

Wearable Circuits Sintered at Room Temperature Directly on the Skin Surface for Health Monitoring

¹ Ling Zhang, Hongjun Ji, Houbing Huang, Ning Yi, Xiaoming Shi, Senpei Xie, Yaoyin Li, Ziheng Ye,
⁴ Pengdong Feng, Tiesong Lin, Xiangli Liu, Xuesong Leng, Mingyu Li, Jiaheng Zhang, Xing Ma, Peng He,*
⁵ Weiwei Zhao,* and Huanyu Cheng*

Cite This: <https://dx.doi.org/10.1021/acsami.0c11479>

Read Online

ACCESS |

Metrics & More

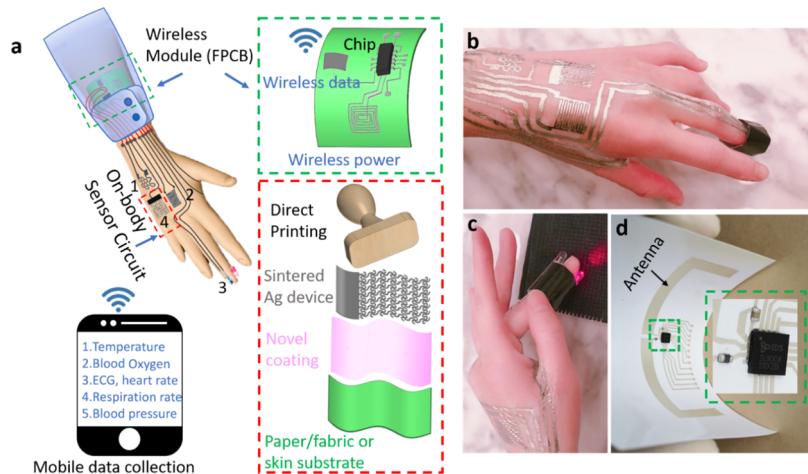
Article Recommendations

Supporting Information

ABSTRACT: A soft body area sensor network presents a promising direction in wearable devices to integrate on-body sensors for physiological signal monitoring and flexible printed circuit boards (FPCBs) for signal conditioning/readout and wireless transmission. However, its realization currently relies on various sophisticated fabrication approaches such as lithography or direct printing on a carrier substrate before attaching to the body. Here, we report a universal fabrication scheme to enable printing and room-temperature sintering of the metal nanoparticle on paper/fabric for FPCBs and directly on the human skin for on-body sensors with a novel sintering aid layer. Consisting of polyvinyl alcohol (PVA) paste and nanoadditives in the water, the sintering aid layer reduces the sintering temperature. Together with the significantly decreased surface roughness, it allows for the integration of a submicron-thick conductive pattern with enhanced electromechanical performance. Various on-body sensors integrated with an FPCB to detect health conditions illustrate a system-level example.

KEYWORDS: *body area sensor network, flexible printed circuit boards, directly printed on-body sensors, room-temperature sintering, sintering aid layer*

1. INTRODUCTION


Skin-interfaced, wearable electronics have attracted significant attention because of their unique role from preventative monitoring and diagnostic confirmation to convenient therapeutic options.^{1,2} The ultimate application of these biointegrated devices for practical and convenient applications hinges on the seamless integration of on-body sensors with wireless transmission modules. Multifunctional on-body sensors can precisely and continuously monitor the health conditions of the human body, whereas the wireless transmission modules can wirelessly power up the sensors and transmit the data generated from them to the cloud for the healthcare professionals. As a promising direction toward this class of integrated systems, the soft body area sensor network includes on-body sensors for physiological signal monitoring and flexible printed circuit boards (FPCBs) for signal conditioning/readout and wireless transmission. In contrast to the conventional PCBs, the paper/textile-based FPCBs are essential for the wearable electronics because of their flexible and biocompatible properties.^{3–5} Although the textile-based FPCBs can be directly integrated into clothing, the low-cost paper-based FPCBs also allow temporary use and easy replacement on different clothing locations.^{6,7} Compared with other wearable devices, the on-body sensors that pliably laminate on the skin surface can precisely capture the clinically

relevant data for health monitoring.^{8,9} Realization of the soft body area sensor network currently relies on various sophisticated fabrication approaches from lithography and transfer printing^{10,11} to direct printing,^{12,13} especially when stretchable sensors are separated from readout circuits (e.g., FPCBs).^{14,15} In particular, extensive efforts have been devoted for exploring the integration of wearable electronics on paper/^{14,16,17} fabric^{14,16,17} or human skin.^{18,19} However, there lacks a simple yet universal approach to fabricate all of the modules relevant to the soft body area sensor network because of the challenging requirements of low-temperature processing on textured surfaces with easy removal capabilities. Although many existing studies have demonstrated the room temperature processing of Ag nanoparticle (NP) ink with laser, high pressure, microwave, or chemical treatment,^{20–23} they cannot be used to directly fabricate sensors on the human skin. By considering the expensive equipment, complicated procedures, and increasing

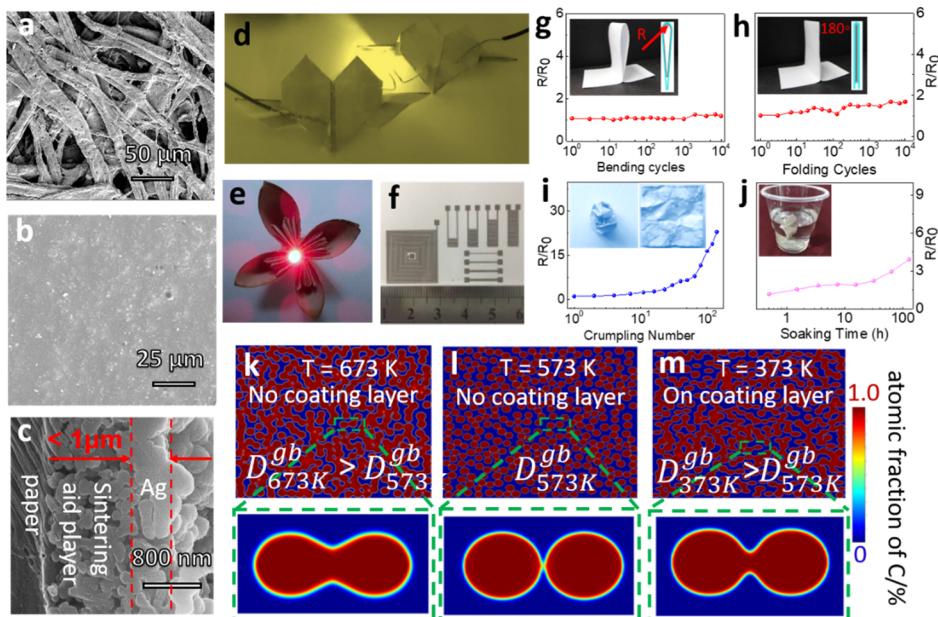
Received: June 24, 2020

Accepted: September 11, 2020

Published: September 11, 2020

Figure 1. Schematic and proof-of-the-concept demonstration of a soft body area sensor network consisting of various on-body sensors and a FPCB. (a) Design concept of the soft body area sensor network. The paper/fabric-based FPCB on clothing can integrate wireless data and power transmission modules (e.g., bluetooth or near-field communication module), along with COTS chips for extended collection and processing of data (green box). The red box illustrates the simple process of preparing the directly printed on-body sensors sintered at room temperature. (b) Optical image of a hand with multiple on-body sensors (e.g., electrodes and temperature/hydration sensors) directly printed and sintered on the skin surface. (c) Optical image of a blood oxygen saturation measurement unit consisting of one red and one infrared LED and a photodiode on the fingertip. (d) Optical image of the paper-based FPCB that includes the SL900A UHF RFID sensing IC chip and the antenna.

63 electronic wastes from the existing fabrication approaches, it is
64 even more pressing to develop a new fabrication technique to
65 address all of these challenges.


66 In this article, we report a simple yet universally applicable
67 fabrication technique with the use of a novel sintering aid layer
68 to enable direct printing and room-temperature sintering of
69 various metal inks for constructing paper/fabric-based FPCBs
70 and on-body sensors. Consisting of the polyvinyl alcohol
71 (PVA) paste and functional nanoadditives (e.g., TiO_2 or
72 CaCO_3 , among others), the sintering aid layer reduces the
73 surface roughness of various substrates to allow printing of an
74 ultrathin layer of metal patterns with improved electro-
75 mechanical performance against bending and folding. More
76 importantly, the metal NPs printed on the sintering aid layer
77 have significantly decreased sintering temperature to form an
78 FPCB on paper/textile or on-body sensors directly on the skin
79 surface. Various on-body sensors integrated with an FPCB
80 illustrate a system-level example of this technology.

2. INTEGRATED WEARABLE SYSTEM WITH VARIOUS 81 ON-BODY SENSORS AND FPCBS

82 The schematic in Figure 1a presents an overview of the directly
83 printed, room temperature-sintered, and hybrid skin-interfaced
84 electronic devices, illustrating the design and working principle
85 of the proposed system. The electronic system consists of
86 sensors for vital signal measurements, commercial off-the-shelf
87 (COTS) chips for extended data collection and processing,
88 wireless data and power transmission modules, and paper/
89 fabric-based FPCBs for system integration. The proof-of-
90 concept demonstration includes representative sensors to
91 measure temperature, hydration, electrocardiogram (ECG),
92 electromyography (EMG), and blood oxygen saturation. As
93 accurate assessment of human health conditions requires
94 pliable sensor integration on the skin surface, the sensors
95 directly printed on various positions of the human body
96 establish the capability toward the envisioned functional
97 operations (Figure 1b). Although the integration of various
98 sensors (e.g., temperature, humidity, ECG, and EMG) can be

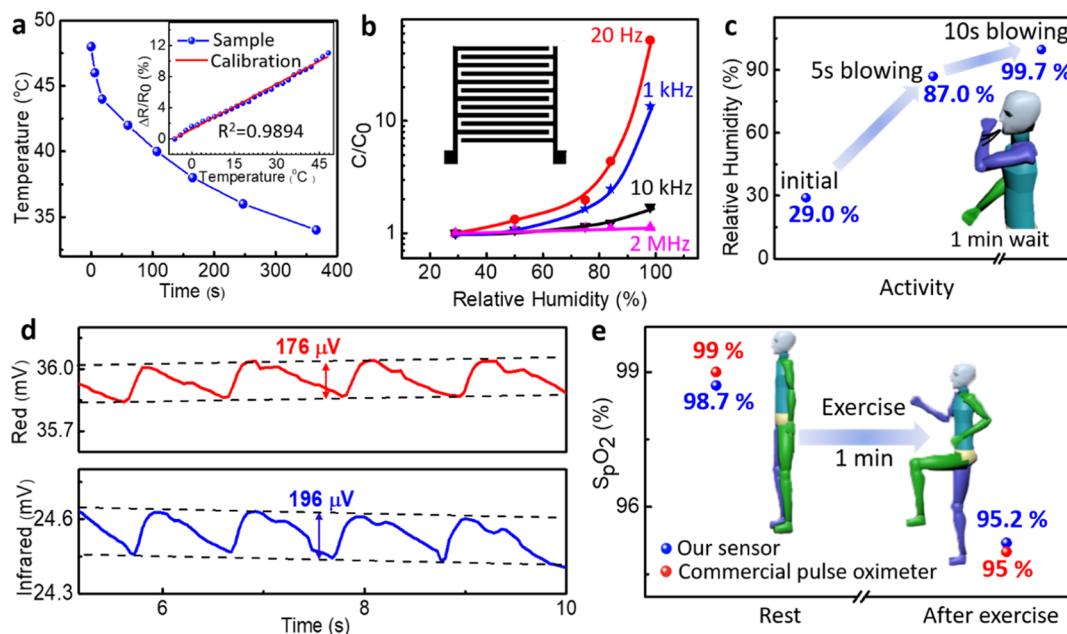
99 easily achieved on a relative flat skin surface, the blood oxygen 100 saturation measurement relies on the use of light-emitting 101 diodes (LEDs) and a photodiode on a 3D curvilinear surface 102 such as the fingertip (Figure 1c). Further miniaturization of the 103 system is possible with the use of microscale LEDs (μ - 104 LEDs).²⁴ A proof-of-concept demonstration of one paper- 105 based FPCB consists of the SL900A UHF RFID sensing IC 106 chip (SL900A-DK-STQFN 16, AMS, Austria), the antenna, 107 and conductive traces with contact pads to connect the chip 108 and various sensors (Figure 1d). Because the SL900A RF chip 109 can be used to capture the resistive and capacitive sensing 110 signals (Figure S1), this paper-based FPCB can be directly 111 used for the wireless readout from the temperature and 112 hydration sensors presented in this work. Both the direct 113 sensor fabrication on the skin and preparation of the paper/ 114 fabric-based FPCBs are building on a sintering aid layer that 115 enables low-temperature or even room-temperature sintering 116 of directly printed metallic patterns (e.g., Ag). The sintering 117 aid layer composed of nanoadditives (e.g., TiO_2 and CaCO_3) 118 in the PVA paste not only reduces the sintering temperature of 119 the metal NP inks printed on top but also improves the 120 mechanical property of the substrate and electromechanical 121 performance of the resulting electronic devices. 121

2.1. Design and Fabrication of Paper/Fabric-Based 122 FPCBs. In contrast to the sensors conformal to the skin for 123 accurate measurements, the paper- or fabric-based FPCBs can 124 be placed nearby and connected to the sensors for data 125 collection, processing, and transmission. As an alternative to 126 the wires between the sensors and FPCBs, a body area sensor 127 network (bodyNET) can be exploited to wirelessly link on- 128 body sensor tags to readout circuits on the FPCBs.²⁵ Because 129 of their affordable ($\sim 0.01 \text{ \$/m}^2$) and lightweight properties, 130 the paper is first selected and demonstrated as the substrate for 131 fabricating the FPCBs. Although electronic circuits have 132 previously been printed onto the paper substrate,^{26–28} the 133 electrical resistivity of the metal pattern on the paper substrate 134 substantially increases as the surface roughness of the substrate 135 increases because of the increased length in the conductive 136 pathway.²⁹ 137

Figure 2. Performance demonstration of the paper/fabric-based FPCBs. SEM images of the copy paper (a) before and (b) after applying the sintering aid layer consisting of PVA paste and the TiO_2 nanoadditive and (c) its cross-sectional area of the interface with the sintering aid layer sandwiched between the copy paper and the sintered Ag NPs. Optical images of 3D origami paper structures folded into (d) heart and (e) flower shapes with the conductive Ag pattern intact to light up LEDs and (f) various printed patterns on the copy paper. Electromechanical performance of printed patterns against (g) bending for 10^4 times at a radius of $R = 0.5$ mm, (h) folding of the same sample for 10^4 times for origami/kirigami applications, and (i) crumpling and unfolding for 140 times. (j) Printing the conductive Ag pattern on a fabric substrate further demonstrates a stable conductive property after soaking in water for up to 100 h. Phase-field simulations of the sintering process between Ag NPs without the sintering aid layer at sintering temperatures of (k) 673 and (l) 573 K or (m) with the sintering aid layer at 373 K.

Prepared by dewatering a dilute suspension of natural cellulose fibers, the paper with a hierarchically porous structure presents challenges for direct ink printing during the fabrication of the FPCBs. Although the sintering aid layer can be coated on both hydrophobic and hydrophilic surfaces, the hydrophilic surface such as the paper (Figure S2) would enable a more uniform sintering aid layer. Coating the paper with a mixture of the PVA paste and TiO_2 nanoadditives significantly reduces its surface roughness (Figure 2b). The root mean square roughness measured by atomic force microscopy (AFM) decreases from 1573 to 412 nm after coating (Figure S3). The significantly reduced surface roughness allows for easy subsequent printing of Ag NP inks, followed by sintering at 120 °C. This observation is consistent with the previous literature report,³⁰ which also concludes the reduced sintering temperature of Ag NPs on the high-temperature-resistant paper with TiO_2 as the main component (Figure S4). As indicated by the scanning electron microscopy (SEM) image of the cross-sectional area, the sintering of Ag NPs occurs on the sintering aid layer with a thickness of ca. 1 μm (Figure 2c). It is interesting to note the Ag NPs away from the sintering aid layer remain unsintered, whereas those close to the sintering aid layer clearly show sintering necks. The solid-state sintering of Ag NPs with enhanced strength and electrical/thermal conductivities is likely attributed to the increased grain boundary diffusion of NPs, which will be explained in detail in the subsequent discussion. Nevertheless, removing the unsintered Ag NPs away from the sintering aid layer yields the designed conductive pattern with a much-reduced thickness (i.e., $<1\ \mu\text{m}$ in Figure 2c). The significantly reduced thickness further improves the mechanical property of the resulting patterns to ensure their robust property against bending because the bending stiffness or resistance scales with

the cubic of the structure thickness. The remarkably stable electromechanical performance of the conductive pattern on paper enables the demonstration of various 3D origami or kirigami circuits, with LEDs brightly lit during shape transformation (Figure 2d,e). The electromechanical property of various printed patterns on paper (Figure 2f) has been characterized against bending with a radius of curvature of 0.5 mm (Figure 2g) and folding in origami/kirigami applications each for 10,000 cycles based on the same sample that has been bent (Figure 2h). The conductivity of various patterns based on sintered Ag NP ink on a paper with a size of $20 \times 20\ \text{mm}^2$ also remains relatively stable as the paper is arbitrarily crumpled and unfolded for over 100 times (Figure 2i). The electrical and electromechanical properties of the sintered Ag pattern from this work compare favorably with those reported in the literature (Figure S5): metal NP ink with a diameter of less than 10 nm^{17,31,32} and with nanoadditives in the ink.³³ Although many other studies have demonstrated the room temperature processing of Ag NP ink with laser, high pressure, microwave, or chemical treatments,^{20–23} they cannot be used to directly fabricate sensors on the human skin. The versatility of the proposed approach is demonstrated using inks with different metal particles on various papers (e.g., printing, copy, and weighting papers) or porous substrates such as the fabric (e.g., cotton, chemical fabric, and silk) (Figure S6). The sintering aid layer is effective to reduce the surface roughness of all six substrate materials (Figure S7). In the proof-of-concept demonstration, six types of metal micro/nanoparticles (MPs/NPs) have been explored, including Ag NPs of $\sim 50\ \text{nm}$, Ag MPs of ~ 2 or $\sim 40\ \mu\text{m}$, Ni NPs of $\sim 100\ \text{nm}$, Cu MPs of $\sim 1\ \mu\text{m}$, and Ni/Ag core/shell NPs of $\sim 50\ \text{nm}$. Although metal MPs/NPs with increasing sizes involve higher sintering temperatures because of lower surface activity, all six metal

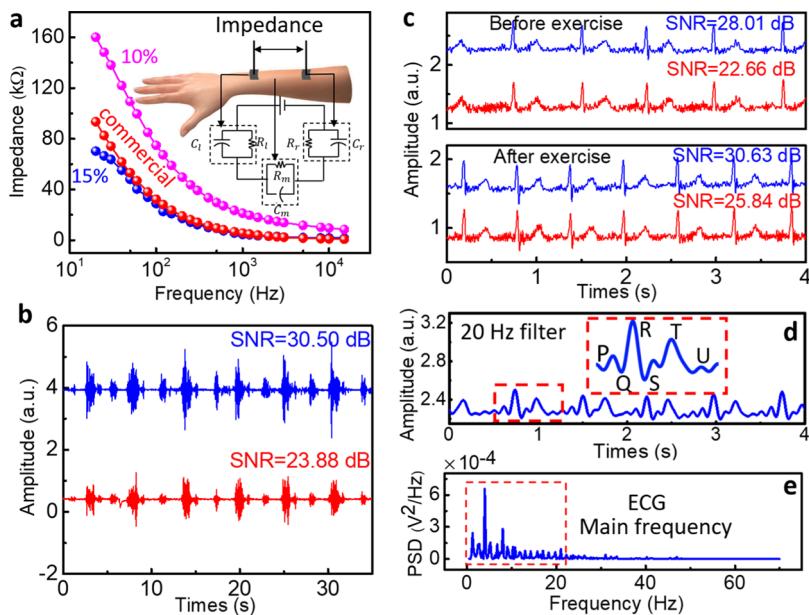

204 MPs/NPs selected in the demonstration can form conductive
205 patterns with sintering temperatures lower than 120 °C
206 (Figure S8). Owing to the small thickness of the sintered
207 pattern and robust adhesion to the substrate, printed patterns
208 based on these different metal particle inks on copy/printing/
209 weighting paper substrates also exhibit excellent electro-
210 mechanical performance (Figure S9). Compared to the cotton
211 substrate, the patterns based on Ag NPs of ~50 nm on the
212 chemical fabric or silk substrate only show small changes in the
213 normalized resistance change upon bending with a radius of
214 curvature of 0.5 mm for 10⁵ times (Figure S10a). Owing to the
215 excellent washability of the fabric, the conductive Ag pattern
216 on the fabric substrate remains functional and relatively stable
217 even after soaking in water for up to 100 h (Figures 2j and
218 S10b). The performance of the fabric-based Ag pattern in
219 solutions with different pH values from 4 to 9 and with a step
220 size of 1 is further investigated. Although the relative resistance
221 rapidly increases with the soaking time in the solution with a
222 pH value of 8 or 9, the conductive Ag patterns on the fabric
223 substrate are more stable in the acid solution (Figure S10c),
224 with a pH value more relevant to sweat.³⁴ Further improve-
225 ment could include the use of encapsulation layers as those
226 commonly explored for transient materials.^{35,36} The excellent
227 electromechanical performance of the demonstrated FPCBs on
228 paper or fabric highlights their potential for integration with
229 various sensing modules on the clothing or skin that may
230 undergo complex natural motions (e.g., bending, twisting, or
231 wrinkling). Additionally, the robust performance against water
232 or high moisture levels also ensures their application in
233 biointegrated electronics during sweating conditions.

234 System investigation of the proposed approach based on a
235 sintering aid layer and subsequent ink printing involves the use
236 of various nanoadditives in the PVA paste at different
237 concentration ratios (Tables S1 and 2). The electromechanical
238 performance of the conductive pattern on the substrate with a
239 sintering aid layer is improved as the ratio of PVA powder to
240 water increases from 1:9 to 1:4, the ratio of TiO₂ to PVA paste
241 decreases from 1:5 to 1:20, or the annealing temperature
242 reduces from 160 to 120 °C (Figure S11). The reduced
243 sintering temperature of Ag NPs with the use of the sintering
244 aid layer can be attributed to the increased grain boundary
245 diffusion coefficient (D^{gb})³⁷ from charge neutralization^{38–40}
246 than that with charged ions. It is apparent that anions (e.g.,
247 SO₃²⁻, COO⁻, and PO₃³⁻) exist in the Ag NP ink to cause the
248 Ag NPs negatively charged. Although there are no intrinsic
249 cationic groups in the sintering aid layer with the TiO₂
250 nanoadditive and PVA paste, cationic radicals can form from
251 the interaction between TiO₂ and PVA (Figure S12). As
252 organic compounds with conjugated chains, the PVA has π -
253 electrons in the conjugated p orbital of a double bond (C=C
254 or C=O)⁴¹ as a charge carrier to result in charge mobility
255 along the chain of the polymer backbone.⁴² In the PVA/TiO₂
256 system, the active –OH group on the surface of TiO₂ at
257 relatively low temperature (100–200 °C) reacts with the –OH
258 groups in PVA molecular chains to form C–O–Ti bonds
259 through a dehydration reaction. The formed C–O–Ti bonds
260 can act as the pathway to quickly transfer the excited electrons
261 from PVA to TiO₂, resulting in cationic radical PVA* for
262 charge neutralization.³⁹ The important role of the cationic
263 radical can be confirmed in the experiment with the radical
264 inhibitor (L-ascorbic acid) (Figure S13). After coating the
265 sintering aid layer with L-ascorbic acid on the paper, the Ag NP
266 ink printed and annealed at a temperature of 120 °C yields a

267 nonconductive sample, which indicates that the sintering of the
268 Ag NP ink is inhibited. The influence of the grain boundary
269 diffusion coefficient (D^{gb}) in the sintering process of Ag NPs
270 on the sintering aid layer is investigated via phase-field
271 simulations. Without the sintering aid layer, the decreased
272 temperature from 673 to 573 K leads to a substantial reduction
273 to invalid in the grain boundary diffusion coefficient (i.e., D_{673K}^{gb}
274 > D_{573K}^{gb}). As a result, sintering of Ag NPs occurs after diffusion
275 evolution for 1 h at 673 K (Figure 2k), whereas no sintering
276 necks are observed at 573 K (Figure 2l). As charge
277 neutralization on the sintering aid layer increases the grain
278 boundary diffusion coefficient of Ag NPs (i.e., D_{373K}^{gb} > D_{573K}^{gb}),
279 sintering necks still form at a temperature of 373 K (Figure
280 2m), which supports the experimental results (Figures S14 and
281 S15).

282 Because the cationic groups are needed for charge
283 neutralization, additional nanoadditives have been chosen to
284 demonstrate the concept, including metallic oxides (Al₂O₃ and
285 MgO), salts (CaCO₃ and BaTiO₃), and metal (Cu) (Table
286 S1). With cationic groups provided by metallic oxide (Al₂O₃
287 and MgO) and salt (CaCO₃ and BaTiO₃), the sintering
288 temperature of Ag NPs of 50 nm significantly reduces on the
289 coated paper. When the CaCO₃ nanoadditive is used in the
290 sintering aid layer (Figure S16), the sintering temperature is
291 further reduced to room temperature, although its exact
292 mechanism of the performance enhancements over the other
293 nanoadditives needs to be revealed in future studies. Although
294 the sheet resistance of the sintered Ag patterns based on the
295 sintering aid layer with TiO₂ nanoadditives at 120 °C and
296 CaCO₃ nanoadditives at room temperature is slightly higher
297 than those sintered at elevated temperatures (Figures S17 and
298 S18), the values are comparable to those in the literature
299 reports (Figure S5).^{17,20,22,23,31–33} In contrast, when no
300 nanoadditives or nanoadditives without cationic groups (e.g.,
301 Cu) are used in the sintering aid layers, the low-temperature
302 sintering of Ag NP ink is not observed.

303 **2.2. Integration and Demonstration of Various**
304 **Biointegrated Sensing Modules.** The integration of various
305 sensing modules directly on the human skin surface involves
306 the use of a simple, low-cost, and repeatable stamp-based
307 transfer printing (Figure S19). In brief, dipping a soft
308 elastomeric polymer shaped to the desired patterns on a
309 wooden stamp into a commercial Ag NP ink picks up the Ag
310 NPs on the patterned polymer. After coating the skin with the
311 mixture of PVA paste and the CaCO₃ nanoadditive, bringing
312 the inked stamp in contact with the skin, followed by pressing
313 and retrieving of the stamp, leaves the patterned ink on the
314 skin. A relatively hydrophilic surface of the sintering aid layer
315 with different nanoadditives (Al₂O₃, MgO, BaTiO₃, TiO₂,
316 CaCO₃, and Cu) (Figure S20) helps ensure a successful
317 transfer printing process. Applying the air blower on the skin
318 surface with ink patterns accelerates the evaporation of the
319 solvents in the commercial Ag NP ink (i.e., reduced from
320 several minutes to several seconds) to prepare the printed
321 sensors on the skin. The drying process with the air blower
322 (i.e., an electric hair dryer in this study) from a significantly
323 large range of distances is relatively robust with a small
324 variation in the sheet resistance of the obtained Ag patterns
325 (Figure S21). As an alternative to the stamp-based transfer
326 printing, extrusion of NP inks in an adaptive 3D printing
327 process can also be exploited to directly fabricate skin-
328 interfaced sensors on the moving human skin by real-time
329 tracking of its rigid-body motion.¹⁸


Figure 3. Design and demonstration of various on-body sensors to measure the temperature, humidity, and blood oxygen saturation. (a) Calibration of the temperature sensor indicates a linear dependence between the measured relative resistance change with the temperature from -5 to 50 $^{\circ}\text{C}$. Cooling down of the skin from 50 $^{\circ}\text{C}$ to the room temperature highlights the sensing performance of the temperature sensor. (b) Dependence of the capacitance of the humidity sensor on the relative humidity at various frequencies (20 Hz, 1 kHz, 10 kHz, and 1 MHz). (c) Demonstration of the humidity sensor that measures the local moisture change after breathing out the moisturized air toward the sensors for 5 and 10 s. (d) Measured pulsating photoplethysmogram (PPG) voltage output signals from the photodetector for the red and infrared LEDs. (e) Measurements of human pulse rates and arterial blood oxygen saturation levels before and after an upward leg swinging exercise.

330 The proof-of-concept demonstration consists of temperature
 331 sensors, electrodes for electrophysiological (EP) signals,
 332 humidity sensors, and blood oximetry sensors (Figure S22).
 333 The sensing mechanism of the temperature sensor relies on the
 334 temperature-dependent resistance change that stronger
 335 vibration of the atoms at a higher temperature results in
 336 more electron collisions with reduced scattering time for the
 337 increased resistance. Characterization of temperature sensors
 338 with a manual/semitautomated probe system (FormFactor
 339 11000) yields a linear dependence between the relative
 340 resistance change normalized by its initial value $\Delta R/R_0$ at
 341 the reference temperature T_0 and the temperature from -5 to
 342 50 $^{\circ}\text{C}$ (Figure 3a, inset). Calculated from the slope of the
 343 calibration curve, the temperature coefficient of resistance α of
 344 the temperature sensor of $0.195\%/\text{ }^{\circ}\text{C}$ is over 50% of its silver
 345 bulk counterpart (i.e., $0.38\%/\text{ }^{\circ}\text{C}$), consistent with literature
 346 reports.^{43,44} The temperature sensor on the skin captures the
 347 local skin temperature increase caused by blowing hot air up to
 348 50 $^{\circ}\text{C}$, followed by cooling down to body temperature after
 349 removing the air blower (Figure 3a).

350 Skin hydration is another important indicator of human
 351 physiology to evaluate cosmetics and assess mental health. It is
 352 also related to thermoregulatory sweating and emotional
 353 sweating conditions to inform temperature control and
 354 emotion through the physiological and psychological pro-
 355 cesses.^{45,46} The calibration of the hydration sensor against
 356 saturated salt solution at prescribed relative humidity relates its
 357 capacitance to the humidity at various frequencies (20 Hz, 1
 358 kHz, 10 kHz, and 1 MHz) at a room temperature of 25 $^{\circ}\text{C}$ and
 359 an applied voltage of 1 V (Figure 3b). Besides a relative
 360 humidity of 29.0% in the ambient environment, saturated salt
 361 solutions of $\text{Na}_2\text{Cr}_2\text{O}_7$, NaCl , KCl , and Na_2HPO_4 provide
 362 relative humidities of 54, 75, 85, and 98%, respectively, in the

363 sealed glass containers at the room temperature. Although the 363
 364 measured capacitance rapidly changes with the relative 364
 365 humidity at a lower frequency (e.g., 20 Hz and 1 kHz 365
 366 compared to 10 kHz and 2 MHz), the capacitance measure- 366
 367 ment at a lower frequency of 20 Hz also takes a much longer 367
 368 time before reaching equilibrium. Thus, the measurement at 1 368
 369 kHz is selected for the on-body demonstration because of the 369
 370 relatively large response and quick measurement. The humidity 370
 371 sensor on the skin captures the local moisture change from 371
 372 slowly breathing out the moisture air toward the sensor for 5 372
 373 and 10 s (Figure 3c). In addition to the direct comparison 373
 374 between the Ag-based sensors from this work and their 374
 375 commercial counterparts, the performance of our directly 375
 376 printed on-body temperature and humidity sensors compares 376
 377 favorably against those from literature reports in terms of their 377
 378 deposition technique, substrate material, and composite 378
 379 sensing materials (Table S3). 379

380 Measurements of the human pulse rate and arterial blood 380
 381 oxygen saturation rely on an optoelectronic sensor that 381
 382 consists of two LEDs with different peak emission wavelengths 382
 383 (e.g., red at 660 nm and infrared at 940 nm) and a single 383
 384 photodiode. Although the LEDs with a relatively larger size are 384
 385 selected in this proof-of-concept demonstration, they can be 385
 386 easily replaced by microscale LEDs (μ -LEDs) to further 386
 387 miniaturize the system.²⁴ The use of the Ag ink-based 387
 388 conductive pattern connects the two LEDs placed on the 388
 389 fingertip with the photodiode on the opposite side, which can 389
 390 be used to measure the tissue-mediated light transmission. 390
 391 Based on the measured periodic cycles with amplitudes of 391
 392 approximately $100\text{--}200$ μV (Figure 3d), blood oxygen 392
 393 saturation ($S_p\text{O}_2$) is calculated to be ca. 98.7% with a pulse 393
 394 rate of 58 beats/min. A comparison with the measurements 394
 395 (60 beats/min, 99%) from a commercial finger pulse oximeter 395

Figure 4. Design and demonstration of the Ag electrodes directly printed and room temperature-sintered on the human skin with enhanced contact quality to measure the EP signals such as ECG or EMG. (a) Impedance measurements as a function of frequency from two Ag electrodes of the same size separated by a given distance of 10 cm directly printed and room temperature-sintered on the human skin surface with the sintering aid layer. The inset shows the equivalent circuit model. (b) EMG and (c) ECG signals collected using the Ag electrodes on the sintering aid layer with 15 wt % PVA paste (blue) with a larger SNR than those from the commercial electrodes (red). (d) Applying a digital infinite impulse response (IIR) of 20 Hz to the ECG signal before exercise clearly identifies the clinically relevant P, QRS, T, and U waves. (e) PSD of the ECG indicates that the power is mostly below 20 Hz, where our electrodes show a much smaller contact impedance as measured in (a).

396 validates the results. Applying the pulse oximetry sensor on the
 397 fingertip of a healthy male young volunteer during an upward
 398 leg swinging exercise captures the decrease in S_pO_2 from 98.7
 399 to 95.2% (Figure 3e, blue), as validated by the commercial
 400 device (Figure 3e, red). The pulse rate also increases from 58
 401 to 76 beats/min, with amplitudes of red and infrared lights
 402 measured to be around 100 and 200 μ V, respectively (Figure
 403 S23).

404 Coupling the electrodes on the skin surface through the
 405 sintering aid layer allows the capacitive sensing of the EP
 406 signals,^{47,48} including ECG, EMG, or electroencephalogram
 407 (EEG). Capacitive sensing of EP signals involves measure-
 408 ments of electrical coupling between biological tissues and
 409 electrodes, mediated by the dielectric sintering aid layer. As the
 410 EP signal quality hinges on the contact impedance between the
 411 electrode and skin, the contact impedance is first characterized
 412 as a function of frequency. The electrode–skin interface is
 413 commonly modeled with a resistor R_i and a capacitor C_i ($i = l$
 414 or r for left and right electrodes) in parallel.⁴⁹ By considering the
 415 equivalent resistor (R_m) and parasitic capacitor (C_m) of the
 416 human model between two electrodes (Figure 4a), the
 417 measured impedance between two electrodes can be written
 418 as $|Z| = [(R_l)^{-2} + (\omega C_l)^2]^{-1/2} + [(R_r)^{-2} + (\omega C_r)^2]^{-1/2}$
 $+ [(R_m)^{-2} + (\omega C_m)^2]^{-1/2}$

419 where ω is the frequency. The electrode–skin contact
 420 impedances are often the leading terms with much larger
 421 contribution than the tissue impedance. Applying two
 422 electrodes of the same size separated by a given distance of
 423 10 cm, the impedance measured from the Ag ink-based
 424 electrodes on the sintering aid layer is compared with that from
 425 the commercial gel electrodes. The impedance from our
 426 electrodes with 10 wt % PVA paste (magenta line) in the
 427 sintering aid layer is higher than that of the commercial gel

electrodes (and thus worse EP signal quality in Figure S24).
 428 Because high impedance often causes increased noise at the
 429 low frequency, the lower interfacial impedance is desirable to
 430 ensure reliable EP signal acquisition.⁵⁰ As one of the major
 431 factors, the contact interface has a significant impact on the
 432 interfacial impedance. A significant reduction of impedance
 433 can be achieved with improved contact at the electrode–skin
 434 interface.⁵¹ Furthermore, the increased viscosity of the
 435 sintering aid layer (termed as paste previously) improves the
 436 skin contact at the electrode–skin interface (with a reliable
 437 conductive pathway).⁴⁹ Therefore, the increased viscosity of
 438 the sintering aid layer is expected to result in decreased
 439 impedance for improved EP signal quality. In fact, the increase
 440 of the PVA powder from 10 wt % (purple) to 15 wt % (blue)
 441 in the PVA paste of the sintering aid layer reduces the
 442 impedance to be even smaller than that of the commercial gel
 443 electrodes (Figure 4a). In contrast to the impedance values of
 444 >100 k Ω from other studies,^{52–54} the impedance of our Ag-
 445 based electrode sintered on the sintering aid layer with 15 wt %
 446 PVA paste is about 70 k Ω , which would lead to a higher signal-
 447 to-noise value and enhanced EP signal quality.
 448

449 Using the sintering aid layer with 15 wt % PVA paste, high-
 450 fidelity EMG/ECG signals have been collected by the Ag ink
 451 electrodes (Figure 4bc, blue), with a larger signal-to-noise ratio
 452 (SNR) than those from the commercial electrodes (Figure 4bc,
 453 red). The measurements of EMG signals involve a series of
 454 muscle contractions from the arms of a healthy female
 455 volunteer, whereas the ECG signals are measured before and
 456 after running exercise. The ECG signals exhibit an increase in
 457 both amplitude and frequency, with the heart rate increased
 458 from 75 to 105 bpm after running exercise (Figure 4c).
 459 Applying a digital infinite impulse response (IIR) filter of 20
 460 Hz to the ECG signal before exercise (Figure 4c, blue) clearly
 461 highlights the clinically relevant P, QRS, T, and U waves
 462

462 (Figure 4d). Power spectral density (PSD) of the ECG
 463 indicates that most of the power concentrates in the region
 464 below 20 Hz (Figure 4e). The smaller contact impedance from
 465 our sintering aid layer explains the improved high-fidelity ECG
 466 signals (Figure 4a).

467 The integration of these directly printed on-body sensors
 468 with the FPCB in a fully passive operating mode (i.e., without
 469 the battery) also allows for wireless detection of their sensing
 470 signals. After determining the read range from the SL900A
 471 chip as a function of the working frequency (Figure S25a), 882
 472 MHz is selected in the wireless measurements. When operated
 473 at 882 MHz, the temperature (Figure S25b) and humidity
 474 (Figure S25c) can be wirelessly measured with high precision
 475 and accuracy from a distance of 30 cm. In addition to the fully
 476 passive mode, the SL900A can be assisted by a paper-based
 477 battery to work in the semi-passive mode. The use of a battery
 478 can further increase the communication range with the reader
 479 and enable data logging. Nevertheless, the simple demon-
 480 stration illustrated here showcases the feasibility of fabricating
 481 the FPCBs with the proposed method, which may also be
 482 applied to more complicated FPCBs^{55–57} in future studies.
 483 Furthermore, the high-fidelity ECG signals can also be
 484 wirelessly captured. Without the complicated paper-based
 485 FPCB, a commercial wireless module with a small footprint is
 486 used here to further capture the ECG signals wirelessly (Figure
 487 S25d).

488 **2.3. Demonstration of Sensing Module Removal and**
 489 **Disposal.** As future wide adoption of wearable devices would
 490 lead to electronic wastes, proper disposal of these devices starts
 491 to gain momentum, especially considering the recent develop-
 492 ment of transient electronics in the past decade.^{58,59} Toward
 493 this end, the aforementioned on-body sensors are also
 494 demonstrated to be suitable for easy removal and disposal
 495 (Figure 5). Peeling off the thin-film device from the skin
 496 removes the device with negligible effects on the skin (Figure
 497 Sb). The skin texture on the back surface of the thin film
 498 highlights the excellent adhesion between the device and skin.
 499 Although the thin-film device remains relatively stable at room
 500 temperature in water for over 2 h [Figure 5a(i)],
 501 decomposition begins after the temperature increases above
 502 60 °C [Figure 5a(ii)] and dissolves completely after stirring for
 503 5 min [Figure 5a(iii)]. Because of the water solubility of the
 504 PVA powder in the sintering aid layer at elevated temperature,
 505 washing hands in warm water flow conveniently removes the
 506 device from the skin (Figure 5c). The materials exploited in
 507 the device system are biocompatible with minimal toxicity,
 508 which enables their use for green electronics, biointegrated
 509 electronics, or even implantable devices. For instance, PVA
 510 powder and CaCO₃ are commonly used in a variety of medical
 511 applications because of their biocompatibility and low
 512 toxicity.^{60,61} Ag NPs with low mammalian cytotoxicity and
 513 antibacterial properties become common additives for
 514 applications in catalysis, tissue/tumor imaging, biosensing,
 515 and drug delivery. Additionally, the PVP-coated Ag NPs can
 516 effectively block the transmission of cell-free and cell-
 517 associated HIV-1, although a high dose of 0.6 mg/mL does
 518 not cause acute inflammatory and cell death.⁶²

3. CONCLUSIONS

519 In summary, we have reported the design and demonstration
 520 of a simple yet universal manufacturing approach to fabricate
 521 and integrate paper/fabric-based FPCBs at low temperature
 522 and multifunctional on-body sensors directly on the human

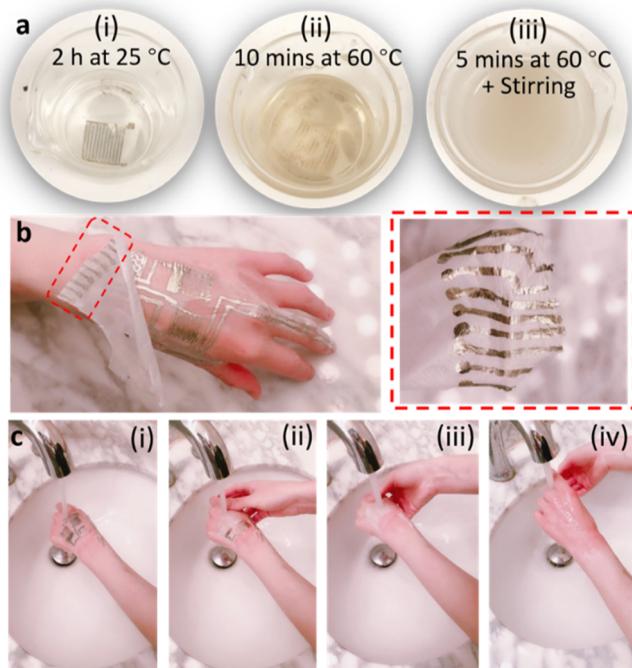


Figure 5. Removal and disposal demonstration of the on-body sensors. (a) Optical images of the thin-film on-body sensors show the sequence of device dissolution: (i) stable in water at room temperature, (ii) initiation of the decomposition above 60 °C, and (iii) completely dissolved after stirring for 5 min. (b) Peeling off the on-body sensing film with negligible effects on the skin conveniently removes the device. (c) Sequence of optical images shows easy removal of the device from the skin by washing hands in warm water flow.

skin at room temperature for a soft body area sensor network.⁵²³ The fabrication scheme relies on a sintering aid layer consisting⁵²⁴ of the PVA paste and nanoadditives (e.g., TiO₂ or CaCO₃,⁵²⁵ among others). Using the sintering aid layer on various paper/⁵²⁶ fabric substrates or the human skin, the sintering temperature⁵²⁷ of metal NPs is significantly reduced even to room temper-⁵²⁸ ature. The conductive metal pattern sintered at the metal/⁵²⁹ sintering aid layer interface has an ultrathin geometry, leading⁵³⁰ to an excellent electromechanical performance of the resulting⁵³¹ devices against bending and folding for origami/kirigami⁵³² applications. When applying the same fabrication scheme to⁵³³ integrate metal patterns on the fabric substrate, the resulting⁵³⁴ device with a robust performance in the water or moisture⁵³⁵ environment (>100 h) enables the application in biointegrated⁵³⁶ electronics during sweating. Moreover, printing and room-⁵³⁷ temperature sintering of metal NP ink directly on the human⁵³⁸ skin surface demonstrate the extended capability of the⁵³⁹ fabrication scheme to prepare various on-body sensors for⁵⁴⁰ physiological signal monitoring. The demonstrated high-⁵⁴¹ performance sensors could precisely and continuously capture⁵⁴² temperature, humidity, or local moisture change, blood oxygen⁵⁴³ saturation, and EP signals such as EMG/ECG. With enhanced⁵⁴⁴ signal quality and improved performance over those from their⁵⁴⁵ commercial counterparts, these proof-of-the-concept sensors⁵⁴⁶ with other expanded modules provide a repertoire of wearable⁵⁴⁷ electronics for health monitoring. Additionally, the system with⁵⁴⁸ demonstrated modules of on-body sensors for physiological⁵⁴⁹ signal monitoring and FPCBs for wireless transmission can be⁵⁵⁰ potentially applied to signal progression and severity in⁵⁵¹ COVID-19 patients.⁵⁵²

4. EXPERIMENTAL SECTION

553 **4.1. Materials.** The metal micro/nanoparticles (MPs/NPs),
 554 including Ag NPs of ~ 50 nm, Ag MPs of ~ 2 or ~ 40 μm , Ni NPs
 555 of ~ 100 nm, Ni NPs of ~ 50 nm, and Cu MPs of ~ 1 μm , all with a
 556 purity of 99.9%, were purchased from Shanghai Aladdin. Poly-
 557 vinylpyrrolidone (PVP-K30), AgNO_3 (99.99% metals basis),
 558 hydrazine hydrate (80%), and L-ascorbic acid (99.0%) were purchased
 559 from Shanghai Aladdin. Polyvinyl alcohol (PVA) powder (molecular
 560 weight: 89,000–98,000; 99%+ hydrolyzed), titanium dioxide (TiO_2)
 561 with a particle diameter of 20–50 nm, and calcium carbonate
 562 (CaCO_3) with a particle diameter of 20–50 nm were purchased from
 563 Sigma-Aldrich, USA. Other nanoadditives (i.e., Al_2O_3 particles of ~ 50
 564 nm, MgO particles of ~ 50 nm, and BaTiO_3 particles of ~ 50 nm), all
 565 with a purity of 99.9%, were purchased from Shanghai Aladdin.

566 **4.2. Preparation of the Inks with Ni/Ag Core/Shell NPs and**

567 Other NPs. Ni/Ag core/shell NPs were prepared by hydrazine
 568 reduction of AgNO_3 in deionized water with PVP as the protective
 569 agent. First, 1.7 g of AgNO_3 , 1.7 g of PVP, and 180 g of deionized
 570 water were added to a 300 mL beaker with a mechanical stirrer. Next,
 571 1.17 g of 50 nm Ni NPs was added into the dispersion. The
 572 calculation indicates that 1.7 g of AgNO_3 would require 0.46 g of
 573 hydrazine hydrate to be fully reduced. However, a minimized use of
 574 the hydrazine hydrate is desired because of its toxicity. By considering
 575 the possible inhomogeneous dispersion, we added 0.8 g of hydrazine
 576 hydrate into the Ni NP–PVP/ AgNO_3 solution for the reduction
 577 reaction. After about 0.5 h, the reaction products were separated by
 578 centrifuging at 4000 rpm for 5 min. The obtained Ni/Ag core/shell
 579 NPs were further purified with centrifuging separation and
 580 redispersion in pure ethyl alcohol for three cycles. Dissolving the
 581 commercial or obtained metal particles in glycol at a mass ratio of 1:4
 582 yielded a high-quality metal particle ink.

583 **4.3. Preparation of the Sintering Aid Layer.** The PVA paste
 584 was prepared by mixing the PVA powder with deionized water at
 585 different weight ratios: 10, 15, or 20 wt % (i.e., PVA powder/
 586 deionized water = 1:9, 3:17, or 1:4), followed by stirring at 70 $^{\circ}\text{C}$ to
 587 yield a viscous, transparent solution. The solution of the sintering aid
 588 layer was prepared by adding the nanoadditives into the PVA paste
 589 with continuous stirring at 700 rpm at 70 $^{\circ}\text{C}$ for a homogeneous
 590 mixture. For the TiO_2 nanoadditive, it was added to the 10 wt % PVA
 591 paste at weight ratios of 1:20, 1:15, 1:10, and 1:5 for TiO_2 to PVA
 592 paste. As for the CaCO_3 nanoadditive, it was added to the 10 or 15 wt
 593 % PVA paste at a weight ratio of 1:10 for CaCO_3 to PVA paste. After
 594 coating the sintering aid layer solution on the paper or skin, it was
 595 kept to yield the sintering aid layer, by drying in atmospheric air at
 596 room temperature unless specified otherwise.

597 **4.4. Demonstration of the Effect of the Cationic Radical on**

598 the Sintering of Ag NPs. First, 1 g of PVA powder and 9 g of
 599 deionized water were added to a 25 mL beaker, followed by stirring at
 600 70 $^{\circ}\text{C}$ to yield a viscous, transparent solution (Figure S13a). Next, 10
 601 g of L-ascorbic acid was added to the obtained solution, resulting in a
 602 color change of the solution from transparent to white (Figure S13b).
 603 After stirring for about 3 min, the solution changed back to
 604 transparent (Figure S13c). Next, 1 g of TiO_2 was added to the
 605 mixture with continuous stirring for 15 min to yield the ivory mixture
 606 (Figure S13d). After coating this sintering aid layer on the paper, the
 607 Ag NP ink was inkjet-printed and annealed at a temperature of 120
 608 $^{\circ}\text{C}$. The obtained sample was observed to be nonconductive (Figure
 609 S13e).

610 **4.5. Preparation of the Paper-Based FPCB.** The Ag NP ink
 611 was first inkjet-printed on the coated paper as conductive lines with
 612 contact pads (0.4 mm \times 0.355 mm with a spacing of 0.8 mm between
 613 pads) in the FPCB. Next, the SL900A package (5 mm \times 5 mm \times 0.9
 614 mm) was mounted onto the paper with conductive Ag patterns, where
 615 the anisotropic conductive paste was used to connect the chip and the
 616 Ag pads to result in the paper-based FPCB.

617 **4.6. Phase-Field Simulation of Particle Sintering.** The
 618 microstructural evolution is driven by the minimization of the free
 619 energy function F that is defined as

$$F = \int_v \left\{ f(c, \eta_\alpha) + \frac{1}{2} \kappa_c \left| \nabla c \right|^2 + \frac{1}{2} \sum_{\alpha=1}^N \kappa_\eta \left| \nabla \eta_\alpha \right|^2 \right\} dv \quad (1) \quad 620$$

where the conserved field parameter c describes the Ag concentration
 621 field, the nonconserved order parameter η_α describes the morpho-
 622 logical evolution of the particles, α is the index of a particle, and f is the
 623 local bulk chemical free energy function. κ_c and κ_η are the gradient
 624 energy parameters for the conserved and nonconserved fields,
 625 respectively.⁶³ N is the total number of the order parameter.
 626

627 The conserved field c can be written as

$$\frac{\partial c}{\partial t} = \nabla \cdot \left(M \cdot \nabla \frac{\delta F}{\delta c(x, t)} \right) \quad (2) \quad 628$$

629 where x is the spatial position vector, t is the time, and M is the
 630 concentration mobility tensor that can be expressed as

$$M = D / \frac{\partial^2 F}{\partial c^2} \Big|_{c=1} \quad (3) \quad 631$$

632 The diffusivity tensor D in eq 3 can be defined as

$$D = D^v + D^s + D^{gb} \quad (4) \quad 633$$

634 where D^v , D^s , and D^{gb} are the diffusivity tensors of volume, surface,
 635 and grain boundary, respectively. Because the contribution of the
 636 volume diffusion is negligible and the surface diffusion is only present
 637 on the surface of the particle, the grain boundary diffusion is the
 638 leading factor in the sintering at the interface between two particles.
 639 The grain boundary diffusion is proportional to the grain boundary
 640 diffusion coefficient D_{gb}^{gb} , which is valid for the sintering temperature
 641 above 573 K (e.g., D_{673K}^{gb}). As the sintering temperature reduces to be
 642 below 573 K, the grain boundary diffusion coefficient (D_{573K}^{gb}) tends to
 643 approach the volume diffusion coefficient, leading to the unsintered
 644 NPs. As the sintering aid layer increases the grain boundary diffusion
 645 coefficient at a temperature of 373 K (D_{373K}^{gb}), the sintering of Ag NPs
 646 occurs with sintering necks formed. Here, all of these parameters in
 647 the phase-field model are consistent with the literature reports.^{64,65}
 647

648 **4.7. Preparation of Saturated Salt Solutions.** The $\text{Na}_2\text{Cr}_2\text{O}_7$,
 649 NaCl , KCl , and Na_2HPO_4 salts were dissolved in glass containers of 4
 649 L at 60 $^{\circ}\text{C}$. Cooling down the solutions to the room temperature
 650 yielded saturated salt solutions with precipitation. Sealing the
 651 obtained solutions at room temperature prepared them for use later.
 652

653 **4.8. Drying Process with the Electric Hair Dryer.** The electric
 654 hair dryer was used as the air blower to dry the Ag pattern printed on
 655 the skin via the stamp-based transfer process. The distance between
 656 the air outlet of the hair dryer and the skin surface was about 1–2 cm.
 657 The blower was set at the position of full power at medium
 658 temperature (i.e., room temperature) for quick drying of about 20 s.
 659 The electric hair dryer with a power of 1875 Watts could produce an
 660 airspeed of 40 mph (measured at a couple of inches away from the
 661 outlet). When the Ag ink patterns were dried using the hair dryer at
 662 different distances from the outlet (i.e., ~ 1 , ~ 5 , ~ 10 , and ~ 20 cm), it
 663 took the hair dryer a longer time to dry the patterns (~ 20 , ~ 45 , ~ 60 ,
 664 and ~ 120 s) as the distance was progressively increased. The sheet
 665 resistance of the dried Ag patterns was observed to be slightly
 666 different (~ 14 , ~ 20 , ~ 32 , and $28 \mu\Omega \text{ cm}$), but the difference was
 667 much smaller with a small variation in the distance and could also be
 668 easily accounted for in the calibration of the sensors.
 668

669 **4.9. Calculation of Blood Oxygen Saturation ($S_p\text{O}_2$).**
 670 Calculation of $S_p\text{O}_2$ was based on the photodiffusion analysis and
 671 the modified Lambert–Beer equation⁶⁶
 671

$$\text{Sp O}_2(t) = \frac{\epsilon_{\text{Hb}}(\lambda_R) \text{DPF}_{\text{R-IR}} - \epsilon_{\text{Hb}}(\lambda_{\text{IR}}) R(t)}{[\epsilon_{\text{HbO}_2}(\lambda_R) - \epsilon_{\text{HbO}_2}(\lambda_{\text{IR}})] \text{DPF}_{\text{R-IR}} + [\epsilon_{\text{HbO}_2}(\lambda_{\text{IR}}) - \epsilon_{\text{Hb}}(\lambda_{\text{IR}})] R(t)} \quad (5) \quad 672$$

673 where $\epsilon_{\text{HbO}_2}(\lambda_R)$ and $\epsilon_{\text{HbO}_2}(\lambda_{\text{IR}})$ [or $\epsilon_{\text{Hb}}(\lambda_R)$ and $\epsilon_{\text{Hb}}(\lambda_{\text{IR}})$] are the
 674 extinction coefficients of oxyhemoglobin (or deoxyhemoglobin) for
 675 the red and infrared light with wavelengths of 640 and 950 nm,
 675

676 respectively. The quantity DPF_{R-IR} is the influence coefficient of the
677 dissimilar optical path lengths at the two wavelengths. These
678 parameters have been determined⁶⁶ to be $\epsilon_{HbO_2}(\lambda_R) = 0.011 \text{ mm}^{-1}$,
679 $\epsilon_{Hb}(\lambda_R) = 0.106 \text{ mm}^{-1}$, $\epsilon_{HbO_2}(\lambda_{IR}) = 0.028 \text{ mm}^{-1}$, $\epsilon_{Hb}(\lambda_{IR}) = 0.018$
680 mm^{-1} , and $DPF_{R-IR} = 1.4$. Applying the same values for these
681 parameters as in the literature report,⁶⁶ eq 5 can be simplified to

$$682 \quad Sp\ O_2(t) = \frac{0.1484 - 0.018 \times R(t)}{0.133 + 0.01 \times R(t)} \quad (6)$$

683 where the ratio $R(t)$ between the red and the infrared pulsatile
684 components can be expressed as

$$685 \quad R = \frac{I_{AC}^{\lambda_R}}{I_{DC}^{\lambda_R}} / \frac{I_{AC}^{\lambda_{IR}}}{I_{DC}^{\lambda_{IR}}} \quad (7)$$

686 In eq 7, the alternating current component I_{AC} is the difference
687 between the peaks and troughs of the pulse wave, whereas the direct
688 current component I_{DC} is the mean value.

689 ■ ASSOCIATED CONTENT

690 ■ Supporting Information

691 The Supporting Information is available free of charge at
692 <https://pubs.acs.org/doi/10.1021/acsami.0c11479>.

693 Details on the materials, experimental procedures,
694 designs of paper-based FPCB using the SL900A chip,
695 pattern designs of sensors and characterization results of
696 the contact angle, AFM, XRD, SEM, sheet resistance,
697 PPG voltage measuring, and EMG/ECG signal testing
698 (PDF)

699 ■ AUTHOR INFORMATION

700 Corresponding Authors

701 Peng He – State Key Laboratory of Advanced Welding &
702 Joining, Harbin Institute of Technology, Shenzhen 518055,
703 People's Republic of China; Email: hithepeng@hit.edu.cn

704 Weiwei Zhao – State Key Laboratory of Advanced Welding &
705 Joining, Flexible Printed Electronics Technology Center, and The
706 School of Material Science and Engineering, Harbin Institute of
707 Technology, Shenzhen 518055, People's Republic of China;
708 <https://orcid.org/0000-0002-0373-1146>; Email: wzhao@hit.edu.cn

710 Huanyu Cheng – Department of Engineering Science and
711 Mechanics and Department of Materials Science and
712 Engineering, The Pennsylvania State University, University Park,
713 Pennsylvania 16802, United States; <https://orcid.org/0000-0001-6075-4208>; Email: Huanyu.Cheng@psu.edu

715 Authors

716 Ling Zhang – State Key Laboratory of Advanced Welding &
717 Joining and Flexible Printed Electronics Technology Center,
718 Harbin Institute of Technology, Shenzhen 518055, People's
719 Republic of China; Department of Engineering Science and
720 Mechanics, The Pennsylvania State University, University Park,
721 Pennsylvania 16802, United States

722 Hongjun Ji – State Key Laboratory of Advanced Welding &
723 Joining, Flexible Printed Electronics Technology Center, and The
724 School of Material Science and Engineering, Harbin Institute of
725 Technology, Shenzhen 518055, People's Republic of China;
726 <https://orcid.org/0000-0002-4159-6838>

727 Houbing Huang – Advanced Research Institute of
728 Multidisciplinary Science, Beijing Institute of Technology, Beijing
729 100081, China

Ning Yi – Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States; <https://orcid.org/0000-0002-4116-5202>

Xiaoming Shi – Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
Senpei Xie – Flexible Printed Electronics Technology Center and The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China

Yaoxin Li – Flexible Printed Electronics Technology Center and The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China

Ziheng Ye – The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China

Pengdong Feng – Flexible Printed Electronics Technology Center and The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China; <https://orcid.org/0000-0002-8066-3490>

Tiesong Lin – State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China; <https://orcid.org/0000-0002-7454-3142>

Xiangli Liu – The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China

Xuesong Leng – State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China

Mingyu Li – State Key Laboratory of Advanced Welding & Joining, Flexible Printed Electronics Technology Center, and The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China; <https://orcid.org/0000-0002-3102-1328>

Jiaheng Zhang – State Key Laboratory of Advanced Welding & Joining, Flexible Printed Electronics Technology Center, and The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China; <https://orcid.org/0000-0002-2377-9796>

Xing Ma – State Key Laboratory of Advanced Welding & Joining, Flexible Printed Electronics Technology Center, and The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China; <https://orcid.org/0000-0002-2248-4806>

Complete contact information is available at: <https://pubs.acs.org/doi/10.1021/acsami.0c11479>

777 Author Contributions

L.Z., H.J., H.H., and N.Y. contributed equally. L.Z., W.Z., and H.C. led the development of the concepts, designed the experiments, and interpreted the results. L.Z., H.J., N.Y., S.X., Y.L., Z.Y., and P.F. performed the experimental measurements. L.Z., H.H., and X.S. performed phase-field simulation. L.Z., T.L., X.L., X.L., M.L., J.Z., X.M., and P.H. helped analyze the data. L.Z. and H.C. wrote the paper.

785 Notes

The authors declare no competing financial interest.

787 ■ ACKNOWLEDGMENTS

This work was supported by several grants provided by The Pennsylvania State University and the National Science

790 Foundation (NSF) (grant no. ECCS-1933072) to H.C. and
791 the Shenzhen Science and Technology Program (grant no.
792 KQTD20170809110344233, JCYJ20170811160129498) and
793 Bureau of Industry and Information Technology of Shenzhen
794 through the Graphene Manufacturing Innovation Center
795 (201901161514). X.L. acknowledges the support from the
796 Natural Science Foundation of China (11672090).

797 ■ REFERENCES

798 (1) Kim, K.; Kim, B.; Lee, C. H. Printing Flexible and Hybrid
799 Electronics for Human Skin and Eye-Interfaced Health Monitoring
800 Systems. *Adv. Mater.* **2020**, *32*, 1902051.

801 (2) Dervisevic, M.; Alba, M.; Prieto-Simon, B.; Voelcker, N. H. Skin
802 in the Diagnostics Game: Wearable Biosensor Nano-and Micro-
803 systems for Medical Diagnostics. *Nano Today* **2020**, *30*, 100828.

804 (3) Zheng, Y.; He, Z.; Gao, Y.; Liu, J. Direct Desktop Printed-
805 Circuits-on-Paper Flexible Electronics. *Sci. Rep.* **2013**, *3*, 1786.

806 (4) Buechley, L.; Eisenberg, M. Fabric PCBs, Electronic Sequins, and
807 Socket Buttons: Techniques for E-Textile Craft. *Personal Ubiquitous*
808 *Comput.* **2009**, *13*, 133–150.

809 (5) Ahn, J.; Seo, J.-W.; Lee, T.-I.; Kwon, D.; Park, I.; Kim, T.-S.; Lee,
810 J.-Y. Extremely Robust and Patternable Electrodes for Copy-Paper-
811 Based Electronics. *ACS Appl. Mater. Interfaces* **2016**, *8*, 19031–19037.

812 (6) Liu, H.; Jiang, H.; Du, F.; Zhang, D.; Li, Z.; Zhou, H. Flexible
813 and Degradable Paper-Based Strain Sensor with Low Cost. *ACS*
814 *Sustainable Chem. Eng.* **2017**, *5*, 10538–10543.

815 (7) Kanaparthi, S.; Badhulika, S. Solvent-Free Fabrication of a
816 Biodegradable All-Carbon Paper Based Field Effect Transistor for
817 Human Motion Detection through Strain Sensing. *Green Chem.* **2016**,
818 *18*, 3640–3646.

819 (8) Ershad, F.; Thukral, A.; Yue, J.; Comeaux, P.; Lu, Y.; Shim, H.;
820 Sim, K.; Kim, N.-I.; Rao, Z.; Guevara, R.; Contreras, L.; Pan, F.;
821 Zhang, Y.; Guan, Y.-S.; Yang, P.; Wang, X.; Wang, P.; Wu, X.; Yu, C.
822 Ultra-Conformal Drawn-on-Skin Electronics for Multifunctional
823 Motion Artifact-Free Sensing and Point-of-Care Treatment. *Nat.*
824 *Commun.* **2020**, *11*, 3823.

825 (9) Xu, Y.; Zhao, G.; Zhu, L.; Fei, Q.; Zhang, Z.; Chen, Z.; An, F.;
826 Chen, Y.; Ling, Y.; Guo, P.; Ding, S.; Huang, G.; Chen, P.-Y.; Cao, Q.;
827 Yan, Z. Pencil-paper on-skin electronics. *Proc. Natl. Acad. Sci.* **2020**,
828 *117*, 18292–18301.

829 (10) Yang, Z.; Zhang, Y.; Itoh, T.; Maeda, R. Flexible Implantable
830 Microtemperature Sensor Fabricated on Polymer Capillary by
831 Programmable Uv Lithography with Multilayer Alignment for
832 Biomedical Applications. *J. Microelectromech. Syst.* **2014**, *23*, 21–29.

833 (11) Lee, J.; Kim, S.; Lee, J.; Yang, D.; Park, B. C.; Ryu, S.; Park, I. A
834 Stretchable Strain Sensor Based on a Metal Nanoparticle Thin Film
835 for Human Motion Detection. *Nanoscale* **2014**, *6*, 11932–11939.

836 (12) Wang, C.-T.; Huang, K.-Y.; Lin, D. T. W.; Liao, W.-C.; Lin, H.-
837 W.; Hu, Y.-C. A Flexible Proximity Sensor Fully Fabricated by Inkjet
838 Printing. *Sensors* **2010**, *10*, 5054–5062.

839 (13) Cai, L.; Zhang, S.; Zhang, Y.; Li, J.; Miao, J.; Wang, Q.; Yu, Z.;
840 Wang, C. Direct Printing for Additive Patterning of Silver Nanowires
841 for Stretchable Sensor and Display Applications. *Adv. Mater. Technol.*
842 **2018**, *3*, 1700232.

843 (14) Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J. H.; Pang, C.; Son, S.;
844 Kim, J. H.; Jang, Y. H.; Kim, D. E.; Lee, T. Conductive Fiber-Based
845 Ultrasensitive Textile Pressure Sensor for Wearable Electronics. *Adv.*
846 *Mater.* **2015**, *27*, 2433–2439.

847 (15) Trung, T. Q.; Ramasundaram, S.; Hwang, B.-U.; Lee, N.-E. An
848 All-Elastomeric Transparent and Stretchable Temperature Sensor for
849 Body-Attachable Wearable Electronics. *Adv. Mater.* **2016**, *28*, 502–
850 509.

851 (16) Russo, A.; Ahn, B. Y.; Adams, J. J.; Duoss, E. B.; Bernhard, J. T.;
852 Lewis, J. A. Pen-on-Paper Flexible Electronics. *Adv. Mater.* **2011**, *23*,
853 3426–3430.

854 (17) Tai, Y.-L.; Yang, Z.-G. Fabrication of Paper-Based Conductive
855 Patterns for Flexible Electronics by Direct-Writing. *J. Mater. Chem.*
856 **2011**, *21*, 5938–5943.

857 (18) Zhu, Z.; Guo, S.-Z.; Hirdler, T.; Eide, C.; Fan, X.; Tolar, J.; McAlpine, M. C. 3d Printed Functional and Biological Materials on Moving Freeform Surfaces. *Adv. Mater.* **2018**, *30*, 1707495.

858 (19) Frutiger, A.; Muth, J. T.; Vogt, D. M.; Mengüç, Y.; Campo, A.; Valentine, A. D.; Walsh, C. J.; Lewis, J. A. Capacitive Soft Strain Sensors via Multicore-Shell Fiber Printing. *Adv. Mater.* **2015**, *27*, 862 2440–2446.

863 (20) Xu, L. Y.; Yang, G. Y.; Jing, H. Y.; Wei, J.; Han, Y. D. Pressure-Assisted Low-Temperature Sintering for Paper-Based Writing Electronics. *Nanotechnology* **2013**, *24*, 355204.

866 (21) Li, J.; Mao, P.; Wang, F. *16th International Conference on Electronic Packaging Technology (ICEPT)*; IEEE, 2015; pp 985–988.

868 (22) Gaspar, C.; Passoja, S.; Olkkonen, J.; Smolander, M. Ir-Sintering Efficiency on Inkjet-Printed Conductive Structures on Paper Substrates. *Microelectron. Eng.* **2016**, *149*, 135–140.

871 (23) Hou, L.; Zhao, H.; Lu, Y. Fabrication of User-Defined Copper Conductive Patterns onto Paper Substrate for Flexible Electronics by Combining Wax Patterning with Electroless Plating. *J. Mater. Sci.: Mater. Electron.* **2017**, *28*, 4219–4228.

875 (24) Kim, J.; Salvatore, G. A.; Araki, H.; Chiarelli, A. M.; Xie, Z.; Banks, A.; Sheng, X.; Liu, Y.; Lee, J. W.; Jang, K.-I.; Heo, S. Y.; Cho, K.; Luo, H.; Zimmerman, B.; Kim, J.; Yan, L.; Feng, X.; Xu, S.; Fabiani, M.; Gratton, G.; Huang, Y.; Paik, U.; Rogers, J. A. Battery-Free, Stretchable Optoelectronic Systems for Wireless Optical Characterization of the Skin. *Sci. Adv.* **2016**, *2*, No. e1600418.

881 (25) Niu, S.; Matsuhsa, N.; Beker, L.; Li, J.; Wang, S.; Wang, J.; Jiang, Y.; Yan, X.; Yun, Y.; Burnett, W.; Poon, A. S. Y.; Tok, J. B.-H.; Chen, X.; Bao, Z. A Wireless Body Area Sensor Network Based on Stretchable Passive Tags. *Nat. Electron.* **2019**, *2*, 361–368.

885 (26) Mahajan, A.; Francis, L. F.; Frisbie, C. D. Facile Method for Fabricating Flexible Substrates with Embedded, Printed Silver Lines. *ACS Appl. Mater. Interfaces* **2014**, *6*, 1306–1312.

888 (27) Barr, M. C.; Rowehl, J. A.; Lunt, R. R.; Xu, J.; Wang, A.; Boyce, C. M.; Im, S. G.; Bulović, V.; Gleason, K. K. Direct Monolithic Integration of Organic Photovoltaic Circuits on Unmodified Paper. *Adv. Mater.* **2011**, *23*, 3500–3505.

892 (28) Hyun, W. J.; Park, O. O.; Chin, B. D. Foldable Graphene Electronic Circuits Based on Paper Substrates. *Adv. Mater.* **2013**, *25*, 4729–4734.

895 (29) Siegel, A. C.; Phillips, S. T.; Dickey, M. D.; Lu, N.; Suo, Z.; Whitesides, G. M. Foldable Printed Circuit Boards on Paper Substrates. *Adv. Funct. Mater.* **2010**, *20*, 28–35.

898 (30) Zhang, L.; Feng, P.; Xie, S.; Wang, Y.; Ye, Z.; Fu, Z.; Wang, Q.; Ma, X.; Zhang, J.; He, P.; Li, K.; Zhao, W. Low-Temperature Sintering of Silver Nanoparticles on Paper by Surface Modification. *Nanotechnology* **2019**, *30*, 505303.

902 (31) Li, W.; Chen, M.; Li, W.; You, C.; Wei, J.; Zhi, L. Synthesis of Air Stable Silver Nanoparticles and Their Application as Conductive Ink on Paper Based Flexible Electronics. *Mater. Res. Innovat.* **2014**, *18*, 905 S4.

906 (32) Li, W.; Li, W.; Wang, M.; Liu, G.; Chen, M. Direct writing of stable Cu-Ag-based conductive patterns for flexible electronics. *RSC Adv.* **2016**, *6*, 10670–10676.

909 (33) Bhat, K. S.; Ahmad, R.; Wang, Y.; Hahn, Y.-B. Low-Temperature Sintering of Highly Conductive Silver Ink for Flexible Electronics. *J. Mater. Chem. C* **2016**, *4*, 8522–8527.

912 (34) Bandodkar, A. J.; Hung, V. W. S.; Jia, W.; Valdés-Ramírez, G.; Windmiller, J. R.; Martinez, A. G.; Ramírez, J.; Chan, G.; Kerman, K.; Wang, J. Tattoo-Based Potentiometric Ion-Selective Sensors for Epidermal Ph Monitoring. *Analyst* **2013**, *138*, 123–128.

916 (35) Hwang, S.-W.; Kim, D.-H.; Tao, H.; Kim, T.-i.; Kim, S.; Yu, K. J.; Panilaitis, B.; Jeong, J.-W.; Song, J.-K.; Omenetto, F. G.; Rogers, J. A. Materials and Fabrication Processes for Transient and Bioresorbable High-Performance Electronics. *Adv. Funct. Mater.* **2013**, *23*, 919 4087–4093.

921 (36) Kang, S.-K.; Hwang, S.-W.; Cheng, H.; Yu, S.; Kim, B. H.; Kim, J.-H.; Huang, Y.; Rogers, J. A. Dissolution Behaviors and Applications of Silicon Oxides and Nitrides in Transient Electronics. *Adv. Funct. Mater.* **2014**, *24*, 4427–4434.

925

926 (37) Porstendörfer, J. Die Diffusionskoeffizienten Und 927 Mittleren 928 Freien Weglängen Der Geladenen Und Neutralen Radon-Folgeprodukte 929 in Luft. *Z. Phys.* **1968**, *213*, 384–396.

929 (38) Magdassi, S.; Grouchko, M.; Berezin, O.; Kamyshny, A. 930 Triggering the Sintering of Silver Nanoparticles at Room Temperature. *ACS Nano* **2010**, *4*, 1943–1948.

932 (39) Filippo, E.; Carlucci, C.; Capodilupo, A. L.; Perulli, P.; 933 Conciauro, F.; Corrente, G. A.; Gigli, G.; Ciccarella, G. Facile 934 preparation of TiO₂-polyvinyl alcohol hybrid nanoparticles with 935 improved visible light photocatalytic activity. *Appl. Surf. Sci.* **2015**, 936 *331*, 292–298.

937 (40) Kettle, J.; Lamminmäki, T.; Gane, P. A Review of Modified 938 Surfaces for High Speed Inkjet Coating. *Surf. Coat. Technol.* **2010**, 939 *204*, 2103–2109.

940 (41) Ahmad, J.; Deshmukh, K.; Hägg, M. B. Influence of TiO₂ on 941 the Chemical, Mechanical, and Gas Separation Properties of Polyvinyl 942 Alcohol-Titanium Dioxide (PVA-TiO₂) Nanocomposite Membranes. 943 *Int. J. Polym. Anal. Charact.* **2013**, *18*, 287–296.

944 (42) Hadi, A.; Hashim, A.; Al-Khafaji, Y. Structural, Optical and 945 Electrical Properties of Pva/Peo/Sno 2 New Nanocomposites for 946 Flexible Devices. *Trans. Electr. Electron. Mater.* **2020**, *21*, 283.

947 (43) Dankoco, M. D.; Tesfay, G. Y.; Benevent, E.; Bendahan, M. 948 Temperature Sensor Realized by Inkjet Printing Process on Flexible 949 Substrate. *Mater. Sci. Eng., B* **2016**, *205*, 1–5.

950 (44) Mattana, G.; Kinkeldei, T.; Leuenberger, D.; Ataman, C.; Ruan, 951 J. J.; Molina-Lopez, F.; Quintero, A. V.; Nisato, G.; Tröster, G.; 952 Briand, D.; Rooij, N. F. Woven Temperature and Humidity Sensors 953 on Flexible Plastic Substrates for E-Textile Applications. *IEEE Sens. J.* 954 **2013**, *13*, 3901–3909.

955 (45) Baker, L. B. Physiology of Sweat Gland Function: The Roles of 956 Sweating and Sweat Composition in Human Health. *Temperature* 957 **2019**, *6*, 211–259.

958 (46) Schlereth, T.; Dieterich, M.; Birklein, F. Hyperhidrosis— 959 Causes and Treatment of Enhanced Sweating: In reply. *Deutsches 960 Ärzteblatt Int.* **2009**, *106*, 448.

961 (47) Jeong, J.-W.; Kim, M. K.; Cheng, H.; Yeo, W.-H.; Huang, X.; 962 Liu, Y.; Zhang, Y.; Huang, Y.; Rogers, J. A. Capacitive Epidermal 963 Electronics for Electrically Safe, Long-Term Electrophysiological 964 Measurements. *Adv. Healthcare Mater.* **2014**, *3*, 642–648.

965 (48) Hwang, S.-W.; Lee, C. H.; Cheng, H.; Jeong, J.-W.; Kang, S.-K.; 966 Kim, J.-H.; Shin, J.; Yang, J.; Liu, Z.; Ameer, G. A.; Huang, Y.; Rogers, 967 J. A. Biodegradable Elastomers and Silicon Nanomembranes/ 968 Nanoribbons for Stretchable, Transient Electronics, and Biosensors. 969 *Nano Lett.* **2015**, *15*, 2801–2808.

970 (49) Yamamoto, Y.; Yamamoto, D.; Takada, M.; Naito, H.; Arie, T.; 971 Akita, S.; Takei, K. Efficient Skin Temperature Sensor and Stable Gel- 972 Less Sticky Ecg Sensor for a Wearable Flexible Healthcare Patch. *Adv. 973 Healthcare Mater.* **2017**, *6*, 1700495.

974 (50) Nemati, E.; Deen, M.; Mondal, T. A Wireless Wearable Ecg 975 Sensor for Long-Term Applications. *IEEE Commun. Mag.* **2012**, *50*, 976 36–43.

977 (51) Meng, Y.; Li, Z.; Chen, J. A Flexible Dry Electrode Based on 978 Aptes-Anchored Pdms Substrate for Portable Ecg Acquisition System. 979 *Microsyst. Technol.* **2016**, *22*, 2027–2034.

980 (52) Yokus, M. A.; Jur, J. S. Fabric-Based Wearable Dry Electrodes 981 for Body Surface Biopotential Recording. *IEEE Trans. Biomed. Eng.* 982 **2016**, *63*, 423–430.

983 (53) Myers, A. C.; Huang, H.; Zhu, Y. Wearable Silver Nanowire 984 Dry Electrodes for Electrophysiological Sensing. *RSC Adv.* **2015**, *5*, 985 11627–11632.

986 (54) Scalisi, R. G.; Paleari, M.; Favetto, A.; Stoppa, M.; Ariano, P.; 987 Pandolfi, P.; Chiolerio, A. Inkjet Printed Flexible Electrodes for 988 Surface Electromyography. *Org. Electron.* **2015**, *18*, 89–94.

989 (55) Mei, P.; Krusor, B.; Schwartz, D. E.; Ng, T. N.; Daniel, G.; 990 Ready, S.; Whiting, G. L. Digital Fabrication and Integration of a 991 Flexible Wireless Sensing Device. *IEEE Sens. J.* **2017**, *17*, 7114–7122.

992 (56) Mraović, M.; Muck, T.; Pivar, M.; Trontelj, J.; Pleteršek, A. 993 Humidity Sensors Printed on Recycled Paper and Cardboard. *Sensors* 994 **2014**, *14*, 13628–13643.

957 (57) Pichorim, S.; Gomes, N.; Batchelor, J. Two Solutions of Soil 995 Moisture Sensing with Rfid for Landslide Monitoring. *Sensors* **2018**, *18*, 452. 996 997 (58) Lorenzen, J. A. Green Consumption and Social Change: 998 Debates over Responsibility, Private Action, and Access. *Sociology 999 Compass* **2014**, *8*, 1063–1081. 1000 (59) Pramila, S.; Fulekar, M.; Bhawana, P. E-Waste-a Challenge for 1001 Tomorrow. *Res. J. Recent Sci.* **2012**, *1*, 86. 1002 (60) Baker, M. I.; Walsh, S. P.; Schwartz, Z.; Boyan, B. D. A Review 1003 of Polyvinyl Alcohol and Its Uses in Cartilage and Orthopedic 1004 Applications. *J. Biomed. Mater. Res., Part B* **2012**, *100B*, 1451–1457. 1005 (61) Mangels, A. R. Bone Nutrients for Vegetarians. *Am. J. Clin. 1006 Nutr.* **2014**, *100*, 469S–475S. 1007 (62) Lara, H. H.; Ixtepan-Turrent, L.; Garza-Treviño, E. N.; 1008 Rodriguez-Padilla, C. PVP-coated silver nanoparticles block the 1009 transmission of cell-free and cell-associated HIV-1 in human cervical 1010 culture. *J. Nanobiotechnol.* **2010**, *8*, 15. 1011 (63) Yong, X.; Schoonen, M. A. A. The Absolute Energy Positions of 1012 Conduction and Valence Bands of Selected Semiconducting Minerals. 1013 *Am. Mineral.* **2000**, *85*, 543–556. 1014 (64) Wang, Y. U. Computer Modeling and Simulation of Solid-State 1015 Sintering: A Phase Field Approach. *Acta Mater.* **2006**, *54*, 953–961. 1016 (65) Chockalingam, K.; Kouznetsova, V. G.; van der Sluis, O.; Geers, 1017 M. G. D. 2d Phase Field Modeling of Sintering of Silver 1018 Nanoparticles. *Comput. Methods Appl. Mech. Eng.* **2016**, *312*, 492. 1019 (66) Kim, J.; Gutruf, P.; Chiarella, A. M.; Heo, S. Y.; Cho, K.; Xie, Z.; 1020 Banks, A.; Han, S.; Jang, K.-I.; Lee, J. W.; Lee, K.-T.; Feng, X.; Huang, 1021 Y.; Fabiani, M.; Gratton, G.; Paik, U.; Rogers, J. A. Miniaturized 1022 Battery-Free Wireless Systems for Wearable Pulse Oximetry. *Adv. 1023 Funct. Mater.* **2017**, *27*, 1604373. 1024