usually less than a coil diameter.
As for the electromagnetic radiation technique, the distance
between the transmitter and the receiver can be very large [10].
Nevertheless, the charging efficiency is quite small [11].
Regarding the magnetic resonant coupling technique proposed
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in [12], it shows its superiority for our scenario, since it can
transmit power within several meters with comparatively high
efficiency.
On the other hand, assigning human beings to imple-

ment the wireless charging process for energy-constrained IoT
devices is also impractical, especially in harsh environment,
so unmanned aerial vehicles (UAVs) are leveraged in this arti-
cle. Nowadays, UAVs are attracting much attention for their
extensive potential applications, flexibility, and cost effective-
ness [13]. In [14], the UAVs are utilized to deliver packages,
which is a promising development. Meanwhile, the UAVs can
also be regarded as data collector because of its mobility, as
depicted in [15]. In addition, the UAVs are deployed as the
mobile stations or mobile relays to support wireless commu-
nications, as shown in [16] and [17], respectively. Especially,
the UAVs are served as relays for wireless sensor networks
in [18], replacing the static relay with large power consump-
tion. Except the typical use cases depicted in [7], allocating
the UAVs to charge these ECDs by leveraging the WPT tech-
nique is becoming another promising research [19]. Griffin and
Detweiler [20] showed the feasibility of utilizing the UAVs
to power the sensors out of grid by experimental results.
Nevertheless, the energy of a UAV is limited because of its
small size and low cost as presented in [20], and so the UAV
cannot be used as the source of energy transmitter. As a result,
in this article, the UAVs are regarded as the carriers of energy
transmitters.
Some previous works have dealt with the wireless charging

problems, and we will analyze the literature and distinguish
this article from the previous related works. In [4], the poten-
tial of utilizing the UAVs to charge wireless sensor networks
by WPT is analyzed. In addition, Leng [4] evaluated the influ-
ence of different parameters on the lifetime of wireless sensor
networks. In [21], the UAV is utilized to maximize the life-
time of the wireless sensor network by charging the sensors.
Meanwhile, Basha et al. [22] answered the question of how
much benefit can be obtained by leveraging the UAVs to
power the sensors and what is the condition. However, only
one-shot charging process is considered in both of the two lit-
eratures. In [13], the UAVs act as an energy source provider
and charge the D2D pairs utilizing energy harvesting. In [13],
the time slot is divided into the energy harvesting phase and
information transmission phase, and the energy consumed in
the information transmission phase is restricted by the energy
received in the energy harvesting phase. Nonetheless, the
resource allocation problem in [13] does not consider the
dynamic characteristic. Another UAV-enabled charging system
is described in [19], in which the sum energy maximization
problem and the minimum received energy maximization
problem are addressed separately. Nevertheless, Xu et al. [19]
focused on the trajectory design and only one UAV is con-
sidered, as a consequence, the UAV allocation problem is not
involved. Besides, the radio-frequency-based wireless charg-
ing problem is addressed for wireless sensor networks in [23].
Taking account of energy harvesting and information trans-
mission together, both frequency-division multiplexing and
time-division multiplexing are adopted in [23]. Nonetheless,
the research in [23] focuses on power allocation problem while

this article aims to solve the association problem between
the UAVs and energy-constrained IoT devices. Furthermore,
the UAV-assisted WPT scenario in mobile-edge computing is
applied in [24]. While taking the energy harvesting causal
constraint and the UAV’s speed constraint into account, the
resource allocation problem is tackled. In [24], the UAVs
can not only provide energy for the devices but also perform
computation-intensive tasks for the devices by the equipped
computing processor. Unfortunately, the energy constraint of
the UAV is not considered in this reference.
As described above, few works focus on the charging asso-

ciation problem between the UAVs and ECDs. Besides, the
UAVs can be utilized by one-time manner or periodic man-
ner [25], nonetheless, previous works mainly focus on the one-
shot allocation problem. To fill this gap and ensure sustainable
energy for the ECDs, in this article, the UAV-assisted multiple
period wireless charging problem is tackled. Accordingly,
the house allocation (HA) model, bipartite matching with
one-sided preferences, is leveraged. At the same time, it is
a multiple stage dynamic matching, i.e., multiple matching
results will be obtained during the whole charging process. It
is worth noting that the multiple stage matching is not a sim-
ple repeating of one-shot matching. Intuitively, the charging
process is history dependent, since the initial energy status of
the current period is not only related to the initial energy status
of the last period but also is affected by the matching result of
the last period, which can be formulated as a Markov decision
process (MDP). To the best of our knowledge, this is the first
paper that deals with the multiperiod matching problem when
considering the history-dependent wireless charging process.
The main contribution of this article is elaborated as follows.
1) A novel UAV-enabled multiperiod wireless charging pro-

cess is presented to provide sustainable energy for the
ECDs. In the proposed scenario, the Markov property
of the charging process is taken into account, since
the current state and action can affect the next period
state. After considering the realistic scenario, the energy
constraints of the UAVs and wireless power chargers
(WPCs) are also considered.

2) To tackle the multiperiod wireless charging problem,
the multistage dynamic bipartite matching with one-
sided preference is proposed to model the interaction
between the ECDs and UAVs. Quite different from
the existing matching algorithm, this article focuses on
multiple stage dynamic matching instead of one-shot
matching. In order to conduct the dynamic matching, the
Bellman equation-based evaluation function taking both
the current reward and the future reward into account
is leveraged to maximize the individual ECD’s charging
amount.

3) To achieve higher charging amount, the proactive four-
step charging mechanism is designed. In the first step,
the local MDPs are set up for all ECDs, which is crucial
for predicting the future reward. In the second step, the
random serial dictatorship (RSD) matching algorithm is
proposed to take further action according to the current
state. In the third step, the joint MDP is obtained based
on the results in the first two steps. Finally, the Bellman
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equation-based estimated reward is constructed to select
the optimal branch.

4) To evaluate the performance of the proposed mecha-
nism, numerical simulations are presented. The simu-
lation results demonstrate the good performance of our
proposed algorithm. Besides, the implementation pro-
cess and parameter influence of the proposed algorithm
are presented, which provide more insightful analyses.

The remainder of this article is organized as follows. In
Section II, the UAV-assisted multiperiod wireless charging
problem is presented, while taking into account of the MDP.
Then some preliminaries regarding MDP and matching are
introduced in Section III. In Section IV, the sequential decision
problem is modeled by the multistage dynamic HA problem,
and then is solved by a four-step solution. Simulation results
shown in Section V evaluate the superior performance of the
proposed charging mechanism. Finally, conclusions are drawn
in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the multiperiod wireless charging process
between the UAVs and ECDs is described in Section II-A.
Then, the MDP-based states and actions are illustrated in
Section II-B. Finally, the multiperiod charging process is
formulated in Section II-C.

A. Charging Model

The multiperiod wireless charging model is depicted in
Fig. 1. Assume at t = 0, several ECDs in IoT network denoted
by M = {1, . . . , i, . . . , M} are distributed in different geo-
graphical areas, and the coordinates of ECD i is {x0Di

, y0Di
, 0}.

These IoT devices have different missions. However, the bat-
tery capacity of each device is limited, and then a set of UAVs
are employed to charge these ECDs. The set of UAVs is rep-
resented as N = {1, . . . , j, . . . , N}. To be more practical, the
multiple period wireless charging mechanism is considered,
i.e., these UAVs will be allocated to charge the ECDs in a
periodic duration, and T period is assumed in this article, i.e.,
t = {0, 1, . . . , T − 1}. Assume the position of these ECDs is
known as prior information and they are constant, meanwhile
the UAVs are located at different stations and all the UAVs
are ready for the charging mission, i.e., they have been fully
charged. In particular, the energy capacity of each UAV is lim-
ited due to the constrained size and cost, and each UAV has
to return to the UAV station before its energy is exhausted.
The initial 3-D coordinates of these UAVs are represented by
{x0Uj

, y0Uj
, h}, where h is the height parameter.

To fully exploit the advantage of the UAVs, each UAV
is equipped with a WPC, and the charging power of WPC
equipped in UAV j is Pj

T . As a result, the energy of the UAV
is mainly utilized for flying and hovering. In this article, the
maximum energy of each UAV is represented by Ej

max. To
ensure each UAV can return to the initial position before they
are powered off, the maximum charging time tijch of each UAV
is calculated by

Ej
max ≥ 2dij

v
Pf + tijchPh (1)

where dij is the distance between ECD i and UAV j, which

is denoted by dij =
√

(x0Di
− x0Uj

)2 + (y0Di
− y0Uj

)2. Besides, to
simplify, the speed of the UAVs is assumed to be the same,
and is denoted by v. Furthermore, Pf and Ph, respectively, indi-
cate the UAVs’ energy consumption when flying and hovering.
Thus, the maximum charging time is obtained.
Moreover, the charging efficiency is another factor that is

taken into account. Assuming the efficiency of the magnetic
resonant coupling is η, and then the harvested power in IoT
device i is given by

Pij
R = ηPj

T . (2)

For ECD i, the maximum energy storage is Si
max, and the

remaining energy before the charging process at time t is Si
re,t.

If UAV j is allocated to charge ECD i, the charging result can
be divided into three scenarios, which are⎧⎪⎨

⎪⎩
Si
max − Si

re,t > Pij
Rtijch

Si
max − Si

re,t = Pij
Rtijch

Si
max − Si

re,t < Pij
Rtijch.

(3)

In the first scenario, even if the UAV leverages all the
energy to help the charging process, the ECD cannot be fully
charged. On the other hand, the ECD’s energy reaches the
maximum storage capacity before the UAV is powered off,
and in this scenario, the UAV’s energy is not fully utilized.
Furthermore, the second inequality shows the critical state.
Thus, the actual charging amount of ECD i when utilizing
UAV j is expressed as

Rt
ij =

{
Pij

Rtijch, if Si
max − Si

re,t > Pij
Rtijch

Si
max − Si

re,t, if Si
max − Si

re,t ≤ Pij
Rtijch.

(4)

B. States and Actions

To provide sustainable energy for the IoT devices, the UAVs
will be allocated to charge them in a periodic manner. For the
IoT device with a constant energy consuming rate, its remain-
ing energy at time t +1 is related to the remaining energy and
charging decision before time t + 1, i.e., the charging process
is history dependent. To simplify, the memory-less Markov-
based model is adopted. In the Markov-based model, state St+1
of time t +1 is only related to state St and action At at time t.
Here, the state of an ECD indicates its demand for energy, and
the ECD with lower energy will be more eager to be served
by the UAV with high charging capacity. In Section IV-A, the
state will be defined as the ECD’s preference profile over the
UAVs, and the UAV that can provide higher energy will be
more preferred.
Now that the charging system needs to allocate the UAV to

a certain ECD, the action can be expressed by At = {αt
i , α

t−i},
where αt

i is the association vector of ECD i at time t, which
can be further presented as αt

i = {αt
i1, α

t
i2, . . . , α

t
iN}. The vari-

able αt
ij indicates the charging allocation result, and αt

ij = 1
denotes that UAV j is allocated to charge ECD i, and vice
versa. Besides, αt−i represents the association vector of all
ECDs except i at time t. Assuming the underlying transi-
tion model is P(St+1|St, At), each rational IoT device tries to
maximize its individual charging amount. Since the charging
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Fig. 1. System model of multiperiod wireless charging.

system is based on the Markov model, we not only consider
the current time charging amount but also take account of the
future possible charging amount.

C. Problem Formulation

By taking both the current charging amount and the future
charging amount into account, the estimated possible charging
amount of ECD i at time t is obtained by

Uπ
i (St) = Cπ

t

(
at

i, at−i

∣∣St
) + γ Fπ

t

(
at

i, at−i

∣∣St
)
. (5)

The first item means the current charging amount if action
(at

i, at−i) is adopted, and the second item indicates the pos-
sible future charging amount if action (at

i, at−i) is taken.
γ represents the discounting factor, indicating the different
important levels of the current result and the future result, and
0 ≤ γ ≤ 1 [26]. In addition, π is the charging mechanism,
which will be designed in this article. More concretely, the
estimated possible charging amount can be expressed by the
Bellman equation, which is shown as

Uπ
i (St) = fi[π(At|St)]

+ γ
∑
At

∑
St+1

π(At|St)P(St+1|St, At)U
π
i (St+1). (6)

Here, Uπ
i (St+1) is the estimated charging amount of time t+1,

which can be obtained recursively. Besides, fi[π(At|St)] indi-
cates the reward function at time t if the adopting mechanism
is π(At|St), more specifically, the charging amount function is
further presented as

fi[π(At|St)] =
N∑

j=1

αt
ijR

t
ij. (7)

Since every rational and selfish ECD tries to maximize its
own estimated possible charging amount, and then the problem

formulation is expressed by

max
αt

i ,α
t−i

Cπ
t

(
at

i, at−i

∣∣St
) + γ Fπ

t

(
at

i, at−i

∣∣St
)

s.t. C1: αt
i = {

αt
i1, α

t
i2, . . . , α

t
iN

}
C2: α−i = {

αt
1, . . . , α

t
i−1, α

t
i+1, . . . , α

t
M

}
C3: αt

ij = {0, 1} ∀i ∀j ∀t

C4:
∑

j

αt
ij ≤ 1 ∀i ∀t

C5:
∑

i

αt
ij ≤ 1 ∀j ∀t. (8)

Here, C1 and C2 describe the action set. C3 indicates the
assignment element, while αt

ij = 1 represents that UAV j is
assigned to ECD i at time t, and vice versa. Besides, C4 and
C5 illustrate that the maximum association number of the ECD
and UAV is one. The problem formulation above involves a
series of optimization problem. At time t = 0, each ECD
tries to maximize its estimated charging amount according to
the initial state S0. Subsequently, at t = 1, all ECDs aim to
maximize their estimated charging amount according to the
state S0 and action A0 at t = 0. Thus, the charging mechanism
design needs to be a sequential decision process.

III. PRELIMINARIES

To model the relationship between the ECDs and UAVs,
the matching theory is introduced in this article [27].
Distinguished from the bipartite graph-based matching lever-
aged in [28], the matching models in [27] involve the notion
of preference, and the matching results can be achieved in
distributed manners. In this article, the bipartite matching
with one-sided preferences is leveraged. Here, the UAVs are
employed to accomplish the charging mission and they will
not have preferences over the ECDs just as the houses will
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not have preferences over the agents; while for the ECDs,
they will have preferences over the UAVs because the charg-
ing capacities of different UAVs vary greatly, and all ECDs
want to be served by the UAVs with higher charging capaci-
ties. In this section, the preliminaries of the MDP are presented
in Section III-A. Next, the bipartite matching with one-sided
preference is illustrated in Section III-B. Finally, the sequen-
tial matching with dynamic preferences is described in detail,
as shown in Section III-C.

A. Markov Decision Process Basics

Distinguished from history-dependent process, the Markov
property indicates that the next state depends only on the
current state and current action, and is independent of the
history state and action, which is a memory-less character-
istic [29]. Mathematically, an MDP is a tuple instituted by
〈S, A, P, R, γ 〉, where S denotes the set of all possible states
while A represents the set of all possible actions. Besides, for
state s ∈ S and action a ∈ A, P(s′|s, a) depicts the probabil-
ity of transferring to state s′ when action a is taken in state
s. Additionally, R(s, a) is the reward obtained when action a
is taken in state s. Furthermore, γ is the discounting factor,
and 0 ≤ γ ≤ 1, indicating the importance of current reward
and future reward. γ = 0 indicates the future reward that is
neglected when making decision, which corresponds to the
myopic greedy algorithm. In the meantime, γ = 1 considers
that the future reward is as important as the current reward
when making decision [30].

B. Bipartite Matching With One-Sided Preference

The matching theory has attracted much attention both
from industry and academia for its distributed property. The
most popular one in matching theory is the bipartite matching
with two-sided preference, such as stable marriage and hospi-
tals/residents problem. For this kind of matching, both sides
have preferences over the other side, which indicates that both
sides have the right to choose their partners. The Gale–Shapley
(GS) algorithm has been regarded as an efficient algorithm
for this problem. As another important representative of the
matching theory, bipartite matching with one-sided preference
describes that there are two sides in the matching problem and
only one side has preference over the other side. More con-
cretely, one intuitive application is the HA problem [27], and
the two sides are, respectively, the agents and the houses (or
alternatives). Obviously, in the HA problem, only the agents
have preferences over the houses while the houses will not
have preferences over the agents, i.e., only one side has the
right to choose the partners, and this is the main difference
between the two kinds of matching. In this case, the tradi-
tional GS algorithm is not suitable for bipartite matching with
one-sided preferences anymore [31].

C. Sequential Matching With Dynamic Preference

In the practical application scenario, the static matching
model is challenged by the ever-changing environments, and
thus, the sequential matching problem with dynamic prefer-
ence needs to be addressed. However, the sequential matching

with dynamic preference is not just a simple combination of a
series of static matching problems, since it may not be reason-
able to assume that the matching preference in the future time
are independent of the matching preference and the match-
ing result in the former time. Hence, the traditional matching
algorithm cannot solve this kind of problem, to handle it,
the multistage dynamic matching is introduced in this arti-
cle. In addition, the sequential matching is a history-dependent
decision process, i.e., the next-period matching preference is
related to the preferences and the matching results of the for-
mer period. To simplify, the Markov property is considered,
i.e., the next-period preference is only related to the current-
period preference and the current matching result. Thus, MDP
is leveraged in the multistage dynamic matching to model the
sequential matching problem with the dynamic preference.

IV. DYNAMIC MATCHING ALGORITHM CONSIDERING

FUTURE PAYOFF

The optimization problem presented in Section II-C is mod-
eled as a sequential matching with dynamic preferences, and
the matching is bipartite matching with one-sided preferences.
Since MDP is taken into account, the state can be interpreted
as the preference profiles of all ECDs, and meanwhile, the
action can be illustrated as the matching result. The proposed
algorithm is mainly constituted by four steps. First, to take
into account of the future payoff, the local MDPs of different
ECDs are constructed. Second, the RSD algorithm is imple-
mented for different states. Third, the joint MDP is set up
based on the results in the first two steps. Finally, the Bellman
equation-based evaluation function considering the future pay-
off is utilized to select the best branch. It is worth noting that
the central server is needed during the decision-making pro-
cess, because the UAVs and ECDs cannot make decision by
themselves. In practical implementation, the central server can
collect information, such as local MDPs and charging capacity,
from both the ECDs and UAVs and make charging decision
for this system. The detailed algorithm procedure is elaborated
in Algorithm 1.

A. Step 1: Set Up Local MDPs for ECDs

As illustrated before, we assume that the sequential match-
ing process is based on MDP. As a result, one critical point is
to build the local MDP for each ECD. To obtain the local MDP,
the state of each period is achieved first. Here, the state of an
ECD is defined as its preferences over the UAVs. Hence, the
preference profile needs to be set up. In the following, based
on the previous state and the possible matching result, the next
possible state can be constructed. As shown in (4), the actual
charging amounts of the UAVs differ according to the differ-
ent scenarios. To achieve energy efficiency, the preference of
ECD i over UAV j at time t is defined as

PLt
ij = Rt

ij − βSij
w,t (9)

where Sij
w,t denotes the energy waste if allocating UAV j to

ECD i at time t, and it is derived as

Sij
w,t = max

{
Pij

Rtijch − (
Si
max − Si

re,t

)
, 0

}
. (10)
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Algorithm 1 Proposed Algorithm

Require: M, N , {x0Di
, y0Di

, 0}, {x0Uj
, y0Uj

, h}, Si
max, Si

re,t, η,

Ej
max, Pj

T , Pf , Ph and T;
Ensure: Sequential action At;
1: Step 1: set up local MDPs
2: Calculate the actual charging amount R0

ij according to (4)
and then the preference can be obtained by (9) and (10);

3: Construct the preference profile for each ECD, and then
initial state S0 is achieved;

4: Assume different assignment results based on the initial
state;

5: Calculate the actual charging amount Rt
ij from (4) and the

preference can be obtained by (9) and (10);
6: Iterate the process to obtain all possible local MDPs for

the ECDs;
7: Step 2: implement RSD algorithm
8: Try M! kinds of priority orderings for all the ECDs and

then carry out the RSD matching algorithm according to
(12);

9: Obtain the probability distribution of different kinds of
matching results ūt according to the RSD algorithm;

10: Step 3: build joint MDP based on state and RSD
algorithm

11: Calculate the next state according to (9) and (10), and then
implement step 2 to get all the possible matching results
at this time.

12: Repeat the procedure of calculating states and actions, and
then the joint MDP for all the ECDs can be constructed;

13: Step 4: select the optimal branch based on Bellman
equation

14: for t = 0, . . . , T − 1 do
15: Calculate the Bellman equation-based evaluation func-

tion as shown in (14);
16: Compare the evaluation values from different branches,

and select the one that can achieve the maximum
evaluation value according to (16);

17: end for
18: Terminate with sequential decision result At.

Here, β is a parameter which can be used to ensure energy
efficiency. Furthermore, because the ECD is selfish and ratio-
nal, it always prefers the UAV that can fully charge it than the
one that cannot fully charge it, and thus β is quite small.

Now that the preference is given by (9), each ECD can sort
the UAVs in a decreasing order, and then the preference pro-
files of all ECDs are achieved. In this article, the strict linear
preference is considered. Assume two UAVs j and j′ at time t,
we can say that ECD i prefers UAV j to UAV j′, i.e., j 
t

i j′, if
and only if PLt

ij > PLt
ij′ . According to the preference profile

PLt at t, the state at time t is obtained. Subsequently, we try
every possible matching result in an ergodic way, and then
the state of the next period can be derived given the ECDs’
power consuming rate. Leveraging the method, the local MDP
of each ECD will be obtained. In the following, one exam-
ple is given to explain the process. In this example, there are
three ECDs, denoted by ECD 1, ECD 2, and ECD 3. At the

Fig. 2. Initial state.

(a) (b) (c)

Fig. 3. Local MDPs. (a) ECD 1. (b) ECD 2. (c) ECD 3.

same time, three UAVs exist, which are UAV x, UAV y, and
UAV z. Assume the initial remaining energy of the ECDs can
be achieved, and then the initial state S0 of the three UAVs
can be obtained by (9) and (10), which is shown in Fig. 2.
In the following, the UAVs try all possible actions, and then
the next state can be predicted according to the ECDs’ energy
consuming rates, (9) and (10). Finally, the local MDPs of the
ECDs can be achieved, as presented in Fig. 3.

B. Step 2: Take Actions According to the Current State and
RSD Algorithm

Now that the state of the initial time is known, what kind of
matching algorithm needs to be used to obtain matching result.
Since in our matching model, only one side has preferences
over the other side, the celebrated GS algorithm [31] is not
applicable any more. Here, the assignment problem at time t
is actually a triple with (M,N , PLt), i.e., the set of ECDs
and UAVs, and the preference profile. Since a matching is
a bijection from N to M, which is denoted by u, and then
we can get u(Nj) ∈ M, indicating that UAV j is allocated
to a certain ECD. As illustrated in [32], the assignment of
the UAVs is a matching from the UAVs to ECDs, and the
matching mechanism is a systematic procedure to select the
matching for specific problems, and matching mechanism has
been defined as π .
One of the widely researched matching mechanism is the

serial dictatorship (SD) algorithm. In the SD algorithm, the
priority ordering pri is defined first [33], and to be specific,
pri : {1, 2, . . . , M} → M is a one-to-one mapping that decides
the priority ordering of different ECDs, i.e., ECD pri(1) has
the highest priority, ECD pri(2) is ordered in the second, and
so on. Given the SD mechanism and the priority ordering, the
matching result for the ECD with priority pri(i) is expressed by

uN ′(pri(i)) = Nj (11)

where Nj ∈ N ′, and Nj 
pri(i) Nj′ for all Nj′ ∈ {N ′\Nj}.
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Based on (11), the matching result with priority order pri
in the SD mechanism can be derived subsequently, as shown
in

upri(pri(1)) = uN (pri(1))

upri(pri(2)) = u{N \{upri(pri(1))}}(pri(2))
...

upri(pri(i)) = u{
N \

{
∪i−1

k=1upri(pri(k))
}}(pri(i))

...

upri(pri(M)) = u{
N \

{
∪M−1

k=1 upri(pri(k))
}}(pri(M)). (12)

However, the SD mechanism is not fair for the ECDs, since
the ECD with the first priority always can be allocated to
its favorite UAV while the ECD with the last priority has
to select whatever is remaining after all the other UAVs
have made decisions. As a result, we propose to utilize the
RSD algorithm to complete the matching procedure. In RSD
algorithm, M! kinds of priority orderings are tried with uni-
form distribution, and different priority orderings may lead to
the same matching result [34]. Given all possible matching
results U = {u1, u2, . . . , uq, . . . , uQ}, the probability dis-
tribution over possible matching results ūt can be denoted
by ūt = {p1, p2, . . . , pq, . . . , pQ}, where ∑Q

q=1 pq = 1 and
ūt ∈ �(U). It should be noted that the implementation of RSD
algorithm is very easy. However, since all possible M! kinds
of priority orders need to be tried, this algorithm is suitable for
the scenario with moderate ECD number. When the number
of ECDs is huge, we can divide the ECDs into several clusters
first according to the geographic position and then implement
the RSD algorithm.
For the small example, all possible priority orders need to

be listed, and the number of possible orderings is 3! = 6.
Regarding priority ordering pri(1) = 1, pri(2) = 2, and
pri(3) = 3, ECD 1 has the highest priority, so ECD 1 can
make decision first, and it chooses its favorite UAV x. Next,
UAV x will be removed from the preferences of ECD 2 and
ECD 3, and then ECD 2 chooses UAV y from the remaining
UAVs. Finally, ECD 3 has to select UAV z since other options
are not available. Here, the matching result xyz indicates that
ECD 1 is associated with UAV x, ECD 2 is associated with
UAV y, and ECD 3 is associated with UAV z. Implementing
the above process for all priority orders, and all the possible
matching results and the probability can be obtained as shown
in Fig. 4.

C. Step 3: Set Up Joint MDP Based on Local MDPs and
RSD Mechanism

According to the initial state and the RSD algorithm shown
in Section IV-B, the state and all possible actions at time t = 0
can be obtained. Accordingly, the next state is achieved based
on the last state and action. Then, all the possible matching
results for the next state are obtained. Repeat the procedure
of calculating states and actions, then the joint MDP will be
obtained. The joint MDP for the small example is represented
in Fig. 5. Given initial state S0, the possible matching results

Fig. 4. Take action according to the RSD algorithm.

Fig. 5. Joint MDP.

and their probabilities, i.e., (1/6)xyz, (1/3)xzy, (1/6)yxz, and
(1/3)zxy can be obtained according to Section IV-B. Next, for
state S0 and matching result xyz, the preference of ECD 1 will
become y 
 z 
 x in state S1 according to Fig. 3, since ECD 1
associates with UAV x. By this analogy, states S1, S2, S3, and
S4 can be achieved.

D. Step 4: Utilizing Bellman Equation-Based Evaluation
Function to Select Branch

Now that the joint MDP is obtained, the last step is to
select the branch that can maximize the system performance.
In each period, every ECD tries to maximize its evaluated
reward. Although the RSD algorithm gives several matching
results and their probability distribution, the sequential deci-
sion cannot be achieved directly. In this section, the Bellman
equation-based branch selection method is proposed.
Neglecting probability distribution, we describe the possible

matching results at time t as ut. Assume X optional branches
at time t, the Bellman equation-based evaluation function for
branch x is calculated as

Ux
B(St) = Ct(St) + γ Ft(St) (13)
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which can be further expressed by

Ux
B(St) = ux

t ⊗ St + γ

Y∑
y=1

p
(
ūy

t
)
Uy

B(St+1). (14)

Here, the estimated reward of current time is calculated based
on the evaluated reward of next time, so the estimated reward
is obtained by backward induction. Furthermore, Y is the total
number of branches at time t + 1 if branch x is selected at
time t. Besides, ux

t indicates the specific matching result if
selecting branch x is at time t. p(ūy

t ) describes the possibility
of branch y. Moreover, a special calculation is described as
ut

x ⊗ St, which can be further calculated as

ut
x ⊗ St =

M∑
i=1

N∑
j=1

αtx
ij Rt

ij (15)

where αtx
ij is the assignment matrix of branch x at time t, which

is directly related to ux
t , in the meanwhile, Rt

ij can be known
from St. Accordingly, the optimal branch for time t can be
selected, shown as

x∗ = max
x

Ux
B(St). (16)

As a consequence, the sequential decision can be made
by (16). For the small example, obtain the instant utility
for each charging decision at first and then calculate the
Bellman equation-based evaluation function as shown in (14).
Next, choose the branch with the largest evaluation function
value sequentially. The elaborated algorithm procedure for the
multiperiod charging process is shown in Algorithm 1.

E. Genie-Aided Policy as Performance Upper Bound

To validate the effectiveness of the proposed algorithm, the
Genie-aided policy is presented as the upper bound. Aiming to
maximize the sum of charging energy of all the UAVs in the T
periodic duration, the system model based on the Genie-aided
policy is formulated by

max
αt

ij

T−1∑
t=0

M∑
i=1

N∑
j=1

αt
ijR

t
ij (17)

subject to ⎧⎪⎪⎨
⎪⎪⎩

αt
ij = {0, 1} ∀i ∀j ∀t (18a)∑

j
αt

ij ≤ 1 ∀i ∀t (18b)∑
i
αt

ij ≤ 1 ∀j ∀t. (18c)

Here, the Genie-aided policy can obtain the global optimum
from the view point of mathematics. However, the Genie-aided
policy is difficult to be achieved from the perspective of real-
ity. Before the implementation of the Genie-aided policy, the
global information, including the current information and all
possible future information, should be obtained. Nonetheless,
it is unreasonable to assume that we can obtain all future
information in advance. Thus, the Genie-aided policy is just
deemed as the upper bound in this article.

TABLE I
SIMULATION PARAMETERS

V. SIMULATION RESULTS

To evaluate the effectiveness of our proposed algorithm,
numerical simulation results are shown in this section.
Besides, two other algorithms are adopted as comparison
algorithms, i.e., the Genie-aided algorithm and the myopic
greedy algorithm. The Genie-aided policy has been described
in Section IV-E and it can be regarded as the upper bound. In
the meantime, the myopic greedy algorithm indicates that the
current reward is maximized at each decision-making process
regardless of the future reward. In the simulation, three ECDs
are randomly distributed within a 0.5 km × 0.5 km square
area while three UAVs are served as mobile charging devices.
In addition, two charging periods are considered while the
ECDs are charged in every 60 days. The detailed simulation
parameters are presented in Table I.
Given the simulation setup, the proposed algorithm is evalu-

ated from four aspects. In Section V-A, the performance curves
regarding the charging amount and energy usage efficiency are
represented first. Next, the charging results in period 1 and
period 2 are illustrated in Section V-B, both for the proposed
algorithm and for the myopic greedy algorithm. The results
distinguish the proposed algorithm from the myopic greedy
algorithm, meanwhile, the results also validate the effective-
ness of the proposed dynamic matching mechanism. Then,
Section V-C depicts the influence of discounting factor on
charging amount. Finally, the performance comparison taking
account of different time spans is shown in Section V-D.

A. Performance Validation

1) Actual Charging Amount: In this part, the actual charg-
ing amount of the three algorithms are compared by vary-
ing different parameters. As can be seen from Fig. 6, the
actual charging amounts of the three algorithms decrease with
increasing distances, since the UAVs have to take more time
to fly while have less time to hover above the ECDs, and thus
the charging amounts are reduced. Furthermore, the Genie-
aided algorithm always achieves the best charging amount,
since it acquires all information in advance and then the global
optimal solution can be ensured. It is obvious that the proposed
algorithm achieves a higher charging amount than the myopic
greedy algorithm, and at the same time, its charging amount is
near to the global optimum. Compared with the myopic greedy
algorithm, the proposed algorithm can obtain about 3% gain
when the distance scale is equal to 3. For the myopic greedy
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Fig. 6. Actual charging amount versus distance scale.

Fig. 7. Actual charging amount versus UAV’s velocity scale.

Fig. 8. Actual charging amount versus WPC charging capacity.

algorithm, it gets the worst performance since it only consid-
ers the instant reward when making decision while no future
reward is taken into account. Meanwhile, the performance
comparisons when changing UAV velocities and WPC charg-
ing capacities are given in Figs. 7 and 8, respectively. As
depicted in Fig. 7, the larger the UAV’s velocity is, the higher
charging amount can be obtained, because more time can be
utilized in charging process. Similarly, the larger WPC charg-
ing capacity will lead to a higher charging amount. Also, the
proposed algorithm can achieve the near-optimal result while
the myopic greedy algorithm obtain the worst performance.

Fig. 9. Comparison of energy usage efficiency.

Fig. 10. Charging algorithm with increasing distances.

2) Energy Usage Efficiency: Then, the energy usage effi-
ciency of the three algorithms is evaluated. Here, the total
energy is estimated by assuming that the velocity of the UAV
is infinite, i.e., all UAVs can make full use of their energy
to hover above the ECDs. The comparison result is shown
in Fig. 9. From Fig. 9, the myopic greedy algorithm always
achieves the best energy usage efficiency at time t = 0 since
it chooses the result greedily. Meanwhile, the myopic greedy
algorithm will obtain the worst energy usage efficiency at time
t = 1 because its average energy efficiency is the lowest. This
indicates that utilizing myopic greedy policy is not rational in
the history-dependent scenario. Besides, this figure presents
that the proposed algorithm achieves nearly the same energy
usage efficiency with the Genie-aided upper bound.

B. Mechanism Difference Between the Proposed Algorithm
and Myopic Greedy Algorithm

In this part, the charging decision difference between the
proposed algorithm and myopic algorithm is analyzed in detail,
and the simulation results will verify that considering future
reward when making decision is advisable.
First, the charging process is depicted in Fig. 10 when dis-

tance is changing. In the figure, t = 0 related curves indicate
the charging amount at time t = 0, while t = 1 related curves
are the charging amount at time t = 1. From Fig. 10, we
can see that the myopic greedy algorithm always acquire the
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Fig. 11. Charging algorithm with increasing UAV’s velocities.

Fig. 12. Charging algorithm with increasing WPC charging capacities.

higher charging amount than the proposed algorithm when
t = 0, since it can find the optimal value if only one time
period is considered. However, the myopic greedy is not a
rational decision in the history-dependent problem. Clearly,
the myopic greedy policy leads to lower charging amount at
time t = 1. In contrast, though the proposed algorithm gets
lower charging amount at t = 0, the long-term consideration
makes it achieve a higher total charging amount. Furthermore,
the sum charging amount in the proposed algorithm is higher
than the myopic greedy algorithm. Hence, the dynamic match-
ing related algorithm is a wise choice when making wireless
charging decision or other history-dependent decision.
Besides, the other two figures shown in Figs. 11 and 12

also validate the effectiveness of the proposed algorithm. At
t = 0, the proposed algorithm has no advantage over the
myopic greedy algorithm; however, it always can catch up
with the myopic greedy algorithm at time t = 1 and achieves
a higher charging amount.

C. Influence of Discounting Factor

Next, the influence of the discounting factor is analyzed. As
we illustrated in Section II-C, the value of discounting factor
γ is within [0, 1]. In Fig. 13, the charging amount curves are
obtained with different γ . As can be seen from the figure,
the higher γ will lead to a higher system performance, since
the future payoff is becoming more and more important with

Fig. 13. Actual charging amount with different discounting factors.

Fig. 14. Actual charging amount considering different time spans.

the increase of discounting factor γ . Obviously, actual charg-
ing amount is the highest when γ is equal to 1, which indicates
treating future payoff as important as the current payoff is
beneficial for performance improvement.

D. Influence of Time Span

Finally, the influence of time span τ is considered. Here,
τ = 1 indicates only the current reward is considered when
the proposed matching algorithm is implemented. For τ = 2,
it means that we not only consider the current reward but also
take account of the possible rewards in the next period when
making the decision. Furthermore, τ = 3 represents that two
future periods will be taken into account except for the cur-
rent period. The charging amount is presented in Fig. 14, from
which we can see that the larger time span is considered, the
better system performance will be achieved. However, com-
pared to the result at τ = 2, the performance improvement at
τ = 3 is slight while the complexity at τ = 3 is much higher
than the complexity at τ = 2. Hence, this exactly explains
why we choose parameter τ as 2 in the simulation.

VI. CONCLUSION

In this article, the UAV-assisted multiple period wire-
less charging problem involving history-dependent process
is addressed. To model the dynamic wireless charging pro-
cess, dynamic bipartite matching with one-sided preferences
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is introduced as the novel solution. Then, a four-step algo-
rithm combining MDP and Bellman equation is proposed.
Next, the simulation results in Section V first validate the
effectiveness of the proposed algorithm. Meanwhile, the simu-
lation results also illustrate the charging mechanism difference
between the proposed algorithm and myopic greedy algorithm.
Furthermore, this article investigates the influence of different
parameters (discounting factor and time span) on the charging
amount from the perspective of simulations.
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