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Planewave Density Interpolation Methods for the
EFIE on Simple and Composite Surfaces

Carlos Pérez-Arancibia

Abstract—This article presents an extension of the recently
introduced planewave density interpolation method to the
electric-field integral equation (EFIE) for problems of scattering
and radiation by perfect electric conducting objects. Relying
on the Kirchhoff integral formula and local interpolations of
the surface currents that regularize the kernel singularities,
the technique enables off- and on-surface EFIE operators to be
reexpressed in terms of integrands that are globally bounded
(or even more regular) over the domain of integration, regard-
less of the magnitude of the distance between the target and
source points. Surface integrals resulting from the application
of the method of moments using the Rao—Wilton—-Glisson basis
functions can then be directly evaluated by means of elementary
quadrature rules irrespective of the singularity location. The
proposed technique can be applied to simple and composite
surfaces comprising two or more overlapping components. The
use of composite surfaces can significantly simplify the geometric
treatment of complex structures, as the density interpolation
method enables the use of separate nonconformal meshes for the
discretization of each of the surface components that make up the
composite surface. A variety of examples, including multiscale
and intricate structures, demonstrate the effectiveness of the
proposed methodology.

Index Terms— Composite surfaces, electric-field integral equa-
tion (EFIE), electromagnetic scattering, method of moments
(MoM), singular integrals.

I. INTRODUCTION
S IS well known, the numerical solution of the classical
electric-field integral equation (EFIE) by the method
of moments (MoM) (also known as the boundary element
method (BEM) in other communities) requires numerical
evaluation of (weakly) singular integrals, typically defined
over planar triangular surface elements [1]. Several analytical,
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numerical, and hybrid procedures have been developed over
the years to numerically evaluate singular integrals in elec-
tromagnetic calculations [2]. The two most well-established
approaches to deal with such integrals rely on either the
so-called singularity extraction/subtraction technique [3]-[6]
or the so-called singularity cancellation technique [7]-[11].
Singularity extraction/subtraction techniques are based on
expressing the integrand as the sum of a simple singular
term corresponding to static (Laplace) Green functions, whose
integral over triangles can be evaluated in closed form, and
a smoother (at least bounded) term whose integral can be
directly computed by means of standard quadrature rules.
On the other hand, singularity cancellation techniques, such as
those based on the Duffy transformation [12] and polar change
of variables [13], rely on a certain coordinate transformation
that effectively cancels the singularity of the kernel, thus pro-
ducing a nonsingular integral that can be accurately evaluated
by means of standard quadrature rules. Recent contributions
on this subject include the development of all-analytic tech-
niques [14] that do not rely on numerical integration.

In turn, the off-surface evaluation of the electric field
potentials—via which the electromagnetic field is retrieved
from the MoM-computed surface current density—involves
nonsingular integrals that can in principle be computed by
means of standard quadrature rules, provided that the target
point is located sufficiently far from the surface charges.
However, as the target point approaches the surface, the kernels
become nearly singular—a term used to denote functions that
possess inordinately large yet not infinite derivatives at a given
point. Arguably, a more relevant situation where nearly singu-
lar integrals naturally occur is in scattering problems involving
two or more obstacles that are very close to each other. Indeed,
some of the integrals present in the MoM discretization of the
(on-surface) EFIE operator become nearly singular in this case,
as integration needs to be performed on one surface with target
points placed on another nearby surface. Given that this is a
time-honored integration problem within the boundary integral
equation community, there are also numerous procedures to
tackle it. For instance, a certain generalization of the Duffy
transformation for nearly singular integrals was introduced
in [15] and [16], and several other techniques in the spirit
of the singularity cancellation technique (that can in fact be
viewed as some kind of adaptive mesh refinement) can be
found in the literature [17]-[22].

This article presents an extension of the planewave den-
sity interpolation (PWDI) method—put forth in [23]-[25]
for the treatment of weakly singular, hypersingular, and
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nearly singular integrals arising in boundary integral equations
formulations of the Laplace and Helmholtz equations—to
the EFIE formulation of problems of scattering/radiation by
perfect electric conducting (PEC) obstacles represented by
simple (either simply or multiply connected) and composite
surfaces. Relying on the fact that both on- and off-surface
electric field potentials can be recast as vector Helmholtz
single-layer operators and potentials, the Helmholtz-PWDI
method enables both singular and nearly singular EFIE inte-
grals to be expressed in terms of integrands that are bounded
or smoother—depending on the density interpolation order—
over the whole surface, independent of the distance between
the target and source points. The resulting PWDI-regularized
integrals can then be numerically evaluated by means of
simple quadrature rules regardless of the location of Green
function singularities. It is worth mentioning that given that
the proposed kernel-regularization procedure operates at the
continuous level, it can be seamlessly used in conjunction
with a variety of low- and high-order discretization schemes
available in the literature [26]-[29], leading to a significantly
simpler treatment of singularities, which ultimately reduces the
associated implementation effort. Furthermore, unlike other
existing singular integration techniques, the PWDI method has
the advantage of being universal, in the sense that the same
simple regularization procedure is used to deal with singular
and nearly singular integrals at the same time. These properties
of the PWDI method make it extremely versatile and easy to
incorporate in any type of formulation without requiring any
specialized approach-dependent techniques. For the sake of
preciseness, in this article, we focus on the classical MoM
based on the Rao—Wilton—Glisson (RWG) basis functions for
representing closed surfaces with planar triangular meshes.
We take advantage of the capability of PWDI to express
on- and off-surface electric field potentials in terms of regular
integrands, to extend the EFIE formulation to problems involv-
ing PEC obstacles modeled as composite surfaces. Unlike
simple surfaces, composite surfaces comprise two or more
simply connected overlapping components corresponding to
boundaries of subdomains that make up the whole object. The
associated integral representation of the electric field based
on the multiple-scattering EFIE formulation thus involves
surface current densities defined on each of the closed-surface
components. Coupled integral equations for those currents
are obtained by directly enforcing the PEC boundary con-
dition on both the exterior part, corresponding to the actual
boundary of the object, and the interior parts where subdo-
main boundaries overlap. An immediate consequence of this
formulation is that it enables the use of nongeometrically
conformal meshes (of the closed-surface components) in the
MoM discretization of the resulting integral equation system.
This property can significantly simplify the geometric treat-
ment of complex PEC structures consisting of several simpler
subparts welded together, as it bypasses the need to construct
a good-quality single-domain mesh (which is, in some cases,
a time-consuming and tedious task). This property of the
multiple-scattering formulation is also particularly attractive
at dealing with problems requiring repeated calculations on
a surface that is subject to changes in the position of some

of its parts, as is the case in some optimal-design prob-
lems [30]-[33]. No remeshing and no recomputation of the
diagonal block of the impedance matrix are required in this
case, by virtue of the translational invariance of the Green’s
function. This extended multiple-scattering EFIE formulation
for composite surfaces shares some similarities with domain
decomposition methods based on boundary integral equa-
tions [34]-[36]. However, the present approach is simpler both
conceptually and computationally, as no direct enforcement of
the continuity of surface currents is required wherever two or
more closed surfaces overlap. In Section VII-D, we demon-
strate the advantages of our composite surface approach by
using it to analyze a monopole antenna reflector array, where
we are able to obtain a significant saving by reusing the mesh
and matrix blocks of a single monopole for all of the elements
in the array.

This article is organized as follows. Section II outlines
the EFIE formulation for the solution of problem of electro-
magnetic scattering by PEC obstacles modeled in terms of
simple (simply or multiply connected) surfaces. Section III
briefly describes the classical MoM discretization of the
EFIE. Section IV then introduces the multiple-scattering EFIE
formulation for composite surfaces. Closed-form and purely
numerical PWDI procedures are presented in Section V.
Details of the implementation of the proposed methodology
are provided in Section VI. Finally, Section VII presents a
variety of numerical examples.

II. PROBLEM FORMULATION

We start off by presenting the problem of time-harmonic
electromagnetic scattering of an incident wave field
(E'™, H"), which illuminates a (possibly multiply connected)
bounded PEC object Q C R3. The total electromagnetic field
(E, H) satisfies the homogeneous Maxwell’s equations

VXxE—ikH=0 and VxH+ikE=0inR*\Q (1)

where k = 27/l = w./ex is the wavenumber, with A
denoting the wavelength, @ denoting the angular frequency,
and € > 0 and x > 0 denoting the electric permittivity
and the magnetic permeability of the medium surrounding €,
respectively. Expressing the total field in the form (E’, H") =
(E°, H*) + (E™, H™), we obtain that the scattered field
(E*, H*) satisfies Maxwell’s equations (1) together with the
boundary condition

AxE =—-aAxE™ on T )

and the Silver—Miiller radiation condition [37]. Per usual,
throughout this article, the symbol fi denotes the outer unit
normal to the surface I' (in what follows, we focus on the scat-
tering problem only, as the radiation problem is analogous).

The classical EFIE formulation of the scattering problem is
derived from an integral representation whereby the scattered
electric field is expressed as

E'(r) = (ED(r) =ik &) — %(&J)(r) 3)
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for r € R?\ Q, in terms of the integral operators

ED)r) = /r G(r.r)I(r) ds’ (4a)

and

&) = V/ G(r,r)Vv,-J(r')ds’ (4b)
r

where G(r, r') = e*"="'| /(4z|r —r’|) is the free-space Green
function of the Helmholtz equation and I' denotes, for the
time being, the boundary of Q. The surface current density J,
which is a vector field tangential to the surface, is then the
unknown we aim to solve for. Enforcing the PEC boundary
condition (2), an integral equation for the unknown surface
currents can be found. To this end, the tangential components
of (3) are directly evaluated yielding the EFIE

EJ=—-axE"™ on T 5)

for the unknown surface current density J, where E = ikE; —
(ik)~'E; is the so-called EFIE operator which is given in terms
of

(E ) () :=0(r) x /r G(r, r')J(r/) ds’ (6a)

and

Ex(r) :=0a(r) x V / G(r,r)V,-J(r')ds’.  (6b)
T

III. MoM
Throughout this article, we focus on the classical discretiza-
tion of the EFIE by means of the MoM using the RWG basis
functions [1]. We thus consider a triangulation of the closed
surface I', which is assumed to be given by the union of N
planar triangles 7; (i.e., I' = U;V’:’l T;) with maximum edge
size h > 0. In order to solve (5), the unknown J is expanded as

N
J)~ D L), (rel) (7)
n=1

in terms of the div-conforming RWG basis functions f,
defined on the N edges of the surface mesh. The expansion
coefficients I,, 1 < n < N, are obtained by substituting the
approximation (7) in the integral equation (5), which yields

N
Z I,LEf, = —A x E™ on T. 8)

n=1

Testing (8) against the curl-conforming basis functions fi x f,,
1 <n < N, the following linear system:

Z1=V ©)

is achieved, where the relevant matrices and vectors are
(I)n = I, (V)m = _<ﬁ x £, A x Einc> = _<fm7 Einc> and
Z =ikZ,—(ik)~'Z with (Z)mn = (Ax £, E;f,), j=1,2.
In detail, the entries of impedance matrix components are [38]

(Zl)m,n:‘/rfm(r)' H/FG(r,r/)fn(r') dS,]dS
=— | V£, G(r,r' )V, -£,(r')ds’t ds (10b
@ =[5 0a0)| [ Gl r) ¥, 1) ] a5 20w

for1 <m,n < N.

(10a)

We note here that the kernels in (10a) exhibit only a weak
(integrable) O(jr — r’|~") singularity. The kernels present
in (3), on the other hand, are smooth but may become
nearly singular as the target point r € R3\ Q approaches
the boundary I'. A similar phenomenon arises in problems
involving two (or more) simply connected domains, say, Q;
and Q, with Q = Q; UQ, and Q; N Q, = ¢, that are very
close to each other (see Fig. 5). Some of the impedance matrix
entries (10a) in this case involve outer integrals over I'j = 0Q;
and inner integrals over I'; = 0€Q,, thus leading to nearly
singular behavior of the kernel present in the inner integral as
the distance |r — r’|, with r € T'; and r’ € ', may become
very small but not zero.

IV. COMPOSITE SURFACES

We have so far dealt with the case where the PEC object Q
consists of a collection of nonintersecting simply connected
domains. Assume now that € is a simply connected domain
that can be represented naturally as the union of several
nonoverlapping subdomains. In order to fix the ideas, let us
assume for simplicity that Q = Q; U Q, with Q; N Q, =@,
but I't N T, # @, where '} = 0Q; and ', = 0Q;, that is,
the two domains € and €, share in common a point, a curve,
or an open surface (see Figs. 7 and 10).

Instead of using the EFIE formulation posed on the bound-
ary of the obstacle 0Q, we prefer to employ an extended
multiple-scattering EFIE formulation posed on the composite
surface I' = I’} U I'; with components I'; and I,. Just
as in the simple-surface EFIE formulation presented earlier,
we express the scattered field E° as (3) in terms of the
off-surface operator £ integrating now over I' = I'j UT, and
featuring a current density function J = [J; J>1T also defined
on I'. The enforcement of the PEC boundary condition (2) on
both I'; and T', yields the multiple-scattering EFIE

Y nc

[E;: E;j Bﬂ — —[E; z gi’”} on T=T,UTl,. (1)
In (11), the electric field operators E;, are defined just as
in (6b) with r € I'; and the domain of integration I';, where
{7, 0} ={1,2}.

It should be noted that the system (11) may become singular
in the case where two composite objects share one or more
edges due to repeated collocated unknowns. This can either
be resolved by judicious removal of each set of repeated
unknowns or more easily by adjusting the meshing of the
surfaces such that no shared edges occur in the final composite
system containing all of the objects.

The main advantage of the multiple-scattering EFIE formu-
lation (11) is that it is amenable to MoM discretizations using
separate triangular meshes on I'; and, respectively, on I'; that
do not conform on I'y N I';. Their MoM discretization leads
to linear systems similar to (9), whose submatrices Z; and
Z» have entries defined in (10a) and (10b), respectively. It is
worth noting here that the MoM discretization of the EFIE
formulation (11) gives rise to additional integration challenges
not present in the classical EFIE formulation. Indeed, the MoM
discretization of the composite surface EFIE formulation (11)
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requires numerical evaluation of nearly singular integrals of
the form

/G(r,r/)f,l(r’)ds’ and /G(r,r/
r.

J I

)V £, (r) ds” (12)

at target points r € I'; N I';, i # j, using meshes on I'; and
I'; that may not conform to each other on I'y NI";. We address
this as well as other integration issues in Section V, where we
show that all the singular and nearly singular kernels arising
in EFIE formulations on simple and composite surfaces can be
regularized using the PWDI method [24], thus enabling the use
of elementary quadrature rules in the practical implementation
of the MoM.

V. PLANEWAVE DENSITY INTERPOLATION

This section is devoted to the presentation of the PWDI
method for the regularization of the kernels associated with
the integral operators in (4) and (6b) discretized using RWG
basis functions.

Throughout this section, we make use of the Helmholtz
single- and double-layer potentials defined, respectively, as

(So)(r) ::/FG(r,r’)go(r’) ds (13a)

and
0G (r, r/)

P p(r')ds’, reR\T

(Do)(r) = /r (13b)

as well as the associated single- and double-layer operators,
defined as

(Se)(r) :=/FG(r,r/)¢(r/) ds (14a)
and
6G(r, r’)
Kop)(r) := / ——p(r')ds’, reT (14b)
r ofn’

respectively. We recall here that potentials and operators are
connected by means of the jump relations [37]

Jim (Sp)(r % 0f) = (Sp)(r) (15)
and
lim (D) (r =+ o) = q’( " 4 Ko)(r), (reT) (15b)

which hold almost everywhere.

The proposed regularization technique relies on two simple

observations.

1) The off-surface EFIE operator £ can be expressed in
terms of a vectorial single-layer potential—referred to
as & in (4a)—and the gradient of a scalar single-layer
potential—referred to as & in (4b).

2) The MoM discretization of the on-surface EFIE opera-
tor E can be expressed in terms of single-layer operators.
In fact, in view of (10a), it is clear that forming
the impedance matrix Z entails evaluation of integrals
corresponding to the Galerkin BEM discretization of the
Helmbholtz single-layer operator.

In what follows, we thus restrict ourselves to describing
the regularization of the single-layer potential (13a), and the
regularization of double integrals of the form:

(v, So) /w(r)/ r,r)

where y and ¢ are scalar densities, which may correspond to
either individual components of the RWG basis functions f,
(in the case of E;) or their surface divergence V; - f, (in the
case of E»).

The proposed kernel-regularization technique relies on inter-
polation of the relevant densities by means of linear combina-
tions of planewaves of the form

ds ds (16)

<I> r ro ZC[(rO) gikde-(ro=r) (17)
(=1
where r' € R and ro € T, with d; € R?, |d;] = 1, 1 <

¢ < L denoting planewave directions, which may or may not
depend on ro € I'. Since this linear combination satisfies the
homogeneous Helmholtz equation

V20, ro) + k2@, ro) =0 for all r' € R?

it follows from the Kirchhoff integral formula [38] (also
known as Green’s third identity or extinction theorem) that
the single-layer potential (13a) can be expressed as [24]:

(Sp)(r) = /1“ G(r,r'){o(r') — @, (r',ro)}ds’
6G(r, r’)

pPY CD(r/, ro) ds’

+lg(r)CD(r,r0)+/ (18)
r
for all r € R3\ T'. Here, ®,(r', ro) =0’ - V'O(r', ry) and the
function 1 denotes the indicator function of the domain Q,
that is, 1o(r) = 1 if r € Q and 1o(r) = 0 if r € R*\ Q.
Note that the last integral above corresponds to the Helmholtz
double-layer potential (13b) applied to the interpolant @ (-, ry).
Therefore, using the jump relations (15), the following
equivalent formula for (16) is found:

1
.80y = 5 [ w0 rds
—l—/ y/(r)/G r,r') {q) (r')
/y/(r)/ oG (r.r) (r',ro) ds’ds.

Note that, up to this point, we have treated ro € T" as a
free parameter that we can choose at our convenience. The
key idea underlying the proposed regularization technique is
that, in order to achieve bounded or even smoother integrands
in (19), it suffices to select ro = r and require @, (-, r) and
@ (-, r) to approximate ¢ and the zero density, respectively,
at the point r’ = r (precisely where the integral kernels
become singular). This is achieved here by asking ®(-, r)
to satisfy certain pointwise interpolation conditions. In detail,
letting M,, M, > 0, these conditions are

— @, (r',ro)} ds'ds

19)

lim 6/;1(1)(r', r) =0 V| <M, (20a)
r'—r
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and

lim "{ {o(r') = @u(r',r)} =0 Via| =M,  (20b)
where 0, with o = (a1, 22) € N? and |a| = a1 +ay, denotes
the |a|th order tangential derivative on " (with respect to r’).

It follows from (20) that the integrands in (19) satisfy:

Glr ) o) — o, ()| < I =r " @1a)
8G(I‘,I‘/) / AR
T(I)(r,r) < ’r—r’M (21b)

in a neighborhood of r € TI', provided that ® fulfills the
conditions (20). This means that the integrands in (19) become
bounded or even smoother functions of r’ € T whenever
M, M, > 0 and, thus, their integral can be approximated
by standard quadrature rules.

Note that in the derivations presented earlier, we have
assumed that the scalar density ¢ is sufficiently smooth in
a neighborhood B of the interpolation point r € I'. Con-
currently, we have assumed that there exists a sufficiently
smooth local parameterization X : D ¢ R> - B C T
around r € B so that the tangential derivatives of a density
function ¢ : I' — C exist and are given by ¢ (r) =
(@1 /6EM) (0% /&) p (X (&1, &)), with @ = (a1, az). In gen-
eral, none of these assumptions hold globally. The scalar
components of the RWG basis functions, for example, are not
even continuous on the whole surface I'. Therefore, special
care has to be taken in selecting quadrature points for the
evaluation of the outer integrals in (19), to make sure that
these assumptions are actually satisfied at those points r € I'
(see Section VI-A for details).

Similarly, the regularization of the nearly singular kernels in
the on-surface integral operators & in (3)—at points r € R*\T
close to but not on I'—uses the fact that £ (resp. &) can
be expressed in terms of the Helmholtz single-layer potential
(resp. gradient of the single-layer potential) applied to a vector
(resp. scalar) density function. Regularization of the kernels,
in this case, can be effected by selecting ro € I' in (18) as
the projection of the target point » € R*\ T' on the surface,
i.e., ro = argmin, _|r—r’| [24], [25]. Doing so, the integrands
in the single-layer potentials present in & satisfy

G, ) o (r) = 0, r)}| S [ro—r'|™
6G(r,r/)
a /

(22a)

o(r',ro)| S fro—r'|"" (2b)

while the kernels in the gradient of the single-layer potential
present in &, satisfy

9010l ) il <=1 s
ér r)(D(r’,ro) < |r0—r’|M'_2. (23b)

Exactly, the same strategy can be applied to the regulariza-
tion of the kernels in integrals of the form (12) arising in the
multiple-scattering EFIE formulation. The optimal point rg
in the corresponding regularized form of the single-layer
potential is ro = argmin, . [r —r’| where r € I'; in this case.

The actual practical procedure used to select the regularization
point ro used in the MoM discretization of the EFIE is
discussed in Section VI-A.

Sections V-A and V-B present the procedures to construct
planewave density interpolants (17): a low-order (M; =
M, = 1) analytical procedure and a higher order least-squares
procedure.

A. Closed-Form PWDI

In order to construct the planewave density interpolant (17),
we rewrite it as

o(r,r) = Z Lo (r)®,(r',r)

Ja|=0,1

(24)

where each function @, for |a| < 1 is a linear combinations
of planewaves. Therefore, according to the interpolation con-
ditions (20) for M} = M, = 1, the expansion functions in (24)
must fulfill

I, iff=a
0, ifpf#a
at r' = r for || < 1. As it turns out [24], explicit analytical

expressions for these functions can be derived. Indeed, letting
7;, j = 1,2, denote linearly independent unit surface tangent

8fd>a (r,r)=0 and Gftl),m (r,r)= [ (25)

vectors at r € I', and further assuming that 7, - T, = 0 and

71 X T, = n, we have that

Q0,0 (', 1) == % sin(kf - (r' —r)) (26a)

D10 (r/, r) = % sin(% . (r’ — r)) sm(li;zl (r’ — r))
(26b)

Qo (r,r) == %sin(% (= r)) sin(k—J; (r = r))
(26¢)

satisfy (25) and, therefore, (24) satisfies the point condi-
tions (20) for the interpolation orders, we were looking
for [24].

B. Numerical PWDI

An algebraic approach to find the coefficients {c,(r)}= o Lin
the PWDI expansion (17) at a given point r € I" is presented
in this section. Unlike the analytical approach, a collection of
planewave directions {d}.=F that are independent of the point
r € I' is used. While the desired interpolation orders M,
j = 1,2, and the number L of planewave directions are
parameters in the algorithm, the planewave directions them-
selves can be selected either randomly or uniformly from the
unit sphere in three dimensions (an appropriate selection of
planewave directions is provided in Section VI-B).

In order to find the desired expansion coefficients, one has
to impose a number D; = (M, 4+ 1)(M; +2)/2 of independent
conditions (20a) as well as D, = (M, +1)(M>,+2)/2 indepen-
dent conditions (20b), which have to be satisfied exactly. Con-
sequently, a solvable linear system for the coefficients could
be produced, provided that the number of planewave directions
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satisfies L > D; + D,. In order to form such a linear
system, we proceed to sort the indices a = (a, ay) satisfying
la] = a1 + ap < max{M;, M} by introducing a bijective
mapping f : {|la| < max{M;, M>}} — {1, ..., max{Dy, D>}}.
Therefore, letting b(r) € CP, where (b(r))n =0,1<n<D
and (b(r)), = ol ‘o o(r), 1 < n < D,, we have that
conditions (20) lead to the linear system

A(r)e(r) =b(r) 27)

for the coefficient vector ¢(r) = [c1(r),...,c.(r)]” e CL,
where A(r) is a (D; 4+ D,) x L complex-valued matrix that
depends on the planewave directions and the local geometry
of the surface I" at the point r. Note that we have assumed
in these derivations that the first D; rows of A(r) correspond
to the conditions (20a) on ®(-, r), whereas the remaining D,
rows correspond to the conditions (20b) on @, (-, r) sorted
according to the bijective mapping f.

As it turns out the matrix, A(r) can be easily constructed at
points where the surface is locally flat [24]. In fact, for interpo-
lation orders M; = M, = 3, the column of the A(r) associated
with the planewave direction d, is given by [a,(r), r2a,(r)]”,
where a, = [1, 7,12, 112, 7172, 122, 113, 11212, 11122, 123] with
7y =ikd¢ T, 70 = ikd;-T, and 73 = ikd, -1, and the bijective
mapping defined by f(0,0) =1, f(1,0) =2 f(0,1) = 3,
f2,00 =4, f(1,1) =5, f(0,2) =6, f(3,0) =
f2,1)=8, f(1,2) =9, and £(0,3) = 10.

VI. IMPLEMENTATION DETAILS
A. Quadrature Rule

This section describes a straightforward quadrature rule for
numerical integration over triangulated surfaces that will be
used in the approximation of the regularized surface integrals
produced by the PWDI method.

First, we focus on the double integral (16), which upon
discretization of the surface I' into planar triangles becomes

N
(v, Sp) Z / y (r)(Sp)(r) ds (28)
with
Np,
(Sp)(r) = Z / K(r,r')ds (29)
j=1"T
where the regularized integrand above is given by
a /
K(rr) = 6. o) - 0o} + ZE0 Do ),

Note that the term involving @ (r, r) has been omitted here as
it has been already assumed that @ (-, r) interpolates the zero
density at r € T'.

We recall now that the construction of @ requires both
the scalar density ¢ and the surface I' to be smooth in a
neighborhood of r € I'. In order to fulfill these conditions,
we utilize the (interior) quadrature points [39]

l<m<3, 1<i<N,

> (1430,0)
b, = Z%vé’, (30)

=1

to evaluate the integrals on the triangles 7;, where v , 1 <
¢ < 3, denote the vertices of 7;. Application of this quadrature

rule yields the following approximation:

ZZ )

m=1

(Sp) (%) 31)

(v, Sp)

of (28), where A; is the area of 7;. Given that the quadrature
points ) lie in the interior of 7;, we use for the computation
of the planewave interpolant @ the unit normal f to 7; and
orthogonal unit vectors T,, { = 1, 2, tangential to T;.

The values of the single-layer operator at the quadrature
points f)f,’;), 1 < m < 3, which are needed in (31), are
approximated as

N/, Nh

(Sp)(r) = Z/ (r,r')ds’ ~Z ZK r,v,(,’l)

for r € I', using the same interior-point quadrature rule, but
any other sufficiently accurate quadrature over triangles can
be used.

Similarly, the regularized single-layer potential (18) is
approximated as

(32)

Np N, 3

Son=3 / Kolr,r)as =~ 32 203 Kol 3) 33)

i=1 m=1
for r € R*\ Q, where the regularized integrand in this case
takes the form

G(r,r'){o(r) = ®u(r',ro)}+ —=—

Ko (r, r/) =
(34)

with the interpolation point ro € I' selected as explained
in what follows. For any given target point r, we first find
the surface triangle 7;- whose center is the closest to the
point r. The interpolation point is then selected as ry = vfn*) ,
where v,(n* is the (interior) quadrature point in 7;- that is the
closest to r. Accordingly, the construction of the planewave
interpolant uses the unit normal and tangent vectors to Tj-.
Note that this choice of r( ensures that the limit (15a) holds
for the discretized single-layer operator (32) and potential (33).
The gradient of the regularized single-layer potential—which
is also needed for the computation of the off-surface operator
E—is approximated following the same procedure applied to
VK instead of Kj.

Finally, we consider the case in which I' = T'; U T, is
a composite surface in the sense defined in Section IV. The
scalar density ¢ in this case has two components: ¢; and ¢,
defined on I'; and I',, respectively. Letting that §; denotes
the regularized single-layer potentials defined by integration
on the closed surface I';, j = 1,2, we have that the whole
potential naturally splits as Sp = S;¢; + S2¢5 into two terms,

in R?\ Q and I'—following the procedure described earlier
using separate meshes for I'; and I',. These potentials are also
utilized to compute the double integrals for the construction of
the Galerkin impedance matrix. In fact, letting that y; and y»
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denote the components of y defined on I'; and I',, we have

(¥, Sp) = (w1, (S202)In,) + (2, (S190)]1,)
+(y1, Sip)Ir,) + (w2, (S202)In,)
where each of the integrals (y;, (S;¢;)|r,) over I'; (i, j =1, 2)

can be approximated using the interior-point quadrature rule
described earlier.

(35)

B. Selection of Planewave Directions

As was discussed in Section V-B, the high-order algebraic
approach for the construction of the planewave interpolant
requires the explicit selection of L > D; + D, planewave
directions where Dy = (M, + 1)(M; + 2)/2 and D, =
(M+1)(M3+2)/2 depend on the interpolation orders M; > 0
and M, > 0. We have observed in numerical experiments
that the minimal choice L = D; 4+ D, results in a square
matrix A(r) that is very ill conditioned for some points r € T'.
Therefore, we recommend in general to select L > D + D,
in order to sufficiently enrich the column space of A(r) so
that its pseudoinverse, denoted by A'(r), becomes computable.
In practice, large enough O(M;M,) numbers of planewave
directions selected from a “uniform” spherical grid give rise to
numerically invertible matrices A(r)A*(r) from where A" (r)
can be computed. In detail, the planewave directions for the
construction of numerical PWDI interpolants used throughout
this article are given by (cos®,, sin ¢,, sin @, sin ¢,, cos ¢,),
where 6, = 2x(m — 1/2)/Ly for m = 1,...,Ly and
¢ = wn — 1/2)/Ly for n = 1,...,Ls, with L =
Ly x Ly = 2 x 2,4 x3,5x4,6 x5 for interpolation
orders max{M;, M>} = 0, 1, 2, 3, respectively.

C. Tangential Derivatives of RWG Basis Functions

The RWG basis functions associated with the mesh edges
are defined as [1]

L., .
+ _
2AF (v

0, r¢ Tni

r), reT}

f,(r) = (36)

where 7,7 and 7, denote the triangles of areas A, and A,
respectively, that share the nth edge of length L,.

The tangential derivatives of the RWG functions can be eas-
ily computed by differentiating (36) and taking the dot product
with the tangential unit vectors f}t, ¢ =1, 2, associated with
the corresponding triangles 7. We thus have

Ly

¢Zf—$ff(r), reT*, a=(1,0)
@) =122 i0), rent a=01) ©7
n
0, rg TF or |a] > 1

and it also follows from (37) that the tangential derivative of
the surface divergence is given by:

n

:FA—;I:,
0, réTF orlal > 0.

reT*, a=(0,0)
38 (Y, - £)(r) = "

error (far field)

—6— non-smooth
— — 2nd-order slope | |
—»— smooth

— — 2nd-order slope

108 |

L . L . L | s
0.1 0.15 0.2 025 0.3 0.4 0.5

h

Fig. 1. Convergence of the far-field errors in the scattered field computed by
means of the MoM using the analytical PWDI kernel-regularization procedure
of Section V-A and the interior-point quadrature rule of Section VI-A.

VII. VALIDATION AND EXAMPLES

This section presents a variety of numerical examples to
validate and demonstrate the capabilities of the PWDI method.

In what follows, we let E° denote the MoM-computed
scattered electric field and E™ denote an either exact or
highly accurate reference solution. The far- and near-field
errors shown in some of the validation examples below are
then computed by means of the formula

error = max‘ES (r) — Emf(r)’/ max‘Emf(r)’ (38)
res§ res

with § denoting a set of sample target points. The set S used
in (38) depends on the kind of error—in the far or near field—
that is to be measured. The far-field errors presented in the
error plots in Sections VII-A and VII-B, in particular, are
computed by taking S as the set of mesh nodes corresponding
to a large sphere of radius r = 100 m centered at the origin,
which encloses the surface I under consideration.

A. Single Surfaces

The examples of this section have been designed to validate
the proposed methodology when applied to the solution of
standard problems of scattering by single PEC obstacles
bounded by closed and simply connected surfaces. The fre-
quency f ~ 75 MHz (corresponding to the wavenumber
k = 0.5z rad/m and the wavelength 4 = 4 m) is used
in the examples of this section. We consider both a smooth
surface and a more general Lipschitz surface featuring a
reentrant corner at the origin. Specifically, these surfaces are,
respectively, a sphere of radius 1 m centered at the origin
and the boundary of the domain corresponding to a cube
centered at the origin of side length 1 m without the subdomain
contained in the first (+++) octant (see the inset in Fig. 1).
The analytical PWDI approach of Section V-A is utilized here,
but almost identical results are also obtained using the higher
order algebraic procedure presented in Section V-B. This
might be because the Galerkin approximation errors dominate
over the errors introduced by the numerical evaluation of the
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Fig. 2. Convergence of the near-fields errors in the solution of a scattering
problem from (a) smooth and (b) nonsmooth closed surface. The near-fields
errors are empirically estimated using (38) evaluating the fields at open
surfaces S that are parallel to the closed surfaces I' under consideration.
The evaluation surfaces S, which are placed at a distance J from the closed
surfaces, are depicted in blue in the inset figures.

PWDI kernel-regularized integrals. Fig. 1 shows the far-field
errors obtained for various mesh sizes A (in meters). Clearly,
the expected second-order convergence of the far-field errors
(i.e., error o< h?) is observed in both cases. These errors were
measured by means of (38) with an exact closed-form solution
used as the reference E™. Such an exact solution is manu-
factured by setting the dipole E"™(r) = —V x {G(r, r)p},
located at a point r’ € Q inside the closed surface, as the
incident electric field. Indeed, it can be shown that the (unique)
scattered electric field solution of the scattering problem is
given by E*(r) = V x {G(r,r)p} (r € R*\ Q) in this
case. The polarization vector p = (1,1,1) and the dipole
location r’ = (—0.1, —0.1, —0.25) were used in both smooth
and nonsmooth cases considered.

Fig. 2, on the other hand, shows the near-field errors
corresponding to the same example problems, which were
produced by means of (38) with sample target points S on
evaluation surfaces that are “parallel” to I" and placed at a
distance ¢ > 0 from I'. These evaluation surfaces are shown
in blue in the inset of Fig. 2. The higher order interpolation

—}— composite surface |4
—O— single surface
— — 2nd-order slope

&

103 . . . . L
0.1 0.15 0.2 0.25 0.3
h

Fig. 3. Far-field errors in the scattered fields produced by the proposed
methodology applied to both the classical single-surface and the novel
multiple-scattering EFIE formulations for various mesh sizes /.

procedure of Section V-B, with interpolation orders M; =
M, = 3, is used here. Note that according to the estimates (22)
and (23) interpolation orders M;, M, > 1 are needed in
order to effectively regularize the off-surface EFIE operator
& from where the scattered electric field is retrieved. As is
well known, the accuracy of the MoM-produced off-surface
EFIE operator depends not only on the distance of the target
point to the surface but also on the local mesh size 4 near
the target point. Therefore, in order to account for the joint
effect on the near-field error of these two variables, we set
the evaluation surfaces at various distances 0 from I' with
0 being selected proportional to the mesh size h. As the
results show, nearly second-order convergence of the near-field
errors is achieved in all the cases considered. Significant
accuracy deterioration is observed, however, for any fixed &
as 0 becomes smaller. This deterioration is more substantial
in the case of the nonsmooth surface. This is explained by
the fact that the limited smoothness of the EFIE solution J
at and around corners and edges has a direct impact on the
effectiveness of the interpolation procedure.

B. Composite Surfaces

In our next example, we consider a composite sur-
face I' formed by two overlapping surfaces I'j = 0Q; and
I, = 0Q;,. Specifically, these are the nonsmooth surface I’
of the previous example—which is rendered in turquoise in
the inset of Fig. 3—and the boundary I, of a cube Q, of
side length one contained in first octant—which is rendered
in orange in the inset of Fig. 3. We use here the incident
field E"® given by the superposition of two dipoles placed at
ry = (—0.1,0.1,-0.25) € Q; and r; = (0.6,0.6,0.75) €
Q, with polarizations p, = (1,1,1) and p, = (1,—1,1),
respectively. As in the previous example, the associated scat-
tering problem has an exact closed-form solution given by
E‘(ry = V x {G(r,r}))p, + G(r,r})p,} that was used
in (38) as the reference field to produce the error curves
in Fig. 3. Both single- (standard) and multiple-scattering EFIE
formulations—posed on 6(Q; U Q;) and on ' = I'; U Q,,
respectively—are discretized and solved by means of the
PWDI kernel-regularized MoM, which makes use of just one
surface mesh of 8(Q; U ) in the single-surface formulation,
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and nonconformal overlapping surface meshes for I'; and
I'; in the multiple-scattering formulation. The convergence
results at f ~ 75 MHz (k = 0.5z rad/m) are presented
in Fig. 3, which displays the far-field errors produced by
the two approaches for various mesh sizes . The analytical
PWDI procedure of Section V-A was used in this example
(the higher order procedure of Section V-B produces almost
identical results). Nearly, uniform meshes of all the surfaces
involved where used in this example (no mesh refinement was
performed around edges or corners). As can be observed in
this figure, the second-order convergence of the far-field errors
is obtained as & — 0O for both single- and multiple-scattering
EFIE formulations and, furthermore, excellent agreement of
the two is observed.

Keeping the PEC structure of the previous example,
we consider now the problem of scattering of the planewave
E™(r) = (p x d)e*" with p = (0,0,1), d = (0,1,0)
and f ~ 0.3 GHz (k = 2z rad/m, 4 = 1 m). Once again,
for validation purposes, the two single- and multiple-scattering
EFIE formulations are used, in which nearly uniform meshes
of size h ~ 0.1 m = A/10 are utilized. The resulting surface
currents are shown in magnitude format in Fig. 4(a) and
(b) corresponding to the EFIE solutions obtained using single
conforming and composite nonconforming surface meshes,
respectively. Note that the large current densities around the
edges of the structure are well captured by the two solution
approaches. The associated radar cross sections (RCSs) are
shown in Fig. 4(c) at zero elevation angle, where they are
also compared against a reference RCS obtained using a
significantly refined single conforming surface mesh (h =
0.075 m). As can be seen in that figure, the three RCSs are
almost indistinguishable.

Next, we consider an even more challenging PEC structure
involving three touching spheres: I'j, I';, and I'; of radii r; =
0.5 m, r, = 0.4 m, and r; = 0.6 m that are centered at ¢ =
(—0.5,0,0), c2 = (0.4,0,0), and ¢3 ~ (0.0667, 0.9428, 0.0),
respectively. We first estimate the numerical errors using (38)
by manufacturing an exact solution of the scattering problem.
This is done in this case by placing dipoles inside each one of
the corresponding spheres, at r; = (—0.45,0.05, 0.125), r}, =
0.36, —0.04, —0.1), and r; = (0.1267, 1.0028, 0.06), with
associated polarizations p; = (1, —1,1), p, = (1,1, 1), and
p3 = —p,. As expected, the empirically estimated far-field
errors, which are presented in Table I, exhibit second-order
convergence as 1 — 0. The three meshes used in each one
of the examples reported in the table are approximately of the
same size h. No mesh refinement of any kind was used.

Once we have validated the effectiveness of the PWDI
procedure for this challenging PEC structure, we move on
to consider a more realistic scattering problem in which a
planewave E"(r) = (p x d)e*", with p = (1,1,1),
d=1(0,1,0),and f ~ 0.3 GHz (k = 27 rad/m and A = 1 m),
illuminates the PEC structure. The results for this case are
presented in Fig. 5. Surface meshes of approximately the same
size h ~ 0.1 m = 1/10 are used in this example. Fig. 5(a)
shows the real part of the three Cartesian components of the
total electric field E = E™ + E* on the plane containing
the centers of the three spheres, which were produced by

@

0.4 |J] 2
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o Single surface

ol % x  Composite surface |+
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Azimuth angles (degrees)
Fig. 4. Comparison of the single-surface and the multiple-scattering EFIE
formulations for the solution of a problem of scattering. (a) Magnitude
of the surface currents corresponding to the single-surface formulation.

(b) Magnitude of the surface currents corresponding to the multiple-scattering
formulation. (c) Bistatic RCSs at zero elevation angle.

TABLE I

FAR-FIELD ERRORS RESULTING FROM A CONVERGENCE TEST
FOR THE PEC STRUCTURE SHOWN IN FIG. 5 COMPOSED
OF THREE TOUCHING SPHERES

1.01 137 1.64 1.87
136 235 294 3.99

0.69
0.70

2.17
5.78

2.67
6.99

4.26
24.8

h (x10)
error (%)

direct evaluation of the off-surface operator £ after being
regularized by the algebraic PWDI procedure of Section V-B
with M} = M, = 3. As expected, a weak shadow appears
in the wake of the PEC structure. Fig. 5(b), on the other
hand, shows the surface currents (in magnitude format) at and
around the touching points on each one of the three spheres.
Finally, Fig. 5(c) shows the associated RCSs together with a
reference RCS, which was produced using finer meshes of size
h = 0.075 m of the three spheres I'j, I';, and T';.

C. Comparison of the PWDI With Existing Methods

In order to further validate the proposed PWDI
kernel-regularization procedure, we present here a comparison
of the analytical PWDI method with both the classical Mie
series solution [42, Sec. 11.8] and the popular Duffy-type
regularization technique put forth by Sauter and Schwab
(SS) [41, Sec. 5]. In detail, we consider the problem of
scattering of a planewave off of a PEC sphere of radius
a = /2 = 1 m. The problem is solved by means
of the analytical PWDI method and a straightforward
in-house implementation of the SS regularization where
a total of 16 and 81 Gauss quadrature points are used
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Fig. 5. Electric field and surface currents corresponding to the scattering of a
planewave from a PEC structure comprising three touching spheres, computed
using the PWDI methodology. (a) Plot of the three components of the total
electric field on the xy plane. (b) Magnitude of the currents on each of the
spheres. (c) Bistatic RCSs at zero elevation angle.

to numerically evaluate the resulting SS-regularized 4-D
Galerkin-BEM integrals associated with the singular element
interactions. Fig. 6 shows both the CPU times required
to form the impedance matrices together with the relative
monostatic-RCS errors (measured with respect to the exact
value o obtained from the Mie series solution) for each of
the methods considered.

Next, in order to establish the actual accuracy with which
singular integrals are computed using the PWDI method,
we compare, for the same spherical meshes, the diagonal
elements in the impedance matrix Z produced by the PWDI
method, with the corresponding entries of the matrix Z™f
produced by the SS technique using a 1296-point Gauss
quadrature rule. Nonsingular integrals in Z™ are, on the
other hand, computed using a six-point Gauss quadrature rule
for triangles. We note that the latter matrix entries can be
assumed to be exact since their integration errors are compa-
rable to machine precision. Table II shows the relative errors:
€ = MaXj<p<N |(Z)n,n - (me)n,nl/maxlfan |(Zref)n,n|’ e =
maxj<p<n |1, — I,fefl/maxlfan |Iff|, ¢ =16 —ol|/o, and
é = |6 — o|/o, in the diagonal of the PWDI-matrix,
PWDI-computed currents (/,), PWDI-computed monostatic
RCS (), and SS-computed monostatic RCS using the afore-
mentioned 1296-point Gauss quadrature rule (6 ), respectively,
for various mesh sizes 7 > 0. The results presented in Fig. 6

=)

—x—PWDI
—8—SS-16
—A—SS-81

— — O(N?) slope
—x—PWDI
—£=—S8S-16
—A—SS-81

— — O(N™!) slope

D

CPU time (s)

I0II0 §HY Orjejsouomr

=)
o

e

324 507 693 930 1179 2202
number of edges (V)

4560 7842
Fig. 6. Blue: time required to form the EFIE matrix using the analytical
PWDI approach and using the SS [41] approach in conjunction with a 16-point
(SS-16) and an 81-point (SS-81) Gauss quadrature rule. Red: errors in the
monostatic RCS resulting from the three methods, which are measured with
respect to the value obtained from the Mie series solution.

TABLE 11

INTEGRATION ERRORS IN THE DIAGONAL ENTRIES OF THE
PWDI-CoMPUTED EFIE MATRIX (¢) AND CORRESPONDING ERRORS
IN THE SYSTEM SOLUTION (¢). ERRORS (MEASURED WITH
RESPECT TO THE MIE SOLUTION) IN THE MONOSTATIC RCS
COMPUTED USING THE PWDI APPROACH (¢) AND
USING A HIGHLY ACCURATE SINGULAR
INTEGRATION METHOD (&)

h (x10) | 434 3.62 312 272 198 137 105
e (%) 0.1rr 0.10 009 0.07 0.07 0.04 0.03
e (%) 065 047 064 034 029 0.18 0.20
€ (%) 102 756 7.05 438 325 124 072
é (%) 102 739 693 428 322 123 071

and Table II demonstrate the competitiveness of the PWDI
method in terms of both accuracy and efficiency. In particular,
we observe from the results in Table II that the proposed PWDI
regularization using a simple and inexpensive second-order
three-point Gauss quadrature rule yields more than three digits
of accuracy in evaluating the singular EFIE integrals, which
results in a slightly smaller level of accuracy in the solution
of the full linear system. We verified that the accuracy of
this proposed PWDI method matches that of the SS approach
using an 81-point quadrature while requiring less than half
the time to compute in some cases considered. Furthermore,
these results indicate that the solution accuracy is limited
fundamentally by the planar triangular geometric modeling of
the surface and the classical low-order RWG basis expansion
functions utilized.

D. Other Examples

This section is devoted to demonstrate the capabilities of
the proposed PWDI methodology at dealing with scattering
by more realistic structures, for which the multiple-scattering
EFIE formulation can be remarkably advantageous. It includes
two example problems corresponding to a multiscale city-like
PEC structure and another PEC structure whose complex
shape is identical to that of the Anacleto Angelini Innovation
Center Building at PUC’s San Joaquin campus in Santiago,
designed by the Pritzker prize winner architect, Alejandro
Aravena.

1) Multiscale Object: We start off by considering a city-like
PEC structure featuring six small-scale building-like struc-
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(a) Single surface

Composite surface
(refined)

Composite surface
(coarse)

Fig. 7. (a) Mesh of a single surface representation of a city-like multiscale
structure. (b) and (c¢) Nonconformal meshes of the two-part structure; the
small-scale building-like blocks (depicted in orange) and the large-scale
ground-like structure (depicted in light blue). The ground mesh displayed
in (a) is locally refined around the base of the building so as to match the
mesh size of the small-scale structures.

tures, which are shown in Fig. 7. The composite surface EFIE
formulation enables in the case the solution of the problem
using separate nonconformal meshes for the ground structure
and for each one of the buildings, with mesh sizes adjusted
according to the individual subdomain scales. This approach
has in principle three main advantages over the standard
single-surface EFIE formulation. First, it significantly reduces
the overall number of degrees of freedom (and, consequently,
reduce the size of the system matrix), if no local refinement
of the large-scale surface is used around the edges at the
base of the smaller scale subdomains (buildings). Second,
it significantly simplifies the mesh processing of the geometry,
as small-scale subdomains can be meshed separately and then
be placed wherever is needed on the large-scale surface. Third,
the technique can be attractive for repetitive modeling and
simulation, as it allows to effectively separate geometrical
details of interest from the rest of the geometry of the problem.
Consequently, the diagonal blocks of the system matrix, cor-
responding to self-interactions of the composite surface parts,
do not need to be recomputed when the individual surface
parts undertake a rigid (Euclidian) transformation.

ol Single surface

o0 Composite surface (refined)

x  Composite surface (coarse)
: T T

0 50 100 150 200 250 300 350
Azimuth angles (degrees)
Fig. 8. Bistatic RCSs corresponding the solution of the problem of scattering

of a planewave from the city-like PEC structure shown in Fig. 7, at zero
elevation angle. Inset: corresponding view of the 3-D far-field pattern.

We solve here the problem of scattering of a planewave
E™(r) = (p x d)e™" with f ~ 0.6 MHz (k =
27/500 rad/m and A = 500 m), d = (4,0,—1)//17,
and p = (1,1,1), using both the standard and the
multiple-scattering EFIE formulations. The algebraic PWDI
kernel-regularization procedure with orders M; = M, = 3 was
used in the numerical discretization of the two formulations;
almost identical results are obtained using the analytical PWDI
procedure. Two different meshes for the ground structure are
utilized, a refined mesh around the base of the buildings,
shown in Fig. 7(b), and a coarse mesh, irrespective of the
presence of the buildings, which is shown in Fig. 7(c). The
standard EFIE formulation, on the other hand, is discretized
using the (conforming) mesh shown in Fig. 7(a).

The bistatic RCSs (at zero elevation) resulting from the
solution of each one of the problems comprised in this example
are presented in Fig. 8. The corresponding 3-D far-field pattern
E®(#) = 47 lim},| oo |r|[*|E*(r), with # = r/|r|, is shown in
the inset of Fig. 8. As can be observed in this figure, a good
agreement among the three RCSs is achieved, though slightly
more accurate results are obtained using the locally refined
mesh of the ground structure, especially around the 250° and
0° azimuth and elevation angles, respectively. Given the scale
differences, the resulting surface currents around the base of
buildings might not be well resolved when the coarse ground
mesh is used, and this ends up introducing errors that are
mitigated using local refinement. It is worth mentioning that
although slightly less accurate, the size of the linear system
matrix resulting from using the coarse mesh (12354 x 12354)
is remarkably smaller than the ones resulting from the locally
refined mesh (15744 x 15744) and the single (conforming)
mesh (17415 x 17415).

We now look into the issue of whether the impedance
matrices resulting from the MoM discretization of the
multiple-scattering EFIE formulation on composite surfaces
have spectral properties and condition numbers similar to those
resulting from the EFIE formulation on a single surface when
applied to the same problem. In order to address this question,
which is relevant for the design of effective precondition-
ers [43]-[47] for the solution of the linear system (9) using
accelerated iterative solvers [48]-[52], we present Fig. 9(a),
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Fig. 9. (a) Eigenvalues of the impedance matrices corresponding to the
composite- and single-surface EFIE formulations for the geometry shown
in Fig. 7. (b) Eigenvalues of preconditioned impedance matrix corresponding
to the composite surface.

which displays the eigenvalues of the impedance matrices Z,
corresponding to the single and composite surface represen-
tation of the citylike structure in Fig. 7. As can be seen
in Fig. 9(a), similar eigenvalue clustering patterns are observed
for the two surface representations, with eigenvalues accumu-
lating on the real axis and around the origin. This suggests that
Caldero6n-type preconditioners should in principle improve the
convergence of Krylov subspace linear algebra solvers when
applied to matrices associated with the multiple-scattering
EFIE formulation used on composite surfaces. The matrix
condition number in the infinity (resp. one) norm, on the other
hand, which amounts to x,(Z) ~ 362 (resp. x;(Z) =~ 307)
for the composite surface and to ko (Z) & 235 (resp. k1(Z) =~
425) for the single surface, is similar in this example. How-
ever, larger condition numbers are in general obtained for
composite surface representations. A natural preconditioner for
the multiple-scattering EFIE formulation is the block-diagonal
proconditioner resulting from directly inverting the matrix
blocks corresponding to the closed-surface components of the
composite surface. We assess the effectiveness of this precon-
ditioner in this example problem by applying GMRES [53]
directly to the linear system resulting from the EFIE formu-
lation applied on the single-surface and to the preconditioned
system corresponding to the multiple-scattering EFIE formula-
tion applied on the composite surface. For a tolerance of 1074,
GMRES required 982 iterations in the single-surface case
and just 33 iterations in the preconditioned composite-surface
case. The eigenvalues of the preconditioned system are shown
in Fig. 9(b). The effective and efficient preconditioning of
impedance matrices resulting from the multiple-scattering

-1.5 1.5

(©)

Fig. 10. Example of an actual structure whose surface can be easily modeled
using a composite nonconforming surface mesh consisting of 16 rectangular
blocks. (a) Innovation Center building at PUC, Chile. Credit: ELEMENTAL
(Nina Vidic). (b) Composite-surface model of the Innovation Center building
using nonconforming meshes. Each one of the 16 rectangular blocks making
up its intricate facade was meshed separately using Gmsh software [40].
(c) Real part of the total electric field on the middle cross section (z = 22.5 m)
of the building.

EFIE formulation on composite surfaces is a matter of ongoing
research.

2) Innovation Center Building: This example considers the
intricate geometry of the building shown in Fig. 10(a) whose
facade consists of 16 rectangular blocks of various sizes. The
problem of scattering of the planewave E™ (r) = (p xd) e,
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Fig. 11. Bistatic RCSs corresponding to the scattering of a planewave from
the building shown in Fig. 10 at zero elevation angle.

with f ~ 17.8 MHz (k = 2z /1), 2 = 19 m), d =
4,0, —1)/+/17 and p = (1,1, 1), from this structure is here
solved by means of both the composite- and the standard-EFIE
formulations using the MoM with PWDI kernel-regularized
operators and RWG basis functions. The overall size of the
composite nonconforming (resp. single conforming) mesh is
h = 2.34 m (resp. h = 2.49 m), which leads to a 16206 x
16206 (resp. 16203 x 16203) linear systems matrix. The
seemingly complex composite nonconforming mesh shown
in Fig. 10(b) was rendered utilizing Gmsh software [40]
(http://gmsh.info), which enables the mesh to be created by
simply scaling, rotating, and translating a cube. The associated
single conforming mesh was produced, on the other hand,
by carefully and painstakingly defining the (non-Lipschitz)
closed surface of the whole structure, also using Gmsh.
Fig. 10(c) shows the real part of the three Cartesian compo-
nents of the total electric field E = E* +E™ on the horizontal
plane intersecting the building at 22.5 m height, which was
evaluated by means of the kernel-regularized off-surface EFIE
operator using the high-order algebraic PWDI with orders
M, = M, = 3. The accuracy of this near-field calculation can
be appraised in detail in the plot of the real part of E, where it
can be seen that the numerically generated £, remains smooth
at and around the surface and, furthermore, it vanishes exactly
on the surface, as is it supposed to do in view of the PEC
boundary condition (2). [A similar observation can be made
about Fig. 5(a).] The resulting bistatic RCSs obtained using
the two formulations are shown in Fig. 11 for the azimuth
angles at zero elevation angle. Excellent agreement of the two
solutions is obtained for this challenging geometric setup.

E. Switched Parasitic Antenna on a Finite Ground Plane

The final example of this article considers the switched par-
asitic antenna proposed in [54], which is shown in Fig. 12(a).
The antenna is comprised of a small circular finite ground
plane with a conductive sleeve, a center monopole feed ele-
ment attached to the ground, four parasitic reflector elements
also attached to the ground and uniformly distributed along
its edge, and a fifth parasitic element isolated from the ground
plane. The latter corresponds to the switch element that allows
steering the radiation along the azimuth in its direction. The
precise spatial dimensions of the antenna, which are provided

2.3151m 60.5mm

42.5mm

/1 58mm

(a)

120 0 60 120 0 60

150

180

210

240 300 240 300
270 270

(b) (c)

Fig. 12.  (a) Composite surface mesh of the switched parasitic antenna
proposed in [54]. Normalized radiation patterns for (b) azimuth and (c) eleva-
tion angles computed using the PWDI method (dotted lines). The solid lines
correspond to reference radiation patterns computed using significantly refined
conforming meshes.

in [54, Table II], were optimized in order to depress the
main lobe elevation. In order to simulate the antenna using
the multiple-scattering EFIE formulation (11), the delta gap
model [38] is adopted to represent the monopole feed element.
As indicated in [54, Fig. 2], on the other hand, the switch ele-
ment is realized by simply raising it 1.5 mm above the ground
plane [see Fig. 12(a)]. The antenna is represented in this exam-
ple as a composite surface mesh comprising six closed-surface
meshes corresponding to the skirted finite ground plane with
the feed element attached and the five parasitic cylindrical
elements. The actual meshes used in the calculations are shown
in Fig. 12(a). The EFIE is then numerically solved by means
of the proposed PWDI technique. Only two meshes are needed
to form the impedance matrix Z, as by design the five parasitic
elements are identical. This allows Z (of size 14793 x 14793)
to be efficiently computed by taking advantage of the fact that
the diagonal blocks corresponding to the parasitic elements
are also identical in this case. The resulting antenna radiation
patterns at the operation frequency 1.575 GHz are shown
in Fig. 12(b) and (c), along with reference radiation patterns
computed using two significantly refined conforming meshes
corresponding to the switch element and the rest of the antenna
(the impedance matrix associated with the reference solution
has size 20103 x 20103). Note that excellent agreement
with both the experimental and the finite-element-produced
radiation patterns shown in [54, Fig. 4] is achieved.
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VIII. CONCLUSION

This article extended the PWDI methodology put forth
in [23] and [24] to the classical EFIE formulation for scat-
tering from closed PEC surfaces. We show that the PWDI
methodology enables the direct evaluation of Galerkin-MoM
impedance matrices using standard quadrature rules, thus
significantly simplifying the practical implementation of the
MoM. The ability of our method to simultaneously evaluate
accurately singular and nearly singular integrals regardless
of the singularity location allowed us to introduce a novel
EFIE formulation based on nonoverlapping subdomain parti-
tioning and use of composite surface representations. This new
formulation has the capability of simplifying the geometric
treatment of complex 3-D structures by enabling the use
of nonconforming surface meshes. The advantages of this
formulation were demonstrated by applying it to a multiscale
structure and an intricate (non-Lipschitz) surface modeling an
actual building facade.

The proposed methodology opens up multiple future
research directions. We first mention the immediate
extensions/modifications of the PWDI technique to the
magnetic-field integral equation (MFIE) formulation for
PEC scattering problems and to the Poggio—Miller—Chang—
Harrington—-Wu-Tsai (PMCHWT) [55] and Miiller [56]
formulations for electromagnetic transmission problems. Yet,
another research direction has to do with the extension of
the proposed PWDI methodology to problems involving
unbounded (nonperiodic) material interfaces, such as half-
spaces, layered media, and waveguides. Current research
efforts by the authors in this direction include combining
the PWDI technique with the windowed Green function
method for frequency [57]-[59] and time-domain [60]
scattering problems, so as to produce a general-purpose
robust and efficient integral equation solver based solely on
the free-space Helmholtz Green function.
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