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Multi-messenger astronomy, the coordinated observation 
of different classes of signals that originate from the same 
astrophysical event, provides a wealth of information about 
astrophysical processes1. So far, multi-messenger astronomy 
has correlated signals from known fundamental forces and 
standard model particles like electromagnetic radiation, neu-
trinos and gravitational waves. Many of the open questions 
of modern physics suggest the existence of exotic fields with 
light quanta (with masses ≪1 eV c−2). Quantum sensor net-
works could be used to search for astrophysical signals that 
are predicted by theories beyond the standard model2 that 
address these questions. Here, we show that networks of 
precision quantum sensors that, by design, are shielded from 
or are insensitive to conventional standard model physics 
signals can be a powerful tool for multi-messenger astron-
omy. We consider the case in which high-energy astrophysi-
cal events produce intense bursts of exotic low-mass fields 
(ELFs), and we propose a novel model for the potential detec-
tion of an ELF signal on the basis of general assumptions. We 
estimate ELF signal amplitudes, delays, rates and distances 
of gravitational-wave sources to which global networks of 
atomic magnetometers3–5 and atomic clocks6–8 could be sen-
sitive. We find that such precision quantum sensor networks 
can function as ELF telescopes to detect signals from sources 
that generate ELF bursts of sufficient intensity.

Bursts of exotic low-mass fields (ELFs) could be generated by 
cataclysmic astrophysical events, such as black-hole or neutron-star 
mergers9, supernovae10 or the processes that produce fast radio 
bursts11. Ultralight bosons, which are considered as possible ELFs, 
have small masses, and therefore a high-energy event is not required 
for their production. Quantum sensors such as atomic clocks6 and 
magnetometers3 are sensitive to gentle perturbations of internal 
degrees of freedom (energy levels, spins and so on) by coherent, 
classical waves. This contrasts with particle detectors, such as those 
employed in observations of cosmic neutrinos and searches for 
weakly interacting massive particles. Importantly, the astrophysical 
source must produce coherent ELF waves with a high-mode occu-
pation number to be detected by these quantum sensors. An axion 
burst that produces just a few axions that reach Earth would not 
be detectable with clocks and magnetometers. Therefore, we focus 
our attention on coherent production mechanisms for ELFs9, rather 
than thermal (incoherent) production mechanisms10.

Consider the potential ELF production by binary black hole 
(BBH) and binary neutron star (BNS) mergers. Much of the under-
lying physics of coalescing singularities in black-hole mergers  

remains unexplored, as it requires the understanding of the 
unknown theory of quantum gravity12. However, exotic scalar fields 
also appear in theories that do not require the invocation of quantum 
gravity, itself. For example, rotating black holes may be surrounded 
by dense clouds of exotic bosons (with up to 10% of the black-hole 
mass extracted by the clouds) that could lead to ELF bursts coinci-
dent with gravitational-wave emission9,13,14. Scalar fields appear in 
well-posed theories of scalar–tensor gravity15, such that black holes 
and neutron stars are immersed in scalar fields. Modes of these 
fields can be excited during BBH or BNS mergers16. Scalar emission 
can be enhanced substantially by dynamic scalarization17 and by its 
monopole character18.

Given the variety of unconstrained scenarios for ELF emis-
sion, we take a pragmatic observational approach on the basis of 
energy arguments. Gravitational-wave events, which are detect-
able with present and future gravitational-wave observatories, can 
radiate great amounts of energy, a fraction of which, ΔE, could be 
emitted in the form of ELFs. The radiated energy in the form of 
gravitational waves from recently observed BBH mergers is a few 
solar masses (M⊙c2) (refs. 19,20), whereas for recently observed BNS 
mergers, the radiated energy in the form of gravitational waves is 
≳0.025 M⊙c2 (ref. 21). For the purposes of the following sensitivity 
estimates, we assume that it may be possible to have ΔE ≈ M⊙c2 
of energy released in the form of ELFs from a black-hole merger 
and ΔE ≈ 0.1 M⊙c2 of energy released in the form of ELFs from a 
BNS merger. These estimates are on the basis of the idea that the 
energy released through another channel (ELFs instead of gravi-
tational waves) could be on the order of the measurement uncer-
tainty without altering the ‘conventional physics’ interpretation  
of the event.

For concreteness, we assume that the emitted ELF is a spin-0 
field, ϕ(r, t), which is described by a superposition of spheri-
cally symmetric wave solutions to the Klein–Gordon equation, 
ϕkðr; tÞ ¼ Ak

r cos kr � ωt þ θkð Þ;
I

 where r is the radial coordinate, 
and Ak, θk, k and ω are the ELF amplitudes, phases, wavevectors 
and frequencies, respectively. The spherically symmetric monopole 
emission pattern is characteristic of scalar–tensor gravity mod-
els18. The ELF frequency ω and wavevector k satisfy the relativistic 

energy–momentum dispersion relation, ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðckÞ2 þΩ2

c

q
;

I

 where 

the Compton frequency Ωc = mc2/ℏ for the ELF mass m. We 
consider ELFs that are sufficiently far from the source such that 
general relativistic effects (such as the gravitational redshift) can be 
ignored. We ignore the effects of Galactic dust on the propagation 
and attenuation of the ELF waves, also.
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We consider an emitted ELF burst of central frequency ω0 and 
of a finite duration τ0 that has a bandwidth Δω ≈ 1/τ0, or, equiva-
lently, a characteristic energy ε0 = ℏω0 and width Δε. Individual 
Fourier components propagate with different phase velocities as 
dictated by the dispersion relation, and we expect qualitatively a 
frequency-chirped ELF signal at the detector, as shown in Figs. 1 
and 2. The slope of the chirp is dω/dt ≈ −Δω/τ, because the fre-
quency content of a wave packet is preserved, owing to energy 
conservation. Further discussion and calculations are given in the 
Methods and the Supplementary Information.

With R as the distance from the astrophysical source to the sen-
sor, the time delay between the ELF and gravitational waves (GW) is 
δt = (R/c)(c/vg − 1), where vg is the group velocity of the ELF pulse. 
In this formula, the wave packet propagates over time tGW = R/c, 
which is roughly a billion years for GW150914 (ref. 19). Therefore, 
tGW is much larger than any reasonably observable time delay in an 
experiment (for example, δt < 1 week). Therefore, (c/vg − 1) ≪ 1, 
and ELFs must be ultrarelativistic to be observed. In this limit, pho-
tonic dispersion ω0 ≈ ck0 relates the ELF central frequency ω0 to the 
wavevector k0. The bandwidth of a quantum sensor fixes measur-
able ELF frequencies. For atomic clocks, ω0/2π ≲ 1 Hz, for atomic 
magnetometers, ω0/2π ≲ 100 Hz, and for optical cavities, ω0/2π ≲ 10 
kHz. These frequencies fix energies ε0 of detectable ELFs to less than 
10−14 eV for clocks and 10−10 eV for cavities. As the dominant frac-
tion of these energies is kinetic, the fields are necessarily ultralight, 
mc2 ≪ ε0. Emitted ELFs are copious (≳1070 for ΔE ≈ 0.1M⊙c2 and  
ω0 = 2π × 10 kHz). The mode occupation numbers that result at 
Earth are macroscopic, and therefore ELFs would act as coherent 
classical fields at the sensors.

The time delay of the ELF signal with respect to the 
gravitational-wave burst equals δt ¼ tGW

2 Ωc=ω0ð Þ2:
I

 As δt ≪ tGW, 
the Compton frequency Ωc ≪ ω0, which is consistent with ultra-
relativistic ELFs. We estimate the duration τ of the ELF pulse at the 
sensor as τ ~ RΔvg/c2, where the spread in group velocities Δvg/c ≈ 
∂2ω/∂k2/τ0. This leads to a relation between the signal duration and 
time delay τ ≈ 2δt /(ω0τ0). Given that our approximations hold for 
sufficiently sharp ELF spectra, ω0τ0 ≫ 1, we require τ ≪ δt.

The characteristic ELF amplitude Ak0
I

 at the sensor can be esti-
mated by the requirement that the energy of the scalar wave that 
is stored in a shell of thickness cτ and radius R is equal to ΔE, for 
Ak0 � 1

ω0

ffiffiffiffiffiffi
cΔE
2πτ

q
:

I

 In contrast to dispersionless spherical waves, the 

field amplitude at the sensor ϕ(R, t) scales as 1/R3/2, which reflects 
the additional pulse dispersion.

More detailed considerations (see the Methods) yield the  
approximate time dependence for an ELF signal at the sensor,

ϕðtÞ  1
R

cΔE
2π3=2ω2

0τ

� �1=2
exp � ðt�tsÞ2

2τ2

� �

´ cos ω0ðt � tsÞ � ω0
4δt ðt � tsÞ2

� � ð1Þ

where ts = tGW + δt is the time of arrival of the centre of the 
pulse (Fig. 2). Note that the ELF frequency is time dependent, 
ωðtÞ ¼ 1� ðt � tsÞ=ð2δtÞð Þω0

I
, and exhibits a frequency ‘chirp’ at 

the sensor. The waveform, equation (1), is shown in Fig. 1, and its 
power-spectrum time–frequency decomposition is shown in Fig. 2. 
The slope of the chirp is given by dω=dt ¼ �1= ττ0ð Þ ¼ �ω0= 2δtð Þ

I
, 

which is consistent with the qualitative arguments presented earlier 
in the paper. The excess power statistic can be used in data analysis 
to search for ELFs (see the Methods).

ELFs can generate signals in quantum sensors via ‘portals’ 
between the exotic fields and standard model particles and fields. 
Portals are a phenomenological gauge-invariant collection of stan-
dard model operators that are coupled with operators from the ELF 
sector2. We consider interaction Lagrangians that are linear, Lð1Þ

I
, and 

quadratic, Lð2Þ

I
, in the ELF ϕ. For magnetometers, Lð1Þ

mag ¼ f �1
l Jμ∂μϕ

I
 

and Lð2Þ
mag ¼ f �2

q Jμ∂μϕ2

I

, and for clocks, cavities, interferometers 
and gravimeters, Lð1Þ

clock ¼
ffiffiffiffiffi
4π

p
=EPl

�
�dmemec2 �ψ eψ e þ deF2

μν=4

ϕ

I
 

and Lð2Þ
clock ¼

�
�mec2 �ψ eψ e=Λ

2
me

þ F2
μν=ð4Λ2

αÞ
�
ϕ2:

I
 In these expres

sions, Jμ is the axial-vector current for standard model fermions, 
ψe is the electron bi-spinor, Fμν is the Faraday tensor, EPl is the Planck 
energy, and f l;q; de; dme ; Λme and Λα

I
 are coupling constants. 

Quadratic interactions appear naturally for ELFs that possess either 
Z2 or U(1) intrinsic symmetries22.

The Lmag

I
 portals lead to fictitious effective magnetic fields that 

interact with atomic spins and therefore are detectable with atomic 
magnetometers4. The Lclk

I
 portals effectively alter fundamental con-

stants7, such as the electron mass me and the fine-structure constant 
α. Such portals can imprint measurable signals in atomic clocks7, 
cavities23 and atom interferometers24,25. The Lclock

I
 portals also mod-

ify the Earth’s gravitational potential and therefore can be detectable 
with gravimeters25.

ELFs that interact through any of the enumerated portals would 
drive frequency-chirped signals in quantum sensors (Figs. 1,2), 
provided that the sensors have sufficient sensitivity and bandwidth. 
The coupling strengths determine the relative signal amplitude that 
is detected by the particular sensor, for a given ELF intensity. We 
show in the Supplementary Information that the sensors can detect 
ELF bursts as long as the coupling constants satisfy

f l≲0:4_
3=2c

ffiffiffiffiffiffi
Ns

p

σmðΔtÞ
ffiffiffiffiffi
Δt

p
ffiffiffiffiffiffi
ΔE

p

R
ð2Þ

1
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4
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Fig. 1 | Effect of dispersion on the expected ELF signal at a precision 
quantum sensor. A schematic of the production, propagation and detection 
of an ELF wave packet (shown in red). A BBH merger (left) emits a burst of 
ELFs and gravitational waves. As the ELF burst propagates with the group 
velocity vg ≲ c to the detector (right), it lags behind the emitted gravitational 
waves, which propagate at c. Given that the more energetic ELF components 
propagate faster, the detected ELF wave packet exhibits a characteristic 
frequency chirp, depicted by the wave packet shown on the right.
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Fig. 2 | Time–frequency decomposition for power spectrum of an ELF 
signal at a sensor. This template is for interactions with a sensor that are 
linear in the ELF. The spectral width of the pulse Δω is related to the initial 
pulse duration τ0 as Δω = 1/τ0. The frequency slope is dω(t)/dt = −Δω/τ. 
For interactions that are quadratic in the ELF, both the central frequency ω0 
and the slope are doubled.
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f q≲0:3
_c
R

Ns

Δtτ

� �1=4 ΔE
σmðΔtÞω0

� �1=2

ð3Þ

dX≳
EPl

jKX j
σyðΔtÞffiffiffiffiffiffi

Ns
p ω0

c
R

  Δt

_ΔE

 1=2

ð4Þ

ΛX≲0:2
ffiffiffiffiffiffi
Ns

p jKX j
σyðΔtÞ

 1=2
c

Rω0

 
_2ΔE2

Δtτ

 1=4

ð5Þ

Here, KX is the sensitivity coefficient to a variation in the fundamen-
tal constant X = {me, α, …}, Δt is the sensor sampling time inter-
val, σm(Δt) is the magnetometer Allan deviation over Δt (in units  
of energy), σy(Δt) is the dimensionless clock or interferometer  
Allan deviation for fractional frequency excursions, and Ns is the 
number of sensors.

Astrophysical observations and laboratory experiments set con-
straints on the coupling strengths between ELFs and standard model 
particles and fields2. Using the above sensitivity estimates, we find 
that for ELFs that couple to standard model particles through the 
quadratic portal Lð2Þ

I
, the current generation of atomic clocks has an 

astrophysical reach that spans the observable universe; for the linear 
portal Lð1Þ

I
, the astrophysical reach of atomic clocks spans only the 

Milky Way, owing to the fact that prior constraints on linear interac-
tions are much stronger than those for the quadratic portal26.

Several networks of precision quantum sensors are already 
operational. An example of an atomic-clock network is the Global 
Positioning System (GPS), which is nominally composed of 32 
satellites in medium Earth orbit. The satellites house microwave 
atomic clocks, and they have been used for dark-matter searches8. 
Combined with other satellite positioning constellations and ter-
restrial clocks, Ns ≈ 100. Another network is a trans-European 
fibre-linked network (Ns ≈ 10) of laboratory clocks27, whose accu-
racy is vastly superior to that of the GPS clocks. As for magnetom-
eters, the Global Network of Optical Magnetometers for Exotic 
physics (GNOME) targets transient events that are associated 
with physics beyond the standard model4,5. GNOME is a network 
of shielded atomic magnetometers that is composed of 13 stations 
located on four continents. Each station has a magnetometer with 
subpicotesla sensitivity.

As an example, we plot the projected sensitivity to a puta-
tive ELF burst that is emitted during the BNS merger GW170817  

(R = 40 Mpc) in Fig. 3. It is clear that existing clock networks can 
be sensitive to ELFs for a typical gravitational-wave event (BNS, 
BBH or black-hole–neutron-star mergers) that is registered by 
gravitational-wave detectors. The case for detection by GPS is par-
ticularly intriguing, as roughly 20 years’ worth of archival GPS data 
is available, and the data set is routinely updated. If an ELF signal 
is discovered in recent data, a search for similar signals prior to the 
era of the Laser Interferometer Gravitational-wave Observatory 
(LIGO) can be made in the archival data. Another possibility is to 
correlate the catalogued short gamma-ray bursts28 or other power-
ful astrophysical events with the archival GPS data to search for ELF 
bursts, or even to search for ELF bursts that are uncorrelated with 
any known astrophysical source. Although estimates show that the 
existing magnetometer network does not have sufficient sensitivity 
to probe an unconstrained parameter space for an ELF burst from 
GW170817 with the assumed characteristics, planned upgrades to 
GNOME will substantially increase the discovery reach of the net-
work, as discussed in the Supplementary Information.

The employment of networks is crucial to distinguish ELF  
signals from spurious noise. Furthermore, with baselines of the 
diameter of Earth or larger, it is possible to resolve the sky position 
of the ELF source.

The leading edge of an ultrarelativistic ELF burst would propagate 
across Earth in ~40 ms. At present, GNOME magnetometers have a 
temporal resolution of ~10 ms; this can be improved to ≲ 1 ms with 
relatively straightforward upgrades. The angular resolution Δθ based 
on the ELF time-domain signal pattern is given roughly by the ratio 
of the temporal resolution to the propagation time through the net-
work: for a temporal resolution of ~1 ms, this corresponds to Δθ ≈ 
π/40 rad ≈ 2∘. Additionally, given that the ELF gradient points along 
the ELF velocity vector, the relative signal amplitudes in magnetom-
eters with different sensitive axes enables a second method of angular 
resolution of the source’s sky position. The signal amplitude pattern 
in the network would yield an angular resolution (in radians) roughly 
equal to the inverse of the signal-to-noise ratio for the ELF detection.

Unlike magnetometers, atomic clocks and atom interferometers 
have a relatively low, ~1 Hz, sampling rate. As a result, terrestrial 
or satellite clock networks cannot be used to track the ELF burst 
propagation. The ELF propagation time across the GPS constella-
tion is 0.2 s, which is comparable to the 1 s sampling interval in 
GPS data streams. Nonetheless, clock networks can still act collec-
tively to gain 

ffiffiffiffiffiffi
Ns

p
I

 in sensitivity and disregard signals that do not 
affect all of the sensors in the network. To mitigate the low sampling 
rate, the baseline can be increased, similar to recently proposed29 
space-based gravitational-wave detectors that rely on atomic clocks 
and atom interferometers. Another possibility is a small-scale (~10 
km) terrestrial network of optical cavities that allow for a ≳10 kHz 
sampling rate. Each node of such a network would contain two cavi-
ties23, one with a rigid spacer and the other with suspended mirrors. 
An ELF-induced variation in fundamental constants would change 
the length and, therefore, the resonance frequency, of the former 
but not that of the latter. The ELF sensitivity of a cavity network is 
similar to that of the clock networks shown in Fig. 3.

Methods
Energy density for a spherical wave of an ultrarelativistic scalar field. In the 
main text, we expand the real-valued scalar field in spherical waves,

ϕkðr; tÞ ¼
Ak

r
cos kr � ωt þ θkð Þ ð6Þ

Here, r is the radial coordinate, Ak and θk are the ELF amplitudes and phases, and k 
and ω are the ELF wavenumber and oscillation frequency. The field ϕk has units of 
M1/2L1/2T−1, and the amplitude Ak has the units of M1/2L3/2T−1.

The energy density ρ is given by the 00 component of the stress–energy tensor30,

ρ ¼ 1
2c2

_ϕ
2 þ 1

2
ð∇ϕÞ2 þ 1

2
m2c2

_2
ϕ2 ð7Þ
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Fig. 3 | Projected atomic-clock sensitivity to ELFs that are plausibly 
emitted during the BNS merger GW170817. The discovery reach is shown 
for a trans-European network of laboratory clocks (red line, σy(1 s) = 10−16) 
and for the GPS constellation (red dashed line, σy(1 s) = 10−13). We assume 
an ELF burst of duration τ = 100 s and energy release 0.1M⊙c2, and a total 
observation time of one month. Prior constraints26 on the energy scale Λα 
are shown by the blue shaded region.
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where m is the mass of the scalar. Explicitly, for a spherical wave (equation (6)),

ρ ¼ A2
k

2r2
ω2

c2
½sin2ð  Þ þ ck

ω

� �2

sin2ð  Þ þ mc2

_ω

� �2

cos2ð  Þ þ O
1
r3

� �
ð8Þ

where ‘⋯’ stands for the argument of cosine in equation (6). We neglect terms 
of order 1/r3, take the time average over many field oscillations and employ the 
ultrarelativistic limit, ω ≈ ck ≫ mc2/ℏ. The resulting energy density reads

hρi  1
2

Ak

r
ω

c

� �2

ð9Þ

Dispersion of ultrarelativistic matter wave pulse. Any type of wave will disperse 
upon propagation, as long as the dispersion relation ω(k) has a nonzero second 
derivative with respect to k. This ensures that the group velocity is a function of k. 
Here, we focus on an analytically tractable case of a Gaussian wave packet that is 
composed of ultrarelativistic scalar fields.

Dispersion relation in the ultrarelativistic limit. We start with the Klein–Gordon 
equation for the scalar field ϕ(r, t), (∂μ∂μ + m2c2/ℏ2)ϕ(r, t) = 0. We focus on 
the spherically symmetric solutions (s waves, which are characteristic of scalar 
emission in scalar–tensor theories) and define ϕ(r, t) = u(r, t)/r. Then, the  
Klein–Gordon equation reduces to the one-dimensional wave equation for  
massive scalar fields

1
c2

∂2

∂t2
� ∂2

∂r2
þm2c2

_2

� �
uðr; tÞ ¼ 0 ð10Þ

Substitution of uðr; tÞ / expðikr ± iωtÞ
I

 leads, as expected, to the relativistic energy–
momentum relation

ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðckÞ2 þ ðmc2=_Þ2

q
ð11Þ

that is, the dispersion relation in the main text. Of course, it holds for waves of 
arbitrary angular momentum. This dispersion relation may be thought of as giving 
rise to the ‘internal’ index of refraction for ELF propagation. In the ultrarelativistic 
limit, ck ≫ mc2/ℏ, the energy of an individual scalar is ε ≈ cℏ∣k∣.

We can expand ω(k) further around a characteristic energy ε0 = ℏω0 ≈ cℏk0,

ωðkÞ  ω0 þ c
ck0
ω0

ðk� k0Þ þ
1
2

mc2

_ω0

� �2 c2

ω0
ðk� k0Þ2 ð12Þ

where we keep terms up to second order, only. This parabolic approximation  
holds as long as ∣k − k0∣ ≪ k0, or, equivalently, the energy spectrum of emitted 
scalars is sufficiently sharp, Δε ≪ ε0, or ω0τ0 ≫ 1. One can immediately identify  
the group velocity

vg
c
¼ ck0

ω0
 1� 1

2
mc2

ε0

� �2

ð13Þ

and the characteristic spread in group velocities

Δvg
c

¼ mc2

ε0

� �2
Δε

ε0
ð14Þ

where Δε = ℏ/τ0. Finally, the time lag between gravitational-wave and ELF bursts at 
the sensor a distance R away from the progenitor is

δt ¼ mc2

ε0

� �2 R
2c

ð15Þ

Equations (13)–(15) are the relations used in the main text.
To illustrate the effect of the delay on the detectable ELF mass m, 

Supplementary Fig. 1 shows the accessible parameter space for an ELF burst that is 
associated with the GW170608 BBH coalescence event31, assuming that the delay δt 
is less than 10 h.

The general solution to the one-dimensional wave equation is a superposition 
of waves weighted by Fourier amplitudes a(k),

uðr; tÞ ¼ 1ffiffiffiffiffi
2π

p Re
Z 1

�1
aðkÞei kr�ωðkÞtð Þdk

 
ð16Þ

with the dispersion relation (equation (11)). The initial conditions define the 
Fourier amplitudes32

aðkÞ ¼ 1ffiffiffiffiffi
2π

p
Z 1

0
e�ikr uðr; 0Þ þ i

ωðkÞ
∂u
∂t

ðr; 0Þ
 

dr ð17Þ

where u(r, 0) and ∂u/∂t(r, 0) are the initial values near the source.

Propagation and dispersion of a Gaussian wave packet. We consider a  
Gaussian wave packet32 with initial wave amplitude A0, initial spatial  
width L0 and initial wavevector k0,

uðr; 0Þ ¼ A0e�r2=ð2L20Þ cos k0rð Þ ;
∂u
∂t ðr; 0Þ ¼ 0 :

ð18Þ

The outgoing wave packet has the Fourier amplitude

aðkÞ ¼ A0L0
2

e�ðL20=2Þðk�k0Þ2 ð19Þ

which indicates the well-known uncertainty relation between the characteristic 
spatial extent L0 of the wave packet and its width in momentum space Δk ≈ 1/L0. 
Substitution of the above Fourier amplitude into equation (16) fully solves the 
problem of propagation. We use the parabolic approximation (equation (12))  
for the dispersion relation, which holds as long as Δk ≪ k0; that is, the 
characteristic wavelength of the field is much smaller than the initial spatial width 
L0. The parabolic dispersion allows the integral in equation (16) to be evaluated in 
a closed form.

The final solution for ϕ(r, t) reads

ϕðr; tÞ  A0

r

ffiffiffiffiffiffiffiffi
τ0
τðtÞ

r
exp �ðt � r=vgÞ2

2τðtÞ2

 !
cos θðr; tÞð Þ ð20Þ

with the time-dependent pulse duration τ(t) defined as

τðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ20 þ

Δvgt

vg

 2
s

ð21Þ

and we have substituted L0/vg = τ0. The phase argument of the oscillatory part  
is given by

θðr; tÞ ¼ ðω0t � k0rÞ � 1
2τðtÞ2

Δvg t
vgτ0

t � r=vg
� �2

þ 1
2 tan

�1 Δvg t
vgτ0

� � ð22Þ

In these expressions, group velocity vg and its spread Δvg are given by equations (13)  
and (14). We focus on the sensor (t = ts ≡ R/vg) and define the combination

ξ ¼ Δvg
vg

ts
τ0

¼ 2
δt
τ0

Δε

ε0

where δt is the time lag (equation (15)) between the arrivals of the gravitational-wave 
and ELF bursts. When ξ ≪ 1, the duration of the signal at the detector is

τ  Δvg
vg

ts ¼ 2
Δε

ε0
δt ð23Þ

Another important feature of the analytical waveform (equation (20)) is 
that it has an amplitude that scales as τ(t)−1/2, as expected from the total energy 
conservation arguments of the main text. To relate the amplitude A0 to the total 
energy that is released in the ELF channel ΔE, we compute the energy density 
ρ(r, t) (equation (7)) for the Gaussian wave packet (equation (20)). In the 
ultrarelativistic limit,

ρðr; tÞ  1
2c2

_ϕ
2 þ 1

2
∂ϕ

∂r

� �2

ð24Þ

In the evaluation of the derivatives of the field, it is sufficient to keep the derivatives 
of the rapidly oscillating cosðθðr; tÞÞ

I
 factor. Then, at a fixed time, we evaluate the 

pulse energy by the integration of the energy density over the space, which leads to 
a time-independent value, as expected. From here, we express the amplitude A0 in 
terms of the total energy,

A0 
1

π1=4
1
ω0

ffiffiffiffiffiffiffiffiffi
cΔE
2πτ0

r 
ð25Þ

ELF signal at the sensor. We define the instantaneous frequency ω(t) = dθ(R, t)/dt 
and expand it around the time that the centre of the pulse arrives at Earth, ts = R/vg.

ωðtÞ  ωðtsÞ � dω
dt jts ðt � tsÞ

 ω0 � 1
τ0τ

ðt � tsÞ
ð26Þ

The sign of the linear term is consistent with the qualitative expectation that  
higher frequencies arrive first and lower ones arrive last. The slope of the  
frequency chirp is given by
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dωðtÞ
dt

¼ � 1
τ0τ

¼ � ω0

2δt
ð27Þ

Then, at the sensor, the Gaussian ELF burst has an approximate temporal 
waveform,

ϕðtÞ  A0
R

ffiffiffiτ0
τ

p
exp � ðt�tsÞ2

2τ2

 

´ cos ω0ðt � tsÞ � ω0
4δt ðt � tsÞ2

�  ð28Þ

or, with equation (25) for the amplitude,

ϕðtÞ  1
R

cΔE
2π3=2ω2

0τ

� �1=2
exp � ðt�tsÞ2

2τ2

� �

´ cos ω0ðt � tsÞ � ω0
4δt ðt � tsÞ2

� � ð29Þ

We show a simulation of such a signal in Supplementary Fig. 2.

General envelope. The preceding analytical results explicitly demonstrate the 
propagation and dispersion of a Gaussian wave packet. These results hold for a 
much wider class of sufficiently well-behaved envelopes. Formally, this can be 
shown by the application of the stationary phase method during the evaluation of 
the integral in equation (16) for the parabolic dispersion relation (equation (12)). 
The stationary phase method effectively reduces the wave packet to a Gaussian, 
and all the derived results immediately apply.

Data analysis considerations. The goal of this section is to outline a data analysis 
strategy and to establish the projected sensitivity of the proposed search for a 
generic ELF signal. To reiterate, an arriving ELF wave packet can be characterized 
by a set of three parameters

ðδt; τ;ω0Þ ð30Þ

that is, by the time delay between gravitational-wave and ELF bursts δt, duration  
τ and central frequency ω0. Notice that the frequency chirp of the pulse is fixed  
by these parameters through equation (27) (Fig. 2). As our approximations hold  
for sufficiently sharp ELF spectra, ω0τ0 ≫ 1 (see the previous section), from 
equation (23), we expect τ ≪ δt.

Given the parameters (δt, τ, ω0) and the known gravitational-wave travel time 
from the progenitor tGW = R/c, the other parameters can be fully determined. In 
particular, the ELF particle mass (compare to equation (15)) is

m ¼ _ω0

c2

ffiffiffiffiffiffiffiffi
2δt
tGW

r
ð31Þ

and the initial pulse duration is

τ0 ¼
2

ω0τ
δt ð32Þ

For a fixed total energy ΔE that is released into the ELF channel, the maximum 
field amplitude at the sensor is fixed to

ϕmax 
1
R

cΔE

2π3=2ω2
0τ

� �1=2

ð33Þ

where we take the amplitude for the Gaussian envelope (equation (29)) as a  
fiducial value.

We consider a variety of ELF production scenarios and leave the envelope of 
the arriving wave packet undefined. This uncertainty can be incorporated into 
a statistical analysis using the excess power statistic33. This method is based on 
the time–frequency decomposition of the data and detects events based on their 
signature of having more power in a time–frequency interval than one expects 
from detector noise alone. Excess power is the optimal method for searching for 
events in situations for which only a rough idea of the frequency and duration of 
the signal is known33,34.

Suppose the data streams from the sensors are sampled uniformly at a rate 1/
Δt, which yields a time series d with elements d1; d2; ¼ ; dj; ¼ ; dN tot

I
 for a data set 

with Ntot points. Each data point dj = sj + nj comprises contributions from both the 
sought ELF signal sj and intrinsic sensor noise nj.

The discrete Fourier transform (DFT) in a sliding time window is used to 
partition the data stream into segments of time and frequency (tiles). Our goal is 
to quantify the power that is contained in each time-and-frequency tile of the data 
due to only noise, and thereby extract contributions due to putative ELF signals. 
To this end, the data stream can be split into two gross segments: before and after 
the electromagnetic or gravitational-wave triggers on detectors on Earth. The noise 
characteristics can be determined fully from the pre-trigger data, as during that 
period dj = nj by our assumptions. We assume that the sensor noise is distributed 
as a Gaussian and is stationary, but we do not assume it is necessarily white (which, 
with appropriate filtering, is generally the case for the GNOME and GPS data5,35). 
Below, we focus on a single sensor and later generalize to a network of sensors.

The time series d is partitioned into segments that contain Nw elements. Nw 
is chosen to be an even number for notational convenience. Each segment is 
associated with a data index w, which coincides with the midpoint of the partition: 
w = Nw/2, 3Nw/2, 5Nw/2, … and a time tw = wΔt.

The Fourier amplitudes for each time partition are then given by

~dp;w ¼
XwþNw=2

j¼w�Nw=2
dw�je

2πiðw�jÞp=Nw ð34Þ

where the index p enumerates the DFT frequencies and fp = p/(NwΔt) ranges 
from zero to the Nyquist frequency 1/(2Δt). The zero-frequency component 
(fp = 0) and Nyquist frequency amplitudes can be removed from the analysis 
because their statistical properties differ from that of the rest of the amplitudes 
(for example, see refs. 36,37). This simplification does not alter the conclusions. 
Equation (34) represents a two-dimensional discrete map of complex time–
frequency values. The frequency and time indices reference individual tiles  
(p, w) in such a map.

Using the pre-event data (dk ≡ nk), we determine the (two-sided) power 
spectral density (PSD) of the sensor noise

~Cp  h~np ~np
� �i ð35Þ

where the average is taken over multiple pre-event time windows. The post-event 
data PSD is normalized to the noise PSD

Ep;w  j~dp;wj2
~Cp

ð36Þ

The quantities Ep;w

I
 quantify the excess power in the (p, w) tile. (Note that our 

definition of excess power is larger by a factor of 2 compared to that in ref. 33.) 
In the absence of the sought-after ELF signal, hEp;wi ¼ 1

I
. A time–frequency 

decomposition map for a Gaussian ELF wave packet (equation (29)) is shown  
in Fig. 2.

We adopt the method of ref. 33 to incorporate our knowledge about the 
expected ELF signals. In that work, the search method probes all of the tiles that 
occupy a rectangular area in the time–frequency decomposition map. Here, we 
restrict the probed tiles to the areas that are spanned by the expected ELF signals. 
Indeed, the expected ELF signal with the fixed parameters (δt, τ, ω0) contains 
substantial power in only a subset of tiles (Fig. 2 and Supplementary Fig. 2). 
Thereby, we define the excess power statistic EELF

I
 by the summation over the tiles 

that contain ELFs

E ¼
X

ðp;wÞ2ELFEp;w ð37Þ

In the absence of noise in the post-event data, the total excess power contained in 
the ELF signal is

EELF ¼
X

ðp;wÞ2ELF
j~sp;wj2
~Cp

ð38Þ

The probability distribution function for the statistic E is38

pMðEjEELFÞ ¼ IM�1 2
ffiffiffiffiffiffiffiffiffiffiffiffi
EEELF

p�  ffiffiffiffiffiffiffi
E

EELF

q M�1
e�ðEþEELFÞ ð39Þ

where IM−1(⋯) is the modified Bessel function, and M is the total number of tiles 
that contain ELFs. This distribution can be recognized, up to a change of scale, as 
a noncentral χ2 distribution with 2M degrees of freedom. The mean and variance 
are given by

hEi ¼ M þ EELF; Var ðEÞ ¼ Mþ 2EELF ð40Þ

Next, we would like to establish the detector discovery reach for EELF
I

 at the 
95% confidence level. To this end, we compute the upper tail probability threshold 
given the observed value Eobs

I
 of the statistic (equation (38), the observed value is 

computed with sensor data)
Z 1

Eobs
pMðEjE95%

ELF Þ dE ¼ 0:95 ð41Þ

This is an implicit equation for the detectable ELF signal power E95%
ELF
I

. Equation (41) 
can be represented in terms of the Marcum Q function, which is a part of standard 
mathematical libraries,

QM

ffiffiffiffiffiffiffiffiffiffiffiffi
2E95%

ELF

q
;
ffiffiffiffiffiffiffiffiffiffiffiffi
2Eobs

p 
¼ 0:95 ð42Þ

To find the sensitivity to ELFs, we assume that the ELF signal is well below the 
noise floor. Then, in equation (42), Eobs  M

I
 (see equation (40)). We invert the 

resulting equation in the limit of M ≫ 1 and find
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E95%
ELF  1:7

ffiffiffiffiffi
M

p
ð43Þ

This result is consistent with qualitative signal-to-noise ratio arguments. The 
signal-to-noise ratio (SNR) can be defined as

SNR ¼ EELFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ðEÞ

p ¼ EELFffiffiffiffiffi
M

p

where we use equation (40) for the variance with only the noise contribution. 
Holding constant the signal-to-noise ratio value results in the same 

ffiffiffiffiffi
M

p
I

 scaling  
of the minimum detectable ELF power as in the more rigorous estimate  
(equation (43)).

With these results, we can determine the sensitivity of a sensor to coupling 
constants that characterize ELF portals. We parameterize the ELF-induced signals 
in the sensor as

sðtÞ ¼ γ1C1ϕðtÞ ; linear

γ2C2ϕðtÞ2 ; quadratic

�
ð44Þ

Here, γ1 and γ2 are the coupling constants to be constrained and Ci are known 
constants that are determined by the particular sensor.

Next, we compute EELF
I

, the excess power statistic (equation (38)) for the ELF 
signals (equation (44)). The signal powers are normalized to the noise PSD ~Cp

I
. For 

a sensor that exhibits white noise of variance σ2, the noise PSD is ~Cp ¼ Nwσ2

I
 and

EELF ¼
1

Nwσ2

X
ðp;wÞ2ELFj~sp;wj

2 ð45Þ

The sum over ELF contributions can be simply evaluated in the limit when the 
temporal window size Tw is much smaller than duration of the ELF burst τ. In this 
case, we can neglect the time variation in the ELF envelope over the window. In 
the window, the ELF frequencies span the frequency interval ∣dω/dt∣Tw = Tw/(τ τ0), 
where the slope is given by equation (27). Without loss of generality, we require that 
this spanned frequency interval is smaller than the DFT frequency resolution Δω = 
2π/Tw. We require also that adjacent windows map instantaneous ELF frequencies 
to distinct and adjacent DFT frequencies. Under these assumptions, the total 
number M of tiles that contain ELF signals and the ‘optimal’ window duration Tw 
are

M  τ=Tw ð46Þ

Tw 
ffiffiffiffiffiffiffiffiffiffiffi
2πττ0

p
ð47Þ

With the negligible ELF frequency variation over the window, the field PSD is

j~ϕw;pj
2  1

4
jϕenvðtwÞj

2N2
wδp;p0 ð48Þ

where ϕenv(tw) is the value of the ELF burst envelope in the window and p0 
corresponds to the DFT frequency that is nearest to the ELF frequency in the 
window. We sum over windows and arrive at the minimal detectable ELF power

EELF;1 
ffiffiffi
π

p

4
γ21C21

1
σ2

τ

Δt
ϕ2max ð49Þ

for the linear portal. To arrive at this result, we evaluate the sum in the  
continuous limit,

P
ðp;wÞ2ELF j~ϕp;wj

2  N2
w
4

P
w2ELF jϕenvðtwÞj

2

 N2
w

4Tw

R1
�1 ϕ2envðtÞ dt

and use the envelope for the Gaussian pulse. A similar evaluation for a quadratic 
portal leads to

EELF;2 
ffiffiffi
π
2

r
γ22C22

1
16σ2

τ

Δt
ϕ4max ð50Þ

Notice that for the quadratic coupling,

cos2 ω0ðt � tsÞ � 1
2ττ0

ðt � tsÞ2
 

¼
1
2 1þ cos 2ω0ðt � tsÞ � 1

τ0τ
ðt � tsÞ2

 h i

that is, the central frequency and the slope are doubled, but the field amplitude  
is reduced effectively by 

ffiffiffi
2

p
I

. We ignore the zero-frequency contribution in  
our present approach, although it can serve as an additional signature for the 
quadratic interactions.

In equations (49) and (50), the ratio τ/Δt can be recognized as the total number 
of sampled points during the ELF pulse duration. These formulae, together with 
the minimum detectable excess power (equation (43)), yield the constraint on the 
coupling constant

γ95%1  2
σ

C1ϕmax

ffiffiffiffiffi
Δt

τ

r
τ

τ0

 1=8

ð51Þ

for the linear coupling and

γ95%2  4
σ

C2ϕ2max

ffiffiffiffiffi
Δt

τ

r
τ

τ0

 1=8

ð52Þ

for the quadratic coupling. Here, we use the total number of tiles that contain ELFs 
(equation (46)) and the optimal window size (equation (47)). As the ELF signal is 
coherent across a sensor network, the above constraints are improved by 

ffiffiffiffiffiffi
Ns

p
I

 for 
a network of Ns sensors (see more detailed discussions of the statistical analysis for 
sensor networks in refs. 36,37,39). The dependence on the ratio τ/τ0 in equation (52) 
is weak, and we drop this dependence. Then, with the maximum field amplitude 
(equation(33)),

γ95%1  5
σ

C1
ffiffiffiffiffiffi
Ns

p Rω0

ffiffiffiffiffiffiffiffi
Δt

cΔE

r
ð53Þ

γ95%2  40
σ

C2
ffiffiffiffiffiffi
N s

p R2ω2
0

cΔE

ffiffiffiffiffiffiffi
Δtτ

p
ð54Þ

These constraints depend on the ELF central frequency ω0. The derivations 
shown in the second section of the Methods are valid in the limit ω0 ≫ Δω = 1/τ0. 
To avoid DFT aliasing, it is sufficient to require that ω0 ≪ π/Δt; that is, ω0 is well 
below the Nyquist frequency. Explicitly,

1=τ0  ω0  π=Δt ð55Þ

Although the upper limit of equation (55) is fixed by the sensor sampling rate, the 
initial ELF pulse duration τ0 depends on production mechanisms. For a general 
search with τ0 as a free parameter, the minimum detectable ELF frequency is on the 
order of the DFT (angular) frequency resolution, 2π/Tw. Given that the typical rate 
of LIGO gravitational-wave detections is a few events per year, we adopt Tw ≲ 106 s, 
which leads to ðω0Þmin  ð2πÞ ´ 10�6 Hz

I
.

Atomic clocks and cavities. Atomic clocks compare the frequency of an atomic 
transition with the resonance frequency of a local oscillator, typically a reference 
optical or microwave cavity. The atoms are interrogated with laser or microwave 
pulses that are outcoupled from the cavities, whose frequency is kept in resonance 
with the atomic transition by a feedback loop. The typical interrogation time t0  
for a modern atomic clock is on the order of a second. Therefore, the atomic clocks 
essentially measure the quantum phase Φ of an atomic oscillator with respect to 
the local oscillator. Our analysis will hold in the limit when the period of the ELF 
oscillations is larger than the interrogation time; that is, 1/ω0 ≫ t0.

As both the atomic oscillator and the local oscillator can be affected by the 
ELFs, the ELF-induced accumulated phase difference is

ΦELF
j ¼ 2π

R tj
tj�1

½νELFatomðt0Þ � νELFLO ðt0Þ dt0

 2π½νELFatomðtjÞ � νELFLO ðtjÞt0
ð56Þ

given that the observable ELF oscillations are slow over the interrogation time. The 
frequency difference that results is typically recorded, and therefore, we consider a 
time series of fractional frequency excursions

sj 
νatomðtjÞ � νLOðtjÞ

νclock
ð57Þ

taken at tj = jt0; j = 1, 2, …, Ntot, with the unperturbed clock frequency νclock.
Atomic and cavity frequencies can be affected by varying fundamental 

constants, such as the fine-structure constant α = e2/ℏc and/or fermion masses mf. 
We consider a model in which an ELF drives such variations as described by the 
following phenomenological Lagrangians (portals) that couple standard model 
fields and ELFs

Lð1Þ
clock ¼ �

X
f
Γð1Þf mf c

2 �ψ f ψ f þ
Γð1Þα

4
F2
μν

  ffiffiffiffiffi
_c

p
ϕ ð58Þ

Lð2Þ
clock ¼ �

X
f
Γð2Þf mf c

2 �ψ f ψ f þ
Γð2Þα

4
F2
μν

 
_c ϕ2 ð59Þ

Lð1Þ
int
I

 is linear in the exotic field ϕ, and Lð2Þ
int
I

 is quadratic.
The structure of these portals is such that various parts of the standard model 

Lagrangian are multiplied by exotic fields, in which the Γ terms are the associated 
coupling constants that are to be determined or constrained. In the above 
interactions, f runs over all of the standard model fermions (fields ψf and masses 
mf), and Fμν is the Faraday tensor; gluon, Higgs or weak-interaction contributions 
may be included, if desired. We refer the interested reader to the discussion of 
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the technical naturalness of such Lagrangians in ref. 7. In these expressions, the 
combination 

ffiffiffiffiffi
_c

p
ϕ

I
 is measured in units of energy, [E]. Then, Γð1ÞX

I
 are measured in 

units of [E]−1 and Γð2ÞX
I

 in [E]−2.
The portals (equations (58) and (59)) lead to the effective redefinition of 

fermion masses and the fine-structure constants:

mf ðr; tÞ ¼ mf ´ 1þ ΓðnÞf

ffiffiffiffiffi
_c

p
ϕðr; tÞ

� nh i

αðr; tÞ  α ´ 1þ ΓðnÞα

ffiffiffiffiffi
_c

p
ϕðr; tÞ

� nh i ð60Þ

for the linear (n = 1) and quadratic (n = 2) portals, where mf and α are the nominal 
(unperturbed) values.

Atomic frequencies are affected primarily by the induced variation of the 
Rydberg constant, R1 ¼ mec2α2

I
. Optical clocks can exhibit an additional 

dependence on α owing to relativistic effects. Microwave clocks operate on 
hyperfine transitions and hence are affected by the variation in the quark masses 
mq and the strong coupling constant. In addition, the variation in the Bohr 
radius a0 = α−1ℏ/(mec) affects the cavity length L ∝ a0 and therefore the cavity 
resonance frequencies. Conventionally, coefficients κX ¼ ∂ln ν=∂ln X

I
 that quantify 

the sensitivity of a resonance frequency ν are introduced to the variation in the 
fundamental constant X. Then,

κatomme
� 1; κatomα � 2;

κcavityme � �1; κcavityα � �1:

It is worth noting that there are exceptional cases of enhanced sensitivity to the 
variation of fundamental constants; for example, in the actively pursued, but yet 
not demonstrated, 229Th nuclear clock40 (κα ≈ 104, ref. 41), and in clocks based 
on highly charged ions42 (κα ≲ 102, ref. 43). The above arguments presuppose 
an instantaneous adjustment of the resonance or transition frequencies to the 
variation of fundamental constants36.

In terms of the differential sensitivity coefficient KX ¼ κatomX � κLOX
I

 and the 
effective coupling constant

ΓðnÞeff 
X

X
KXΓ

ðnÞ
X ð61Þ

we can write the sought ELF signal (equation (57)) as

sj ¼ ΓðnÞeff

ffiffiffiffiffi
_c

p
ϕðtjÞ

 n
ð62Þ

where n = 1, 2 indicates the linear and quadratic portals, respectively.
Owing to the relatively low, ~Hz, sampling rate of atomic clocks, a terrestrial 

network of atomic clocks would not be able to track the propagation of the 
ultrarelativistic ELF pulse through the network, as discussed in the main text. 
However, optical cavities can have much faster, ≳10 kHz, sampling rates. A 
network that comprises multiple cavities was proposed in the context of the search 
for ultralight dark matter23, and we believe that such a network can be adopted 
for ELF searches, as well. In essence, each node in the network would contain two 
distinct cavities: one with a rigid spacer and the other with suspended mirrors 
(without the spacer, similar to LIGO cavities). The resonance frequency of the 
cavity with a rigid spacer is affected by the variation of fundamental constants, but 
that of the cavity without the spacer is not. In which case, the experiment would 
involve a comparison of these resonance frequencies.

The comparison of equation (62) with our generic ELF signal template 
(equation (44)) leads to the identification γn ¼ ΓðnÞeff

I
 and Cn ¼ _cð Þn=2

I
. To apply 

the derived constraints (equations (53) and (54)), we need also to make an 
assumption about the nature of the measurement noise, which for atomic clocks 
is characterized by the Allan deviation σy(τmeas), where τmeas is the measurement 
time. If the Allan deviation scales as σyðτmeasÞ / 1=

ffiffiffiffiffiffiffiffiffiffi
τmeas

p
I

, the measurement noise 
is dominated by the white frequency noise. Then, in the constraint equations 
(53) and (54), σ = σy(t0) = σy(Δt), and using the methods described in the 
Supplementary Information, we arrive at constraints on the effective coupling 
constants (at the 95% confidence level)

Γð1Þeff ≲5
σyðΔtÞffiffiffiffiffiffi

Ns
p ω0

c
R

  Δt

_ΔE

 1=2

ð63Þ

Γð2Þeff ≲40
σyðΔtÞffiffiffiffiffiffi

Ns
p ω0

c
R

 2 1
ΔE

Δtτ

_2

 1=2

ð64Þ

In Supplementary Table 1, we report the estimated sensitivity of existing and 
future clock networks.

Optical cavities. The constraint equations (53) and (54) apply immediately with 
ΓðnÞeff
I

 (equation (61)) and involve the sensitivity coefficient of the rigid spacer cavity: 
KX ¼ κcavityX
I

. Another possible detector with a similar high sampling rate is the 
three-arm Mach–Zender interferometer44, in which the delays of the laser pulse  
are compared while they travel through an optical cavity and an optical fibre.

Linear couplings. Here, we focus on the linear coupling and assume for simplicity 
that one of the couplings dominates; for example, Γð1Þeff  KαΓð1Þα

I
. This assumption is 

hardly necessary, but it clarifies the role of the sensitivity coefficients KX. We recast 
the constraint equation (63) in terms of moduli45 dX  ðEPl=

ffiffiffiffiffi
4π

p
ÞΓð1ÞX

I
, in which 

EPl ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
_c5=G

p

I
 is the Planck energy

dX≲
EPl

KX

σyðΔtÞffiffiffiffiffiffi
N s

p ω0

c
R

  Δt

_ΔE

 1=2

ð65Þ

or, in practical units,

dX≲40
1

KX
ffiffiffiffiffiffi
Ns

p σyðΔtÞ
10�16

 
ω0

2π Hz

  R
Mpc

 
Δt

s

 1=2 ΔE
Mc2

 �1=2

ð66Þ

Here, as the reference value for the Allan deviation, we take σy(1 s) ≈ 10−16, which is 
characteristic of modern optical lattice clocks6.

We focus on the electron mass modulus dme

I
 and the electromagnetic gauge 

modulus de (X = α in this case). The most stringent limits on these moduli come 
from tests for violation of the equivalence principle (see Fig. 1 of ref. 45). For the 
parameter space that is relevant to clocks and cavities, the excluded regions are  
de ≳ 10−3 and dme≳10�2

I
.

Quadratic couplings. For consistency with prior literature, we rewrite the 
constraint equation (64) in terms of the energy scale ΛX ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
jΓð2ÞX j

q

I
,

ΛX≳0:2
ffiffiffiffiffiffiffiffiffi
jKX j

p ffiffiffiffiffiffi
Ns

p

σyðΔtÞ

 1=2
c

Rω0

 
ΔE1=2 _2

Δtτ

 1=4

Here, we assume that the variation in a fundamental constant X dominates (for 
example, Γð2Þeff  KmeΓ

ð2Þ
me

I
). In practical units,

ΛX
TeV≳2 ´ 10

5 jKX j1=2N1=4
s

σyðΔt Þ
10�16

� ��1=2

´ R
Mpc ´

ω0
2π Hz

� ��1
ΔE

Mc2

� �1=2
Δt
1 s ´

τ
102 s

� ��1=4
ð67Þ

The most stringent constraints on the energy scales

Λme ;α≳3 TeV and Λmp≳10 TeV ð68Þ

come from the bounds on the thermal emission rate from the cores of supernovae26. 
The authors of ref. 26 analysed the emissivity of ϕ quanta due to pair annihilation 
of photons and other processes, such as bremsstrahlung-like emission. They 
also considered tests of the gravitational force that result in similar constraints; 
compared to linear Lagrangians, these constraints are mild, because the 
quadratic Lagrangians lead to the interaction potentials that scale as an inverse 
cube of the distance, as only the exchange of pairs of ϕ’s are allowed (for linear 
Lagrangians, the ϕ-mediated interaction potentials scale as the inverse distance). 
Black-hole superradiance additionally excludes certain narrow mass regions46. 
The enumerated constraints do not depend on the assumption that ELFs are the 
dominant fraction of dark matter. If ELFs do contribute to dark matter, see ref. 46  
for additional constraints, such as those from Big Bang nucleosynthesis.

From the numerical pre-factor in equation (67), it is clear that a generic  
ELF search would probe energy scales well beyond the existing astrophysical  
and gravity test bounds (Fig. 3).

Magnetometers. Atomic magnetometers, such as those employed in GNOME5, are 
sensitive to spin-dependent energy shifts. We consider interaction Lagrangians4 
that are linear, Lð1Þ

I
, and quadratic, Lð2Þ

I
, in the spin-0 ELFs ϕ,

Lð1Þ
mag ¼ f �1

l Jμ∂μϕ ð69Þ

Lð2Þ
mag ¼ f �2

q Jμ∂μϕ
2 ð70Þ

In these expressions, Jμ ¼ �ψγμγ5ψ
I

 is the axial-vector current for standard model 
fermions, and fl and fq are the characteristic energy scales that are associated with 
the linear and quadratic spin portals, respectively. The relevant contribution to the 
Dirac Hamiltonian can be computed as

Hintψ ¼ �γ0
∂Lint

∂�ψ
� ∂μ

∂Lint

∂ ∂μ �ψ
� 

 !" #
ð71Þ

which leads to

Hð1Þ
mag ¼ � 1

f l
γ5

∂

c∂t
ϕþ Σ  ∇ϕ

� �
ð72Þ

Hð2Þ
mag ¼ � 1

f 2q
γ5

∂

c∂t
ϕ2 þ Σ  ∇ϕ2

� �
ð73Þ
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Here, we use the identities γ0γ0 = 1 and γ0γiγ5 = Σi with the spin matrix

Σ ¼ σ 0

0 σ

� �
ð74Þ

We compute the expectation value of these Hamiltonians and obtain the 
effective spin-dependent interactions,

Hð1Þ
mag  � 2ð_cÞ3=2

f l
S  ∇ϕ ð75Þ

Hð2Þ
mag  � 2ð_cÞ2

f 2q
S  ∇ϕ2 ð76Þ

which are equivalent to the nonrelativistic Hamiltonians that are often seen in the 
literature (for example, ref. 2). The terms that contain time derivatives of the ϕ field 
are neglected in the nonrelativistic limit for atomic electrons or nucleons, as the γ5 
matrix mixes large and small components of the Dirac bi-spinors. S is the atomic or 
nuclear spin.

The ELF Hamiltonians that are described by equations (75) and (76) can be 
related to the general forms of the ELF interactions given in equation (44) through 
the following identifications: γ1 ¼ � 1

f l
; C1  2_3=2c1=2ω0; γ2 ¼ � 1

f 2q
; C2  4_2cω0;

I

 
where we have kept only the leading terms when taking the gradients of ϕ and ϕ2. 
Note that the atomic and nuclear structure47, as well as geometrical considerations5, 
must be taken into account to interpret magnetometer data in terms of couplings 
to ELFs, but for the rough estimates presented in this work, we ignore these details. 
With these identifications, from equations (53) and (54) and with details found 
in the Supplementary Information, we arrive at the constraints on the effective 
coupling constants at the 95% confidence level:

f l≳0:4 _3=2c

ffiffiffiffiffiffi
Ns

p

σmðΔtÞ
ffiffiffiffiffi
Δt

p
ffiffiffiffiffiffi
ΔE

p

R
ð77Þ

f 2q≳0:1 _2c2
ffiffiffiffiffiffi
N s

p

σmðΔtÞ
ffiffiffiffiffiffiffi
Δtτ

p ΔE

R2ω0
ð78Þ

Here, σm(Δt) is the magnetometer energy resolution. A typical GNOME 
magnetometer has a bandwidth of ~100 Hz and, integrating over a time Δt, can 
measure the magnetic field with a precision given by5 δB  100 fT

ffiffi
s

p
=
ffiffiffiffiffi
Δt

p
I

. 
Therefore,

σmðΔtÞ  gμBδB  10�18

ffiffiffiffiffi
Δt

p eV
ffiffi
s

p ð79Þ

where g is the Lande factor (which depends on the atomic species used in the 
magnetometer) and μB is the Bohr magneton. The prior astrophysical limits on 
energy scales are4,48 fl ≳ 2 × 108 GeV and fq ≳ 104 GeV. In Supplementary Table 2, we 
report the estimated sensitivity of existing and future magnetometer networks.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.
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