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Highlights The “ordered-unraveling” of hierarchical structures from mechanical assembly contributes to not only the
improved overall stretchability, but also the small resonance shift of the stretchable microstrip antenna
upon stretching.A double-arched microstrip antenna was demonstrated to communicate wirelessly upon
25% stretching or when being placed on human bodies.
As the key component of wireless data transmission and powering, stretchable antennas play an
indispensable role in flexible/stretchable electronics. However, they often suffer from the frequency
detuning upon mechanical deformations; thus, their applications are limited to wireless sensing with
wireless transmission capabilities remained elusive. Here, a hierarchically structured stretchable microstrip
antenna with meshed patterns arranged in an arched shape showcases tunable resonance frequency upon
deformations with improved overall stretchability. The almost unchanged resonance frequency during
deformations enables robust on-body wireless communication and RF energy harvesting, whereas the rapid
changing resonance frequency with deformations allows for wireless sensing. The proposed stretchable
microstrip antenna was demonstrated to communicate wirelessly with a transmitter (input power of − 3
dBm) efficiently (i.e., the receiving power higher than − 100 dBm over a distance of 100 m) on human
bodies even upon 25% stretching. The flexibility in structural engineering combined with the coupled
mechanical–electromagnetic simulations provides a versatile engineering toolkit to design stretchable



microstrip antennas and other potential wireless devices for stretchable electronics.
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HIGHLIGHTS

• The “ordered-unraveling” of hierarchical structures from mechanical assembly contributes to not only the improved overall stretch-

ability, but also the small resonance shift of the stretchable microstrip antenna upon stretching.

• A double-arched microstrip antenna was demonstrated to communicate wirelessly upon 25% stretching or when being placed on 

human bodies.

ABSTRACT As the key component of wireless data transmission and powering, stretch-

able antennas play an indispensable role in lexible/stretchable electronics. However, 

they often sufer from the frequency detuning upon mechanical deformations; thus, 

their applications are limited to wireless sensing with wireless transmission capabilities 

remained elusive. Here, a hierarchically structured stretchable microstrip antenna with 

meshed patterns arranged in an arched shape showcases tunable resonance frequency 

upon deformations with improved overall stretchability. The almost unchanged resonance 

frequency during deformations enables robust on-body wireless communication and RF 

energy harvesting, whereas the rapid changing resonance frequency with deformations 

allows for wireless sensing. The proposed stretchable microstrip antenna was demon-

strated to communicate wirelessly with a transmitter (input power of − 3 dBm) eiciently 

(i.e., the receiving power higher than − 100 dBm over a distance of 100 m) on human bodies even upon 25% stretching. The lexibility 

in structural engineering combined with the coupled mechanical–electromagnetic simulations provides a versatile engineering toolkit to 

design stretchable microstrip antennas and other potential wireless devices for stretchable electronics.

KEYWORDS Stretchable microstrip antennas; Strain-insensitive resonance frequency; Wireless communication; RF energy harvesting; 

Wearable and bio-integrated electronics
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1 Introduction

Flexible/stretchable electronics attached to dynamically 

changing, curvilinear surfaces can still function properly 

upon various mechanical deformations, including stretch-

ing, bending, and twisting [1]. The integration of sensors 

and actuators with data communication and powering 

modules in this class of emerging electronics enables 

its applications in the energy generator/storage [2–6], 

human–machine interfaces [7, 8], health monitoring [9, 

10], and clinical treatments [11]. The commonly used 

strategies in the design and fabrication of lexible/stretch-

able electronics rely on either intrinsically stretchable 

materials [12, 13] or stretchable structures [14–18]. The 

former includes the intrinsically stretchable semiconduc-

tors, insulators, and conductors. With direct relevance to 

wireless devices such as antennas, the intrinsically stretch-

able conductors often explore conductive polymers [19], 

liquid metals [20], and conductive composites with low-

dimensional nanoillers in a stretchable polymeric matrix 

[21]. Alternatively, the latter stretchable structures (e.g., 

serpentine [22–24] or 3D structures [14–16, 25]) allow the 

conventional metals to be stretched over tens of percent 

without damage. Compared to the intrinsically stretchable 

materials with various functionalities, the conventional 

metal conductors (and semiconductors) with stretchable 

structures exhibit high performance comparable with mod-

ern electronics. Additionally, they can easily integrate the 

other commercial of-the-shelf (COTS) chips through a 

conventional soldering process to achieve extended capa-

bilities for mass-production and commercialization.

As an indispensable component in lexible/stretchable 

electronics, wireless technology allows wireless power-

ing [24] and data transmission [26–28] in the resulting 

miniaturized, integrated systems. For instance, near-ield 

communication (NFC) has been widely used in wireless 

epidermal electronic systems [26] to monitor various 

physiologically relevant signals. However, its applications 

are limited by the short working distance. On the other 

hand, far-ield communication with a radiofrequency (RF) 

antenna can be leveraged for wireless data and energy com-

munication at a much longer working distance [10]. The 

combination of RF antenna and rectifying circuit results 

in a rectifying antenna (rectenna) to harvest ambient RF 

energies for low-power lexible/stretchable electronics [29, 

30]. As a result, the development of stretchable antennas 

and rectennas starts to gain momentum recently. Com-

pared to the dipole and loop antennas, the microstrip patch 

antennas showcase signiicantly improved on-bodies per-

formance because the ground plane can help eliminate or 

reduce the efect from the underlying lossy tissues [31]. 

In contrast to stretchable antennas based on liquid metals 

[32–34], conductive textile [35], or conductive compos-

ites [36], the stretchable metal antennas exhibit enhanced 

radiation eiciency due to the low ohm loss.

The resonance frequency of stretchable antennas with 

either stretchable materials or structures shifts with ten-

sile deformations, i.e., the frequency detuning [31, 32, 37, 

38]. As a result, the stretchable antennas are only applied 

as wireless sensors based on the frequency shift [32, 38]. 

It is highly desirable to design stretchable antennas with 

strain-insensitive resonance frequency for robust wireless 

communication and RF energy harvesting. Although a 

stretchable monopole antenna with a relatively wide band 

has been demonstrated for communication, its radiation 

performance degrades when used on-body [39] because 

of the absence of a ground plane. Here, we report hierar-

chically structured stretchable microstrip antennas with 

meshed patch mechanically popped-up into a 3D shape to 

showcase the strain-insensitive resonance frequency over a 

large range of stretching up to 25%. The strain-insensitive 

resonance frequency comes from the cancellation of two 

efects, i.e., the increasing (or decreasing) resonance fre-

quency of stretchable microstrip antennas with a meshed 

(or arched) patch as stretching increases, as revealed in 

our prior report [18]. The ground plane in the antenna also 

minimizes the efect from lossy human tissues when the 

antenna is used on-body [40, 41]. The resulting stretch-

able microstrip antenna with a strain-insensitive resonance 

demonstrates excellent on-body performance from wire-

less communication to RF energy harvesting.

2  Experimental Section

2.1  Measurement of Dielectric Properties 

of Elastomeric Substrates

The elastomeric Ecolex substrates were fabricated by mix-

ing parts A and B with a ratio of 1:1. After cured at room 
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temperature for 3 h, the Ecolex samples in a square shape 

of 15 by 15 mm with a thickness of 1 mm were prepared 

for dielectric property measurements. A resonant mode 

dielectrometer (RMD-C-100, GDK Product Inc.) was used 

to measure the dielectric constant and loss tangent over 

the range from 1 to 10 GHz. Input microwaves from a 

vector network were used to interact with the cavity of 

the resonant mode dielectrometer. The shift in resonance 

mode and the corresponding quality factor between the 

measurements with and without the sample determined the 

dielectric constant and loss of the sample. The measure-

ments indicated that the dielectric properties underwent a 

negligible change in the frequency range from 1 to 5 GHz. 

Therefore, the dielectric constant of 3.125 and loss tangent 

of 0.01 (at 2.4 GHz) were used for the Ecolex substrate 

in the design of stretchable antennas. The good agreement 

between the simulated and measured resonance frequency 

veriied the accurate measurement of dielectric properties.

2.2  Fabrication of the Stretchable Microstrip Antennas

The meshed layout designed in the AutoCAD software 

was imported into the control system of an ultraviolet 

picosecond laser system (BX15, Edgewave). Commercial 

copper foils with a thickness of 20 μm (BangKai) ixed on 

a silicon wafer temporarily by the capillary force of water 

were patterned into the programmed mesh design by the 

laser system. The cutting power and speed of 0.4 μJ and 

2000 mm  s−1 were optimized to achieve the best spatial 

resolution. A soft adhesive silicone gel (v1510, Valigoo) 

was used to assemble the patterned patch and ground onto 

the Ecolex substrate in a rectangular shape of 50 × 50  mm2 

with a thickness of 1.5 mm. Depending on the number of 

arches (i.e., single- or double-arched), the meshed patch 

and ground were selectively bonded to the prestrained 

Ecolex substrate with a pre-strain of 5%, 10%, or 15%. 

The release of the pre-strain resulted in the arched micro-

strip antennas with arched patch and ground. When the 

selectively bonded ground was replaced by fully bonded 

ground, the stretchable antenna with an arched patch and 

a meshed ground was obtained. The meshed microstrip 

antenna was obtained by the fully bonding of the meshed 

serpentine patch and ground to the Ecolex substrate with-

out the pre-strain. Soldering the as-fabricated antennas 

with a SubMiniature version A (SMA) connector with a 

soldering iron (Sn42Bi58, KZ-1513) completed the fab-

rication process.

2.3  Measurement of Radiation Properties of Microstrip 

Antennas

The tensile strain in the range from 0 to 25% was applied 

to the stretchable microstrip antenna by a custom-built 

stretcher. Cylinders with diferent radii were used in the 

bending test of the antenna. The relection curves (S11) of 

the deformed microstrip antenna were measured by a vec-

tor network analyzer (T5260A, Transcom Instruments). The 

radiation patterns were measured in an anechoic chamber. 

The on-body performance of the antenna was measured 

by attaching it to the arm of a healthy human subject with 

Magic tapes.

2.4  Wireless Communication of the Stretchable 

Microstrip Antenna

The commercial RF evaluation kit (SmartRF06) was 

employed to measure the wireless communication perfor-

mance of the stretchable microstrip antenna. Two boards 

integrated with the CC2538 RF chip act as the transmitter 

and receiver, respectively. The chip can be programmed to 

transmit the RF energy at a power of − 3 dBm (0.50 mW). 

A PCB-based monopolar antenna was connected with 

the transmitter to provide omnidirectional radiation. The 

double-arched stretchable microstrip antenna resonating 

at 2.45 GHz was connected with the receiver to wirelessly 

communicate with the transmitter. The receiver was pro-

grammed to have a sensitivity of − 100 dBm. The receiving 

power at diferent distances for the stretchable microstrip 

antenna placed in the free space or on the human skin with 

stretching was measured, respectively.

3  Results and Discussion

Stretchable structures such as horseshoe unit cells and 

arched elements have been explored to result in stretchable 

microstrip antennas with conventional metals. The combi-

nation of the two design strategies into the hierarchically 

structured microstrip antennas (Fig. 1a) provides improved 
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stretchability and versatile tuning of mechanical-electro-

magnetic properties because of the programmed structure 

unfolding upon stretching. Mechanical assembly of the 

meshed metal patch and ground with horseshoe unit cells 

on a soft Ecolex substrate (dielectric constant and loss tan-

gent of 3.125 and 0.01) results in the stretchable microstrip 

antennas with hierarchical structures (Fig. 1b). Although 

the horseshoe unit cells with diferent characteristic dimen-

sions can be arranged in a periodic lattice (e.g., rectangular, 

triangular, or hexagonal) [23], this study simply uses the 

anisotropic square lattice structure with diferent mesh ori-

entations to demonstrate the design concept. In brief, the 

fabrication starts with the laser patterning of the meshed 

metal patch and ground with horseshoe unit cells. Next, the 

meshed metal patch and ground are selectively bonded to a 

pre-stretched Ecolex substrate. The release of the pre-strain 

mechanically lifts the regions that are not bonded to the 

substrate to form 3D structures because of the compressive 

forces (Fig. 1b). When fully bonded, the deformation of the 

meshed lattice structures in the out-of-plane direction is min-

imized. The full bonding of wavy meshed ground is applied 

for easy integration of the antenna on various curvilinear 

surfaces in the following studies unless otherwise speciied. 

An inset microstrip line with a characteristic impedance of 

50 Ω is then used to feed the stretchable microstrip patch 

antenna. Compared to the probe feeding [31], this in-plane 

feeding provides easy integration with other COTS chips and 

electrical components. Although the mechanical properties 

(e.g., stress–strain curve and stretchability) of the horseshoe 

unit cells and resulting lattice structures have been shown 

to depend on the characteristic dimensions, the efect of the 

orientation of the square lattice with respect to the feed-

ing direction on the mechanical and radiation properties is 

yet to be investigated. After revealing the orientation efect, 

the stretchable antennas with mechanically assembled lat-

tice structures are then reported. The tunable mechanical-

electromagnetic properties allow the stretchable microstrip 

antenna to be designed with strain-sensitive or strain-insen-

sitive properties, with the former for wireless strain sensing 

and the latter for wireless on-body communication.

3.1  Meshed Microstrip Antennas for Wireless Strain 

Sensing

Because the square has rotational symmetry of order 4, this 

work considers three representative orientations (i.e., 0°, 

30°, and 45°) (Fig. 2a). The geometric parameters of horse-

shoe unit cells remain unchanged in the study of orientation 

efects (i.e., line width w = 0.2 mm, arc radius R = 0.6 mm, 

and arc angle α = 180°). The microstrip antenna with a solid 

patch and ground is designed to resonate at 2.4 GHz. Replac-

ing the solid patch and ground with horseshoe square lattice 

structures (i.e., the stretchable meshed microstrip antenna 

in Fig. 2b) lead to the shift of the resonance frequency to a 

lower value (Fig. S1), which is consistent with the previous 

report [18, 42]. Though the apparent physical dimensions 

of the microstrip antennas with horseshoe square lattice 

structures are not changed from their solid counterparts, the 

horseshoe lattice structures increase the equivalent wave-

length in the current path. According to the cavity model 

[43], the increased efective dimension of the cavity from 

the increased current path results in a reduced resonance fre-

quency. The meshed microstrip antenna with an orientation 

of 30° or 45° direction exhibits a slightly higher resonance 

(a)

(b)
(i) (ii) (iii)
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Fig. 1  Schematic to demonstrate the design strategies of hierarchi-

cally structured stretchable microstrip antennas with horseshoe unit 

cells in a meshed layout and a 3D arched structure. a Design parame-

ters in the stretchable structures include the orientation of the meshed 

layout and the number of 3D arches. In addition to an improved 

stretchability, the programmable mechanical-electromagnetic prop-

erties in the hierarchically structured stretchable microstrip antennas 

allow them to be strain-sensitive or strain-insensitive, with the former 

for wireless sensing and the latter for wireless communication and RF 

energy harvesting. b Fabrication process of the hierarchically struc-

tured antenna from the mechanical assembly. (i) After the soft Eco-

lex substrate is pre-stretched, (ii) the meshed Cu structure patterned 

by laser is attached to the pre-stretched substrate with selective bond-

ing sites, (iii) release of the pre-strain lifts the non-bonded region to 

form a 3D structure
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frequency than that with the 0° orientation before stretch-

ing, likely due to the diferent current distributions in the 

meshed patch. Although the horseshoe unit cells unravel 

upon stretching, they unfold diferently in the square lat-

tice structure with diferent orientations. The horseshoe unit 

cells simultaneously rotate to align and unravel along the 

stretching (i.e., feeding) direction in the stretchable antenna 

with the 30° and 45° orientation, whereas the ones in the 

stretchable antenna with 0° orientation only exhibit unrave-

ling (Figs. 2c and S1a). The predictions from the design by 

the inite element analysis (FEA) simulation are also veriied 

by the experimental observations. Owing to the additional 

rotation, the stretchable antenna with the 30° or 45° orien-

tation shows a smaller maximal strain of 2.3% or 2.1% in 

the horseshoe units of the patch than that of 3.0% in the 0° 

direction for stretching of 15%. As the maximum strain is 

below the fracture strain of Cu, the antennas can be further 

stretched.

Next, the coupled mechanical-electromagnetic properties 

of the stretchable microstrip antenna are measured to explore 

their potential for wireless sensing. The relection coeicient 

(i.e., the S11 value) of the antenna is related to the input 

impedance (Z) as S11 = 20 log10
|
|
|
(
Z − Z0

)
∕
(
Z + Z0

)|
|
|
 , where 

Z0 is the port impedance of 50 Ω. The input impedance of 

microstrip antennas is a function of feeding location, which 

is approximately expressed as Z = cos
2 (�x∕L)Z(x = 0) , 

where L is the length of antennas along the feeding direc-

tion, x is the inset length, and Z(x = 0) is the input imped-

ance of antennas with feeding on the edge. It should be noted 

that Z(x = 0) depends on the dimension of antennas and is 

usually larger than 50 Ω. As the input impedance decreases 

as the inset length x increases, an optimal inset length can 

be obtained to match the 50 Ω port. Even though the imped-

ance matching is optimized for the solid microstrip antenna, 

the small S11 values of the stretchable meshed microstrip 

antennas imply that a good impedance matching is still 

achieved. Further improvement on impedance matching is 

also possible with the optimization of the inset length. The 

resonance frequency f of the patch antenna is inversely pro-

portional to its efective length Lef [44] as:
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where c is the speed of light and εef is the efective dielectric 

constant. The efective length is related to the dimension of the 

patch along the feeding direction with an additional fringing 

efect for solid microstrip antennas. Owing to the change in 

the current path, the horseshoe unit cells increase the efec-

tive length. The unfolding of the horseshoe unit cells leads to 

increased efective length and decreased resonance frequency 

for all three orientations (Figs. 2c and S1). Because of the 

increased contribution from rotation, the stretchable antenna 

with the orientation of 30° or 45° exhibits a more linear change 

in the resonance frequency than the one with the 0° orientation. 

Compared to the R2 value of 0.8996 in the linear itting for the 

stretchable antenna with the orientation of 0°, the ones with 

the orientation of 30° (or 45°) showcase a value of 0.999 (or 

0.991). The demonstrated linearity in the stretchable antennas 

is signiicantly higher than the previous literature reports [31], 

which is highly desirable for wireless strain sensing or on-body 

detection of human motions due to the simple calibration. The 

improved linearity is likely attributed to the additional rotation 

in the lattice structure during the unraveling process. As shown 

in Movie S1, the stretchable antenna measures the average 

mechanical stretching in the antenna from the resonance shift, 

demonstrating its potential as a wireless strain sensor with the 

shift to be obtained from remote interrogation. It is also noted 

that a more uniform deformation to ensure the linearity in the 

strain sensing can be achieved by a selective bonding only 

at two ends and/or the use of smaller antennas with higher 

working frequencies. Compared to the resistive or capacitive 

strain sensors, the antenna-based wireless strain sensor is of 

high interest in remoting sensing without wired connections 

or a power supply. Though wireless strain sensing based on 

inductive coils has been demonstrated [45], its limited working 

distance of 2–3 cm can be largely extended to meters with the 

antenna-based strain sensors. Similar to the previous report 

[46], the mesh structure slightly decreases the bandwidth of 

the microstrip antenna from 3% in the solid ones to 1.9–2.8% 

in the ones with three diferent mesh orientations, featuring 

a narrow bandwidth for sensitive strain sensing. Despite the 

promising application in sensing, the stretchable microstrip 

antenna with a narrow bandwidth and large resonance shift is 

not suitable for wireless communication or RF energy harvest-

ing in a predetermined frequency band.

3.2  Hierarchically Structured Microstrip Antennas 

from Mechanical Assembly

To reduce the change in resonance frequency upon stretch-

ing, the hierarchically structured stretchable antennas 

(1)
f =

c

2Leff

√

�eff

, with mechanically assembled 3D structures are exploited 

(Fig. 3a). Because the mechanically assembled 3D structures 

largely depend on the level of pre-strain and strategic bond-

ing sites, these two important factors will be investigated in 

this section. The former includes the study of three pre-strain 

levels (i.e., 5%, 10%, and 15%), whereas the latter explores 

selective bonding either at two ends or with an additional 

center bonding to induce a single- or double-arch struc-

ture. As the stretchable antenna with the 0° orientation is 

associated with a smaller resonance frequency change upon 

stretching, it is explored in the following studies unless oth-

erwise speciied.

The introduction of the 3D pop-up structure further 

reduces the resonance frequency of the microstrip antenna 

(Figs. 3b and S2a-c). The air gap between the 3D structure 

and substrate results in an increased dielectric layer thick-

ness and decreased dielectric constant. According to the 

transmission line model, the decrease in the dielectric con-

stant leads to an increased resonance frequency, whereas 

the increase in the dielectric layer thickness results in a 

decreased resonance frequency through an increased efec-

tive length from the fringing efect. However, the inluence 

from the increased thickness on the resonance frequency 

dominates over that from the reduced dielectric constant 

to ultimately result in a reduced resonance frequency in 

the hierarchically structured stretchable antennas. For 

instance, the resonance frequency is reduced from 1.63 

to 1.45 GHz for a pre-strain of 5% before stretching. The 

arch height increases from 5 to 8.5 mm as the pre-strain 

increases from 5 to 15% (Fig. S2a), and it slowly decreases 

with the stretching level at the beginning and then rap-

idly afterward. For example, for a pre-strain of 15%, the 

arch height decreases by 1.5 mm upon 5% strain, then by 

2.5 mm upon another successive 5% strain, and inally 

by 4.5 mm with an additional 5% strain. When tensile 

strain is applied, the hierarchically structured stretchable 

antenna reveals an “ordered unraveling”, in which the 3D 

structure arch unravels irst to lat and then the horseshoe 

unfolds (Fig. 2b and Movie S2). The transition between 

the irst and second unraveling occurs when the tensile 

strain is equal to the pre-strain. The ordered unraveling 

not only contributes to improved stretchability, but also 

results in a smaller change in the resonance frequency as 

it increases in the irst unraveling and then decreases in 

the second (Figs. 3c and S2b-d). In the irst unraveling 

phase, the initial slow increase in the resonance frequency 
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is followed by a rapid increase because of the rapid shape 

change in the 3D arch (revealed in its measured height, 

Fig. S2a) near the full unraveling, which is consistent with 

our prior study [18]. However, the resonance frequency 

increase in the irst unraveling phase is still too large. It 

is also worth pointing out that the high S11 values imply 

a degraded impedance matching, but it can be improved 

with a dense mesh or by an optimized inset location in 

future studies. After the patch and ground plane are fully 

bonded to a pre-strained (10%) substrate, the release of 

the pre-strain results in the stretchable microstrip antenna 

with a wavy patch and ground (Fig. S3a). Diferent from 

the arched microstrip antenna, the resonance frequency of 

the stretchable microstrip antenna with a wavy patch and 

ground decreases monotonously from 1.73 to 1.65 GHz 

as the tensile strain increases from 0 to 20% due to the 

lattening of wavy structures and unfolding of serpentine 

networks (Fig. S3b).

With an additional center bonding, a double-arched 

patch in the hierarchically structured stretchable antenna 

(Fig.  4a) effectively reduces the change in dielectric 

constant and dielectric layer thickness for a signiicantly 

reduced resonance frequency variation (Fig.  4b–d). It 

should be noted that the inset length in the hierarchically 

structured stretchable antenna is optimized to improve 

impedance matching in case of poor impedance matching. 

The resonance increase of 0.02 GHz in the double-arched 

microstrip antenna (Fig. 4e, f) in the irst unraveling phase 

is much smaller than that of 0.12 GHz in its single-arched 

counterpart (Figs. 3c and S2d) for a pre-strain of 15%. 

Upon further stretching, the resonance frequency recov-

ers to its initial value to provide an almost unchanged 

resonance frequency (i.e., < 2% change) over the tensile 

strain range of 25%. The almost unchanged S11 curve upon 

stretching contributes to an operational band of 0.1 GHz 

(shadow region in Fig. 4e). Although a similar trend is 

also observed for a pre-strain of 5% or 10%, the resonance 

frequency variation is much larger than that of 15%. Com-

pared to the arch height of 8.5 mm in the single-arched 

design for a pre-strain of 15%, the reduced arch height 

of 5 mm in the double-arched structure helps to improve 

the stability of the hierarchically structured microstrip 
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antennas upon external perturbations. The smaller air 

gap in the double-arched microstrip antenna also exhibits 

improved impedance matching over its single-arched coun-

terpart. Further reduction in the arch height and enhanced 

impedance matching can be achieved with more selective 

bonding sites to induce more arches.

In addition to stretching, the double-arched microstrip 

antenna with a pre-strain of 15% also showcases stable 

electromagnetic properties (e.g., resonance frequency and 

radiation patterns) upon bending deformations. With a cus-

tom-built bending testing setup (Fig. S4a), the resonance fre-

quency only shows a negligibly small change of 0.012 GHz 

(0.7%) as the double-arched microstrip antenna is bent over 

a radius of 14.32 mm (Fig. S4b, c). After 500 bending cycles 

applied to the double-arched microstrip antenna, no obvious 

changes are observed in the structure (Fig. S5a) or S11 curves 

(Fig. S5b), indicating the good mechanical robustness of the 

stretchable antenna. Compared to the ungrounded antennas 

Fig. 4  Strain-insensitive hierarchically structured microstrip antennas with a double-arched patch. a Optical images of the strain-insensitive 

hierarchically structured microstrip antenna with a double-arched patch generated from a pre-strain of 15%. b Arch height (or half of the ampli-

tude) as a function of the applied tensile strain. c–e Mechanical-electromagnetic properties of the hierarchically structured microstrip antennas 

with a double-arched patch for a pre-strain of c 5%, d 10%, and e 15% upon stretching. The operational band with the relection coeicient (S11) 

less than − 10 dB is shaded in pink. f Measured resonance frequency of the hierarchically structured microstrip antennas with a double-arched 

patch upon stretching to highlight the strain-insensitive property in the one from a pre-strain of 15%
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(e.g., monopole, dipole, or loop antenna), the stretchable 

microstrip antenna with a ground plane exhibits excellent 

on-body performance. Attaching the double-arched micro-

strip antennas to diferent parts of the human body measures 

its on-body performance (Fig. S6a). A small resonance fre-

quency diference of less than 0.04 GHz is observed between 

the on-body and of-body measurements (Fig. S6b), indicat-

ing the efectiveness of the meshed ground.

3.3  Wireless Communication Performance 

of the Double-arched Microstrip Antennas

The strain-insensitive electromagnetic property of the 

stretchable microstrip antennas in the intrinsically narrow 

bandwidth is highly desirable for stable wireless commu-

nication and effective RF energy harvesting, especially 

for on-body applications. Because 2.40–2.48 GHz is a 

widely used frequency range in wireless communication 

(e.g., Bluetooth and Wi-fi), the stretchable antennas with 

a stable resonance frequency around 2.45 GHz can be 

directly leveraged for wireless data transmission or pow-

ering. The double-arched microstrip antenna with a pre-

strain of 15% can be easily attached to the curvilinear sur-

face of human arms without causing discomfort (Fig. 5a). 

Improved adhesion between the antenna and arm can be 

achieved by coating a thin adhesive Silbione layer on the 

wavy ground. Because of the reduced antenna dimension 

from 43.9 × 35.5 to 31.9 × 25.5  mm2 along with the inset 

length optimization, the double-arched microstrip antenna 

resonates at 2.45 GHz, as confirmed by the experimental 

measurements (Fig. 5b). The negligibly small influence of 

human bodies on the resonance frequency of the antenna 

also demonstrates the effectiveness of the meshed ground 

in this new design. Further improvement in the on-body 

performance (e.g., screening effect and radiation direc-

tionality) can be achieved with a dense ground mesh.

The wireless communication performance of the dou-

ble-arched microstrip antenna is measured with a com-

mercial RF evaluation kit consisting of a transmitter and a 

receiver (SmartRF06) (Fig. S7). The transmitter integrated 

with a PCB-based omnidirectional antenna and a CC2538 
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RF chip is programmed to transmit RF power at − 3 dBm 

(0.50 mW). The receiver with a sensitivity of − 100 dBm 

is integrated with the double-arched microstrip antenna. 

The stretchable microstrip antenna was either placed in 

the air or on the human skin and upon mechanical stretch-

ing. The communication performance is evaluated in the 

open space at a university campus (Fig. 5a). Although the 

receiving power decreases rapidly with the communication 

distance for both the in-air and on-skin case, the receiver 

is still able to receive − 100 dBm at a distance of ~ 100 m 

(Fig. 5c). It is believed that the working distance can be 

improved further by increasing the transmitting power 

of the source. The stretchable microstrip antenna in this 

work exhibits improved communication performance in 

the free space over the previous demonstrations (e.g., 

with a stretchable monopole antenna [39]). Compared 

to the received power of − 75 dBm by the monopolar 

antenna from a 1 dBm transmitter at a distance of 20 m, 

our stretchable microstrip antennas demonstrate a higher 

received power of − 72 dBm from a transmitter with an 

even lower power of − 3 dBm. Moreover, the signiicantly 

enhanced on-body performance of the stretchable micro-

strip patch antenna further results in a small diference in 

the receiving power between the on-body and free-space 

demonstrations. For example, the receiving power dif-

ference at a distance of 20 m between the “in-air” and 

“on-body” case is ~ 5 dBm, much lower than that for the 

monopole antenna (~ 12 dBm). These improved on-body 

performance parameters in wireless communication are 

attributed to the almost unchanged resonance frequency 

and radiation properties of the stretchable microstrip 

antenna (Fig. 5b). The wireless communication perfor-

mance of the stretchable microstrip antenna upon defor-

mations was also investigated. Mechanical stretching leads 

to a slight change of the receiving power, which can be 

explained by negligible resonance frequency change of the 

stretchable microstrip antenna upon stretching.

4  Conclusions

In summary, we have introduced a hierarchically structured 

stretchable microstrip antenna with horseshoe unit cells 

arranged in a square lattice structure that is further mechani-

cally assembled into a 3D layout. The resulting stretch-

able antenna showcases tunable, especially strain-insensitive 

mechanical-electromagnetic properties with improved overall 

stretchability. In particular, an almost unchanged resonance 

frequency with a shift of < 0.02 GHz is demonstrated within 

the tensile strain range from 0 to 25%. To the best of our 

knowledge, this is the irst demonstrated stretchable micro-

strip antenna that has almost unchanged resonance frequency 

over a tensile strain range of over 25%. The stretchable micro-

strip patch antennas with the strain-insensitive resonance fre-

quency and enhanced stretchability extend their application 

from wireless sensing to stable on-body wireless communi-

cation and efective RF energy harvesting. Additionally, the 

design approach based on the coupled mechanical-electro-

magnetic simulations also allows us to identify the stretch-

able microstrip antennas as wireless sensors with enhanced 

linearity. This work provides a powerful toolkit with coupled 

mechanical-electromagnetic simulations and cost-efective 

manufacturing approaches to design stretchable microwave 

components/devices for integrated stretchable systems.
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