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Quantum sensor networks as exotic field
telescopes for multi-messenger astronomy

Conner Dailey

Arne Wickenbrock® and Andrei Derevianko®2<

Multi-messenger astronomy, the coordinated observation
of different classes of signals that originate from the same
astrophysical event, provides a wealth of information about
astrophysical processes'. So far, multi-messenger astronomy
has correlated signals from known fundamental forces and
standard model particles like electromagnetic radiation, neu-
trinos and gravitational waves. Many of the open questions
of modern physics suggest the existence of exotic fields with
light quanta (with masses <1 eV ¢2). Quantum sensor net-
works could be used to search for astrophysical signals that
are predicted by theories beyond the standard model® that
address these questions. Here, we show that networks of
precision quantum sensors that, by design, are shielded from
or are insensitive to conventional standard model physics
signals can be a powerful tool for multi-messenger astron-
omy. We consider the case in which high-energy astrophysi-
cal events produce intense bursts of exotic low-mass fields
(ELFs), and we propose a novel model for the potential detec-
tion of an ELF signal on the basis of general assumptions. We
estimate ELF signal amplitudes, delays, rates and distances
of gravitational-wave sources to which global networks of
atomic magnetometers®~> and atomic clocks®® could be sen-
sitive. We find that such precision quantum sensor networks
can function as ELF telescopes to detect signals from sources
that generate ELF bursts of sufficient intensity.

Bursts of exotic low-mass fields (ELFs) could be generated by
cataclysmic astrophysical events, such as black-hole or neutron-star
mergers’, supernovae'’ or the processes that produce fast radio
bursts''. Ultralight bosons, which are considered as possible ELFs,
have small masses, and therefore a high-energy event is not required
for their production. Quantum sensors such as atomic clocks® and
magnetometers’ are sensitive to gentle perturbations of internal
degrees of freedom (energy levels, spins and so on) by coherent,
classical waves. This contrasts with particle detectors, such as those
employed in observations of cosmic neutrinos and searches for
weakly interacting massive particles. Importantly, the astrophysical
source must produce coherent ELF waves with a high-mode occu-
pation number to be detected by these quantum sensors. An axion
burst that produces just a few axions that reach Earth would not
be detectable with clocks and magnetometers. Therefore, we focus
our attention on coherent production mechanisms for ELFs’, rather
than thermal (incoherent) production mechanisms'.

Consider the potential ELF production by binary black hole
(BBH) and binary neutron star (BNS) mergers. Much of the under-
lying physics of coalescing singularities in black-hole mergers
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remains unexplored, as it requires the understanding of the
unknown theory of quantum gravity'’. However, exotic scalar fields
also appear in theories that do not require the invocation of quantum
gravity, itself. For example, rotating black holes may be surrounded
by dense clouds of exotic bosons (with up to 10% of the black-hole
mass extracted by the clouds) that could lead to ELF bursts coinci-
dent with gravitational-wave emission”'>'*. Scalar fields appear in
well-posed theories of scalar-tensor gravity', such that black holes
and neutron stars are immersed in scalar fields. Modes of these
fields can be excited during BBH or BNS mergers'®. Scalar emission
can be enhanced substantially by dynamic scalarization'” and by its
monopole character'®.

Given the variety of unconstrained scenarios for ELF emis-
sion, we take a pragmatic observational approach on the basis of
energy arguments. Gravitational-wave events, which are detect-
able with present and future gravitational-wave observatories, can
radiate great amounts of energy, a fraction of which, AE, could be
emitted in the form of ELFs. The radiated energy in the form of
gravitational waves from recently observed BBH mergers is a few
solar masses (Mc?) (refs. '), whereas for recently observed BNS
mergers, the radiated energy in the form of gravitational waves is
20.025 Mc? (ref. *'). For the purposes of the following sensitivity
estimates, we assume that it may be possible to have AE =~ Myc?
of energy released in the form of ELFs from a black-hole merger
and AE ~ 0.1 Mc? of energy released in the form of ELFs from a
BNS merger. These estimates are on the basis of the idea that the
energy released through another channel (ELFs instead of gravi-
tational waves) could be on the order of the measurement uncer-
tainty without altering the ‘conventional physics’ interpretation
of the event.

For concreteness, we assume that the emitted ELF is a spin-0
field, ¢(r, t), which is described by a superposition of spheri-
cally symmetric wave solutions to the Klein-Gordon equation,
(1, 1) = %cos(kr — wt + 6)), where r is the radial coordinate,
and A, 0;, k and w are the ELF amplitudes, phases, wavevectors
and frequencies, respectively. The spherically symmetric monopole
emission pattern is characteristic of scalar-tensor gravity mod-
els’®. The ELF frequency @ and wavevector k satisfy the relativistic

(ck)* + €22, where

the Compton frequency Q. = mc*/h for the ELF mass m. We
consider ELFs that are sufficiently far from the source such that
general relativistic effects (such as the gravitational redshift) can be
ignored. We ignore the effects of Galactic dust on the propagation
and attenuation of the ELF waves, also.

energy-momentum dispersion relation, w(k) =
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Fig. 1| Effect of dispersion on the expected ELF signal at a precision
quantum sensor. A schematic of the production, propagation and detection
of an ELF wave packet (shown in red). A BBH merger (left) emits a burst of
ELFs and gravitational waves. As the ELF burst propagates with the group
velocity v, < c to the detector (right), it lags behind the emitted gravitational
waves, which propagate at c. Given that the more energetic ELF components
propagate faster, the detected ELF wave packet exhibits a characteristic
frequency chirp, depicted by the wave packet shown on the right.
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Fig. 2 | Time-frequency decomposition for power spectrum of an ELF
signal at a sensor. This template is for interactions with a sensor that are
linear in the ELF. The spectral width of the pulse Aw is related to the initial
pulse duration z, as Aw = 1/7,. The frequency slope is dw(t)/dt = —Aw/z.
For interactions that are quadratic in the ELF, both the central frequency w,
and the slope are doubled.

We consider an emitted ELF burst of central frequency w, and
of a finite duration 7, that has a bandwidth Aw = 1/z,, or, equiva-
lently, a characteristic energy ¢, = hw, and width Ae. Individual
Fourier components propagate with different phase velocities as
dictated by the dispersion relation, and we expect qualitatively a
frequency-chirped ELF signal at the detector, as shown in Figs. 1
and 2. The slope of the chirp is dw/dt & —Aw/z, because the fre-
quency content of a wave packet is preserved, owing to energy
conservation. Further discussion and calculations are given in the
Methods and the Supplementary Information.

With R as the distance from the astrophysical source to the sen-
sor, the time delay between the ELF and gravitational waves (GW) is
6t = (R/c)(c/v, — 1), where v, is the group velocity of the ELF pulse.
In this formula, the wave packet propagates over time tyy, = R/c,
which is roughly a billion years for GW150914 (ref. '°). Therefore,
tqw is much larger than any reasonably observable time delay in an
experiment (for example, 6t < 1 week). Therefore, (c/v, — 1) < 1,
and ELFs must be ultrarelativistic to be observed. In this limit, pho-
tonic dispersion w, = ck, relates the ELF central frequency w, to the
wavevector k,. The bandwidth of a quantum sensor fixes measur-
able ELF frequencies. For atomic clocks, w,/2n < 1 Hz, for atomic
magnetometers, m,/21 < 100 Hz, and for optical cavities, w,/2n S 10
kHz. These frequencies fix energies &, of detectable ELFs to less than
107 eV for clocks and 107'° eV for cavities. As the dominant frac-
tion of these energies is kinetic, the fields are necessarily ultralight,
mc* < g, Emitted ELFs are copious (2107 for AE ~ 0.1Mc* and
@, = 21 X 10 kHz). The mode occupation numbers that result at
Earth are macroscopic, and therefore ELFs would act as coherent
classical fields at the sensors.
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The time delay of the ELF signal with respect to the
gravitational-wave burst equals 5t = ‘sv (_Q Ja)?. As 5t < teyn
the Compton frequency Q. < w,, which is consistent with ultra-
relativistic ELFs. We estimate the duration 7 of the ELF pulse at the
sensor as 7 ~ RAv,/c’, where the spread in group velocities Av,/c &
0*w/0k*/7,. This leads to a relation between the signal duration and
time delay 7 ~ 26t /(w,7,). Given that our approximations hold for
sufficiently sharp ELF spectra, wyz, > 1, we require 7 < 6t.

The characteristic ELF amplitude Ay, at the sensor can be esti-
mated by the requirement that the energy of the scalar wave that
is stored in a shell of thickness ¢z and radius R is equal to AE, for

Ay, ~ L1  JcAE

- . In contrast to dispersionless spherical waves, the
[N 2nt

field amplitude at the sensor @(R, t) scales as 1/R*?, which reflects
the additional pulse dispersion.

More detailed considerations (see the Methods) yield the
approximate time dependence for an ELF signal at the sensor,

1/2 2
t)~ R ( 3CA2E2 ) (_ (tité) )
¢( ) R\ 213/ wit exp 27 (1)

x cos(wo(t — t;) — 2 (t — t,)?)

where t, = t5y + 6t is the time of arrival of the centre of the
pulse (Fig. 2). Note that the ELF frequency is time dependent,
o(t) = (1 — (t —t;)/(26t))wo, and exhibits a frequency ‘chirp at
the sensor. The waveform, equation (1), is shown in Fig. 1, and its
power-spectrum time—frequency decomposition is shown in Fig. 2.
The slope of the chirp is given by dw/dt = —1/(779) = —wo/(26t),
which is consistent with the qualitative arguments presented earlier
in the paper. The excess power statistic can be used in data analysis
to search for ELFs (see the Methods).

ELFs can generate signals in quantum sensors via ‘portals’
between the exotic fields and standard model particles and fields.
Portals are a phenomenological gauge-invariant collection of stan-
dard model operators that are coupled with operators from the ELF
sector’. We consider interaction Lagrangians that are linear, £ and
quadratlc L£®)in the ELF ¢. For magnetometers, £1) = = f; 0,0
and L =f, *J#9,¢% and for clocks, cavities, 1nterferometers

and grav1meters, £S§ck VAr/Ep) (—dp mec iy, + de FW/4)
and Eclock = (—mec SRV, +F2 ,/(4A2))¢%. In these expres-

sions, J¢ is the axial-vector current for standard model fermions,
. is the electron bi-spinor, F,, is the Faraday tensor, Ej, is the Planck
energy, and f,,, de, dm,, Am, and A, are coupling constants.
Quadratic interactions appear naturally for ELFs that possess either
Z, or U(1) intrinsic symmetries®.

The L,g portals lead to fictitious effective magnetic fields that
interact with atomic spins and therefore are detectable with atomic
magnetometers®. The Ly portals effectively alter fundamental con-
stants’, such as the electron mass m, and the fine-structure constant
a. Such portals can imprint measurable signals in atomic clocks’,
cavities” and atom interferometers**. The Lo portals also mod-
ify the Earth’s gravitational potential and therefore can be detectable
with gravimeters®.

ELFs that interact through any of the enumerated portals would
drive frequency-chirped signals in quantum sensors (Figs. 1,2),
provided that the sensors have sufficient sensitivity and bandwidth.
The coupling strengths determine the relative signal amplitude that
is detected by the particular sensor, for a given ELF intensity. We
show in the Supplementary Information that the sensors can detect
ELF bursts as long as the coupling constants satisfy

VN, VAE

onlb)VE R @

£,50.4k° ¢

NATURE ASTRONOMY | www.nature.com/natureastronomy


http://www.nature.com/natureastronomy

NATURE ASTRONOMY LETTERS

Energy scale A, (TeV)

107" Stellar emissivity and gravity tests

102 107 107" 1077 107 107"
ELF energy ¢, (eV)

Fig. 3 | Projected atomic-clock sensitivity to ELFs that are plausibly
emitted during the BNS merger GW170817. The discovery reach is shown
for a trans-European network of laboratory clocks (red line, 6,(1s) =107%)
and for the GPS constellation (red dashed line, 6,(15) =107"). We assume
an ELF burst of duration 7 =100 s and energy release 0.1Mc? and a total
observation time of one month. Prior constraints?® on the energy scale A,
are shown by the blue shaded region.
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Here, Ky is the sensitivity coefficient to a variation in the fundamen-
tal constant X = {m,, a, ...}, A, is the sensor sampling time inter-
val, 6,,(A,) is the magnetometer Allan deviation over A, (in units
of energy), 6,(A) is the dimensionless clock or interferometer
Allan deviation for fractional frequency excursions, and N; is the
number of sensors.

Astrophysical observations and laboratory experiments set con-
straints on the coupling strengths between ELFs and standard model
particles and fields’. Using the above sensitivity estimates, we find
that for ELFs that couple to standard model particles through the
quadratic portal £?), the current generation of atomic clocks has an
astrophysical reach that spans the observable universe; for the linear
portal £, the astrophysical reach of atomic clocks spans only the
Milky Way, owing to the fact that prior constraints on linear interac-
tions are much stronger than those for the quadratic portal®.

Several networks of precision quantum sensors are already
operational. An example of an atomic-clock network is the Global
Positioning System (GPS), which is nominally composed of 32
satellites in medium Earth orbit. The satellites house microwave
atomic clocks, and they have been used for dark-matter searches®.
Combined with other satellite positioning constellations and ter-
restrial clocks, N; ~ 100. Another network is a trans-European
fibre-linked network (N, & 10) of laboratory clocks”, whose accu-
racy is vastly superior to that of the GPS clocks. As for magnetom-
eters, the Global Network of Optical Magnetometers for Exotic
physics (GNOME) targets transient events that are associated
with physics beyond the standard model*>. GNOME is a network
of shielded atomic magnetometers that is composed of 13 stations
located on four continents. Each station has a magnetometer with
subpicotesla sensitivity.

As an example, we plot the projected sensitivity to a puta-
tive ELF burst that is emitted during the BNS merger GW170817
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(R = 40 Mpc) in Fig. 3. It is clear that existing clock networks can
be sensitive to ELFs for a typical gravitational-wave event (BNS,
BBH or black-hole-neutron-star mergers) that is registered by
gravitational-wave detectors. The case for detection by GPS is par-
ticularly intriguing, as roughly 20 years’ worth of archival GPS data
is available, and the data set is routinely updated. If an ELF signal
is discovered in recent data, a search for similar signals prior to the
era of the Laser Interferometer Gravitational-wave Observatory
(LIGO) can be made in the archival data. Another possibility is to
correlate the catalogued short gamma-ray bursts* or other power-
ful astrophysical events with the archival GPS data to search for ELF
bursts, or even to search for ELF bursts that are uncorrelated with
any known astrophysical source. Although estimates show that the
existing magnetometer network does not have sufficient sensitivity
to probe an unconstrained parameter space for an ELF burst from
GW170817 with the assumed characteristics, planned upgrades to
GNOME will substantially increase the discovery reach of the net-
work, as discussed in the Supplementary Information.

The employment of networks is crucial to distinguish ELF
signals from spurious noise. Furthermore, with baselines of the
diameter of Earth or larger, it is possible to resolve the sky position
of the ELF source.

The leading edge of an ultrarelativistic ELF burst would propagate
across Earth in ~40 ms. At present, GNOME magnetometers have a
temporal resolution of ~10 ms; this can be improved to < 1 ms with
relatively straightforward upgrades. The angular resolution A# based
on the ELF time-domain signal pattern is given roughly by the ratio
of the temporal resolution to the propagation time through the net-
work: for a temporal resolution of ~1 ms, this corresponds to A6 ~
7/40 rad =~ 2°. Additionally, given that the ELF gradient points along
the ELF velocity vector, the relative signal amplitudes in magnetom-
eters with different sensitive axes enables a second method of angular
resolution of the source’s sky position. The signal amplitude pattern
in the network would yield an angular resolution (in radians) roughly
equal to the inverse of the signal-to-noise ratio for the ELF detection.

Unlike magnetometers, atomic clocks and atom interferometers
have a relatively low, ~1 Hz, sampling rate. As a result, terrestrial
or satellite clock networks cannot be used to track the ELF burst
propagation. The ELF propagation time across the GPS constella-
tion is 0.2 s, which is comparable to the 1 s sampling interval in
GPS data streams. Nonetheless, clock networks can still act collec-
tively to gain +/Nj in sensitivity and disregard signals that do not
affect all of the sensors in the network. To mitigate the low sampling
rate, the baseline can be increased, similar to recently proposed”
space-based gravitational-wave detectors that rely on atomic clocks
and atom interferometers. Another possibility is a small-scale (~10
km) terrestrial network of optical cavities that allow for a 210 kHz
sampling rate. Each node of such a network would contain two cavi-
ties”’, one with a rigid spacer and the other with suspended mirrors.
An ELF-induced variation in fundamental constants would change
the length and, therefore, the resonance frequency, of the former
but not that of the latter. The ELF sensitivity of a cavity network is
similar to that of the clock networks shown in Fig. 3.

Methods
Energy density for a spherical wave of an ultrarelativistic scalar field. In the
main text, we expand the real-valued scalar field in spherical waves,

6.(r1) = %cos(kr — w1 6) ()

Here, r is the radial coordinate, A; and 6, are the ELF amplitudes and phases, and k
and o are the ELF wavenumber and oscillation frequency. The field ¢, has units of
M'"L'2T', and the amplitude A, has the units of M"2L¥?T".

The energy density p is given by the 00 component of the stress-energy tensor™,

R P b
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where m is the mass of the scalar. Explicitly, for a spherical wave (equation (6)),

where -+ stands for the argument of cosine in equation (6). We neglect terms
of order 1/7°, take the time average over many field oscillations and employ the
ultrarelativistic limit, @ ~ ck > mc*/h. The resulting energy density reads

v~ (ﬂf) ©)

rc

Dispersion of ultrarelativistic matter wave pulse. Any type of wave will disperse
upon propagation, as long as the dispersion relation w(k) has a nonzero second
derivative with respect to k. This ensures that the group velocity is a function of k.
Here, we focus on an analytically tractable case of a Gaussian wave packet that is
composed of ultrarelativistic scalar fields.

Dispersion relation in the ultrarelativistic limit. We start with the Klein-Gordon
equation for the scalar field ¢(r, t), (9,0 + m*c*/h?*)¢h(r, t) = 0. We focus on

the spherically symmetric solutions (s waves, which are characteristic of scalar
emission in scalar-tensor theories) and define ¢)(r, t) = u(r, t)/r. Then, the
Klein-Gordon equation reduces to the one-dimensional wave equation for
massive scalar fields

18 ¢ m
— 4 = 10
(cz o2 or? + h? )u(r, =0 (10)

Substitution of u(r, t) o exp(ikr * iwt) leads, as expected, to the relativistic energy-
momentum relation

(k) = \/ (ck)* + (mc2/h)? (11)
that is, the dispersion relation in the main text. Of course, it holds for waves of
arbitrary angular momentum. This dispersion relation may be thought of as giving
rise to the ‘internal’ index of refraction for ELF propagation. In the ultrarelativistic
limit, ck > mc?/h, the energy of an individual scalar is € & ch|k|.

We can expand w(k) further around a characteristic energy &, = hw, ~ chk,,

) ~ Ckok K 1 mczzczk ) (12)
o )~w0+ca( - 0)+E(E> a( — ko)

where we keep terms up to second order, only. This parabolic approximation

holds as long as |k — k| < k,, or, equivalently, the energy spectrum of emitted
scalars is sufficiently sharp, Ae < &, or 7, > 1. One can immediately identify
the group velocity

E_@~1_1<m_cz>2 (13)

c [N 2\ &

and the characteristic spread in group velocities

Ave _ (ﬁ)zﬁ (14)

c & &

where A¢ = h/z,. Finally, the time lag between gravitational-wave and ELF bursts at
the sensor a distance R away from the progenitor is

5t = ('L) R (1s)

£ 2¢c

Equations (13)-(15) are the relations used in the main text.

To illustrate the effect of the delay on the detectable ELF mass m,
Supplementary Fig. 1 shows the accessible parameter space for an ELF burst that is
associated with the GW170608 BBH coalescence event’’, assuming that the delay 6t
is less than 10 h.

The general solution to the one-dimensional wave equation is a superposition
of waves weighted by Fourier amplitudes a(k),

u(r,t) = \/% Re {/ a(k)e"(k”’”(k)f)dk} (16)

with the dispersion relation (equation (11)). The initial conditions define the
Fourier amplitudes™

i

a(k) = \/% / : ik [u(r, 0)+- (k)%(r, 0)]dr (17)

where u(r, 0) and 0u/0t(r, 0) are the initial values near the source.
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Propagation and dispersion of a Gaussian wave packet. We consider a
Gaussian wave packet’ with initial wave amplitude A,, initial spatial
width L, and initial wavevector k,,

;,:(r7 0) = Age" /L) cos(kor) (18)
% (r,0)=0.
The outgoing wave packet has the Fourier amplitude
ApL
a(k) = 02 0 o= (L§/2) (ko) (19)

which indicates the well-known uncertainty relation between the characteristic
spatial extent L, of the wave packet and its width in momentum space Ak = 1/L,,.
Substitution of the above Fourier amplitude into equation (16) fully solves the
problem of propagation. We use the parabolic approximation (equation (12))
for the dispersion relation, which holds as long as Ak < k,; that is, the
characteristic wavelength of the field is much smaller than the initial spatial width
L,. The parabolic dispersion allows the integral in equation (16) to be evaluated in
a closed form.

The final solution for ¢(r, t) reads

T—Oexp <— M) cos(O(r, t)) (20)

~ Ao
P(r,t) = - () 22(t)

with the time-dependent pulse duration z(¢) defined as
Avgt\?
w0 =3+ (5F) e1)
Vg

and we have substituted L,/v, = 7,. The phase argument of the oscillatory part
is given by
A 2
O(r,t) = (wot — kor) — ﬁ%ﬁ: (t—r1/vy)

+Lltan! (M)

VgTo

(22)

In these expressions, group velocity v, and its spread Av, are given by equations (13)

and (14). We focus on the sensor (t = £, = R/v,) and define the combination
_dwn o

To €0

Vg 70

where 6t is the time lag (equation (15)) between the arrivals of the gravitational-wave
and ELF bursts. When & < 1, the duration of the signal at the detector is
Av, A
I T L (23)
Vg &o

Another important feature of the analytical waveform (equation (20)) is
that it has an amplitude that scales as 7(#)7/2, as expected from the total energy
conservation arguments of the main text. To relate the amplitude A, to the total
energy that is released in the ELF channel AE, we compute the energy density
p(r, t) (equation (7)) for the Gaussian wave packet (equation (20)). In the
ultrarelativistic limit,

1.2 1/3¢\>
gty 1 (9P 24

plrt) 2c2¢ 3 <Br> (24)
In the evaluation of the derivatives of the field, it is sufficient to keep the derivatives
of the rapidly oscillating cos(6(r, t)) factor. Then, at a fixed time, we evaluate the
pulse energy by the integration of the energy density over the space, which leads to
a time-independent value, as expected. From here, we express the amplitude A, in

terms of the total energy,
1 1 [cAE
Ag & Y <(,,0 27[10) )

ELF signal at the sensor. We define the instantaneous frequency w(t) = dO(R, t)/dt
and expand it around the time that the centre of the pulse arrives at Earth, t, = R/v,.

2

o(t) ~ o(t) —§1,(t - t)

s

~ag - (t—t)

(26)

The sign of the linear term is consistent with the qualitative expectation that
higher frequencies arrive first and lower ones arrive last. The slope of the
frequency chirp is given by
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do(t) 1 (27)
dt ot 26t
Then, at the sensor, the Gaussian ELF burst has an approximate temporal
waveform,
~ o /m (t=t.)?
(1) ~7"\/§CXP(*T) (29)

x cos(wy(t — ts) — 2 (t — t,)%)

or, with equation (25) for the amplitude,

1/2 2
~ (t—t5)
¢(t) ~ TI{ (2n§gf)§1) €xp (7 272 > (29)

x cos(wo(t — t) — 22 (t — 1,)*)
We show a simulation of such a signal in Supplementary Fig. 2.

General envelope. The preceding analytical results explicitly demonstrate the
propagation and dispersion of a Gaussian wave packet. These results hold for a
much wider class of sufficiently well-behaved envelopes. Formally, this can be
shown by the application of the stationary phase method during the evaluation of
the integral in equation (16) for the parabolic dispersion relation (equation (12)).
The stationary phase method effectively reduces the wave packet to a Gaussian,
and all the derived results immediately apply.

Data analysis considerations. The goal of this section is to outline a data analysis
strategy and to establish the projected sensitivity of the proposed search for a
generic ELF signal. To reiterate, an arriving ELF wave packet can be characterized
by a set of three parameters

(8t, 7, wp) (30)

that is, by the time delay between gravitational-wave and ELF bursts 6t, duration
7 and central frequency w,. Notice that the frequency chirp of the pulse is fixed
by these parameters through equation (27) (Fig. 2). As our approximations hold
for sufficiently sharp ELF spectra, w,7,>> 1 (see the previous section), from
equation (23), we expect 7 < 6t.

Given the parameters (6t, 7, ®,) and the known gravitational-wave travel time
from the progenitor g, = R/c, the other parameters can be fully determined. In
particular, the ELF particle mass (compare to equation (15)) is

_ hw, |26t (3 1)
e tow
and the initial pulse duration is
2
790 = —6t (32)
WoT

For a fixed total energy AE that is released into the ELF channel, the maximum
field amplitude at the sensor is fixed to

e () (53)

2132wt

where we take the amplitude for the Gaussian envelope (equation (29)) as a
fiducial value.

We consider a variety of ELF production scenarios and leave the envelope of
the arriving wave packet undefined. This uncertainty can be incorporated into
a statistical analysis using the excess power statistic”’. This method is based on
the time-frequency decomposition of the data and detects events based on their
signature of having more power in a time-frequency interval than one expects
from detector noise alone. Excess power is the optimal method for searching for
events in situations for which only a rough idea of the frequency and duration of
the signal is known**.

Suppose the data streams from the sensors are sampled uniformly at a rate 1/
A, which yields a time series d with elements dy, d5, ... ,d;, ... , dy,, for a data set
with N, points. Each data point d; = s; + n; comprises contributions from both the
sought ELF signal s; and intrinsic sensor noise 7;.

The discrete Fourier transform (DFT) in a sliding time window is used to
partition the data stream into segments of time and frequency (tiles). Our goal is
to quantify the power that is contained in each time-and-frequency tile of the data
due to only noise, and thereby extract contributions due to putative ELF signals.
To this end, the data stream can be split into two gross segments: before and after
the electromagnetic or gravitational-wave triggers on detectors on Earth. The noise
characteristics can be determined fully from the pre-trigger data, as during that
period d; = n; by our assumptions. We assume that the sensor noise is distributed
as a Gaussian and is stationary, but we do not assume it is necessarily white (which,
with appropriate filtering, is generally the case for the GNOME and GPS data>*).
Below, we focus on a single sensor and later generalize to a network of sensors.
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The time series d is partitioned into segments that contain N,, elements. N,
is chosen to be an even number for notational convenience. Each segment is
associated with a data index w, which coincides with the midpoint of the partition:
w=N,/2,3N,/2,5N,/2, ... and a time t, = wA,.
The Fourier amplitudes for each time partition are then given by
o = D g (34)

]

where the index p enumerates the DFT frequencies and f, = p/(N,A,) ranges
from zero to the Nyquist frequency 1/(2A,). The zero-frequency component
(f, = 0) and Nyquist frequency amplitudes can be removed from the analysis
because their statistical properties differ from that of the rest of the amplitudes
(for example, see refs. ***”). This simplification does not alter the conclusions.
Equation (34) represents a two-dimensional discrete map of complex time-
frequency values. The frequency and time indices reference individual tiles
(p, w) in such a map.

Using the pre-event data (d, = n;), we determine the (two-sided) power
spectral density (PSD) of the sensor noise

Cp = (fip(1)") (35)

where the average is taken over multiple pre-event time windows. The post-event
data PSD is normalized to the noise PSD

|dp.?
Epw = —2 36
», G (36)

The quantities &, ,, quantify the excess power in the (p, w) tile. (Note that our
definition of excess power is larger by a factor of 2 compared to that in ref. **.)
In the absence of the sought-after ELF signal, (£,,,) = 1. A time-frequency
decomposition map for a Gaussian ELF wave packet (equation (29)) is shown
in Fig. 2.

We adopt the method of ref. ** to incorporate our knowledge about the
expected ELF signals. In that work, the search method probes all of the tiles that
occupy a rectangular area in the time-frequency decomposition map. Here, we
restrict the probed tiles to the areas that are spanned by the expected ELF signals.
Indeed, the expected ELF signal with the fixed parameters (6t, 7, w,) contains
substantial power in only a subset of tiles (Fig. 2 and Supplementary Fig. 2).
Thereby, we define the excess power statistic g by the summation over the tiles
that contain ELFs

&= Z(p.w)EELFSP'W (37)

In the absence of noise in the post-event data, the total excess power contained in
the ELF signal is

[5p.*
Erir = Z(p,w)eﬁu-‘ CP (38)

The probability distribution function for the statistic £ is*
M-1
Py (EIEer) = In1 (2VEEwir) (Vﬁ) e (&t 8ur) (39)

where I,,_,(---) is the modified Bessel function, and M is the total number of tiles
that contain ELFs. This distribution can be recognized, up to a change of scale, as
a noncentral y? distribution with 2M degrees of freedom. The mean and variance
are given by

(&) =M+ Eprp,  Var(£) = M+ 2Eg¢ (40)

Next, we would like to establish the detector discovery reach for gy at the

95% confidence level. To this end, we compute the upper tail probability threshold
given the observed value E,ps of the statistic (equation (38), the observed value is
computed with sensor data)

[ puteteriyas = oss (41)
Eobs

This is an implicit equation for the detectable ELF signal power EESL? Equation (41)
can be represented in terms of the Marcum Q function, which is a part of standard

mathematical libraries,
Qu («/zsﬁ‘? V/2E obs ) =0.95 (42)

To find the sensitivity to ELFs, we assume that the ELF signal is well below the
noise floor. Then, in equation (42), Eqbs = M (see equation (40)). We invert the
resulting equation in the limit of M > 1 and find
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%
EX% ~1.7VM (43)

This result is consistent with qualitative signal-to-noise ratio arguments. The
signal-to-noise ratio (SNR) can be defined as

Epr Epir

T VVar@) VM

where we use equation (40) for the variance with only the noise contribution.
Holding constant the signal-to-noise ratio value results in the same /M scaling
of the minimum detectable ELF power as in the more rigorous estimate
(equation (43)).

With these results, we can determine the sensitivity of a sensor to coupling
constants that characterize ELF portals. We parameterize the ELF-induced signals

in the sensor as
Ciop(t
s(t) = {}’1 19( )21
72C20()

Here, y, and y, are the coupling constants to be constrained and C; are known
constants that are determined by the particular sensor.

Next, we compute Egpp, the excess power statistic (equation (38)) for the ELF
signals (equation (44)). The signal powers are normalized to the noise PSD C For
a sensor that exhibits white noise of variance 7, the noise PSD is Cp = N,o? and

1 R
Nyo? Z(p.w)EELFlsp'WI (45)

The sum over ELF contributions can be simply evaluated in the limit when the
temporal window size T, is much smaller than duration of the ELF burst . In this
case, we can neglect the time variation in the ELF envelope over the window. In

the window, the ELF frequencies span the frequency interval |dew/dt|T, = T,/(z 7,),
where the slope is given by equation (27). Without loss of generality, we require that
this spanned frequency interval is smaller than the DFT frequency resolution A, =
27/ T,. We require also that adjacent windows map instantaneous ELF frequencies
to distinct and adjacent DFT frequencies. Under these assumptions, the total
number M of tiles that contain ELF signals and the ‘optimal’ window duration T,,
are

SNR

linear (44)
quadratic

EELF =

M=~t/T, (46)

Ty ~ /271179 (47)

With the negligible ELF frequency variation over the window, the field PSD is

~ 1
|6,.,* ~ 1 |@eny (1) N3 Bp, (48)

where ¢.,,(t,) is the value of the ELF burst envelope in the window and p,
corresponds to the DFT frequency that is nearest to the ELF frequency in the
window. We sum over windows and arrive at the minimal detectable ELF power

1
ExLry ~ CZ d ¢max (49)

for the linear portal. To arrive at this result, we evaluate the sum in the
continuous limit,

2-f§2wm|¢m< WP
AN g2 (e

Z(p,w)eELF I(pp,w‘

and use the envelope for the Gaussian pulse. A similar evaluation for a quadratic
portal leads to

1
ErLpa & \/;ini 1602 A, (/)?mx (50)

Notice that for the quadratic coupling,

cos? (wo(t —t5) =g (£ — ts)z) -

3 {1 + cos(Zwo(t —t) = (t— ts)z)}

that is, the central frequency and the slope are doubled, but the field amplitude
is reduced effectively by v/2. We ignore the zero-frequency contribution in
our present approach, although it can serve as an additional signature for the
quadratic interactions.

In equations (49) and (50), the ratio 7/A, can be recognized as the total number
of sampled points during the ELF pulse duration. These formulae, together with
the minimum detectable excess power (equation (43)), yield the constraint on the
coupling constant
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95% 2

1/8
"o d \/ﬁ = (51)
Cidma V 7 \70

for the linear coupling and
il \/5 ) (52)
Cofta V 7 \70

for the quadratic coupling. Here, we use the total number of tiles that contain ELFs
(equation (46)) and the optimal window size (equation (47)). As the ELF signal is
coherent across a sensor network, the above constraints are improved by /N for
anetwork of N, sensors (see more detailed discussions of the statistical analysis for
sensor networks in refs. *>**?), The dependence on the ratio 7/z, in equation (52)
is weak, and we drop this dependence. Then, with the maximum field amplitude
(equation(33)),

BT

95% o
‘x5 R 53
141 I, @9 (53)
2
95% c R a)o
v~ 40 VA 54
T2 Co/N. cAE (>4)

These constraints depend on the ELF central frequency w,. The derivations
shown in the second section of the Methods are valid in the limit @, > Aw = 1/7,.
To avoid DFT aliasing, it is sufficient to require that w, < n/A; that is, @, is well
below the Nyquist frequency. Explicitly,

1/70 € wg K /A, (55)

Although the upper limit of equation (55) is fixed by the sensor sampling rate, the
initial ELF pulse duration 7, depends on production mechanisms. For a general
search with 7, as a free parameter, the minimum detectable ELF frequency is on the
order of the DFT (angular) frequency resolution, 2n/T,. Given that the typical rate
of LIGO gravitational-wave detections is a few events per year, we adopt T,, < 10°s,
which leads to (), & (21)x 107° Hz.

Atomic clocks and cavities. Atomic clocks compare the frequency of an atomic
transition with the resonance frequency of a local oscillator, typically a reference
optical or microwave cavity. The atoms are interrogated with laser or microwave
pulses that are outcoupled from the cavities, whose frequency is kept in resonance
with the atomic transition by a feedback loop. The typical interrogation time £,
for a modern atomic clock is on the order of a second. Therefore, the atomic clocks
essentially measure the quantum phase @ of an atomic oscillator with respect to
the local oscillator. Our analysis will hold in the limit when the period of the ELF
oscillations is larger than the interrogation time; that is, 1/w, > t,.

As both the atomic oscillator and the local oscillator can be affected by the
ELFs, the ELF-induced accumulated phase difference is

O = 2m [} [V () — i (¢)] df’

atom

~ 2 [V () = Vi (t)]to

(56)

given that the observable ELF oscillations are slow over the interrogation time. The
frequency difference that results is typically recorded, and therefore, we consider a
time series of fractional frequency excursions

Valom(tj> ’/LO(tj)

5 = Zaomy) TIOLG (57)
Velock

taken at t; = jt;; j=1,2, ..., N, with the unperturbed clock frequency v

Atomic and cavity frequenc1es can be affected by varying fundamental
constants, such as the fine-structure constant a = e*/fic and/or fermion masses ;.
We consider a model in which an ELF drives such variations as described by the
following phenomenological Lagrangians (portals) that couple standard model
fields and ELFs

Lgo)ck < Zf omgc Wfo+ ,/)\/’TC¢ (58)

r( )
Ll = ( > mc g+ ) he ¢ (59)

Lf;t) is linear in the exotic field ¢, and £f§2 is quadratic.

The structure of these portals is such that various parts of the standard model
Lagrangian are multiplied by exotic fields, in which the I" terms are the associated
coupling constants that are to be determined or constrained. In the above
interactions, fruns over all of the standard model fermions (fields y;and masses
my), and F,, is the Faraday tensor; gluon, Higgs or weak-interaction contributions
may be included, if desired. We refer the interested reader to the discussion of
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the technical naturalness of such Lagrangians in ref. ’. In these ex ressions, the
combination v/%c ¢ is measured in units of energy, [E]. Then, T are measured in
units of [E]~! and 1"< ) in [E]™%

The portals (equatlons (58) and (59)) lead to the effective redefinition of
fermion masses and the fine-structure constants:

myg(x, ) = myx [1+1" (Vhcg(x, t )]

(60)

afr,0) = ax [1L+ 10 (Vacg(r, 1))
for the linear (n = 1) and quadratic (n = 2) portals, where m,and & are the nominal
(unperturbed) values.

Atomic frequencies are affected primarily by the induced variation of the
Rydberg constant, R, = mec?a?. Optical clocks can exhibit an additional
dependence on a owing to relativistic effects. Microwave clocks operate on
hyperfine transitions and hence are affected by the variation in the quark masses
m, and the strong coupling constant. In addition, the variation in the Bohr
radius a, = a~'h/(mc) affects the cavity length L « a, and therefore the cavity
resonance frequencies. Conventionally, coefficients kx = oln v//dln X that quantify
the sensitivity of a resonance frequency v are introduced to the variation in the
fundamental constant X. Then,

atom ~ atom
Ko A 1 Ko~ 2,

Kf,?:my -1, KV x —],
It is worth noting that there are exceptional cases of enhanced sensitivity to the
variation of fundamental constants; for example, in the actively pursued, but yet
not demonstrated, **Th nuclear clock” (k, ~ 10*, ref. *'), and in clocks based
on highly charged ions* (k, < 102 ref. ©*). The above arguments presuppose
an instantaneous adjustment of the resonance or transition frequencies to the
variation of fundamental constants™®.

In terms of the differential sensitivity coefficient Kx = k4™ — k10
effective coupling constant

and the

) = ZXKXF@ (61)

we can write the sought ELF signal (equation (57)) as
5= l"g'f) (\/;lng(t])) (62)

where n = 1, 2 indicates the linear and quadratic portals, respectively.

Owing to the relatively low, ~Hz, sampling rate of atomic clocks, a terrestrial
network of atomic clocks would not be able to track the propagation of the
ultrarelativistic ELF pulse through the network, as discussed in the main text.
However, optical cavities can have much faster, 210 kHz, sampling rates. A
network that comprises multiple cavities was proposed in the context of the search
for ultralight dark matter”, and we believe that such a network can be adopted
for ELF searches, as well. In essence, each node in the network would contain two
distinct cavities: one with a rigid spacer and the other with suspended mirrors
(without the spacer, similar to LIGO cavities). The resonance frequency of the
cavity with a rigid spacer is affected by the variation of fundamental constants, but
that of the cavity without the spacer is not. In which case, the experiment would
involve a comparison of these resonance frequencies.

The comparison of equation (62) with our generic ELF signal template
(equation (44)) leads to the identification y,, = I‘E?f) and C,, = (ho)"?. To apply
the derived constraints (equations (53) and (54)), we need also to make an
assumption about the nature of the measurement noise, which for atomic clocks
is characterized by the Allan deviation 6,(z,,.,), where 7,,,, is the measurement
time. If the Allan deviation scales as 6, (Zmeas) X 1/+/Zmeas» the measurement noise
is dominated by the white frequency noise. Then, in the constraint equations
(53) and (54), 6 = 6,(t,) = 6,(A,), and using the methods described in the
Supplementary Information, we arrive at constraints on the effective coupling
constants (at the 95% confidence level)

1/2
() <5 (80 (@0 Py (A 63
LS50 (%) (az (63)

<402

1/2
g (A)(woR>2 L (A (64)
¢ VN, \¢ h
In Supplementary Table 1, we report the estimated sensitivity of existing and
future clock networks.

Optical cavities. The constraint equations (53) and (54) apply immediately with
F(?f) (equation (61)) and involve the sensitivity coefficient of the rigid spacer cavity:
Ky = K;“’“Y. Another possible detector with a similar high sampling rate is the
three-arm Mach-Zender interferometer*, in which the delays of the laser pulse
are compared while they travel through an optical cavity and an optical fibre.
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Linear couplings. Here, we focus on the linear coupling and assume for simplicity
that one of the couplings dominates; for example, T (1) ~ K,I'). This assumption is
hardly necessary, but it clarifies the role of the sensmVlty coefﬁaents K. We recast
the constraint equation (63) in terms of moduli® dy = (Epl/\/lﬁ)l"gg), in which

Ep = \/hc® /G is the Planck energy

Epoy(A:) (ay A 12 65
dXSK_x\/I\TS( R) WAE (65)

or, in practical units,

oo e (o) ) ) (1) ()

Here, as the reference value for the Allan deviation, we take 6,(1s) % 107, which is
characteristic of modern optical lattice clocks®.

We focus on the electron mass modulus d,,,, and the electromagnetic gauge
modulus d, (X = a in this case). The most stringent limits on these moduli come
from tests for violation of the equivalence principle (see Fig. 1 of ref. **). For the
parameter space that is relevant to clocks and cavities, the excluded regions are
d. 2107 and d,,, 21072

Quadratic couplings. For consistency with prior literature, we rewrite the

constraint equation (64) in terms of the energy scale Ax = 1/4/ ‘rg(z) |,

N\ 1/2 2\ 1/4
w202 VIR() () (i)
y (Bt o tT

Here, we assume that the variation in a fundamental constant X dominates (for

example, l"gf) ~ Ky, T). In practical units,

B22x10° Ky PNV (750) v

Tev ~ 10T (67)
R oo \ 7V (aE N\ A o U4
X\ Mpe * mHz M, (% 107 5)
The most stringent constraints on the energy scales
Amca23 TeV and Ay 210 TeV (68)

come from the bounds on the thermal emission rate from the cores of supernovae®.

The authors of ref. * analysed the emissivity of ¢ quanta due to pair annihilation
of photons and other processes, such as bremsstrahlung-like emission. They
also considered tests of the gravitational force that result in similar constraints;
compared to linear Lagrangians, these constraints are mild, because the
quadratic Lagrangians lead to the interaction potentials that scale as an inverse
cube of the distance, as only the exchange of pairs of ¢’s are allowed (for linear
Lagrangians, the ¢-mediated interaction potentials scale as the inverse distance).
Black-hole superradiance additionally excludes certain narrow mass regions*.
The enumerated constraints do not depend on the assumption that ELFs are the
dominant fraction of dark matter. If ELFs do contribute to dark matter, see ref. *°
for additional constraints, such as those from Big Bang nucleosynthesis.

From the numerical pre-factor in equation (67), it is clear that a generic
ELF search would probe energy scales well beyond the existing astrophysical
and gravity test bounds (Fig. 3).

Magnetometers. Atomic magnetometers, such as those employed in GNOME?, are
sensitive to spin-dependent energy shifts. We consider interaction Lagrangians’
that are linear, £(!), and quadratic, £?, in the spin-0 ELFs ¢,

Lo =11'1"0u9 (69)

L = [T’ (70)

In these expressions, J# = wy"ysy is the axial-vector current for standard model
fermions, and f, and f, are the characteristic energy scales that are associated with
the linear and quadratic spin portals, respectively. The relevant contribution to the
Dirac Hamiltonian can be computed as

a‘cmt al:im
Hiny = -9 71
Y o ”<a(aﬂy7)> ( )
which leads to
1
1) _
Hmag f <}/5 8t¢+2 V¢> (72)
o — 1 (2 gz v
mag f rs gt ¢ (73)
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Here, we use the identities y,y, = 1 and y,y'y; = X' with the spin matrix

o 0
X= 74
(2 2) 74
We compute the expectation value of these Hamiltonians and obtain the
effective spin-dependent interactions,

2(he)??

Hi =~ -2 s vy @
i
(2) 2(”5)2 2

Higg = 7f725~V¢» (76)

q

which are equivalent to the nonrelativistic Hamiltonians that are often seen in the
literature (for example, ref. ?). The terms that contain time derivatives of the ¢ field
are neglected in the nonrelativistic limit for atomic electrons or nucleons, as the y;
matrix mixes large and small components of the Dirac bi-spinors. § is the atomic or
nuclear spin.

The ELF Hamiltonians that are described by equations (75) and (76) can be
related to the general forms of the ELF interactions given in equation (44) through
the following identifications: y; = —fi!, Cy = 202 2wy, y, = _fiﬁ’ C, ~ 4h*cwy,
where we have kept only the leading terms when taking the gradients of ¢ and ¢
Note that the atomic and nuclear structure, as well as geometrical considerations’,
must be taken into account to interpret magnetometer data in terms of couplings
to ELFs, but for the rough estimates presented in this work, we ignore these details.
With these identifications, from equations (53) and (54) and with details found
in the Supplementary Information, we arrive at the constraints on the effective
coupling constants at the 95% confidence level:

VN, VAE

20.4 1/? Ye== 77

SR (VA R 77
VN AE

2>0.1 WP — = —— 78

qu 6m(A) VBT R (78)

Here, 6,,(A)) is the magnetometer energy resolution. A typical GNOME
magnetometer has a bandwidth of ~100 Hz and, integrating over a time A, can
measure the magnetic field with a precision given by’ 6B ~ 100 fT+/s/\/A;.
Therefore,

Om (At) ~ gupdB ~

10718 Y
eVy/s (79)
VA

where g is the Lande factor (which depends on the atomic species used in the
magnetometer) and y; is the Bohr magneton. The prior astrophysical limits on
energy scales are™* f; > 2 X 10° GeV and f, 2 10* GeV. In Supplementary Table 2, we
report the estimated sensitivity of existing and future magnetometer networks.
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