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Abstract. We previously showed that the inverse limit of standard-
graded polynomial rings with perfect (or semiperfect) coefficient field
is a polynomial ring in an uncountable number of variables. In this
paper, we show that the result holds with no hypothesis on the coef-
ficient field. We also prove an analogous result for ultraproducts of
polynomial rings.

1. Introduction

1.1. Statement of Results

Let k be a field, and let R be the inverse limit of the standard-graded polynomial
rings k[x1, . . . , xn] in the category of graded rings; thus R is a graded ring, and
a degree d element of R is a formal, perhaps infinite, k-linear combination of
degree d monomials in the variables {xi}i≥1. Recall that k is perfect if it has
characteristic 0 or if it has positive characteristic p and kp = k. We say that k is
semiperfect if it has characteristic 0 or if it has characteristic p and [k : kp] < ∞.
In [ESS1], we proved that R is (isomorphic to) a polynomial ring (in uncountably
many variables) when the field k is semiperfect, and we demonstrated the utility
of this result by using it to give a new proof of Stillman’s conjecture; it has also
been used by [DLL] to prove a finiteness theorem for Gröbner bases. In this paper,
we improve our result by eliminating the hypothesis:

Theorem 1.1. For any field k, the ring R is a polynomial ring.

As in [ESS1], we prove an analogous result for an ultraproduct ring and establish
some related results; see Section 6 for details.

1.2. Motivation

We offer three pieces of motivation for Theorem 1.1:
(a) Ananyan–Hochster [AH, Theorem B] proved the existence of “small sub-

algebras” over algebraically closed fields. Utilizing these algebras was one of the
key insights in their proof of Stillman’s conjecture. In [ESS1], we extended the
Ananyan–Hochster theorem by establishing the existence of small subalgebras
over perfect fields. Theorem 1.1 allows us to further strengthen this result to all
fields. See Section 6.6 for details.
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(b) Ananyan and Hochster introduced a notion of “strength” for polynomials
that played a central role in their work and has since featured prominently else-
where (e.g., [AH; BDE; Dr; ESS1; ESS2]). Since strength has proven to be such
a useful concept, it is desirable to understand it better. There are some genuine
differences as to how strength behaves when the coefficient field is not semiper-
fect. For example, the results of [AH] imply that if k is algebraically closed, then
an element f ∈ R has infinite strength if and only if the ideal of partial deriva-
tives (∂f/∂x1, ∂f/∂x2, . . .) has infinite codimension. This is not true if k fails to
be semiperfect: indeed, if a1, a2, . . . ∈ k are linearly independent over kp , then
f = ∑∞

i=1 aix
p
i is an infinite strength element whose corresponding ideal of par-

tial derivatives is the zero ideal. Nonetheless, Theorem 1.1 shows that some of the
pleasant features of strength in the semiperfect case continue to hold for general
fields: indeed, Theorem 1.1 is equivalent to the statement that if f1, . . . , fr are
homogeneous elements of R+ such that no homogeneous linear combination has
finite strength, then f1, . . . , fr are algebraically independent.

(c) In [ESS1, Section 5], we gave a geometric proof of Stillman’s conjecture.
The basic idea is as follows. Let X be the space of tuples (f1, . . . , fr ) where
f1, . . . , fr are homogeneous polynomials in infinitely many variables of fixed
degrees d1, . . . , dr . At each point x = (f1, . . . , fr ) in X, there is a corresponding
ideal Ix = (f1, . . . , fr ) in the polynomial ring. Using the polynomiality result
for R (or, really, the bounded version R� discussed in Section 6.2), we proved a
generic version of Stillman’s conjecture: for any closed subset Z of X, the ideal
Ix has bounded projective dimension for generic x ∈ Z. Appealing to Draisma’s
theorem [Dr] that X is GL∞-Noetherian, we then deduced Stillman’s conjecture
from the generic version.

The generic version of Stillman’s conjecture for Z involves the ring R� where
k is the function field of Z. In positive characteristic, this field is typically not
semiperfect: for example, when Z is the entire space X, the field k is a rational
function field in infinitely many indeterminates. Since our previous polynomiality
result did not hold in this setting, our proof had some extra steps: we passed to
the algebraic closure of k (which is perfect), carried out our argument using the
polynomiality ofR� there, and then descended. Theorem 1.1 is partially motivated
by the desire to eliminate this complication. We are only partially successful: we
show that R� is polynomial in some situations (such as when Z = X), but not all
the ones used in our geometric proof of Stillman’s conjecture.

Nevertheless, as we believe that the general strategy we used in our geometric
approach to Stillman’s conjecture can be useful in other situations, it is worth try-
ing to simplify the details. Theorem 1.1 (and its generalizations) are a significant
step in this direction.

1.3. Overview of Proof

Our proof of Theorem 1.1 is an adaptation of the method used in [ESS1, Section 2]
to treat the perfect and semiperfect cases, so we first recall that. The main idea is to
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characterize polynomial rings using derivations in a manner that can be applied to
R. To describe this abstract characterization, let R be a graded ring with R0 = k.

First, suppose that k has characteristic 0. We say that R has enough deriva-
tions if for every nonzero homogeneous element x of positive degree, there is
a homogeneous derivation ∂ of R of negative degree with ∂(x) �= 0. We prove
[ESS1, Theorem 2.2] that R is a polynomial ring if and only if it has enough
derivations. It is easy to see that the inverse limit ring R has enough derivations:
in fact, derivatives with respect to the variables are all we need. Thus R is a poly-
nomial ring.

Now suppose that k has positive characteristic p. Since any derivation annihi-
lates any pth power, we cannot carry over our previous characterization of poly-
nomial rings verbatim. Recall that aHasse derivation of R is a sequence {∂n}n≥0

of linear endomorphisms of R such that ∂1 is a derivation and ∂n behaves like
1
n! (∂

1)n; see Definition 3.1 for the exact definition. We say that R has enough
Hasse derivations if for every homogeneous element x that is not in the k-span
of the set Rp , there is a homogeneous Hasse derivation ∂ of negative degree such
that ∂1(x) �= 0. We show [ESS1, Theorem 2.11] that R is a polynomial ring if
and only if it has enough Hasse derivations. This abstract theorem does not re-
quire k to be perfect; see [ESS1, Remark 2.12]. When k is perfect, it is easy to
see that R has enough Hasse derivations: the Hasse derivatives with respect to the
variables are all we need. Thus, in this case, we see that R is a polynomial ring.
(This reasoning can be extended to the case where k is semiperfect; see [ESS1,
Remark 5.4].)

Here is the main kind of problem that arises when k is not semiperfect. Sup-
pose that k= Fp(t1, t2, . . .) is the field of rational functions in the infinitely many
variables {ti}i≥1, which is not semiperfect. Consider the element f = ∑

i≥1 tix
p
i

of R. This element f is not a pth power and even not a k-linear combination of
pth powers. Thus, if we wanted to prove that R is a polynomial ring using the cri-
terion of the previous paragraph, we would need to produce a Hasse derivation ∂

such that ∂1(f ) �= 0. However, if ∂1 is continuous with respect to the inverse limit
topology, then it commutes with the infinite sum defining f , and so ∂1(f ) = 0.
Since all obvious Hasse derivations of R are continuous, it is not clear how to
proceed.

Our strategy is to give a new characterization of polynomial rings via Hasse
derivations that can accommodate the issue seen before. The “problem elements”
in R (i.e., those annihilated by ∂1 for all the obvious Hasse derivations ∂) are
exactly those elements in which all variables appear with exponent divisible by
p. When k is perfect, this is exactly Rp; when k is semiperfect, it is exactly the k-
span of Rp . However, in general, these elements cannot be directly characterized
from the k-algebra structure onR. We therefore introduce a new piece of structure
that detects these elements. Define the ring endomorphisms φ and σ of R by

φ

(∑
cex

e

)
=

∑
c
p
e xe, σ

(∑
cex

e

)
=

∑
cex

pe,
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where the sum is over multi-indices e. Thus φ raises the coefficients to the pth
power, whereas σ raises the variables to the pth power. The “problem elements”
are exactly those elements in the image of σ . For example, the element f defined
above is σ(

∑
i≥1 tixi).

Returning to the abstract setting, we define an F -factorization on the graded
ring R to be a pair (φ,σ ) similar to the above: φ is degree preserving, σ is k-
linear, and φ ◦ σ = σ ◦ φ is the Frobenius map F . (There is one additional condi-
tion we demand of an F -factorization; see Definition 2.1.) Fix such a structure on
R, and let D be a collection of Hasse derivations on R. We define the notion of
admissibility for D (Definition 4.1). One of the key conditions is (or implies) that
for every homogeneous element of R that is not in the image of σ , there exists a
Hasse derivation ∂ ∈ D of negative degree such that ∂1(x) �= 0.

We then show (Theorem 5.1) that R is a polynomial ring if and only if it admits
an F -factorization with an admissible set D of Hasse derivations. The proof of
Theorem 5.1, which is the heart of the paper, is similar to the proof of [ESS1,
Theorem 2.11]. Essentially, we consider a hypothetical algebraic relation among
a minimal generating set and use one of the given Hasse derivations to produce
a relation of lower degree, eventually yielding a contradiction. The argument in
this paper is somewhat more complicated due to the more limited properties of
the Hasse derivations in the set D.

Returning to R, we have already defined an F -factorization on it. Let D be the
set of Hasse derivatives with respect to the variables xi . It is not too difficult to
verify that D is admissible, and so we conclude that R is a polynomial ring. In
essence, Theorem 5.1 enables us to work with a smaller set of Hasse derivatives
than [ESS1, Theorem 2.11], thereby bypassing any need to construct discontinu-
ous Hasse derivations on R.

1.4. Notation and Conventions

Throughout, “graded” means graded by the nonnegative integers. The symbol
p will always denote a prime number. Most of the rings we consider will have
characteristic p.

2. F -Factorizations

For a ring R of characteristic p, let F = FR be the pth-power homomorphism
R → R. When R = k[xi]i∈I is a polynomial ring, F can be factored into two sep-
arate operations: raising the coefficients to the pth power and raising the mono-
mials to the pth power. The following definition is an abstraction of this.

Definition 2.1. Let R be a graded ring of characteristic p. An F -factorization
on R is a pair (φ,σ ) satisfying the following:

(F1) φ : R → R is an injective homomorphism of graded rings satisfying φ|R0 =
FR0 .

(F2) σ : R → R is a ring homomorphism satisfying σ |R0 = idR0 .
(F3) The maps φ and σ commute and satisfy φ ◦ σ = FR .
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(F4) For any ε1, . . . , εs ∈ R0, we have

im(σ ) ∩
s∑

j=1

εj im(φ) =
s∑

j=1

εjR
p.

Remark 2.2. Let (φ,σ ) be an F -factorization on R. Then we have the following:

(a) If a ∈ R0 and x ∈ R, then φ(ax) = apφ(x).
(b) If a ∈ R0 and x ∈ R, then σ(ax) = aσ(x), that is, σ is a homomorphism of

R0-algebras.
(c) If x ∈ R0 is homogeneous of degree d , then σ(x) is homogeneous of degree

pd . Indeed, φ is injective and preserves degree, and φ(σ(x)) = xp is homo-
geneous of degree pd .

Remark 2.3. Regarding condition (F4), we note that the inclusion⊇ follows from
the other axioms. The key content of the axiom is thus the other direction, which
relates elements in the k-span of Rp to σ and φ.

Proposition 2.4. Let S be a graded ring of characteristic p with S0 = Fp , let
k be a field of characteristic p, and let R = k ⊗Fp

S. Put φ = Fk ⊗ idS and
σ = idk ⊗ FS . Then (φ,σ ) is an F -factorization on R.

Proof. Conditions (F1), (F2), and (F3) are easy to see directly. We prove (F4). Let
ε1, . . . , εs ∈ R0; we may assume, without loss of generality, that they are linearly
independent over R

p

0 . The inclusion
∑

j εjR
p ⊆ im(σ ) ∩ ∑s

j=1 εj im(φ) holds
since every element in Rp is in the image of both σ and φ. Conversely, suppose
that f is an element of im(σ ) ∩ ∑

j εj im(φ). Write f = ∑
aex

e, where the sum
is over multi-indices e, and ae ∈ k. Since f ∈ im(σ ), we have ae = 0 unless
p | e. Since f ∈ ∑

j εj im(φ), we can write f = ∑
j εjφ(gj ) for some gj ∈ R.

Write gj = ∑
bj,ex

e . Equating the coefficients, we find ae = ∑s
j=1 εj b

p
j,e . If

p � e, then this vanishes; since εj are linearly independent over kp , it follows
that each bj,e vanishes as well. We conclude that all monomials appearing in gj

with nonzero coefficient are pth powers; in other words, we can write gj = σ(hj )

where hj = ∑
bj,pex

e. We thus find f = ∑s
j=1 εjφ(σ (hj )) ∈ ∑s

j=1 εjR
p . �

Example 2.5. Let R = k[xi]i∈I be a polynomial ring where each xi is homoge-
neous of positive degree. Letting S = Fp[xi]i∈I , we have R = k ⊗Fp

S. Propo-
sition 2.4 provides an F -factorization on R, which we call the standard F -
factorization on R. We note that it depends on the choice of variables, that is, it
is not invariant under automorphisms of R (in the category of graded k-algebras).

Proposition 2.6. Let R be a graded ring with an F -factorization (φ,σ ). Then R

is reduced if and only if σ is injective.

Proof. The ring R is reduced if and only if F = FR is injective. Since F factors as
φ ◦σ and φ is injective, we see that F is injective if and only if σ is injective. �
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Proposition 2.7. Let R be a reduced graded ring with an F -factorization (φ,σ ).
Let ε1, . . . , εs ∈ R0, and let x ∈ R. Suppose that σ(x) ∈ ∑s

j=1 εj im(φ). Then
x ∈ ∑s

j=1 εj im(φ).

Proof. The element σ(x) belongs to im(σ ) ∩ ∑s
j=1 εj im(φ), which is equal

to
∑s

j=1 εjR
p by (F4). We can thus write σ(x) = ∑s

j=1 εj y
p
j for elements

yj ∈ R. Since y
p
j = σ(φ(yj )) and σ is injective (Proposition 2.6), we see that

x = ∑s
j=1 εjφ(yj ). �

Definition 2.8. Let R be a graded ring with an F -factorization (φ,σ ). We define
a decreasing filtration {F rR}r≥0 on R by F rR = im(σ r). We call this the level
filtration. We define the level of x ∈ R to be the supremum of the set {r ∈N | x ∈
F rR}. For a subspace V of R, we let F rV = V ∩F rR.

Remark 2.9. If x is nonzero and of positive degree d , and pt is the maximum
power of p dividing d , then x has level at most t . Thus the level filtration on Rd

is finite, that is, F rRd = 0 for r � d (in fact, r > t ).

3. Hasse Derivations

Definition 3.1. Let R be a ring. A Hasse derivation on R is a collection ∂ =
{∂n}n∈N of additive endomorphisms of R such that ∂0 = id and the identity

∂n(xy) =
∑

i+j=n

∂i(x)∂j (y)

holds for all x, y ∈ R. If R has characteristic p, then we write ∂ [r] in place of ∂pr
.

Definition 3.2. Let R be a graded ring, and let ∂ be a Hasse derivation on R.
We say that ∂ is homogeneous of degree d if for all homogeneous elements x of
R, the element ∂n(x) is homogeneous of degree deg(x) + nd .

Example 3.3. Let R = k[x]. Define ∂n to be the endomorphism of R mapping
xk to

(
k
n

)
xk−n; here, as always,

(
k
n

) = 0 for k < n. Then ∂ is a Hasse derivation.
Indeed, it suffices to check the defining identity on monomials. We have

∂n(xaxb) =
(

a + b

n

)
xa+b−n,

∑
i+j=n

∂i(xa)∂j (xb) =
∑

i+j=n

(
a

i

)(
b

j

)
xa+b−n,

which are equal by a standard identity on binomial coefficients (think about
choosing a subset of size n from {1, . . . , a} 
 {a + 1, . . . , a + b}). We call ∂ the
Hasse derivative.

More generally, suppose R = k[xi]i∈I is a multivariate polynomial ring and
pick j ∈ I . Then the Hasse derivative on k[xj ] can be extended to R by making
it linear over k[xi]i∈I\{j}. We call this Hasse derivation on R the Hasse derivative
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with respect to xj . If R is graded and xj is homogeneous of degree d , then the
Hasse derivative with respect to xj is homogeneous of degree −d .

Proposition 3.4. Let ∂ be a Hasse derivation on the ring R, let x ∈ R, and let
k > 0. Then ∂k(xn) can be expressed as a polynomial in x of degree ≤ n − 1 with
coefficients in the subalgebra Z[∂i(x)]1≤i≤k .

Proof. If n = 1, then there is nothing to prove. Otherwise, we write

∂k(xn) =
∑

i+j=k

∂i(xn−1)∂j (x),

and the result follows by induction on n and k. �

Proposition 3.5. Let R be a ring of characteristic p. Let ∂ be a Hasse derivation
on R, and let x ∈ R. Then

∂ [r](F sx) =
{

F s(∂ [r−s]x) if r ≥ s,

0 if r ≤ s.

Proof. See [ESS1, Lemma 2.9]. �

The following corollary of the proposition will be used constantly without refer-
ence.

Corollary 3.6. Let R have characteristic p, and let ε1, . . . , εs ∈ R0. Then for
any R0-linear Hasse derivation ∂ , the space

∑s
j=1 εjR

p is killed by ∂ [0] and

stable under ∂ [r] for all r ≥ 0.

4. Admissible Sets

Throughout this section we fix a graded ring R, where R0 is a field of character-
istic p, and we fix an F -factorization (φ,σ ) on R.

Definition 4.1. Let D be a set of Hasse derivations on R. We say that D is
admissible (with respect to (φ,σ )) if the following conditions are satisfied:

(D1) Each ∂ ∈D is homogeneous of negative degree.
(D2) Each ∂ ∈D commutes with φ.
(D3) Let x ∈ R be homogeneous, and let ε1, . . . , εs ∈ R0 (we allow s = 0).

Suppose that ∂ [0](x) ∈ ∑s
j=1 εj im(φ) for all ∂ ∈ D. Then x ∈ im(σ ) +∑s

j=1 εj im(φ).

Remark 4.2. Suppose that k is a perfect field of characteristic p, that R has
the form k ⊗Fp

S for some graded ring S with S0 = Fp , and that R is equipped
with the F -factorization constructed in Proposition 2.4. Then φ is surjective, and
im(σ ) = Rp . Thus condition (D3) is vacuous if some εi is nonzero. If all εi vanish
(or if s = 0), then it simply states that

⋂
∂∈D ker(∂1) = Rp . Furthermore, a Hasse

derivation ofR commutes with φ if and only if it comes from a Hasse derivation of
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S by extension of scalars. Thus R admits an admissible set of Hasse derivations if
and only if S has enough Hasse derivations in the sense of [ESS1, Definition 2.10].
(In fact, using [ESS1, Theorem 2.11], we can show that S has enough Hasse
derivations if and only if R has.)

Example 4.3. Suppose R = k[xi]i∈I and (φ,σ ) is the standard F -factorization.
Let D be the collection of Hasse derivatives with respect to the variables. We
claim that this is admissible. Conditions (D1) and (D2) are immediate, so we
check (D3). Pick ε1, . . . , εs ∈ R0 and suppose that ∂ [0](f ) ∈ ∑s

j=1 εj im(φ) for
all Hasse derivatives ∂ . Write f = ∑

cex
e, where the sum is over multi-indices e,

and let V ⊂ k be the kp-span of ε1, . . . , εs . Then
∑s

j=1 εj im(φ) consists of those
elements of R for which all coefficients belong to V , whereas im(σ ) consists of
those elements of R for which all exponents are divisible by p. Thus to show that
f belongs to im(σ )+∑s

j=1 εj im(φ), we must show that if e is not divisible by p,
then ce belongs to V . Let such e be given, and pick i ∈ I such that ei is not divis-
ible by p. Let ∂ be the Hasse derivative with respect to xi . Then ∂ [0](xe) = eix

e′
,

where e′ is obtained from e by decrementing the ith entry by one. By assumption,
∂ [0](f ) belongs to

∑s
j=1 εj im(φ), and so all coefficients of ∂ [0](f ) belong to V .

The coefficient of xe′
is exactly eice. Since ei is a nonzero element of kp , as it is

an integer not divisible by p, it follows that ce ∈ V , and so the result follows.

For the remainder of this section, we fix an admissible set D and deduce some
simple consequences of the definitions.

Proposition 4.4. Each ∂ ∈ D is R0-linear.

Proof. Let a ∈ R0 and x ∈ R. We have ∂n(ax) = ∑
i+j=n ∂i(a)∂j (x). We have

deg(∂i(a)) = i deg(∂), which is negative for i > 0 and thus vanishes. Hence
∂n(ax) = a∂n(x). �

Proposition 4.5. Let ∂ ∈D. Then

∂ [s](σ r(x)) =
{

σ r(∂ [s−r](x)) if r ≤ s,

0 if r > s.

Proof. We can check after applying φr to each side, since φ is injective. The
result now follows from Proposition 3.5. �

Corollary 4.6. Let x ∈ R be an element of level ≥ t . Then

∂ [t](xn) = nxn−1∂ [t](x).

Proof. Write x = σ t (y) for some y ∈ R. By Proposition 4.5 we have

∂ [t](σ t (yn)) = σ t (∂ [0](yn)) = σ t (nyn−1∂ [0](y)) = nxn−1∂ [t](σ t (y)). �

Proposition 4.7. We have
⋂

∂∈D ker(∂ [0]) = im(σ ).
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Proof. We have im(σ ) ⊂ ker(∂ [0]) for any ∂ ∈ D by Proposition 4.5. Conversely,
suppose that ∂ [0](x) = 0 for all ∂ ∈ D. By (D3) with s = 0 we find x ∈ im(σ ). �

Proposition 4.8. The ring R is reduced.

Proof. We must show that σ is injective (Proposition 2.6). Suppose not, and let
x ∈ R be a nonzero homogeneous element of minimal degree with σk(x) = 0 for
some k. Then x /∈ im(σ ); indeed, if x = σ(y), then y would have lower degree
and σk+1(y) = 0, contradicting the choice of x. Since x /∈ im(σ ), there exists
∂ ∈ D with ∂ [0](x) �= 0 by Proposition 4.7. But then 0 = ∂ [k](σ k(x)) = σk(∂ [0]x)

(Proposition 4.5), and ∂ [0](x) has lower degree than x, again contradicting the
choice of x. It follows that σ is injective. �

Proposition 4.9. Let x ∈ R. The following are equivalent:

(a) x has level ≥ t .
(b) ∂ [r](x) = 0 for all 0≤ r < t and ∂ ∈D.

Proof. Proposition 4.5 shows that (a) implies (b). Conversely, suppose that (b)
holds, and say that x has level s < t . Write x = σ s(y). Then 0 = ∂ [s](x) =
σ s(∂ [0](y)) for all ∂ ∈ D. Since σ is injective (Propositions 2.6 and 4.8), we have
∂ [0](y) = 0. Since this holds for all ∂ , we have y = σ(z) for some z by Propo-
sition 4.7, and so x = σ s+1(z), contradicting the assumption that x has level s.
Thus x has level ≥ t . �

Corollary 4.10. If x ∈ R is homogeneous of positive degree and ∂ [r](x) = 0 for
all r ≥ 0 and ∂ ∈ D, then x = 0.

Proof. By Proposition 4.9, x has level ≥ t for all t , and so x = 0. (Recall that
F tRd = 0 for t � 0 and d > 0.) �

Proposition 4.11. Let ε1, . . . , εs ∈ R0. Suppose that x ∈ R has level ≥ r ≥ 1,
and ∂ [r](x) ∈ ∑s

j=1 εjR
p for all ∂ ∈D. Then x ∈ im(σ r+1)+∑s

j=1 εj im(σ rφ).

In particular, x ∈ im(σ r+1) + ∑s
j=1 εjR

p .

Proof. Write x = σ r(y). Let ∂ ∈ D and write ∂ [r](x) = ∑s
j=1 εj z

p
i . Then

σ r(∂ [0](y)) = ∂ [r](x) =
s∑

j=1

εjσ (φ(zi)).

Since σ is injective (Propositions 2.6 and 4.8), we find σ r−1(∂ [0](y)) ∈ ∑s
j=1 εj ×

im(φ), from which it follows (by Proposition 2.7) that ∂ [0](y) ∈ ∑s
j=1 εj im(φ).

Since this holds for all ∂ ∈ D, we see from (D3) that y ∈ im(σ )+∑s
j=1 εj im(φ).

Applying σ r yields the stated result. �
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5. The Polynomiality Theorem

5.1. Main Theorem and Initial Reductions

The following is the main theorem of this section.

Theorem 5.1. Let R be a graded ring such that R0 is a field of characteristic
p. The R is a polynomial ring if and only if it admits an F -factorization with an
admissible set of Hasse derivations.

The rest of this section is devoted to the proof of the theorem. From Examples 2.5
and 4.3 we see that a polynomial ring admits an F -factorization with an admis-
sible set of Hasse derivations. We must prove the converse. We will do this via a
series of reductions and induction arguments. We further give two statements AE
and I ; their connections to the main theorem are as follows:

I
Lemma 5.3�⇒ AE

Lemma 5.2�⇒ Theorem 5.1.

The proof of I is handled in Section 5.2.
For the rest of this section, we fix the ring R, an F -factorization (φ,σ ) on R,

and an admissible set D of Hasse derivations on R. We put k = R0 and write R+
for the homogeneous maximal ideal of R.

Recall the level filtration F•R on R (Definition 2.8). We define F r (R+/R2+)

to be the image of F rR+. By definition every level r element of R+/R2+ admits a
level r lift to R+. Let E be a basis of R+/R2+ consisting of homogeneous elements
that is compatible with the level filtration. We write Ed,r for the set of degree d

level r elements in E . The compatibility with the filtration means that
⋃

s≥r Ed,s

forms a basis of F r (R+/R2+)d for all r and d . We let Ed,r be a set of degree d

level r elements of R mapping bijectively to Ed,r under the reduction map, and
we let E be the union of these sets. Since E lifts a basis of R+/R2+, it generates R

as a k-algebra. Our goal is to show that E is algebraically independent.
For a subset E of E , consider the following statement:

AE : Let x1, . . . , xn ∈ E be distinct elements, and let ε1, . . . , εs ∈ k (we allow
s = 0). Suppose that f (x1, . . . , xn) ∈ ∑s

j=1 εjR
p for some polynomial f ∈

k[X1, . . . ,Xn]. Then f ∈ ∑s
j=1 εjk[X1, . . . ,Xn]p .

It suffices to prove this statement for E = E :

Lemma 5.2. If AE holds, then E is algebraically independent.

Proof. Suppose that f (x1, . . . , xn) = 0 is an algebraic relation between distinct
elements of E . By AE with s = 0 we find f = 0. Thus E is algebraically indepen-
dent. �

We will prove AE for all E by induction on E. We have to proceed somewhat
carefully in this induction. The precise inductive statement is the following:
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I : Fix d and t and let E be a subset of E satisfying the following:

E<d,• ∪ Ed,>t ⊂ E ⊂ E<d,• ∪ Ed,≥t .

Let x ∈ Ed,t \ E, and let E′ = E ∪ {x}. Then AE implies AE′ .

Lemma 5.3. If I holds, then AE holds.

Proof. In this proof, we write A (E) in place of AE for readability. Note that if
E is a directed union of some family of subsets {Ei}i∈I , then A (E) holds if and
only if A (Ei) holds for all i ∈ I . We use this several times.

We prove that A (E≤d,•) holds for all d by induction on d . Thus suppose that
A (E<d,•) holds and let us show that A (E≤d,•) holds. To do this, we show that
A (E<d,• ∪ Ed,≥t ) holds for all t , by descending induction on t . For t � 0, the
statement is vacuous since Ed,≥t is empty. Thus assume that A (E<d,• ∪ Ed,>t )

holds, and let us show that A (E<d,• ∪ Ed,≥t ) holds. To do this, it suffices to
show that A (E<d,• ∪ Ed,>t ∪ {e1, . . . , er}) holds for all finite subsets {e1, . . . , er}
of Ed,t . This follows inductively by applying I with x = ei and E = E<d,• ∪
Ed,>t ∪ {e1, . . . , ei−1} for i = 1, . . . , r . �

5.2. Proof of I

We now prove statementI . Fix d , t ,E, x, andE′ as inI , and supposeAE holds.
We will prove AE′ . For this, we will further introduce auxiliary statements Bn,m,
C , and C ′. The logical implications between these statements are as follows:

AE and Bn,m for all n and m
Lemma 5.6�⇒ AE′ ,

(Bk,� for all k < n and all �) and (Bn,k for all k < m) and C �⇒ Bn,m,

Lemma 5.10�⇒ C ′, C ′ Lemma 5.8�⇒ C .

In words, the first statement shows that we can deduce AE′ from Bn,m for all
n and m, since we have assumed that AE holds. The second statement shows
that we can prove Bn,m using induction on (n,m), once we have C . And the
final statement shows that C is implied by C ′, which, in turn, is established by
Lemma 5.10.

We now start on the details. We let A ⊂ R be the k-subalgebra generated by E.

Lemma 5.4. The element x does not belong to A.

Proof. Suppose x could be expressed as a polynomial in the elements in E. Re-
ducing this expression modulo R2+, we would find that x belongs to the k-span
of E. But this contradicts the linear independence of the set E . �

Lemma 5.5. Let y ∈ R be homogeneous. Suppose y has degree < d , or degree d

and level > t . Then y ∈ A.

Proof. First suppose y has degree e < d . Then the image of y in R+/R2+ is a
linear combination of elements of Ee,•. Thus if y′ is the corresponding linear
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combination of elements of Ee,•, then y − y′ ∈ R2+, that is, we can write y − y′ =∑n
i=1 aibi with ai and bi of degree < e. By induction on e the elements ai and bi

belong to A, whereas y′ belongs to A by definition. Thus y ∈ A, as required.
Now suppose that deg(y) = d and y has level > t . Then the image of y in

R+/R2+ is a linear combination of elements of Ed,>t . Again, taking y′ to be the
corresponding linear combination of elements of Ed,>t , we see that y − y′ ∈ R2+.
Thus the same reasoning shows that y ∈ A. �

By Lemma 5.5 we see that ∂k(x) ∈ A for any ∂ ∈ D and k > 0, as ∂k(x) has
degree < d . It follows from Proposition 3.4 that for k ≥ 1, n ≥ 1, and ∂ ∈ D, the
element ∂k(xn) can be expressed as a polynomial in x of degree ≤ n − 1 with
coefficients in A. We further use this constantly and without reference.

Consider the following statement:

Bn,m: Let a0, . . . , an ∈ A with deg(an) ≤ m, and let ε1, . . . , εs ∈ k. Suppose that∑n
i=0 aix

i ∈ ∑s
j=1 εjR

p . Then ai ∈ ∑s
j=1 εjR

p for all i, and ai = 0 if
p � i.

We note that in the conclusion it would be equivalent to state that ai ∈∑s
j=1 εjA

p , since AE holds.

Lemma 5.6. Suppose Bn,m holds for all n and m. Then AE′ holds.

Proof. Let x1, . . . , xk be distinct elements of E′ and suppose f (x1, . . . , xk) ∈∑s
j=1 εjR

p . Without loss of generality, we may assume that xk = x and
x1, . . . , xk−1 ∈ E. Write f (X1, . . . ,Xk) = ∑n

i=0 gi(X1, . . . ,Xk−1)X
i
k for poly-

nomials gi . Then
∑n

i=0 gi(x1, . . . , xk−1)x
i ∈ ∑s

j=1 εjR
p . By Bn,• we see that

gi(x1, . . . , xk−1) ∈ ∑s
j=1 εjR

p for all i and gi(x1, . . . , xk−1) = 0 for p � i. By AE

we see that gi ∈ ∑s
j=1 εjk[X1, . . . ,Xk−1]p for all i and (by taking s = 0) gi = 0

for p � i. It follows that f ∈ ∑s
j=1 εjk[X1, . . . ,Xk]p , and so AE′ holds. �

We now prove the statement Bn,m for all n and m. We do this by induction on
n and m. It is clear that B0,m holds for all m. We now fix n > 0 and m ≥ 0 and
assume that B<n,• and Bn,<m hold, and we will prove that Bn,m holds. To this
end, fix a0, . . . , an ∈ A with deg(an) ≤ m and ε1, . . . , εs ∈ k such that

n∑
i=0

aix
i ∈

s∑
j=1

εjR
p. (5.7)

We must prove:

(C ) We have ai ∈ ∑s
j=1 εjR

p for all i and ai = 0 for p � i.

Clearly, if we do this, then we will have established Bn,m, and the theorem will
follow. Without loss of generality, we assume ε1, . . . , εs to be linearly indepen-
dent over kp . Before tackling C , we make one simple reduction. Consider the
following statement:

(C ′) We have an ∈ ∑s
j=1 εjR

p and an = 0 if p � n.

The following lemma shows that it suffices to prove this statement.
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Lemma 5.8. If C ′ holds, then C holds.

Proof. Suppose C ′ holds. Combining this with (5.7), we see that
∑n−1

i=0 aix
i be-

longs to
∑s

j=1 εjR
p . Thus by B<n,• we see that ai belongs to

∑s
j=1 εjR

p and
ai = 0 for p � i, at least for 0≤ i ≤ n−1. Of course, by C ′ we know this for i = n

as well. Thus C holds. �

Before establishing C ′, we need one auxiliary lemma:

Lemma 5.9. Suppose that we have the equation
∑N

j=1 δj yj = 0 where δj belong
to k, yj belong to Rp , and not all yj vanish. Then δj are linearly dependent over
kp .

Proof. We can assume that all yj have the same degree, and we proceed by in-
duction on the degree. If yj have degree 0, then the statement is clear. Otherwise,
we can find ∂ ∈ D such that ∂ [r](yj ) �= 0 for some r ≥ 1 and j (Corollary 4.10).
Applying this to the given equation yields

∑N
j=1 δj ∂

[r](yj ) = 0. Each ∂ [r](yj ) is
a pth power (Proposition 3.5), and not all vanish. Since the degree has dropped,
the result follows by induction. �

We now come to the heart of the argument.

Lemma 5.10. Statement C ′ holds.

Proof. We proceed in five cases. In what follows, in expressions such as axn−1 +
· · · , the · · · will always refer to an A-linear combination of lower powers of x.

Case 1: p does not divide n or n − 1, and m = 0. Since m = 0, the leading
coefficient an is constant. We must show that it vanishes. Recall that t is the level
of x. We first claim that an−1 has level ≥ t . Let 0 ≤ r < t . Applying ∂ [r] to (5.7)
for some ∂ ∈ D and using the fact that ∂ [r](x) = 0 (Proposition 4.9) and thus that
∂ [r](xn) = 0 (Corollary 4.6), we see that ∂ [r](an−1)x

n−1 + · · · ∈ ∑s
j=1 εjR

p . By
Bn−1,• we see that ∂ [r](an−1) = 0 (here we are using p � n − 1). Since this holds
for all ∂ ∈D, we conclude that an−1 has level ≥ t (Proposition 4.9).

Now apply ∂ [t] to (5.7) for some ∂ ∈ D. Using the identity ∂ [t](xn) =
nxn−1∂ [t](x) (Corollary 4.6), we see that the coefficient of xn−1 in the result
is ∂ [t](nanx + an−1). We thus have

∂ [t](nanx + an−1)x
n−1 + · · · ∈

s∑
j=1

εjR
p.

Applying Bn−1,m and using p � n − 1, we see that ∂ [t](nanx + an−1) = 0. Since
we already saw that nanx + an−1 has level ≥ t , this shows that nanx + an−1 has
level ≥ t +1 (Proposition 4.9). Since nanx +an−1 has the same degree d as x but
greater level, it belongs toA (Lemma 5.5). Since an−1 also belongs toA and n �= 0
in k, we see that anx belongs to A. Since x does not belong to A (Lemma 5.4),
we see that an = 0, which completes the proof.
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Case 2: p does not divide n, p does divide n − 1, and m = 0. The argument is
similar to the previous case. We first treat the case t = 0. Applying ∂ [0] to (5.7),
for some ∂ ∈D, we find

∂ [0](nanx + an−1)x
n−1 + · · · = 0.

By Bn−1,• with s = 0, we see that ∂ [0](nanx + an−1) = 0. Since this holds for
all ∂ ∈ D, we see that nanx + an−1 has level ≥ 1. As in Case 1, this implies
nanx + an−1 ∈ A, from which we conclude an = 0.

Now suppose t > 0. We first claim that there is some b ∈ ∑s
j=1 εjR

p such
that an−1 + b is homogeneous and has level ≥ t . To begin, applying ∂ [0] to (5.7)
for some ∂ ∈ D, we find ∂ [0](an−1)x

n−1 + · · · = 0, whence ∂ [0](an−1) = 0 by
Bn−1,• (with s = 0). Since this holds for all ∂ ∈ D, we see that an−1 has level
≥ 1. Now suppose 1 ≤ k < t and we can find b ∈ ∑s

j=1 εjR
p so that an−1 + b is

homogeneous and has level ≥ k. We have just shown this to be the case for k = 1,
by taking b = 0. Applying ∂ [k] to (5.7) for some ∂ ∈D, we find ∂ [k](an−1)x

n−1 +
· · · ∈ ∑s

j=1 εjR
p . ByBn−1,• we see that ∂ [k](an−1) ∈ ∑s

j=1 εjR
p . Thus we have

∂ [k](an−1 + b) ∈ ∑s
j=1 εjR

p as well. Since an−1 + b has level ≥ k and this holds

for all ∂ ∈ D, Proposition 4.11 implies an−1 + b = σk+1(c) + b′ for some b′ ∈∑s
j=1 εjR

p . Thus an−1 + (b − b′) has level ≥ k + 1. Replacing b with b − b′ and
continuing, the claim follows.

Fix b ∈ ∑s
j=1 εjR

p so that an−1 +b has level ≥ t . Apply ∂ [t] to (5.7) for some
∂ ∈D. We find

∂ [t](nanx + an−1)x
n−1 + · · · ∈

s∑
j=1

εjR
p.

By Bn−1,• we find ∂ [t](nanx + an−1) ∈ ∑s
j=1 εjR

p . Of course, we also have
∂ [t](nanx + an−1 + b) ∈ ∑s

j=1 εjR
p by Corollary 3.6 because b ∈ ∑s

j=1 εjR
p .

Since this holds for all ∂ ∈D and nanx+an−1+b has level≥ t with t > 0, Propo-
sition 4.11 implies nanx + an−1 + b = σ t+1(y) + b′ for some b′ ∈ ∑s

j=1 εjR
p ,

and we may further assume that σ t+1(y) and b′ are homogeneous of the same
degree. Since σ t+1(y) has the same degree as x but higher level, it belongs to A.
Since b and b′ have the same degree as x and belong to R2+, they also belong to A.
Thus we find anx ∈ A, and so an = 0.

Case 3: p does not divide n and m > 0. If deg(an) = 0, then the result follows
from Bn,<m, so we assume that deg(an) > 0. Applying ∂ [r] to (5.7) for some
∂ ∈D and r ≥ 0, we find

∂ [r](an)x
n + · · · ∈

s∑
j=1

εjR
p.

By Bn,m−1 and the fact that p � n we conclude that ∂ [r](an) = 0. Since this holds
for all ∂ ∈D and r ≥ 0, we conclude that an = 0 by Corollary 4.10.

Case 4: p divides n andm = 0. Let εs+1 = an, which belongs to k sincem = 0.
Moving the term anx

n in (5.7) to the other side and noting that xn ∈ Rp as p | n,
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we find
n−1∑
i=0

aix
i ∈

s+1∑
j=1

εjR
p.

Applying B<n,•, it follows that ai ∈ ∑s+1
j=1 εjR

p for each 0 ≤ i ≤ n and ai =
0 for p � i. By AE we in fact have ai ∈ ∑s+1

j=1 εjA
p . Let bi ∈ A be such that

ai ∈ εs+1b
p
i + ∑s

j=1 εjR
p . Take bi = 0 for p � i and also put bn = 1. Putting

this into (5.7), we find εs+1
∑n

i=0 b
p
i xi ∈ ∑s

j=1 εjR
p . The summation on the left

is (
∑n

i=0 bi/pxi/p)p , where the sum is over indices divisible by p. This sum is
nonzero by Bn/p,• since bn = 1. Thus by Lemma 5.9 and our assumption that
{ε1, . . . , εs} is linearly independent over kp we see that an = εs+1 is in the kp-
span of ε1, . . . , εs , and this establishes C ′.

Case 5: p divides n and m > 0. If deg(an) = 0, then the result follows from
Bn,<m, so assume that deg(an) > 0. We claim that for any r , we can find b ∈∑s

j=1 εjR
p such that an + b has level ≥ r .

To start, apply ∂ [0] to (5.7) for some ∂ ∈ D. We find ∂ [0](an)x
n +· · · = 0. From

Bn,<m it follows that ∂ [0](an) = 0. Since this holds for all ∂ ∈ D, we conclude
that an has level ≥ 1. This proves the claim for r = 1 (take b = 0).

Suppose now that we have found b such that an + b has level ≥ r ≥ 1. Ap-
plying ∂ [r] to (5.7) for some ∂ ∈ D, we find ∂ [r](an)x

n + · · · ∈ ∑s
j=1 εjR

p . By
Bn,<m we have ∂ [r](an) ∈ ∑s

j=1 εjR
p . Of course, we also have ∂ [r](an + b) ∈∑s

j=1 εjR
p . As this holds for all ∂ and an + b has level ≥ r , Proposition 4.11

implies that an + b = σ r+1(c) + b′ for some b′ ∈ ∑s
j=1 εjR

p . Thus an + b − b′
has level ≥ r + 1. The claim follows.

Take r � m and pick b ∈ ∑s
j=1 εjR

p so that an + b has level ≥ r . Then an +
b = 0, since the level of a nonzero element of positive degree is bounded in terms
of its degree. Thus an ∈ ∑s

j=1 εjR
p , which establishes C ′. �

6. Applications

6.1. Inverse Limit Rings

For a (nongraded) ring A and an infinite set U , we put
A��xi ��i∈U = lim←−A[xi]i∈V ,

where the inverse limit is taken in the category of graded rings over all finite
subsets V of U , and A[xi]i∈V denotes the standard-graded polynomial ring in
the indicated variables. Thus A��xi ��i∈U is a graded ring, and a degree d element
can be written uniquely in the form

∑
cex

e, where the sum is over multi-indices
e of degree d , and ce are arbitrary elements of A. (A multi-index is a function
e : U → N of finite support; its degree is the sum of its values.) Fix a field K

and an infinite set U , and let R = K��xi ��i∈U . The following theorem is a slight
generalization of Theorem 1.1.

Theorem 6.1. The ring R is a polynomial K-algebra.
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Proof. If K has characteristic 0, then this follows from [ESS1, Theorem 5.3]
(which also covers some cases in positive characteristic). We note that the state-
ment of [ESS1, Theorem 5.3] takes U to be countable, but the argument applies
generally. Suppose now that K has positive characteristic p. Define the endomor-
phisms φ and σ of R by

φ

(∑
cex

e

)
=

∑
c
p
e xe, σ

(∑
cex

e

)
=

∑
cex

pe.

Then (φ,σ ) defines an F -factorization on R: the argument in Proposition 2.4
applies with essentially no changes.

Let ∂i be the Hasse derivative with respect to xi on the polynomial ring
K[xi]i∈U . Let ∂n

i be the unique continuous extension of ∂
n

i to R; concretely,

∂n
i

(∑
cex

e

)
=

∑
ci∂

n

i (x
e).

We easily see that {∂n
i }n≥0 is a Hasse derivation ∂i on R that is homogeneous of

degree −1. Let D be the set of these Hasse derivations over all i. An argument
as in Example 4.3 shows that the set D is admissible, and the result then follows
from Theorem 5.1. �

6.2. Bounded Inverse Limit Rings

We now prove a generalization of Theorem 6.1. Let K , U , and R be as in the
previous section. Fix a subring A of K with Frac(A) = K . We say that a subset S
of K is bounded if there exists a nonzero element b ∈ A such that S ⊂ b−1A. We
let R� ⊂ R be the subring consisting of elements with bounded coefficients (i.e.,
the set of coefficients forms a bounded subset of K). We note that R� is naturally
identified with K ⊗A A��xi ��i∈U , which is typically not isomorphic to K��xi ��i∈U .
The interest in this ring comes from [ESS1, Section 5], where it plays a key role
in our second proof of Stillman’s conjecture: it arises when localizing the ring
A��xi ��i∈U over the generic point of Spec(A).

Suppose for the moment that K has characteristic p. For a cardinal κ , we
consider the following condition on A:

(Cκ) Given ε1, . . . , εs ∈ K and a subset S of A ∩ ∑s
j=1 εjK

p of cardinal-
ity at most κ , there exists a nonzero element b ∈ A such that S ⊂
b−p

∑s
j=1 εjA

p .

We also consider the following simpler condition:

(C) Given ε1, . . . , εs ∈ K , there exists a nonzero element b ∈ A such that A ∩∑s
j=1 εjK

p ⊂ b−p
∑s

j=1 εjA
p .

We note that (C) holds if and only if (Cκ) holds for all κ .

Theorem 6.2. Suppose that either K has characteristic 0, or K has characteris-
tic p and condition (Cκ) holds for κ = #U . Then R� is a polynomial K-algebra.

If K has characteristic 0, then the result follows from [ESS1, Theorem 5.3]. We
assume for the rest of the proof that K has characteristic p. We aim to show
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that the F -factorization and admissible set D on R constructed in the proof of
Theorem 6.1 restrict to such a structure on R. It is clear that φ and σ map R� into
itself; we let φ� and σ � denote their restrictions to R�. Similarly, it is clear that
each Hasse derivative ∂i maps R� into itself; we let D� = {∂i |R�}i∈U .
Lemma 6.3. The pair (φ�, σ �) is an F -factorization on R�.

Proof. It is clear that (F1), (F2), and (F3) hold. We now verify (F4). Thus let
ε1, . . . , εs ∈ K be given, and suppose f belongs to im(σ �) ∩ ∑s

j=1 εj im(φ�).

Write f = ∑s
j=1 εjφ(gj ) for some gj ∈ R�. Decompose gj as g1

j + g2
j , where

g1
j contains all monomials xe where p | e, and g2

j contains the other monomials.
Every monomial occurring in f with nonzero coefficient has the form xe with
p | e, since f ∈ im(σ ), and so we see that f = ∑s

j=1 εjφ(g1
j ). Since all exponents

appearing in g1
j are divisible by p, we can write g1

j = σ(hj ) for some hj ∈R. The
set of coefficients appearing in hj is the same as the set of coefficients appearing
in g1

j and thus is bounded, and so hj ∈ R�. Thus φ(g1
j ) = φ(σ(hj )) ∈ (R�)p , and

the claim follows. �

Lemma 6.4. The set D� is admissible if and only if condition (Cκ) holds, where
κ = #U .

Proof. It is clear that D� satisfies (D1) and (D2). We show that (D3) holds if and
only if (Cκ) holds.

First, suppose that (D3) holds. Let ε1, . . . , εs ∈ K , and let S be a subset of A ∩∑s
j=1 εjK

p of cardinality at most κ . Enumerate S as {ai}i∈U ; if the cardinality of
S is smaller than κ , then simply let the values of ai repeat. Consider the element
f = ∑

i∈U aixi of R�. We have ∂
[0]
i (f ) = ai , which belongs to

∑s
j=1 εjK

p ⊂∑s
j=1 εj im(φ�). Since this holds for all i, we conclude that f ∈ ∑s

j=1 εj im(φ�)

by (D3); we note that the summand im(σ �) in (D3) is irrelevant here since f

is linear. Write f = ∑s
j=1 εjφ(gj ) with gj ∈ R�. Letting b ∈ A be a nonzero

element such that bgj ∈ A��xi ��i∈U for all j , we see that ai ∈ b−p
∑s

j=1 εjA
p for

all j , and so (Cκ) holds.
Conversely, suppose (Cκ) holds. Let ε1, . . . , εs ∈ K and f ∈ R� be given, and

suppose ∂ [0](f ) ∈ ∑s
j=1 εj im(φ�) for all ∂ ∈ D. We aim to show that f be-

longs to im(σ �) + ∑s
j=1 εj im(φ�). By scaling f appropriately we may assume

f belongs to A��xi ��i∈U . Write f = ∑
cex

e as usual. Since D satisfies (D3), we
can write f = σ(h) + ∑s

j=1 εjφ(gj ) for h,g1, . . . , gs ∈ R. We thus see that if
p � e, then ce belongs to A ∩ ∑s

j=1 εjK
p . By (Cκ) we thus see that there is

some nonzero b ∈ A such that each such ce is contained in b−p
∑s

j=1 εjA
p;

we note that the collection of ce has cardinality at most κ . For p � e, write
ce = ∑s

j=1 εj (dj,e/b)p , where dj,e ∈ A. Then f = σ(h′)+∑s
j=1 εjϕ(g′

j ), where

h′ = ∑
p|e cex

e/p and g′
j = b−1 ∑

p�e dj,ex
e. Clearly, h′ has coefficients in A and

thus belongs to R�. It is clear from the definition that g′
j belong to R�. We have

thus verified (D3). �
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Theorem 6.2 follows from the previous two lemmas: indeed, if (Cκ) holds, then
these lemmas show that R� admits an F -factorization and an admissible set of
Hasse derivations and is thus a polynomial ring by Theorem 5.1.

6.3. More on Condition (C)

To apply Theorem 6.2, we need some understanding of condition (C). We there-
fore turn our attention to it in this section. Throughout this section, k denotes a
field of characteristic p, and ⊗ denotes the tensor product over k.

Proposition 6.5. Suppose that A is a Noetherian domain that is finite over Ap .
Then A satisfies condition (C).

Proof. Let ε1, . . . , εs ∈ K = Frac(A) be given. Let M = A ∩ ∑s
j=1 εjK

p and
N = ∑s

j=1 εjA
p . Since KpN = ∑s

j=1 εjK
p , we have M ⊂ KpN . On the other

hand, M is an Ap-submodule of A and thus is finitely generated as an Ap-module
(since A is finite overAp and Ap ∼= A is Noetherian). Let x1, . . . , xn be generators
for M as an Ap-module, and let b ∈ A be a nonzero element such that bpxi ∈ N

for each 1≤ i ≤ n. Then M ⊂ b−pN , as required. �

Lemma 6.6. Let k ⊂ K1, K2 ⊂ L be fields of characteristic p such that K1 and
K2 are linearly disjoint over k and L is the compositum of K1 and K2. Let {εi}i∈I

and {δj }j∈J be subsets of K1 and K2. Then

(K1 ⊗ K2) ∩
( ∑

i∈I,j∈J

εiδjL
p

)
=

(∑
i∈I

εiK
p

1

)
⊗

(∑
j∈J

δjK
p

2

)
,

where both sides are regarded as subsets of L.

Proof. Let X denote the left side and Y the right side. Clearly, Y ⊂ X, so we
must prove the reverse inclusion. We may as well assume that {εi}i∈I is linearly
independent over K

p

1 ; extend it to a basis {εi}i∈I+ , where I ⊂ I+. Similarly, let
{δj }j∈J+ be a basis for K2 over K

p

2 . We claim that {εiδj }i∈I+,j∈J+ is linearly
independent over Lp . To see this, suppose that

∑
i∈I+,j∈J+ ci,j εiδj = 0 is a linear

relation with ci,j ∈ Lp . Since L = Frac(K1 ⊗ K2), we can clear denominators
and assume that ci,j ∈ K

p

1 ⊗ K
p

2 . But K1 ⊗ K2 is a free module over K
p

1 ⊗ K
p

2
with basis {εiδj }i∈I+,j∈J+ , and so ci,j = 0 for all i and j .

Now let x ∈ X be given. Since x belongs to K1 ⊗ K2, we can express it as
x = ∑

i∈I+,j∈J+ ci,j εiδj with ci,j ∈ K
p

1 ⊗K
p

2 . On the other hand, since x belongs
to

∑
i∈I,j∈J εiδjL

p , we can express it as x = ∑
i∈I,j∈J c′

i,j εiδj with c′
i,j ∈ Lp .

By the previous paragraph we must have c′
i,j = ci,j ∈ K

p

1 ⊗ K
p

2 , which shows
that x belongs to Y . �

Lemma 6.7. Let k be a field of characteristic p, and let B1 and B2 be integral
domains containing k such that C = B1 ⊗k B2 is a domain. Let Ki = Frac(Bi)
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and L = Frac(C). Let ε1, . . . , εs ∈ K1. Then

C ∩
( s∑

j=1

εjL
p

)
=

(
B1 ∩

s∑
j=1

εjK
p

1

)
⊗ (B2 ∩ K

p

2 ),

where each side is regarded as a subset of C.

Proof. Applying the previous lemma with {δj }j∈J the singleton set {1}, we find

(K1 ⊗ K2) ∩
s∑

j=1

εjL
p =

( s∑
j=1

εjK
p

1

)
⊗ K

p

2 .

Now intersect each side with C. Note that C is contained in K1 ⊗ K2, so the
left side is just C ∩ ∑s

j=1 εjL
p . Since C = B1 ⊗ B2, the right side factors as

required. �

Recall that if {Ai}i∈I is a family of k-algebras, then
⊗

i∈I Ai is defined as the
direct limit of the algebras

⊗
i∈J Ai taken over all finite subsets J of I .

Proposition 6.8. Let k be a field of characteristic p, let {Ai}i∈I be a family of
k-algebras, and let A = ⊗

i∈I Ai , which we assume to be a domain. Assume:

(a) For each finite subset J of I , the ring AJ = ⊗
i∈J Ai satisfies condition

(C).
(b) For each i, we have Ai ∩ Frac(Ai)

p = A
p
i .

Then A satisfies condition (C).

Proof. Let K = Frac(A), Ki = Frac(Ai), and KJ = Frac(AJ ). Note that Ai and
AJ are subrings of A and thus domains. Now, let ε1, . . . , εs ∈ K be given. Let
J0 ⊂ I be a sufficiently large finite set such that ε1, . . . , εs belong to KJ0 . Since
AJ0 satisfies condition (C) by assumption (a), there exists a nonzero element
b ∈ AJ0 such that

AJ0 ∩
s∑

j=1

εjK
p

J0
⊂ b−p

s∑
j=1

εjA
p

J0
.

We claim that

A ∩
s∑

j=1

εjK
p ⊂ b−p

s∑
j=1

εjA
p,

which will verify condition (C) for A. To see this, it suffices to prove that

AJ ∩
s∑

j=1

εjK
p

J ⊂ b−p
s∑

j=1

εjA
p

J

for all finite subsets J of I containing J0. Let I (J ) be the true value of this
containment. We prove I (J ) by induction on J , the base case being J = J0.
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Thus suppose that I (J ) holds, and let us prove I (J ′) where J ′ = J ∪ {i} for
some i ∈ I \J . As AJ ′ = AJ ⊗ Ai , the previous lemma yields

AJ ′ ∩
( s∑

j=1

εjK
p

J ′

)
=

(
AJ ∩

s∑
j=1

εjK
p

J

)
⊗ (Ai ∩ K

p
i ).

The first factor on the right is contained in b−p
∑s

j=1 εjA
p

J by I (J ), whereas the

second factor on the right is A
p
i by assumption (b); thus the right side is contained

in b−p
∑s

j=1 εjA
p

J ′ , and so I (J ′) holds. �

Corollary 6.9. Let k be a semiperfect field, let {Ai}i∈I be a family of normal
finitely generated k-algebras, and let A = ⊗

i∈I Ai , which we assume to be a
domain. Then A satisfies condition (C).

Proof. We apply Proposition 6.8. Since AJ is finitely generated over a semiper-
fect field, it satisfies (C) by Proposition 6.5, and so condition (a) holds. Since
each Ai is normal, condition (b) holds. �

Corollary 6.10. Any polynomial ring over a semiperfect field satisfies condition
(C).

Proof. SupposeA = k[xi]i∈I is a polynomial ring. ThenA = ⊗
i∈I Ai , whereAi

is the univariate polynomial ring k[xi]. The result now follows from Corollary 6.9.
�

Corollary 6.11. Let A be a polynomial ring over a semiperfect field, let K =
Frac(A), and let U be an infinite set. Then R� = K ⊗A A��xi ��i∈U is a polynomial
K-algebra.

Proof. This follows from Corollary 6.10 and Theorem 6.2. �

Having given some examples where (C) holds, we now give an example where it
does not.

Example 6.12. Let A = Fp[t2i , t3i ]i≥1, a subring of the polynomial ring Fp[ti]i≥1.
We claim that A does not satisfy condition (C). Take s = 1 and ε1 = 1, and let
S ⊂ A ∩ Kp be the set S = {tpi }i≥1. We note that K = Frac(A) is the rational
function field Fp(ti)i≥1, so t

p
i does indeed belong to Kp . We claim that S is not

contained in b−pAp for any nonzero b ∈ A. Indeed, b can only use finitely many
variables, say t1, . . . , tn, and then b−pAp cannot contain t

p

n+1, as b−1A does not
contain tn+1. We do not know if R� is a polynomial ring in this case: this is an
interesting open problem.

Remark 6.13. Broadly speaking, the main difficulty with the derivational criteria
like Theorem 5.1 or those in [ESS1, Section 2] lies in dealing with elements that
look like pth powers but actually are not. For example, if K = Fp(ti)i≥1, then the
element f = ∑

i≥1 tix
p
i of K��x1, x2, . . .�� looks like a pth power in the sense that
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it is annihilated by all continuous derivations, even though it is not. The criterion
in [ESS1] is not powerful enough to handle such elements and thus cannot estab-
lish the polynomiality of K��x1, x2, . . .��. Our Theorem 5.1 can handle this kind of
element and does prove that K��x1, x2, . . .�� is polynomial. However, Theorem 5.1
cannot handle certain more subtle elements. For example, if A = Fp[t2i , t3i ]i≥1 is
the ring from the previous example and g ∈ R� is the element g = ∑

i≥1 t
p
i x

p
i ,

then g really looks like a pth power—for example, it is a limit of pth powers and
is a pth power in the overring R—even though g actually is not a pth power in
R�. Our Theorem 5.1 is not powerful enough to handle this kind of element and
thus cannot determine whether or not R� is a polynomial ring.

6.4. A Curious Example

We now give an example of a ring A for which (Cκ) holds for κ = ℵ0 but fails for
κ = ℵ1. Thus the ring R� is polynomial if U is countable, but our methods cannot
determine whether or not it is so for uncountable U .

Fix a well-ordered set I of type ω1. Thus I is uncountable (of cardinality ℵ1),
but for any i ∈ I , the set {j ∈ I | j < i} is countable. In particular, any countable
subset of I is bounded from above (if not, I would be a countable union of count-
ably many subsets). Let � be the group of all functions I → Z with finite support.
We totally order � using the lexicographic order, that is, γ < γ ′ if γ (i) < γ ′(i),
where i is maximal such that γ (i) �= γ ′(i). Given a nonzero element γ ∈ �, the
top index of γ is the maximal i for which γ (i) �= 0, and the top value of γ is
γ (i), where i is the top index. We let �+ (resp. �) be the submonoid of � con-
sisting of 0 and all nonzero elements γ ∈ � with top value at least 1 (resp., at least
2). We note that �+ can also be described as the set of γ ∈ � with γ ≥ 0.

Let L = Fp((�)) be the ring of Laurent series with coefficients in Fp and expo-
nents in �. By definition an element of L is a formal series

∑
γ∈� cγ tγ , where tγ

are formal symbols, cγ belong to Fp , and the set {γ ∈ � | cγ �= 0} is well ordered
(under the order on �). Multiplication in L is performed in the usual manner; the
condition on the support of the coefficients ensures that it is well defined. For a
nonzero element f = ∑

cγ tγ of L, we let v(f ) be the minimal γ for which cγ

is nonzero. It is well known that L is a field and v is a valuation on L with value
group �. In fact, this is the standard construction of a valuation field with value
group �. The valuation ring OL consists of those elements of L that have the
form

∑
γ∈�+ cγ tγ . See [FS, Section II.3] for further background on these con-

structions.
Let A ⊂ OL be the set of elements of the form

∑
γ∈� cγ tγ . Since � is a

submonoid of �, it follows that A is a subring of L. Let K be the fraction field
of A. We note that the valuation of any nonzero element of A belongs to �.

Lemma 6.14. Given f ∈ K , there exists i ∈ I such that t δf ∈ A for any δ ∈ �

with top index > i.

Proof. It suffices to prove the result for f = g−1 with nonzero g ∈ A. Let γ =
v(g); we may as well scale g so that tγ has coefficient 1. Let i be the top index
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of γ . Write g = tγ + g1 + g2, where g1 consists of all terms in g with top index i

(other than the leading term), and g2 consists of terms with top index > i. Then

g−1 = t−γ (1+ t−γ g1 + t−γ g2)
−1 = t−γ

∑
n,m≥0

(
n + m

n

)
(t−γ g1)

n(t−γ g2)
m.

The terms in t−γ g2 have the same top values as the terms in g2; in particular, they
are all at least 2, and so t−γ g2 belongs to A. The terms in t−γ g1 have top index at
most i, and so the same is true for terms in t−γ (t−γ g1)

n for any n. Thus if δ ∈ �

has top index > i, then all terms in t δ · t−γ (t−γ g1)
n have the same top index and

top value as δ, and so this element belongs to A. Thus tδg−1 belongs to A. �

Lemma 6.15. A satisfies (Cκ) with κ = ℵ0.

Proof. Let ε1, . . . , εs ∈ K be given, and let S = {fn}n≥1 be a countable subset of
A∩∑s

j=1 εjK
p . By Lemma 6.14, for each n ≥ 1, we can choose some in ∈ I such

that tpδfn ∈ ∑s
j=1 εjA

p for any δ ∈ � with top index > in. Since {in}n≥1 is a
countable subset of I , it is bounded from above; let i∗ ∈ I be an element such that
in < i∗ for all n. Then if δ ∈ � has top index i∗, then we have tpδfn ∈ ∑s

j=1 εjA
p

for all n, and so S ⊂ b−p
∑s

j=1 εjA
p with b = t δ ∈ A. Thus (Cκ) holds. �

Lemma 6.16. A does not satisfy (Cκ) with κ = ℵ1.

Proof. For i ∈ I , let δi ∈ �+ be the element that is 1 at i and 0 elsewhere. Then
tpδi belongs to A ∩ Kp for all i: indeed, nδi belongs to � for any n ≥ 2, and
so tpδi belongs to A, whereas tδi = t3δi /t2δi belongs to K , and so tpδi belongs
to Kp . Let S = {tpδi }i∈I ; this is a subset of A ∩ Kp of cardinality κ . To prove
the lemma, it suffices to show that S is not contained in b−pAp for any nonzero
b ∈ A. Thus suppose a nonzero b ∈ A is given. Let γ = v(b), let i be the top
index of γ , and let j > i. We claim that tpδj does not belong to b−pAp , which
will complete the proof. Indeed, suppose that it did, and write bptpδj = ap for
some a ∈ A. Taking valuations, we find γ + δj = v(a) ∈ �. However, γ + δj has
top value 1, a contradiction. �

6.5. Ultraproducts

We now treat an ultraproduct version of Theorem 1.1. We refer to [ESS1, Sec-
tion 4] for the relevant background. Let I be a set equipped with a nonprincipal
ultrafilter. We regard elements of the ultrafilter as neighborhoods of some hypo-
thetical point ∗. Let {ki}i∈I be a family of fields, let Ri = ki[x1, x2, . . .] with the
standard grading, and let S be the graded ultraproduct of the Ri .

Theorem 6.17. S is a polynomial ring.

Proof. If the ultraproduct of the fields ki has characteristic 0, then this follows
from [ESS1, Theorem 4.7] (which also covers some cases in positive character-
istic). Thus assume that this ultraproduct has positive characteristic p. Passing to
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a neighborhood of ∗, we can thus assume that each ki has characteristic p. Each
Ri then comes with a standard F -factorization and an admissible set of Hasse
derivations (the Hasse derivatives with respect to the variables). We claim that the
ultraproduct of these structures endow S with an F -factorization and an admissi-
ble set D.

First, we start with the F -factorization. Properties (F1), (F2), (F3) are clearly
preserved under taking ultraproduct, so we need to check (F4). Pick ε1, . . . , εs ∈
S0. Suppose we have f ∈ im(σ ) ∩ ∑s

j=1 εj im(φ). In particular, we can write
f = σ(x) and f = ∑s

j=1 εjφ(yj ) for some elements x, y1, . . . , ys ∈ S. Each of
f , x, yj can be represented by a sequence of elements in Ri , say f = (fi), x =
(xi), and y = (yj,i), and the same equalities will hold in some neighborhood of ∗.
Similarly, we can write εj = (εj,i ). In particular, we can write fi = ∑s

j=1 εj,iz
p
j,i

with zj,i ∈ Ri . Then we have f = ∑s
j=1 εj zj , where zj is the ultraproduct of the

elements zj,i , and this shows that im(σ ) ∩ ∑s
j=1 εj im(φ) ⊆ ∑s

j=1 εjSp . As in
Remark 2.3, the other inclusion follows from the other axioms (or could be proven
in a similar way). The proof that the ultraproduct of admissible sets of derivations
is still admissible is similar, so we omit it.

The result now follows from Theorem 5.1. �

6.6. Small Subalgebras

We now explain the application of Theorem 6.17 to small subalgebras. We begin
with some definitions.

Definition 6.18. Let k be a field. We say that small subalgebras exist for k
if for all integers r and d , there exists an integer s = s(r, d,k) with the fol-
lowing property: given homogeneous polynomials f1, . . . , fr of degrees ≤ d

in the polynomial ring k[x1, . . . , xn], with n ≥ s, there exists a regular se-
quence g1, . . . , gs in k[x1, . . . , xn] consisting of homogeneous elements such that
f1, . . . , fr ∈ k[g1, . . . , gs].
Definition 6.19. Let K be a class of fields. We say that small subalgebras
exist uniformly for K if small subalgebras exist for all k ∈ K and the quantity
s(r, d,k) can be taken to be independent of k for k ∈ K .

Ananyan and Hochster [AH, Theorem A] proved that small subalgebras exist uni-
formly for algebraically closed fields. In [ESS1], we proved the following:

Theorem 6.20. Let K be a class of fields. Suppose that for every countable se-
quence {ki}i∈I of K , the ultraproduct ring S (as defined in the previous section)
is polynomial. Then small subalgebras exist uniformly for K .

Proof. The argument is exactly the same as in [ESS1, Section 4.3]: simply replace
“perfect field” with “field in K ” everywhere. �
We used Theorem 6.20 and our polynomiality results to prove that small subal-
gebras exist uniformly for perfect fields. The results of [ESS1] can also prove the
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existence of small subalgebras for semiperfect fields but not uniformity for this
class. Using the superior polynomiality result of this paper (Theorem 6.17), we
obtain the following improvement.

Theorem 6.21. Small subalgebras exist uniformly for all fields.
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