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1 Introduction

Hartshorne Conjectured that every smooth, codimension ¢ subvariety of P”, with ¢ < %n, is
a complete intersection [14, p. 1017]. We give a new proof of the case when n > deg X. If
X is smooth, then we say that the codimension of the singular locus of X is dim X + 1.

Theorem 1.1 There is a function N (c, e) such that if X C Py is an equidimensional, projec-
tive subscheme of codimension c and degree e, and if the singular locus of X has codimension
at least N(c, e), then X is a complete intersection. In particular, the function N(c, e) does
not depend on n or on the field k.

Results like Theorem 1.1 have along history. In characteristic zero, Hartshorne first proved
the above resultin [14, Theorem 3.3]. In parallel, and also in characteristic zero, Barth and Van
de Ven proved an effective version of this result, showing that N = %e(e —7) + ¢ works [3].
Huneke’s work in [16, Theorem 1.1] also implies Theorem 1.1 for arbitrary ¢ and over fields
of arbitrary characteristic, and gives an explicit bound in terms of the analytic spread. Further
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improvements include: work of Ran [18, Theorem], sharpening the bound and extending it to
arbitrary characteristic, but only when ¢ = 2; and Bertram—Ein—Lazarsfeld’s [6, Corollary 3],
which sharpens the bound in arbitrary codimension, but only holds in characteristic zero. See
also [2,15].

The novelty in our work is through the new, and concise, method of proof. The main
ingredient in [3] is an analysis of the variety of lines in X through a point, and many of the
aforementioned proofs make use of Kodaira Vanishing and topological results like Lefschetz-
type restriction theorems. By contrast, we derive Theorem 1.1 from elementary consequences
of the notion of strength introduced in [1], and of our resultin [11] that the graded ultraproduct
of polynomial rings is isomorphic to a polynomial ring. This explicitly connects Hartshorne’s
Conjecture with the circle of ideas initiated by Ananyan and Hochster in [1] in their proof
of Stillman’s Conjecture. It also underscores similarities between the two conjectures, both
of which propose limits on the possible behaviors for varieties of codimension ¢ in P* when
n>c.

The ideas of [1] strongly motivated this work, as the connection between strength and the
codimension of the singular locus is one of the central ideas in that paper. Our viewpoint
also has some overlap with the Babylonian tower theorems, like [4, Theorems I and IV] and
those in [7,13,19] among others. From an algebraic perspective, the natural setting for such
statements is an inverse limit of polynomial rings, and [11,12] shows such an inverse limit
shares many properties with the ultraproduct ring.

Remark 1.2 A classical result (see e.g. [9]) shows that for any nondegenerate, integral variety
in P", the codimension is at most its degree. Thus, under these hypotheses, Theorem 1.1 could
be rephrased so as to remove the dependence on c.

2 Setup and background

Each closed subscheme X C Py determines a homogeneous ideal Ix C K[xo, ..., x,]. The
scheme X, or the ideal [y, is equidimensional of codimension c if all associated primes
of Iy have codimension ¢, and X is a complete intersection if /y is defined by a regular
sequence. Since the minimal free resolution of 7 is stable under extending the ground field
k, the property of being a complete intersection is also stable under field extension.

From here on, k and k; will denote fields. If R is a graded ring with Ry = k, then as in [1],
we define the strength of a homogeneous element f € R to be the minimal integer k > —1
for which there is a decomposition f = Zf‘: ]1 gih; with g; and h; homogeneous elements of
R of positive degree, or oo if no such decomposition exists. The collective strength of a set of
homogeneous elements f1, ..., f, € R1isthe minimal strength of a non-trivial homogeneous
k-linear combination of the f;.

Lemma 2.1 Let R be a graded ring with Ry = k. If I C R is homogeneous and finitely

generated, then I has a generating set of homogeneous elements f1, . .., f, where the strength
of fx equals the collective strength of f1, ..., fx foreach 1 <k <r.
Proof Choose any homogeneous generators g, ..., g- of I. We prove the statement by

induction on r. For r = 1 the statement is tautological. Now let r > 1. By definition of
collective strength, we have a k-linear combination f, = Y :_, a;g; such that the strength of
fr equals the collective strength of gy, ..., g-. After relabeling, we can assume that a, # 0
and it follows that g1, ..., g-—1, f generate I. Applying the induction hypothesis to the
ideal (g1, ..., g-—1) yields the desired result. O
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Let O = (f1,..., fr) € Klx1, x2, ...]. The ideal of ¢ x ¢ minors of the Jacobian matrix

of (3}{; ) does not depend on the choice of generators of Q. We denote this ideal by J.(Q).

Lemma22 Let Q = (f1,..., fr) be a homogeneous ideal in K[x1, x2, ...]. If the strength
of fi is at most s for c <i <r, then codimJ.(Q) < (r —c+ 1)(2s + 2).

Proof For each ¢ <i < r, we write f; = Z‘;:O a; jh; j where a; ; and h; ; have positive
degree for all i, j. Write L; for the ideal (a; j, h;; |0 < j <s)andlet L = L, + L¢y1 +
.-+ + L,. The ith row of the Jacobian matrix has entries %, thus by the product rule, every
entry in this row is in L;. Since every ¢ x ¢ minor of the Jacobian matrix will involve row i
for some ¢ < i < r, it follows that J.(Q) € L. Thus codimJ.(Q) < codimL, which by the
Principal Ideal Theorem is at most (r — ¢ + 1)(2s + 2), as this is the number of generators

of L. O

We briefly recall the definition of the ultraproduct ring, referring to [11, §4.1] for a more
detailed discussion. Let J be an infinite set and let I be a non-principal ultrafilter on J. We
refer to subsets of J as neighborhoods of *, where * is an imaginary point of J. For each
i € J,let k; be an infinite perfect field. The ultraproduct of the {k;} consists of collections
¢ = (cj)ieg where ¢; € Kk;, modulo the relation that ¢ = 0 if and only if ¢; = 0 for all i in
some neighborhood of *; by the axioms of ultrafilters, this ultraproduct is also a (perfect)
field. Let S denote the graded ultraproduct of {k;[x1, x2, ...]}, where each polynomial ring
is given the standard grading. An element g € S of degree d corresponds to a collection
(gi)ieg of degree d elements g; € K;[x1, x2, ...], modulo the relation that g = 0 if and only
if g; = 0 for all i in some neighborhood of . For a homogeneous g € S we write g; for the
corresponding element in k; [x1, x2, . . .], keeping in mind that this is only well-defined for i
in some neighborhood of *. The following comes from [11, Theorems 1.2 and 4.6]:

Theorem 2.3 Let K be the ultraproduct of perfect fields {k;} and fix y1,...,y. € S of
infinite collective strength. There is a set U, containing the y;, such that S is isomorphic to
the polynomial ring K[U].

The following result follows immediately from [8, Theorem 5.2]. While that result does
not explicitly note the independence on the field kK, it follows from the proof.

Lemma 2.4 Fix c and e. There exist positive integers d and r, depending only on ¢ and
e, such that any homogeneous, equidimensional, and radical ideal Q < K[x1, ..., x,] of
codimension c and degree < e can be generated (not necessarily minimally) by homogeneous
polynomials g1, . .., g where deg(g;) < d. Neither r nor d depend on n or k.

Proof By [8, Theorem 5.2], both the regularity of Q and the individual Betti numbers g; ;(Q)
are bounded solely in terms of ¢ and e. Choosing d as the regularity bound and r as the bound
on Z?:l Bo.4(Q), we obtain the desired statement. ]

3 Proof of the main result
Theorem 3.1 There is a function N (c, e) such that if Q € K[xy, ..., x,] is a homogeneous,
equidimensional ideal of codimension ¢ and degree e and if V (Q) is nonsingular in codimen-

sion > N (c, e), then Q is defined by a regular sequence of length c. In particular, N(c, e)
does not depend on n or on the field k.
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Remark 3.2 Since an equidimensional ideal of codimension c that is nonsingular in codi-
mension 2¢ + 1 must be prime, it would be equivalent to rephrase Theorem 3.1 in terms of
prime ideals. We stick with equidimensional and radical ideals because some of the auxiliary
results in this paper might be of interest with this added generality.

Proof of Theorem 3.1 We first reduce to the case where k is perfect. Extending the field will
change neither the minimal number of generators of Q, nor the codimension of the singular
locus. By taking N (c, e) > 1, we can also assume that Q is radical, even after extending the
field. Finally, since a field extension will not change the codimension of any minimal prime
of QO [20, 00P4], we can assume that k is perfect and that Q is radical and equidimensional
of codimension c.

Suppose that the theorem were false. Then for some fixed ¢, e and for each j € N we can
find an equidimensional, radical ideal Q’j C kj[x1, x2, ...] (withk; perfect) of codimension
¢ and degree e that is not a complete intersection, but where the codimension of the singular
locus of V(Q’j) tends to co as j — oo. Since the singular locus of V(Q’j) is defined by
Q’j + JC(Q;), this implies that codimJC(Q’j) — oo as j — o0o. We choose a function
m:J — N where m(i) is unbounded in each neighborhood of *. For each i € J, define
Q; to be any of the Q’j satisfying codim]C(Q’j) > m(i). By construction, codimJ,(Q;) is
unbounded in every neighborhood of .

We now apply Lemma 2.4 foreachi € J, to find positive integers r and d and homogeneous
8l.i»---,8&ri of degree < d which generate Q;. Let g1 = (g1.,i), ..., 8 = (gr,i) be the
corresponding elements in S and let Q = (gy, ..., g-). By Lemma 2.1, we can find a new
homogeneous generating set f1, ..., fr of Q where the strength of f; is the collective strength
of f1,..., fr foreach 1 <k < r.For each k, we may write fi = (f.i)-

If f. had strength at most s, then we observe that the same holds for f. ; in a neighborhood
of x; forif f, = Zj‘:o ajhjthen f.; = Z;zo(aj)i(fj)i fori near *. But by Lemma 2.2, this
would imply that codimJ.(Q;) is bounded in a neighborhood of . Since this cannot happen,
fe must have infinite strength. Thus the collection fi, ..., f. has infinite collective strength
and so applying Theorem 2.3 with y; = f;, we conclude that fi, ..., f, are independent
variables in S. In particular, (fi, ..., f;) defines a prime ideal of codimension ¢ and we
therefore must have f.11 =--- = f, = 0. By [11, Corollary 4.10], there is a neighborhood
of x where each Q; is a complete intersection, contradicting our original assumption. O

Proof of Theorem 1.1 As in the beginning of the proof of Theorem 3.1, we can quickly reduce
to the case where k is perfect. For a fixed ¢ and e, we let N equal the bound from Theorem 3.1.

Fix some X C P” satisfying the hypotheses of Theorem 1.1, and let O C K[xy, ..., x;+1]
be the defining ideal of X. By Theorem 3.1, Q is defined by a regular sequence, and thus X
is a complete intersection. O
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