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Einstein manifolds, self-dual Weyl
curvature, and conformally
Kahler geometry

CLAUDE LEBRUN

Peng Wu [22] recently announced a beautiful characterization of
conformally Kéahler, Einstein metrics of positive scalar curvature on
compact oriented 4-manifolds via the condition det(W™) > 0. In
this note, we buttress his claim by providing an entirely different
proof of his result. We then present further consequences of our
method, which builds on techniques previously developed in [16].

1. Introduction

Recall that a Riemannian metric A is said to be Finstein if it has constant
Ricci curvature. This is equivalent to saying that it solves the Finstein equa-
tion

(1) r = Ah,

where 7 is the Ricci tensor of h, and where the real constant A (which is not
specified in advance) is called the Finstein constant of h. Given a smooth
compact manifold M, it is a fundamental problem of modern Riemannian
geometry to completely understand the moduli space

&(M) = {Solutions of (1)}/(Diff (M) x RT),

of Einstein metrics on M, where the diffeomorphism group Diff (M) of course
acts on solutions of (1) via pull-backs, while the multiplicative group of
positive reals Rt acts on solutions by constant rescalings. A key goal of this
paper is to study this problem for one specific class of 4-manifolds M.

Our focus on dimension four reflects the degree to which this dimension
seems to represent a sort of “Goldilocks zone” for the Einstein equation (1).
In lower dimensions, Einstein metrics necessarily have constant sectional
curvature, making them locally boring — albeit still globally interesting. In
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higher dimensions, on the other hand, Einstein metrics turn out to exist in
surprising profusion, leading to wildly disconnected Einstein moduli spaces
on even the most familiar manifolds [5, 6, 21]. But, by contrast, dimension
four seems “just right” for (1), because four-dimensional Einstein metrics
display such a remarkably well-balanced combination of local flexibility and
global rigidity that their geometry often seems to be optimally adapted to
the manifold where they reside. For example, if M* is a compact quotient
of real or complex-hyperbolic space, or a 4-torus, or K3, then the Einstein
moduli space &(M) is actually explicitly known, and in each case actually
turns out to be connected [2, 4, 10, 12].

Unfortunately, however, there are very few other 4-manifolds M whose
Einstein moduli spaces & (M) are both non-empty and completely under-
stood. In particular, we still only partially understand the Einstein mod-
uli spaces of the smooth compact 4-manifolds that arise as del Pezzo sur-
faces. Recall that a compact complex 2-manifold (M*,.J) is called a del
Pezzo surface iff it has ample anti-canonical line bundle. Up to diffeomor-
phism, there are exactly ten such manifolds, namely S? x S? and the nine
connected sums CPy#mCPy, m = 0,1,...,8. These are exactly [7] the ori-
ented smooth compact 4-manifolds that admit both an Einstein metric with
A > 0 and an orientation-compatible symplectic structure. However, on any
of these spaces, every known Einstein metric is conformally Kahler. In most
cases, these currently-known Einstein metrics are actually Kahler-Einstein
[17, 20], but in exactly two cases they are instead constructed [7, 15] as
non-trivial conformal rescalings of extremal Kéhler metrics. This situation
has prompted the author to elsewhere characterize the known Einstein met-
rics on del Pezzo surfaces by means of two different non-Kéhler criteria.
First, they are [14] the only A > 0 Einstein metrics on compact 4-manifolds
that are Hermitian with respect to an integrable complex structure. Perhaps
more compellingly, they are also the only Einstein metrics on compact ori-
ented 4-manifolds for which the self-dual Weyl curvature W is everywhere
positive in the direction of a global self-dual harmonic 2-form [16]. Because
the latter characterization merely depends on the Einstein metric belonging
to an explicit open set in the space of Riemannian metrics, it in particular
allows one to prove that, on any del Pezzo M*, the known Einstein met-
rics exactly sweep out a single connected component in the Einstein moduli
space &(M).

Still, both of these previous characterizations suffer from the defect of
not being formulated in terms of an open, purely local condition on the
curvature tensor. It is for this reason that a new characterization recently
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announced by Peng Wu [22], formulated purely in terms of a property of the
self-dual Weyl curvature, represents an important advance in the subject.

To explain Wu'’s criterion, let us first recall that the bundle A? of 2-forms
over an oriented Riemannian 4-manifold (M, h) naturally decomposes, in a
conformally invariant way, as a direct sum

A2=ATpA

of the (£1)-eigenspaces A* of the Hodge star operator. Here, sections of
AT are called self-dual 2-forms, while sections of A~ are called anti-self-dual
2-forms. But since the Riemann curvature tensor may be identified with a
self-adjoint linear map

R: A% — A2

it can therefore be decomposed into irreducible pieces

W4 51 P

P W ST

where s is the scalar curvature, 7 =r — 7g is the trace-free Ricci curva-
ture, and where W= are the trace-free pieces of the appropriate blocks. The
corresponding pieces W24 of the Riemann curvature tensor are both con-
formally invariant, and are respectively called the self-dual and anti-self-dual
Weyl curvature tensors.

Wu observes that the self-dual Weyl curvature W+ : AT — AT of any
conformally Kéhler, Einstein metric on any del Pezzo surface satisfies
det(W™) > 0. He then offers a rather terse and cryptic proof that the con-
verse is also true. One main purpose of this article is to provide an entirely
different proof of Wu’s beautiful result:

Theorem A. Let (M,h) be a simply-connected compact oriented Einstein
4-manifold, and suppose that its self-dual Weyl curvature W+ : AT — AT
satisfies det(W™) >0 at every point of M. Then h is conformal to an
orientation-compatible extremal Kdhler metric g on M.

With [13] and [16], this now immediately implies the following:
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Corollary. Any simply-connected compact oriented FEinstein 4-manifold
with det(W™) > 0 is orientedly diffeomorphic to a del Pezzo surface. Con-
versely, the underlying smooth oriented 4-manifold M of any del Pezzo sur-
face carries Finstein metrics h with det(W™1) > 0, and these sweep out ex-
actly one connected component of the moduli space &(M) of Einstein metrics
on M.

Note that the simple-connectivity hypothesis is essential in Theorem A.
Otherwise, a counter-example would be given by (S? x S?)/Zs, obtained
by dividing the Riemannian product of two round, unit-radius 2-spheres by
the simultaneous action of the antipodal map on both factors. However,
Proposition 2.3 below shows that this example is typical, in the following
sense: for a compact oriented Einstein manifold with det(WW ™) > 0, the only
possible fundamental groups are {1} and {£1}. Thus, one can always reduce
to the simply-connected case by at worst passing to a double cover.

While the method of proof used here is quite different from Wu’s, both
approaches are deeply indebted to the pioneering work of Derdziriski [8]. In
fact, the method developed here also naturally yields results about other
4-manifolds with harmonic self-dual Weyl curvature:

Theorem B. Let (M,h) be a compact oriented Riemannian 4-manifold
whose self-dual Weyl curvature W is harmonic, in the sense that

Wt i=-V.-Wt=0.

Suppose moreover that by (M) # 0, and that h satisfies det(W™) > 0 at every
point of M. Then M admits an orientation-compatible Kdahler metric g of

scalar curvature s > 0 such that h = s™2g.

Conversely, if (M*% g,.J) is a Kihler surface with scalar curvature
s > 0, Derdziniski discovered that h = s~2¢g then satisfies both éW*+ =0
and det(W™) > 0. This makes it completely straightforward to classify the
smooth compact oriented 4-manifolds that carry metrics h of the type cov-
ered by Theorem B. Indeed, if a compact complex surface (M,J) admits
Kéahler metrics g with s > 0, it is necessarily rational or ruled [23], and,
conversely, generic complex structures on any rational or ruled surface al-
ways admit compatible Ké&hler metrics of positive scalar curvature [11, 19].
Up to oriented diffeomorphism, the complete list of the 4-manifolds M that
admit such metrics h therefore exactly consists of CPs, (X2 x S2)#kCPs3,
and Y2252, where ¥ is any compact orientable 2-manifold, k is any non-
negative integer, and 2552 is the non-trivial oriented 2-sphere bundle over
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3. Notice, however, that the moduli space of such metrics on any of these
manifolds is always infinite-dimensional, in marked contrast to the Einstein
case.

We should also point out that dropping the b4 (M) # 0 hypothesis in
Theorem B only changes the story very slightly. Indeed, as is shown in Propo-
sition 2.2 below, any compact oriented (M*, h) with SW+ = 0, det(W*) > 0,
and by (M) = 0 has a double-cover M — M with b, (M) = 1. Theorem B
therefore applies to the pull-back of h to this double cover.

These results are all proved in §2 below. Finally, in §3, we then prove a
generalization that does not explicitly require det(W ™) to be positive:

Theorem C. Let (M,h) be a compact oriented Riemannian 4-manifold
that satisfies SW+ = 0. If

5\/5 +‘3

WT+£0 d det(Wt) > -——|\W
A0 and det(WH) 2 — e

everywhere on M, then actually det(W™) > 0. Thus, after at worst passing
to a double cover M — M, h becomes conformally Kdhler, in the manner de-
scribed by Theorem B. In particular, if (M, h) is a simply-connected Finstein
manifold, it actually falls under the purview of Theorem A.

2. The Proofs of Theorems A and B

Let (M, h) be a compact oriented Riemannian 4-manifold with det(W™*) > 0
everywhere. Since W : AT — AT is self-adjoint, we can diagonalize W™ at
any point of M as

W+ = g ;
g
by choosing a suitable orthonormal basis for A™; and, after re-ordering our
basis if necessary, we may arrange that a > 8 > ~ at our given point. How-

ever, by its very definition, the self-dual Weyl curvature W+ : AT — AT
automatically satisfies trace(W™) = 0, and this of course means that

a+B+y=0.

It thus follows that o >0 and v < 0 as long as W™ # 0 at the point in
question. We therefore immediately see that det W = a3y always has the
same sign as minus the middle eigenvalue 5. Consequently, our assumption
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that det W > 0 is equivalent to saying that exactly one of the eigenvalues,
namely «, is positive at each point, while both the other two are negative.
In particular, the positive eigenvalue « always has multiplicity one, so that
a: M — R is always the unique positive solution of the characteristic equa-
tion det(W* — al) = 0, and so is a smooth positive function on M. Since
the a-eigenspace of W is exactly the kernel of (W* —afl) : AT — A™ this
eigenspace moreover varies smoothly from point to point. Thus, our assump-
tion that det W™ > 0 implies that the unique positive eigenspace of W+
defines a smooth real line sub-bundle L € A*. Up to bundle isomorphism,
it follows that L is intrinsically classified by

wi (L) € HY (M, Zy) = Hom (w1 (M), Zs),

and so will necessarily be trivial if M is simply-connected — or, indeed, if
71(M) merely does not contain a subgroup of index 2.

Since the condition det(W™*) > 0 is conformally invariant, the above
discussion similarly applies to any metric g = f~2h arising by conformal
rescaling h, using a smooth positive function f: M — R*. On the other
hand, the endomorphism W' : AT — A* is explicitly given by

1
Pab /> [W+((p)]cd = §W+abcd Pab,
so constructing it out of the conformal-weight-zero tensor field W%, in-
volves raising an index. Thus, replacing h with ¢ = f~2h rescales the top
eigenvalue by a factor of f2:
g = oy,

We will henceforth impose the interesting choice

(2) f=a;'?

of the conformal factor f, because this then has the nice property that
1/3 _
oy :f2ah:ah/ = f L
It then follows that a := a4 satisfies

(3) af=1

for this preferred conformal rescaling g = f~2h of the original metric.



Einstein manifolds and self-dual Weyl curvature 133

With respect to this conformally altered metric g, there exist, at each
point, exactly two self-dual 2-forms w which satisfy

(4) Wiw) =agw,  |w2=2.

Since these both belong to the real line bundle L C AT, and differ by sign,
we can find a global self-dual 2-form w on M satisfying these requirements
everywhere if and only if L is trivial, which happens precisely in the case
where w; (L) = 0. On the other hand, if this class is non-zero, we can then
just pass to the double cover w : M — M given by the elements of norm /2
in L, and we then instead obtain a tautological global self-dual 2-form on M
satisfying (4) with respect to the pulled-back metric § = w*g. In this case,
notice that the connected Riemannian manifold (M , ) admits an isometric
involution o : M — M induced by scalar multiplication by —1 in L, and that
this involution satisfies 0*w = —w by construction.

Our stipulation that \w|§ = 2 has been imposed so that w can be put in
the point-wise normal form

w:el/\62+e3/\e4

by choosing an appropriate oriented orthonormal frame at any given point.
Thus, whether on M or on M, our global 2-form w will give rise to a unique
orientation-compatible almost-complex structure J defined by

w=g(J,").

In other words, the tensor-field J explicitly obtained from w by index-raising
Ja’ = Wacg™

with respect to g will then automatically satisfy
J b Je = —6¢,

thus making it a g-compatible almost-complex structure on M or M.

Our main argument will hinge on a few simple facts about self-dual
2-forms and the Weyl curvature, starting with the following:
Lemma 1. Let (M,h) be an oriented Riemannian 4-manifold for which

det(W™) > 0 everywhere. Also suppose that the top eigenspace L C At of
W is trivial as a real line bundle L — M. Let g = f~2h be some conformal
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rescaling of h, and let w then be a self-dual 2-form on M that satisfies (4)
everywhere. Then

(5) WH(Viw, Vaw) <0,
everywhere, where all terms are to be computed with respect to g.

Proof. The covariant derivative Vw of w belongs to A’ ® wb € A’ ® AT be-
cause w has constant norm with respect to g. The result therefore follows
from the fact that W (¢, ¢) < 0 for any ¢ € w' C AT, O

Secondly, we will need the following standard algebraic observation:

Lemma 2. At any point p of an oriented 4-manfold (M, g),
12 3 2

(0 W= o

where o = g s the the top eigenvalue of Wng at p.

Proof. Because trace W = 0,

2
W2 =a?+ B2+ (—a—B)? = §a2+2 <ﬁ+a> > goﬂ

where 3 is the middle eigenvalue of W; at p. O

Finally, we remind the reader of the Weitzenbock formula
(7) (d+ d*)2w = V*Vw — 2WF (W) + %w

for the Hodge Laplacian on self-dual 2-forms.

We are now finally ready to see what all this means when h is an Einstein
metric. But our discussion will actually pertain to the much larger class of
oriented 4-manifolds (M, h) which have harmonic self-dual Weyl curvature,
in the sense that

(8) Wt :=-V.-Wt=0.

When h is Einstein, (8) holds as a consequence of the second Bianchi iden-
tity; but the reader should keep in mind that (8) is actually much weaker
than the Einstein condition. The reason (8) will be so useful for our pur-
poses is that it displays a weighted conformal invariance [18, (5.7.17)] under
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conformal changes of metric. Namely, if h satisfies W™ = 0, then any con-
formal rescaling g = f~2h will instead have the property that 6(fW*) = 0.
This then implies the useful Weitzenbock formula

9) 0:V*V(fW+)+§fW+—6fW+oW++2f]W+\2I
for fWW™ with respect to g. For other applications of this fact, see [8, 9, 16].

Theorem 2.1. Let (M, h) be a compact oriented Riemannian manifold with
SWT =0 and det(W™) > 0. Also suppose that the positive eigenspace L C
AT of WT s trivial as a real line bundle L — M. Then the conformally
rescaled metric g = f~2h defined by (2) is an orientation-compatible Kdihler
metric on M.

Proof. Since L — M is trivial, we can choose a global self-dual 2-form w
on M which satisfies (4) at every point. Always working henceforth with
respect to g, we now take the inner product of (9) with w ® w, and then
integrate on M. Integrating by parts, and using (3), (5), (6), and (7), we
then have

0

/M <<V*Vfw+ + gfw+ —6fWT oW + 2f\W+|2[),w ®w> dpg

[(W*, V'V (w @ w)) + ;Wﬂw, W)

1
—_—

— W) + AW Plwl?] £ dyg

I
=

AW (Vew, VW) — 2WH (W, VEV )

S
+ S alwl? = 602w + 2WF Pl £ dug

Y

[ 20w, VeV w) + ga|w]2 — 602|w|® + 3a2|w|2} [ dpg

2w, V*Vw) + g|w|2 - 3a|w|2} (of) dpsg

rl 3
§<w, V*Vw) + i(w, V*Vw) + g|w\2 - 3W+(w,w)} dpg

Il
NIm S~ o~

3
\Vw|? dpg + / <w, V*Vw — 2W (w) + §w> dptg
M 2/m 3
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_1 2 3 *\ 2

2/ V] d,ug—i-2/M<w,(d+d)w>d,ug
1

= /\va du+3/ |dw|? dp

>1 / Vel dp,

This shows that Vw = 0 with respect to our rescaled metric g. Since it of
course also follows that V.J =0, we now see that (M,g,J) is actually a
Kéahler manifold, with Kéhler form w. In particular, this shows that the
initial metric h = f2g is conformally Kihler. ]

On the other hand, because the curvature tensor of a Kahler surface
(M*,g,.J) belongs to ®2A"!, the fact that

(10) AT = Rw @ Re AV
for (M, g) implies that that its self-dual Weyl curvature takes the form

s/6
Wt = —5/12
—s/12

in an orthonormal basis adapted to (10). In particular, det(W*) = s3/864,
so a Kéhler metric g has det(W™) > 0 if and only if its scalar curvature s is
positive. It follows that any Kéhler metric conformal to a Riemannian metric
h with det W+ > 0 must necessarily have s > 0. Moreover, we now see that
the top eigenvalue a of W for any such metric g is given by s/6. Thus, when
h satisfies (8), we have succeeded in expressing it as h = a~2g = 365~ 2¢g for a
Kahler metric g of positive scalar curvature s. However, when this happens,
§ = 62/3¢ is also a Kahler metric, and has scalar curvature § = 6-2/3s, and
we therefore also have h = §72§ for a Kihler metric § with positive scalar
curvature §. This was the form preferred by Derdzinski [3, 8], who discovered
that, conversely, any Kihler surface (M*, g, J) of scalar curvature s > 0 gives
rise to a Riemannian metric h on M with W™ = 0 and det W > 0 via the
ansatz h = s~ 2g.

On the other hand, any compact Kihler surface (M*,g,J) of positive
scalar curvature has geometric genus h*Y = 0 by an argument due to Yau
[23]. But since by (M) = 1 + 2h2Y for any compact Kéhler surface [1], this is
equivalent to saying by (M) = 1. Geometrically, this means that a self-dual
2-form on (M, g) is harmonic if and only if it is a constant multiple of the
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Kahler form w. Of course, since the space of self-dual harmonic 2-forms is
conformally invariant in dimension 4, we also see that the self-dual harmonic
2-forms on (M, h) likewise consists of the constant multiples of w.

This now allows us to back-track a little, and finally deal with the case
where the the real-line bundle L — M is non-trivial. In this setting, the
conformal factor defined by (2) still defines a metric g on M, but it is
only when we pull it back to w: M — M that this rescaled metric can
be associated with a global self-dual 2-form w satisfying W (w) = aw and
|Wwwg = V2. But now we can just apply Theorem 2.1 to (M,w*g), thereby
showing that it is a Kahler manifold with Kéhler form w and positive scalar
curvature. In particular, this implies that b, (M ) = 1. Thus, any self-dual
harmonic 2-form on (M ,@*g) is a constant multiple of the K&hler form w.
However, by construction, there is an involution o : M — M with w oo =
w and o*w = —w. It follows that b, (M) = 0, since a non-trivial self-dual
harmonic form on (M, g) would otherwise pull back to a o-invariant self-
dual harmonic form on (M, w*g); and this is impossible, because any such
form would also have to be a constant multiple of w, which is not o-invariant.
We have thus proved the following:

Proposition 2.2. Let (M, h) be a compact oriented Riemannian 4-manifold
with SW™* =0 and det(W™) > 0. Then either

(i) by (M) =1, and there is an orientation-compatible Kdhler metric g on
M of scalar curvature s > 0, such that h = s~2g; or else

(ii) b4 (M) =0, and there is a conformal rescaling g of h whose pull-back
w*g to a suitable double cover w : M — M is a positive-scalar curva-
ture Kdhler metric on M that is related to w*h as in case (i).

Theorem B is now an immediate consequence of Proposition 2.2.

Notice that the conformally rescaled metric g is globally well-defined on
M in both cases of Propostion 2.2; moreover, it has scalar curvature s > 0,
and may be renormalized so as to arrange that h = s~2g. The distinction
between the two cases is really a matter of holonomy; in the first case, the
holonomy of ¢ is a subgroup of U(2), while in the second case it instead
belongs to the larger group U(2) x Zy of real-linear transformations of C?
generated by complex conjugation (2!, 2%) — (2!, 22) and the unitary trans-
formations. Of course, the natural representation U(2) X Zg — Zs gives rise
to a double cover M — M , and passing to this cover then simplifies matters
by reducing to the case of U(2) holonomy.

Using [13] and the simple-connectivity of del Pezzos, we also now have:
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Proposition 2.3. Let (M,h) be a compact oriented Einstein 4-manifold
with det(W) > 0 at every point. Then either

(i) m(M) =0, and M admits an orientation-compatible complex structure
J that makes (M, J) into a del Pezzo surface, and relative to which the
Einstein metric h becomes conformally Kdhler; or else,

(ii) 71 (M) = Zy, and M is doubly covered by a del Pezzo surface (M,.J) of
even signature on which the pull-back of the Einstein metric h becomes
conformally Kdhler.

Theorem A now becomes an immediate corollary of Proposition 2.3.

3. The Proof of Theorem C

The method used to prove Theorems A and B does not actually require
det(W™) to be positive. Indeed, in this section, we will obtain essentially
the same results under the weaker assumption that the top and middle
eigenvalues o and 3 of W satisfy

486 < a#0

everywhere. The following lemma will allow us to restate this hypothesis as
an effective condition on det(WW ™).

Lemma 3. Let (M,h) be an oriented Riemannian 4-manifold, and let p €
M be a point where W # 0. Let o and 3 once again denote the highest and
middle eigenvalues of W at p. Then

B < = det(WH) > -2\ /2 [WHP.

e
4
Moreover, both of these equivalent statements are conformally invariant, in

the sense that if either holds at p for the metric h, then both necessarily hold
at p for every metric g which is a conformal rescaling of h.

Proof. Let x = 8/, and then notice that, because a > 08> —a—f, we au-
tomatically have x € [—%, 1]. Now set y = 1 + z + 22, and notice that x — y
defines an increasing smooth map [—1,1] — [2, 3] because —Z =142z is
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positive when z > —%. But this now makes it apparent that

det Wt af(—a—pB)
WA~ (024 52+ (—a - p)7
x + 22

T 232(1 4 o + 22)3/2
— _9-3/2 <y*1/2 _ y*?’/Q)

is a decreasing function of = € [—%, 1], since

d _ _ _ _ 1 _ 3 _
i {_2 3/2 (y 12 _y 3/2)} — _9-3/2 <—2y 3/2+§y 5/2>
= —(2y) "B -y

is negative for y € [%, 3). As a consequence,

1 det W+ x + 22 5v2
S Z < > —

WHB = 282(1 42 +a2)3/2e=1 21,21

Q™

Moreover, since both det(W™)/|W*|3 and # = 3/a are manifestly unaltered
by conformal changes of the metric, the equivalence in question is obviously
conformally invariant. O

Most of the ideas we used in §2 merely depend on the assumption that
the top eigenvalue o of W has multiplicity one everywhere. However, the
key inequality (5) is quite different, and strongly depends on the assumption
that det(W™) > 0. Nonetheless, we can generalize this inequality as follows:

Lemma 4. Let (M, h) be an oriented Riemannian 4-manifold on which the
top eigenvalue ap, of W}f has multiplicity one everywhere, and so defines a
smooth function oy, on M. Also suppose that the top eigenspace L C AT of
W is trivial as a real line bundle L — M. Let g = f~2h be some conformal
rescaling of h, and let w then be a self-dual 2-form on M that satisfies (4)
everywhere. Let B = 4 : M — R be the continuous function given by the
middle eigenvalue of Wng at each point of M. Then

(11) WT(Vew, Vew) < B|Vw|?

everywhere, where all terms are to be computed with respect to g.
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Proof. The covariant derivative Vw of w belongs to A’ ® wb C A’ ® AT be-
cause w has constant norm with respect to g. The result therefore follows

from the fact that W (¢, ¢) < B|é|? for any ¢ € w. O

With these lemmata in hand, a return visit to our previously-explored
territory immediately reveals the following:

Theorem 3.1. Let (M, h) be a compact oriented Riemannian manifold with
SWT = 0. Assume that W+ # 0 everywhere, and that

det(WT) > =2\ /& |[WT[?

at every point. Noting that this in particular implies that the top eigenvalue
ap: M — RT of W,j defines a smooth positive function on M, let us also
now suppose that the real line bundle L — M given by the ap-eigenspace of
W}j is trivial. Then the conformally rescaled metric

2/3
g=a;'"h

is an orientation-compatible Kdhler metric of positive scalar curvature.

Proof. Let w be a self-dual 2-form that satisfies (4) at every point of M
with respect to the rescaled metric g. Here we have once again arranged
that g = f~2h has the property that a := «, satisfies

af =1,
as in (3), by choosing f according to (2). Now Lemma 3 tells us that our
hypotheses imply that 5 < /4, while Lemma 4 provides us with a crucial
inequality (11) involving 8. On the other hand, (6) and (7) are completely

general facts about 4-dimensional geometry that in particular apply to our
current situation. Assembling these pieces, we therefore have

0= /M <(V*Vfw+ n %fvw Wt oW +2f|W+|2I>,w®w> diig

= [ [T w m )+ 3 ww) - 6 @)+ 20 Pl £
M
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—2WH(Vew, Vew) — 2W T (w, VeV w)

i\

+ Salwf? = 602wl + 2AWF Plwl?] f dig

v

—28|Vuw|* — 20w, V¢V ew) + a|w]2 602 |w|* + 3a2\w|2}f dpig

v

- —]Vw|2 — 20w, VeV w) + 5a\w|2 - 3a2]w|2} fdug

S
- 7|Vw\2 + 2(w, V*Vuw) + i\wﬁ — 304]w\2] (af) dpg

I
ST

T 1
N W

(w, V*Vw) + 5’“‘2 - 3W+(w,w)} dpg
/ <w, V*Vw — 2WH (W) + §w> diig
/ <w, (d+ d*)2w> dg

3/ |dw|? du,

so the self-dual 2-form w must actually be closed, and hence harmonic.
However, since w also has constant norm /2, this means that (M*, g, w) is
an almost-Kahler manifold. But, by construction, Wt (w,w) > 0, and h =
f?g satisfies (W) = 0. Thus, by [16, Proposition 2], our almost-K#hler
manifold is actually Kéhler, and has positive scalar curvature. ]

l\D\OJ[\D\OJ

However, a Kéhler surface (M, g, J) of positive scalar curvature neces-
sarily satisfies det(/W*) > 0 at every point. Moreover, a result of Yau [23]
guarantees that any such (M, g, J) must have vanishing geometric genus, and
so enjoys the topological property that b, (M) = 1. Applying Theorem 3.1
either to M or to the double cover M — M associated with the real line
bundle L, the same argument used to prove Proposition 2.2 now yields the
following;:

Proposition 3.2. Let (M, h) be a compact oriented Riemannian 4-manifold
with SW+ = 0 that also satisfies

5\f| +‘3
= 2121

at every point. Then actually det(W™) > 0 everywhere, and either

Wt 40 and det(W™) >
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(i) b4 (M) =1, and there is an orientation-compatible Kihler metric g on
M of scalar curvature s > 0, such that h = s~2g; or else

(i1) by (M) =0, and there is a conformal rescaling g of h whose pull-back
w*g to a suitable double cover w: M — M 1is a positive-scalar curva-
ture Kdhler metric on M that is related to w*h as in case (i).

Similarly, the same reasoning used to prove Proposition 2.3 now yields:

Proposition 3.3. Let (M,h) be a compact oriented Finstein 4-manifold
that also satisfies

2
V2 e
21+/21

at every point. Then (M, h) satisfies det(W™) > 0 everywhere, and either

W* 40 and det(WH)>—

(i) m (M) =0, and M admits an orientation-compatible complex structure
J that makes (M, J) into a del Pezzo surface, and relative to which the
Einstein metric h becomes conformally Kdhler; or else,

(ii) w1 (M) = Zs, and M is doubly covered by a del Pezzo surface (M, J) of
even signature on which the pull-back of the Einstein metric h becomes
conformally Kdhler.

Theorem C is now an immediate corollary of these last Propositions.
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