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Abstract: Although the first lasers invented operated in
the visible, the first on-chip devices were optimized for
near-infrared (IR) performance driven by demand in tele-
communications. However, as the applications of inte-
grated photonics has broadened, the wavelength demand
has as well, and we are now returning to the visible (Vis)
and pushing into the ultraviolet (UV). This shift has
required innovations in device design and in materials as
well as leveraging nonlinear behavior to reach these
wavelengths. This review discusses the key nonlinear
phenomena that can be used as well as presents several
emerging material systems and devices that have reached
the UV–Vis wavelength range.

Keywords: inverse design; nanophotonics; nonlinear
optics; optical materials; organic materials.

1 Introduction

The past several decades has witnessed the convergence of
novel nonlinear materials with nanofabrication methods,
enabling a plethora of new nonlinear optical (NLO) devices
[1–4]. Originally, the focus was on developing devices
operating in the telecommunications wavelength band to
improve communications. One example of an initial suc-
cess is on-chip modulators and add-drop filters for
switching and isolating of optical wavelengths. While
initial devices were fabricated from crystalline materials
[5–7], the highest performing devices were made from
organic polymers [8–16]. As nanofabrication processes
improved, higher performance integrated devices were
developed, such as high quality factor optical resonant
cavities, and higher order nonlinear behaviors became
accessible. This technology enabled on-chip frequency
combs [2, 17, 18], stokes and anti-stokes lasers [19–21], and
super continuum sources [22].

While these devices can be used in many fields, one
clear application of these devices is in quantum optics.
While many quantum phenomena can be investigated
using near-infrared (IR) lasers, atomic clocks based on Rb
and Ce transition lines require visible lasers as excitation
sources. Initial work developing proof of concept systems
relied on large optical lasers. More recently, the focus
shifted to “clocks on a chip” [23–26]. Because the transition
lines are in the visible, the development of an ultra-narrow
linewidth and stable visible laser source at a complemen-
tary wavelength was a key stepping stone. Similarly, over
the past few years, a plethora of novel quantum emitters
have been discovered [27]. However, the majority are
excited in the visible. In order to realize integrated devices
based on these new materials, it is necessary to have an
integrated source with sufficient power.

Visible sources also play a key role in biotechnology,
namely, the miniaturization of diagnostics and imaging
systems. Tissue and biosamples absorb strongly in the
near-IR wavelength range. This absorbance will degrade
the performance of many diagnostic techniques, and it can
result in scattering and signal degradation in imaging
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[28–30]. In addition, many imaging methods require fluo-
rescent probes. Themajority of light emitting bio-labels are
excited in the ultraviolet (UV) to visible wavelength range
(∼300–∼700 nm) [31–33]. Therefore, to support this rapidly
emerging field, there is a growing effort to develop com-
plementary integrated sources.

This review will introduce the key theoretical mecha-
nisms that underpin nonlinear interactions in integrated
photonic devices. These act as design rules for both the
devices discussed here aswell as devices in general. Then, a
discussion of several new crystalline and organic materials
and devices being actively used to achieve ultraviolet (UV)-
visible (Vis) emission with be reviewed. Lastly, a discussion
of possible new research directions will be presented.

2 Basics of nonlinear optics

2.1 Background

Maxwell’s equations form the basis for describing electric
and magnetic fields at a macroscopic level. Combining
them, one can obtain the wave equation which is the
foundation for electromagnetic radiation, also known as
light. Two of Maxwell’s equations for electric displacement
(D) and magnetic field (H) are given below:

∇ ⋅ D � ρf (1)

∇ ñ H � jf + ∂D
∂t

(2)

where ρf is the free charge density, and jf is the free current
density. Furthermore,D andH can be obtained through the
constitutive relationships. We will focus on D, because
most materials (and the materials discussed herein) are
nonmagnetic, so H is directly related to B via µ0. The
electric displacement, D, is related to the electric field, E,
via the permittivity (ε0) and the polarization density (P):

D � ϵ0E + P (3)

Furthermore, the polarization can be represented by a
sum of its linear and nonlinear parts:

P � P(L) + P(NL) (4)

Assuming a plane-wave propagating in the z direction
with amplitude A, angular frequency ω, and propagation
vector k, we use the wave equation to relate the field
amplitude to nonlinear polarization. Applying the slowly-
varying approximation (the field varies slowly with
propagation distance), which applies in most nonlinear
materials, and assuming negligible loss we arrive at:

dA(ω)
dz

� j
ω

2nϵ0c
P(NL)(ω)e−jkz (5)

In other words, the amplitude of the field as a function
of frequency will vary depending on the nonlinear po-
larization density, which is medium dependent. The
particular form of the nonlinear component of polariza-
tionwill depend on the nonlinear process generated in the
material, but in general the polarization density can be
expanded in a power series. The first term represents the
linear part, and all subsequent terms represent the
nonlinear part:

P � ϵ0χ(1)E + ϵ0χ(2)E2 + ϵ0χ(3)E3 + ... (6)

The χ terms represent different orders of nonlinear
susceptibility, and each is a tensor with terms to mix the x,
y, and z components of the electric field. Additionally, Eq.
(6) is only valid in the frequency domain or for ultrafast
nonlinearities in non-dispersive materials. In other in-
stances in the time domain, overlap integrals with the
response time are required, but for our simple analysis, Eq.
(6) will suffice. We will explore specific components of
nonlinear polarization in the following sections and discus
how they can be leveraged to generate frequencies in the
UV–Vis range.

2.2 χ(2) effects: second harmonic generation
and three wave mixing

In this section, we focus on the second-order terms, which
correspond to the χ(2) expansion term, and are thus often
referred to as χ(2) effects. The χ(2) coefficient is often repre-

sented mathematically with the d coefficient (d � 1
2 χ

(2)).
Since both of these quantities tensors, they include terms to
mix the x, y, and z components. The χ(2) effects collectively
include several 3-wave mixing effects: second-harmonic
generation (SHG or frequency doubling), difference-
frequency generation, and sum-frequency generation to
name a few. For simplicity, we treat these effects together.
For χ(2) effects, we first consider three frequencies of light
traveling through a crystal (Figure 1a) such that
ω3 =ω1 +ω2. Nowwe examine the coupled wave equations
that result from nonlinear polarization density being a
tensor and consider only the frequencies that satisfy the
enforced constraint ω3 = ω1 + ω2. The resulting coupled
wave equations are:

d
dz

E1(z) � −jω1

��
μ0

ϵ1

√
dE3E

∗
2 e

−j(k3−k2−k1)z (7)
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d
dz

E2(z) � −jω2

��
μ0

ϵ2

√
dE3E

∗
1 e

−j(k3−k2−k1)z (8)

d
dz

E3(z) � −jω3

��
μ0

ϵ3

√
dE2E1e−j(k3−k2−k1)z (9)

For propagation through thin materials, we assume
that the pumpwaves (ω1 andω2) are not depleted, therefore
d
dzE1(z) � d

dzE2(z) � 0.We integrate (Eq. (9)) over z from 0 to

L (with L being the length propagated through the
nonlinear material) and assume E3(0) = 0 (ω3 is the fre-
quency being generated). Substituting the E fields for in-

tensity(I � n

2
��
μ0
ϵ0

√ EE∗)we canwrite the optical intensity as:

I3(L) � 2(μ0

ϵ0
)3

2(ω3dL)2
n1n2n3

I1I2⎡⎣sin(ΔkL2 )ΔkL
2

⎤⎦2 (10)

Where

Δk � k3 − k2 − k1 � [ω3n3 − ω2n2 − ω1n1]/c (11)

n is the frequency-dependent index of refraction, and
c is the speed of light in vacuum. It is important to notice
that the intensity will vary with a regular beat length due
to the presence of the sine function. This regular sinu-
soidal variation of intensity (or power) over distance is
sometimes referred to as power cycling, and it limits
nonlinear conversion efficiencies. We will discuss how to
address that with phase matching in a subsequent sec-
tion, but for now, let us consider a special case for the
chosen frequencies. For frequency doubling (SHG), we
will let ω1 = ω2 = ω and ω3 = 2ω and reconsider Eq. (10).
In the process of SHG, two photons at frequency ω
are destroyed to create a single photon at frequency
2ω (Figure 1b).

I2ω L( ) � 2
μ0

ϵ0
( )3

2 ωdL( )2
n2
ωnω

I2ωsinc
2 ΔkL

2
[ ] (12)

In order to let the intensity of ω3 grow beyond what is
limited by the sinc function (that is, beyond the maximum
allowed by the periodic variation over distance), we must
get Δk = 0, and the way to achieve that is to match the
phase of the mixed waves. This is conventionally done by
taking advantage of the anisotropic nature of most
nonlinear optical materials, but in nanophotonics in
particular, it can also be done viamodal phasematching or
dispersion engineering. The anisotropic nature means that
the permittivity, refractive index, and therefore propaga-
tion vector k are tensors and will be a function of the po-
larization of the E field. The mechanics of phase matching
are not discussed here, but we examine it briefly in Section
2.4. With proper alignment of the optical fields with the
nonlinear medium and phase matching, the sinc function
goes to 1 and the equation reduces to

I2ω(L) � 2(μ0

ϵ0
)3

2(ωdL)2
n2
ωn2ω

I2ω (13)

Although it is possible to get high conversion effi-
ciencies with SHG in crystals, it can be difficult, so this
model is sufficient for understanding the nonlinear
behavior [34–37]. At high enough intensities, the pump
energy will deplete and the frequency-doubled output will
start to diminish and will eventually saturate. It is also
important to note that, due to the phase matching condi-
tion, the polarization of the second-harmonic frequency
will typically be orthogonal to the polarization of the pump
frequency. For Type 0 phase matching, described in more
detail in Section 2.4, the phasematching is not achieved via
anisotropy but instead by modal phase matching, quasi-
phasematching, or dispersion engineering, and the second
harmonic frequency can have the same polarization as the
pump frequency [38]. Finally, we note that the modal
overlap of the pump and SHG frequencies is important for
SHG (or any second-order process) to occur.Modeoverlap is
trivial for beams within bulk nonlinear materials, but is an
important consideration for nanophotonic devices [39, 40].

Second-order nonlinear effects, and especially SHG,
are frequently used for converting IR light sources to UV–
Vis range. For example, common green laser pointers are
often made by frequency-doubling a 1064 nm wavelength
source to 532 nm light using a nonlinear crystal. Although
nonlinear conversion efficiencies are low, this scheme is
often more efficient than creating a laser that emits at
532 nm directly due to the high efficiency of IR lasers,
particularly those that emit at 1064 nm.

Figure 1: (a) Three waves with frequencies ω1, ω2, and ω3 mix in a
nonlinear optical crystal exhibiting second-order (χ(2)) effects,
propagating in the z-direction. (b) For second-harmonic generation
(SHG), two photons at the pump frequency are destroyed while
interacting with the material to produce a single photon at double
the pump frequency (half the wavelength).
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2.3 χ(3) effects: third harmonic generation
and four wave mixing

In the previous section, we considered the second-order
term in the polarization power series (Eq. (6)). In this sec-
tion, we consider the third-order term, χ(3). Instead of
considering three-wave mixing, we now consider four-
wave mixing interactions in a nonlinear medium. In gen-
eral, one can analyze four separate wavelengths mixing
(Figure 2a). For simplicity, one will often analyze the
degenerate case where ω1 = ω2 = ω3 = ω4 = ω. We can
generate four coupled-wave equations which can be useful
for phase-conjugate mirrors, but not for upconverting IR
light. However, the treatment extends to third-harmonic
generation (THG), which is analogous to second-harmonic
generation.

In THG, three incident photons of frequency ω are
destroyed to create a single photon at frequency 3ω
(Figure 2b). This process is useful for upconverting IR light
into the visible, or more often UV range. We can follow a
similar analysis for SHG and calculate the THG intensity
(I3ω):

I3ω L( ) � 3ωχ 3( )( )2
16ϵ20c4n3ωn3

ω
L2I3ωsinc

2 ΔkL
2

[ ] (14)

where Iω is the fundamental beam intensity and L is the
distance propagated through the material. We see again
the presence of a sinc function dependent on Δk, meaning
we have similar phase-matching concerns as with second-
order nonlinearities to avoid problematic power cycling. In
bulk materials, phase matching is often more difficult for
THG as the material is not always anisotropic. The avail-
ability of other phase matching techniques, such as modal

phase matching, make nanophotonics an ideal platform
for studying THG and other χ(3) effects. Just as with second-
order effects, the third-harmonic and fundamental fre-
quencies must have modal overlap with the nonlinear
material and each other in order for THG to take place.

Practically speaking, THG via χ(3) effects is inefficient.
In many cases of THG, a second harmonic is generated via
χ(2) which then mixes with the unconverted frequency in
another χ(2) interaction (sum-frequency generation), pro-
ducing the third harmonic, which tends to bemore efficient
than the χ(3) process by itself. However, both have beenused
to demonstrate upconversion, as shown in references [37,
41–46]. Additionally, there are some important applica-
tions of χ(3) processes, such as the generation of frequency
combs [17, 47–55]. A frequency comb is a source with a
spectrum that contains a series of equally-spaced fre-
quency lines.

Another χ(3) effect is the Kerr effect, in which high-
intensity light induces a refractive index change in the
material (given by n � n0 + n2I), which results in self-phase
modulation. The Kerr effect contributes to other χ(3) effects,
such as dispersive wave generation, which is the result of
soliton dynamics. In dispersive wave generation, a soliton
propagating with a frequency distance δω from the zero-
dispersion wavelength coherently couples to an optical
wave with a frequency distance −2δω from the zero-
dispersion wavelength, which will be in-phase with the
soliton. The zero-dispersion wavelength is the wavelength
at which the material dispersion and modal dispersion
offset one another. Dispersive wave generation can be
analyzed as a cascaded four-wave mixing process [56].

Two-photon absorption (TPA) is a nonlinear process
that occurs in a material where a single photon does not
have enough energy to span the gap between a ground
state and an excited state. At high enough intensities and
when the energy gap to the excited state is equivalent to the
energy of two photons, both photons can be simulta-
neously absorbed by the material, resulting in TPA. It is
important to note that TPA is distinct from SHG, as SHG
involves the conversion of two photons to a higher-
frequency photon and TPA involves the absorption of two
photons into a real excited state of thematerial. TPA can be
modeled as a χ(3) process using the following differential
equation

dI
dz

� −αI − βI2 (15)

where α is the linear loss and β is the two-photon absorp-
tion coefficient. At the high intensities needed to drive
other nonlinear processes, TPA can be a significant source
of loss, especially in the UV–Vis range.

Figure 2: (a) Four waves with frequenciesω1, ω2, ω3, and ω3 mix in a
nonlinear optical crystal exhibiting third-order (χ(3)) effects, with two
waves propagating in the z-direction and one propagating along
vector ℓ. (b) For third-harmonic generation (THG), three photons at
the pump frequency are destroyed while interacting with the mate-
rial to produce a single photon at triple the pump frequency (1/3 the
wavelength). In THG, the incident (pump) photons and third-
harmonic photons can propagate in the same direction.
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2.4 Phase matching in nonlinear materials
(and quasi-phase-matching)

Phasematching for χ(2) processes is conventionally achieved
by using an anisotropic crystal where you can have
different refractive indices based on polarization. Because
χ(2) nonlinearities are only available in non-centrosymmetric
crystals, they can take advantage of this anisotropy. Fewer
χ(3) materials are anisotropic so phase matching is often
achieved by other means. Depending on the nonlinear
crystal, there are two ways to achieve phase matching in
uniaxial crystals, as shown in Table 1. In a practical sense,
this means that for SHG and THG using this phase match-
ing, the upconverted wavelength will be at a different
polarization than the pump wavelength.

When phase matching may not be possible (as in a
nonlinear waveguide), quasi-phase matching is often
employed. In this method, the optical axis of the nonlinear
material is made to alternate at regular intervals (Figure 3).
This eliminates the problem of power cycling by inverting
the phase with respect to the axis at a specified period, Λ.
Creating the periodic optic axis in the structure is usually
achieved via poling the material: using a very high electric
field to force the axis to align with the electric field lines
[57].

While phase matching is important for nonlinear in-
teractions, particularly SHGandTHG, it is also important to
note that for thin films (short interaction lengths) it is less
crucial. In integrated optical systems where there is some
other condition imposed on the orientation of the crystal or
isotropic nonlinear materials are used, phase matching

conditions must often be met using other strategies. These
other phase matching conditions (including quasi-phase
matching) are often referred to as Type 0 phase matching.
One example is using modal dispersion to phase-match,
which may depend on material choices and/or the specific
geometry of the device [58, 59]. In modal dispersion phase
matching, the device is designed such that the effective
refractive index of the modes supporting the pump and
generated (second-harmonic or third-harmonic) fre-
quencies match. Additionally, the dispersion of the light
signal may be engineered (via the use of metamaterials or
photonic crystals, for example) in order to ensure phase
matching conditions are met. These other phase matching
techniques are particularly important, because in an inte-
grated device, it is often not possible to rotate the nonlinear
crystal axes with respect to the optical field once the device
has been fabricated, and isotropic nonlinear materials are
attractive for applications in the UV–Vis range.

2.5 Other effects: Raman scattering,
Brillouin scattering, supercontinuum

Raman scattering is a process where a photon traveling
through a material loses energy by exciting vibrational
states of the material or gains energy from those same
vibrational states. In a typical Raman process, energy from
the photon is lost to the material vibrational modes,
creating a longer wavelength referred to as a Stokes
wavelength or Stokes shift. Once vibrational modes are
resonating, subsequent pump photonsmay pick up energy
from the vibrational mode, creating an anti-Stokes wave-
length or anti-Stokes shift (Figure 4). The relationship of
scattered power (Pscatter) to the incident intensity is char-
acterized by a scattering cross-section (σR), which is typi-
cally measured experimentally:

Pscatter � σRI0 (16)

where I0 is the incident intensity. Typically, Stokes scat-
tering alone is not useful for upconverting IR to UV or
visible light (it downconverts or redshifts the wavelength),
but anti-Stokes scattering (which occurs in conjunction
with Stokes scattering) can be used for upconversion. This
is typically efficient in systems where there is a very large
intensity, such as high-Q resonators where photons circu-
late with a very long lifetime, or high confinement, as in
plasmonic nanoparticles or structures [60–64].

Stimulated Raman scattering is a process where the
pump and Stokes wavelengths are introduced into the
material to generate an enhanced Raman response where
energy is transferred from the pump wavelength to the

Table : Strategies to achieve phase matching in uniaxial crystals.

Positive uniaxial (ne > no) Negative uniaxial (ne < no)

Type I no

ω ¼ ne


ω þ ne


ω ne


ω ¼ no


ω þ no


ω

Type II no

ω ¼ no


ω þ ne


ω ne


ω ¼ ne


ω þ no


ω

Figure 3: A crystal with a single domain (left) will have a single
optical axis. With periodic poling (right) the crystal will have
alternating optic axis with a period of Λ. Periodically-poledmaterials
are frequently used for phase-matching in nonlinear interactions.
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Stokes wavelength. The interactions from stimulated
Raman scattering are typically analyzed as χ(3) processes
with the Stokes intensity given by:

Is(L) � IS(0)egRIPL (17)

where gR is the Raman gain intensity factor, IS is the Stokes
beam intensity, IP is the pump beam intensity, and L is the
propagation length for the undepleted pump approxima-
tion. The Raman gain intensity factor is often measured
experimentally, although it can be defined in terms of
refractive indices for the pump and Stokes beam, the
Stokes frequency and the imaginary part of χR(3), the Raman
susceptibility. Because the pump and Stokes beams are
coupled via the vibrational modes in the material, Raman
scattering is always phase-matched in the propagation
direction of the pump beam.

As opposed to exciting vibrational states of the mate-
rial (Raman scattering), photons may also excite acoustic
waves within a material, which will generate periodic
refractive index variations (the refractive index depends on
density). If a photon is subsequently scattered off this
acoustic wave, the result is Brillouin scattering. Stimulated
Brillouin scattering is a process where a spontaneously
scattered photon with a frequency difference from the
pump equal to the frequency of the acoustic wave couples
with the pump beam to drive the acoustic wave. This most
often occurs when the photon scatters in the backward
direction and can be a limiting factor in fiber optic com-
munications. Stimulated Brillouin scattering has recently
seenmuch interest in the integrated photonics community,
and it is discussed in more detail in reference [65].

One important application of nonlinear phenomena is
the generationof supercontinua.A supercontinuum isa light
signal with a broad and smooth spectrum. They are gener-
ated by multiple nonlinear processes interacting, such as

four-wave mixing, Raman scattering, sum-frequency gener-
ation, dispersive wave generation, and self-phase modula-
tion (a process where light intensity induces a refractive
indexchange in thematerial, leading to a chirpedpulse). The
specific nonlinear effects used for generating a super-
continuum will depend on the materials being used and
occasionally on the geometry of the device used for gener-
ation. Supercontinuum generation has been used across the
visible and UV range in nanophotonic devices [66, 67].

3 Nonlinear optical materials

3.1 Materials overview

In the past a few years, photonics based on narrow
bandgap semiconductors such as Si and GaAs III-V have
achieved great success in nanophotonic devices as well as
integrated photonics circuits (PICs). However, the narrow
bandgap energy of these materials, e.g., 1.1 eV of Si, has
restricted the light transmission to wavelengths longer
than 1130 nm, which has hindered their applications in
UV–Vis spectral region. Alternatively, wide bandgap
semiconductor/dielectric materials, such as silica, SiN,
SiC, diamond, lithium niobate, and III-N (e.g., GaN and
AlN), have received considerable attention for the nano-
photonic applications in the UV–Vis range.

Silicon dioxide (or silica) possesses the largest
bandgap energy among these materials, thus exhibiting
extreme broadband transparency in the visible through the
near-IR. Additionally, over the past several decades,
numerous wet chemistry and deposition routes have been
developed for making both undoped and doped silica
layers [68–72]. When combinedwith the ease of processing
and the compatibility of silica with common micro-
processing methods, silica has formed the foundation for
a plethora of technologies [21, 73–81]. However, in the
context of nonlinear performance, one significant limita-
tion of silica is its low nonlinear behavior. Unless in the
form of quartz (which is rare in an integrated platform),
silica is an amorphous material, lacking inherent symme-
try.Whilemethods like high temperature or thermal poling
can be used to induce an electro-optic (χ(2)) response, it is
adds complexity to fabrication [82]. However, due to the
exceptionally low optical loss of silica, it is possible to
fabricate devices allowing optical field amplification
without damaging the material, allowing nonlinear be-
haviors to be excited [83–93]. In addition, the ease of
doping the amorphous silica matrix provides a comple-
mentary route to designing and realizing nonlinear devices
from silica [18, 77, 84, 94–99].

Figure 4: Stimulated Raman scattering can generate Stokes and
anti-Stokes frequencies. (a) For a Stokes shift, energy from the
incident photon is lost to vibrational modes of the material and a
lower frequency (longer wavelength) photon is scattered. (b) For an
anti-Stokes shift, the incident photon gains energy from the vibra-
tional modes of the material and the scattered photon has a higher
frequency (shorter wavelength).
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Silicon nitride is a popular wide bandgap dielectric
material that has been the focus of numerous research ef-
forts. The measured single mode propagation loss for sili-
con nitride is below 1 dB/cm in the 532–900nm range [100].
Due to the central-symmetric crystalline quality, its χ(2)

nonlinearity is zero except under the presence of interface
strain [58] and strong bias [101]. The χ(3) nonlinearity of
silicon nitride in the form of Kerr refractive index (n2) was
identified to be 2.5 × 10−15 cm2/W at 1550 nm by evaluating
the nonlinear optical response of an optical resonator [102].
It was also reported that the nonlinear response can be
further enhanced by 5 times if silicon-rich silicon nitride
waveguides were adapted [103]. One of the major advan-
tages of silicon nitride platform is its excellent CMOS
compatibility [104, 105], which provides the potential for
multi-layer [106] and high-density integration [107].

In addition to silica and silicon nitride, several other
materials have been studied for nonlinear applications in
the visible spectrum. For example, lithium niobate has been
extensively investigated due to its strong χ(2) on the order
of d33 = −20.6 pm/V [108] and the significant electro-optic
effect [109]. Recent developments on Lithium-niobate-on-
insulator (LNOI) technology [110, 111] showedhigh potential
for its adaption in integrated photonic applications. An
ultra-low loss of 6 dB/mat 637 nmhas beenachieved [110] in
a lithium niobate waveguide with visible electro-optic
bandwidth exceeding 10 GHz. In addition, a recent work
showed that 4H-silicon-carbide-on-insulator (4H-SiCOI)
technologies [112] offer unique optical properties for quan-
tum photonic and nonlinear optical applications, where a
relatively high second order nonlinearity ofd33 =−12.5 pm/V
at 1.064 μm [113] is observed. This is promising for efficient
parametric conversions. However, further investigation is
still required for this new platform. Another promising
material is diamond. It has excellent optical properties
for quantum emitters [114] and PICs [115], and it has been
proposed for wide variety of nonlinear optical applications.
Atomic layer deposited Al2O3 was also reported with excel-
lent wave guiding behavior in the UV spectrum with prop-
agation loss of <3dB/cm at 371 nm [116]; however, it has a
relatively weak modal confinement and a small Kerr
refractive index [117]. AlGaAs possesses strong third order
nonlinearities (n2 = 2.6 × 10−13 cm2/W) over most popular
dielectric materials, which leads to Kerr comb generation
with extreme low threshold values [118]. Comprehensive
reviews and representative demonstrations on aforemen-
tionedmaterials can be found in the prior references. Due to
the space limit, we focus our discussions onGaN-based III-N
andorganicmaterials,whichhaveemergedas twogroupsof
exciting new materials for nonlinear integrated photonics
applications particularly for UV–Vis wavelength range.

3.2 III-N materials

The overall advantages of III-N materials originate from
their wide bandgap energies, outstanding properties in
both optoelectronics and nonlinear optics, and excellent
compatibility with existing III-N light sources in the UV–
Vis spectral range. The properties of GaN includes a wide
bandgap energy of 3.4 eV, corresponding to a transparent
wavelength above 365 nm. Due to the close lattice constant
with InGaN LEDs/lasers [119] and AlGaN RF electronic
components [120], GaN is promising for active opto-
electronic integration. By Maker-Fringe measurements,
the quadratic nonlinear-optical coefficient of GaN was
identified to be d31 = 2.5 ± 0.1 pm/V and d33 = −3.8 ± 0.1 pm/
V [121]. Some early characterizations on nonlinear optical
properties of GaN layers on sapphire substrates
(i.e., typically with defect density of >109 cm−2) using the
Z-scan method suggests a two-photon absorption (TPA)
coefficient of β = 17 ± 7 cm/GW at λ = 400 nm and
β = 3 ± 1.5 cm/GW at λ = 720 nm [122]. In contrast, recent
results on GaN bulk materials (i.e., with threading dislo-
cation defect density of <106 cm−2) reveal that the intrinsic
TPA coefficient is about 0.9 cm/GW at 724 nm [123] and
3.5 cm/GW at 532 nm [124]. The improvements in the TPA
coefficients on GaN bulk materials can be attributed to
improved material quality, by which the density of deep
level defects [125] and n-type donors (nitrogen vacancies)
[126] are greatly reduced compared to GaN layers on sap-
phire substrates. The Kerr refractive indexes (n2) of
GaN were identified to be n2 = 1.15–1.4 × 10−14 cm2W−1

at λ = 800 nm [127]. However, because the growth of GaN is
usually accompanied with large amount of threading dis-
locations, the two-photon absorption coefficient of GaN is
relatively large in comparison with other wide bandgap
semiconductors [128].

Compared to GaN, AlN has an even wider bandgap
energy of 6 eV, allowing broadband transparency from
deep-UV to infrared. The quadratic nonlinear optical co-
efficient of AlN was characterized by A. Majkić et al. [129].
Thisworkmeasured an absolute value ofd33 = 4.3±0.3 pm/
Vat λ= 1030 nm, and thed31 was in the range ofd33/(45± 5).
Since the AlN is mainly grown on c-plane of sapphire
substrate, the measured d33 and d31 suggests that TM
modes possess a larger second order nonlinearity, which
will lead to a higher conversion efficiency in second har-
monic generation (SHG) [130] and a degenerate parametric
down conversion [131]. Due to the difficulties in obtaining
high quality bulk AlN and the large two-photon absorptive
photon energy, direct Z-scan measurement on high quality
AlN is still not reported. One exception is the report by M.
Zhao et al. [132], in which the TPA coefficient and n2 at
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λ = 355 nm were measured to be 13 ± 3 cm/GW
and −1.91 ± 0.38 × 10−13 cm2W−1, respectively. Noting that the
AlN sample used in the previous work [132] exhibits strong
optical absorption below λ = 300 nm, possibly due to the
inferior crystalline quality of the AlN. Alternatively, one
can also adopt the derived n2 of 2.3 ± 1.5 × 10−15 cm2W−1 at
1550 nm for AlN [133], and utilize the wavelength depen-
dence fitting provided in previous work [134] to roughly
estimate the nonlinear optical performance of AlN in the
UV and visible spectral range. The estimated n2 at 800 nm
is 3 × 10−15 and 1 × 10−14 cm2W−1 at 400 nm.

3.3 Organic materials

While initial work in the field of organic photonics focused
on polymers [145, 146], organic small molecules are
emerging as an alternative material for a wide range of ap-
plications [147–153]. Organic nonlinear optical small mole-
cules are π-conjugated molecules, and the strong nonlinear
optical susceptibilities and rapid responses are based on
highly movable π-electrons along the molecular backbone
[154–158]. While the timescales of the nonlinear response
are comparable, the magnitudes that can be achieved are
larger than in conventional crystalline systems, enabling
higher performing devices. In addition, the nanometer-scale
length or size of the material needed to achieve a nonlinear
response is much smaller than either conventional crystal-
linematerials or organic polymers. However, the response is
dependent on the molecular orientation of the molecule.

Specifically, the nonlinear optical response of an
organic molecule that is induced can be described by the
expression below [159]:

μi � αijEj + βijkEjEk + γijklEjEkEl +… (18)

where μi is the induced dipole moment in a mole-
cule, Ei is the electromagnetic field, α, β, and γ are the

linear polarizability, first hyperpolarizability, and second
hyperpolarizability tensors, respectively. It is important
to note that this expression describes the efficiency of
charge transfer (β) or vibration (γ) at the molecular level
[160]. The βijk is responsible for second order nonlinear
effects, and the γijkl is responsible for third order
nonlinear effects, as described by the macroscopic sus-
ceptibilities χ(2) and χ(3) in Eq. (6). However, it is important
to note that the macroscopic susceptibilities are related,
but not equal, to the molecular nonlinearities. Several
factors influence this relationship including the density
of the organic molecules and the orientation of the
molecule with the incident optical field. As one might
imagine, there are nearly limitless possible organic
chemical structures that could be synthesized that would
exhibit nonlinear behavior.

For comparison, Table 3 lists n2 of a variety of inorganic
and organic materials mentioned in this review. In inor-
ganicmaterials conventionally used to fabricate integrated
optical circuits, n2 follows the range of ∼10−18 to ∼10−20 m2/W.
Organic materials show a higher magnitude but similar
variance of n2 values. However, one challenge when mak-
ing a table is determining the absolute value to report. As
mentioned, the n2 depends on the molecular density and
molecular orientation with the optical field.

To limit the scope of this article, we will focus on the
two different chemical structures shown in Figure 5: Tet-
raphenylethylene (TPE) and 4-[4-diethylamino(styryl)]
pyridinium (DASP).

TPE is an intriguing material with a unique chemical
structure. In previous work, it has demonstrated large NLO
coefficients, particularly the first hyperpolarizability or the
second-order NLO coefficient, and the four-leaf clover ar-
chitecture facilitates the design of push-pull chromophores
that allows electron charge transfer across theπ conjugation
of the TPE molecule [170–179]. It has previously been
used successfully as an imaging agent [155, 155, 180], and,

Table : Nonlinear optical properties of III-N in comparison with other materials.

Material Optical bandgap (eV) Refractive index Dominant dii (pm/V) n (cm
/W) Linear loss in visible (dB/cm)

SiO . .  × 
− [] . (at  nm) []

SiN . . – . × 
− [] < ( ∼  nm) []

SiC . ∼ . . −. [] . ± . × 
− [] . (at  nm) []

AlO . . – (. ∼ .) × 
− [] < (at  nm) []

Diamond . . – . × 
− []

AlGaAs . ∼ . . ∼ .  [] . × 
− [] –

TiO  ∼ . . – . ∼ . × 
− []  (at  nm) []

LiNbO . . −. [] . × 
− [] . (at  nm) []

GaN . . −. ± . [] . ∼ . × 
− [] ∼  (at  nm) []

AlN . . . ± . [] . ± . × 
− []  ±  (at  nm)[]
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in contrast to many fluorophores, it is well-known for
exhibiting aggregation-induced-emission (AIE) [171, 181]
in which the emission intensity increases as the molecules
aggregate.

One study measured the nonlinear optical activity of a
series of TPE structures (Figure 6) [170]. In this study of
eight different structures, the second-order NLO polariz-
abilities was increased as much as 27 times by tuning the
substituent groups and their positions even when the pri-
mary chemical composition (the TPE core) was relatively
unchanged. As can be seen in Figure 6, Structure 1 starts
with hydrogens in all R1-R4 substituent groups. In this case,
the electron density distribution of Structure 1 from the
density functional theory (DFT) calculation is fairly

uniform (Figure 6b, inset),meaning that the intramolecular
charge transfer (ICT) is less likely to occur. In contrast, in
Structure 8, the R1 and R4 were replaced by the donor Ph-
NH2, and R2 and R3 were replaced by the acceptor Ph-NO2.
In this molecule, the electron density distribution is highly
asymmetric due to the asymmetric orientation of the donor-
acceptor R groups (Figure 6b, inset). It is important to note
that this work focused on tuning the conjugation length via
NH2 and NO2 groups. However, there are numerous other
strategies that have also been employed successfully, such
as bromination.

In addition to purely synthetic routes, researchers have
also employed predictive methods. These have been
particularly successful in accelerating material design for
small organic molecules which have fewer atoms than
larger polymeric systems. Initial approaches, such as DFT,
were based on quantum mechanical calculations of the
orbital structures [182–185]. Hydrogen bond pattern pre-
diction based on similar quantummechanicalmodeling has
also been successful in the design and prediction of NLO
organic molecules. Freely available shareware has popu-
larized these methods among chemists and material scien-
tists impactingmaterial design in a range offields [186–194].
More recent computational methods have relied on utilizing
an algorithm which can quickly find minimums in the po-
tential energy landscapes of novel organic materials.

The chemical structures of 4-[4-diethylamino(styryl)]
pyridine (DASPy) and 4-[4-diethylamino(styryl)]pyr-
idinium (DASP) are depicted in Figure 5.When the pyridine
moiety is substituted with a R group, DASPy becomes its
pyridinium form DASP. As seen, there is one equivalent of

Table : Nonlinear optical properties of several commonly used organic materials.

Material Structure Optical bandgap (eV) Refractive index First-order hyperpolarizability (m/V) n (cm
/W)

DASP .** . (. ∼ .) × 
− [] . × 

− []

TPE . []* . . × 
− []* . × 

− []*

Anthracene . [] . . × 
− [] . × 

− []

PTCDA . [] . – . × 
− []

*Values of derivative structures. ** Calculated by time-dependent density functional theorywith the gas phase ground statemolecular geometry
optimized at the BLYP/-G* level of theory.

Figure 5: Chemical structures of commonly used organic small
molecules. (a) TPE and (b) TPE with common sites for modification
indicated by R and R′. (c) DASP and (d) DASP with common sites for
modification indicated by R.
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positive charge on pyridinium in DASP compared to
DASPy, and this additional formal charge makes DASP a
“push-pull” chromophore where electron-rich amine
group favors to donate electrons to electron-poor pyr-
idinium [195–198]. Thus, as long as DASPmolecules can be
functionalized wisely on a specific surface, such delocal-
ization of electrons on DASP makes it suitable for photo-
active materials in NLO studies.

Over two decades ago, scientists began investigating
the SHG behavior in DASP Langmuir-Blodgett (LB) films.
To further improve the nonlinearity, one reported a series
of rare Earth metal dysprosium-DASP complexes [199,
200]. According to the authors, dysprosium complexes
serving as the R group facilitate the formation of uniform
LB films. They characterized the SHG with the Nd:YAG
laser beam at with a peak power at 1064 nm, anticipating
SHG emissions at 532 nm. Both of the compounds

investigated achieved χ(2) and β values in the 10−6 and
10−27 esu range, respectively. Zhao et al. also discovered
that the solvent environment has an effect on SHG per-
formances of DASP LB films [201]. For example, when the
vapor pressure of isopropanol increases, the SHG signal
decreases. Even after the solvent vapor pressure is
removed, the SHG signal is not fully recovered. Such
considerations will play a key role when considering and
optimizing processing conditions for integration with on-
chip optical devices.

4 Device platform and applications

4.1 Device platforms

The most straightforward device to fabricate on a silicon
wafer is an integrated waveguide. The first on-chip
waveguides were simple slab, or rectangular, wave-
guides with uniform indices [202]. These devices essen-
tially mimicked optical fibers on-chip. Subsequently,
researchers realized that nanofabrication opened up
possibilities not easily available when drawing fibers,
including index and geometric variations over nano-scale
dimensions [203–205]. Such devices enable control over
the material dispersion, and therefore, they form a key
component in the engineer’s toolbox, enabling nonlinear
behaviors to be accessed.

A second commonly used device is the optical reso-
nant cavity. Both traveling wave and standing wave reso-
nators have been used in nonlinear optics investigations as
both cavities are able to achieve the high optical intensities
needed to unlock nonlinear behaviors [206]. Photonic
crystal cavities, a common standing wave resonator, have
small optical mode volumes which focus the light, result-
ing in high intensity [41]. In contrast, while whispering
gallery mode cavities have large optical mode volumes,
they can achieve high optical cavity quality factors (Q) due
to their long photon lifetimes [83]. The high Q values allow
them to achieve large circulating intensities.

Initial work investigating nonlinear phenomenawas in
the near-IR and focused on leveraging the ultra-high-Q
factors possible in the whispering gallery mode cavities,
particularly in silica and fluoride devices [207]. Despite the
low nonlinear coefficients, Stokes and Anti-Stokes
behavior [208–210] as well as four wave mixing [21, 85,
88, 99, 211–213] were demonstrated. More recent efforts
which are the focus of this section are investigating new
material platforms to improve the nonlinear coefficient of
the material and to open the door to new wavelength
ranges.

Figure 6: (a) Structures of a series of cyclic TPEs. (b) Second-order
polarizabilities of the synthesized TPE derivatives in part (a). The
second order polarizability increased approximately 27 times from
1.50 × 10−34 m/V to 3.98 × 10−33 m/V (converted from esu units) by
changing the residues. Inset: DFT modeling of compounds 1 and 8.
Adaptedwith permission fromC. Liu, G. Yang, Y. Si, X. Pan, Journal of
Physical Chemistry C. 122(9):5032–39 (2018). Copyright 2018
American Chemical Society.
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4.2 III-N materials

The major nonlinear optical application of GaN is the SHG
from the telecommunications wavelengths (∼1550 nm) to
the near-visible spectral. C. Xiong et al. reported the SHG
from GaN ring resonators with measured quality factors
around 10,000 at ∼1550 nm [214]. I. Roland et al. also re-
ported the SHG at similar wavelengths using GaN-on-sili-
con suspended disk resonators [215], and the typical loaded
Q factors were in the range of 6000 to 13,000. However, the
typicalQ factors of GaN resonators are limited at 104, which
are more than two orders of magnitudes lower than the
typicallyQ values obtained from resonators based on other
materials [216, 217] with similar dry etch fabrication
methods. Recently, H. Chen et al. investigated the loss
mechanisms on GaN photonic devices and suggested that
the nitrogen vacancy contributed n-type conductivity
(N0 = 1018 cm−3) was responsible for the high propagation
loss in GaN devices, where a high free carrier absorption
loss of > 2 dB/cm be expected [143]. This high degree of free
carrier absorption has hindered the development of high Q
resonators for GaN devices, which are typically epitaxially
grown and fabricated on sapphire or silicon substrate and
therefore contain high defect densities. It is noteworthy
that the recent development of GaN devices fabricated on
high quality GaN bulk substrates [134] could potentially
tackle this challenge by reducing the density of nitrogen
vacancies in the GaN materials. Further investigations on
these new “GaN-on-GaN” devices are required to achieve
high Q GaN resonators.

Compared to GaN, the wider bandgap of AlN allows for
a very low n-type conductivity, and consequently much
lower free carrier absorption loss. As a result, extensive
investigations have been carried out on AlN devices, where
AlN ring resonators with very high Q values have been
demonstrated. In the telecommunications spectral region,
the AlN ring resonators showed typical intrinsic Q factors
on the order of 106 for both TE and TM modes [216, 218]. In
the near-visible spectral region, Y. Sun et al. demonstrated
AlN ring resonators with intrinsic Q factors greater than
70,000 [219], while T. J. Lu et al. reported AlN devices with
intrinsicQ values exceeding 170,000 at 638 nm [220]. In the
UV spectra region, X. Liu et al. demonstrated AlN devices
with intrinsic Q factors of 210,000 [221]. AlGaN/AlN alloys
were also theoretically proposed [222], in which the low
index contrast is promising for low loss waveguiding. The
relative higher Q factors on AlN devices allows more effi-
cient frequency conversion from telecommunications to
near-visible spectrum [223] and vice versa [131] through the
χ(2) processes.

Despite the successful demonstration of high Q reso-
nators on AlN, the large chromatic dispersion and group
velocity dispersion in the UV and Vis spectra remain to be
the significant challenges towards realizing highly efficient
frequency conversion through χ(2) or χ(3) process using AlN
devices. Recently, X. Liu et al. proposed a chirp-modulated
taper AlN waveguide to achieve broad phase matching us-
ing a near-visible pumping wavelength [221]. By fully uti-
lizing the χ(2) and χ(3) nonlinearities, over 100 THz of coherent
frequency spanning (360–425 nm) was achieved on AlN,
and the results are as shown in Figures 7a and b. Alterna-
tively, coherent generation in the UVand visible spectra can
also be achieved using the soliton dynamics. For example,
D. Y. Oh et al. successfully demonstrated the coherent
generation in the UV wavelengths using dispersive wave
generation from silica ridge waveguides [224], which is
shown in Figure 7c. The dispersive waves were widely
tunable from 322 to 545 nm by tuning the waveguide ge-
ometry. Excellent coherence was maintained since the fre-
quency conversion is phase matched. More recently, H.
Chen et al. demonstrated that the same engineering princi-
ple can be applied to AlN devices, where supercontinuum
generation from near UV–Vis spectra was achieved using
dispersion engineered AlN waveguides (as shown in Fig-
ures 7d and e) [225]. The AlN waveguides were pumped in
TE10 mode near the zero dispersion wavelength (ZDW) at
810 nm [225]. Due to the relatively large nonlinear parameter
of AlN [221, 225] comparedwith silica [224], the pulse energy
of AlN waveguides was significantly reduced to less than
1 nJ while covering a much broader spectral region, while
the typical operation pulse energy within silica is above 1 nJ
[224]. Thiswork opensdoor for integratedAlNnanophotonic
devices and circuits, which will lead to potential applica-
tions in on-chip mode locking [226], parametric oscillator
[227], and entangled photon generation [228].

4.3 Organic materials

The fabrication of devices fromnonlinear organicmaterials
is intrinsically more complex than from III–V or II–IV
materials due to their inherent incompatibility with the
majority of nanofabrication procedures. In past work using
organic polymeric materials, it was common to fabricate
the entire device from the polymer using either nano-
imprinting or laser writing methods [13, 229]. Using this
approach, several different on-chip structures were fabri-
cated including waveguides, resonators, and modulators
with GHz rates (8–16). However, because the device is
fabricated from the polymer, the optical performance is
limited by the optical loss of the material which can be
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high. Additionally, because the optical performance is
dependent on the orientation of the polymer, the device
has to the poled before use, and the effect of the poling on
the polymer has a finite lifetime.

To overcome this barrier, researchers began investi-
gating alternative strategies, such as dip-coating or spray-
coating polymeric materials on the surfaces of integrated
devices [19, 230, 231]. Because thin layers could be
demonstrated, the negative effect of the polymer’s loss was
less, allowing higher quality factors to be achieved. Initial
demonstrations focused on tailoring the thermal stability
of the device, but subsequent investigations demonstrated
Raman lasing behavior, albeit with very high thresholds
due to the decreased quality factors because of the high
loss of the polymer layer [19, 230, 231]. While successful,
this fabrication approach creates devices where the poly-
mer layer is disordered. However, molecular orientation,
both with respect to the optical field and with respect to
adjacent molecules, can govern the performance of the
resulting device. Therefore, this strategy places funda-
mental limits on the types of nonlinear behaviors that can
be accessed as well as the efficiencies and thresholds
possible.

To realize the potential of small organic molecules in
integrated photonics, fabrication methods which allowed
oriented and ordered monolayers of molecules had to be
developed. One such route was inspired by earlier work in

the biosensor field [232–238]. By self-assembling and
covalently attaching nonlinear organic molecules onto the
device surface, these criteria can be achieved.

One example demonstration was based on combining
a silica cavity with a monolayer of DASP molecules [232].
This strategy leveraged the intrinsic hydroxyl groups pre-
sent on a silica device surface as anchor sites for the highly
nonlinear DASPmolecules, thus allowing all aspects of the
molecular orientation to be controlled (Figure 8a). How-
ever, because the circulating optical field is primary
confined within the silica device, the net effect of the
molecule on the efficiency will be governed by a weighted
χ(3), described by the relative overlap of the optical field in
each material. Despite the reduced effect, the DASP mole-
cule is still able to significantly increase the performance
(Figure 8b and c)). In complementary work that leverages
the same surface chemistry and optical cavity type, a
DASP-based surface coating is used to demonstrate third
harmonic generation with approximately a 4 orders of
magnitude improvement in efficiency over a non-
functionalized device [90]. This strategy allowed a near-
IR laser to be used to reach the visible. Both of these ex-
amples relied on the nonlinearity present in the molecule
to create a nonlinear device.

Recent work demonstrated that by perturbing the
surface of a device, it is possible to improve the device’s
nonlinear performance. Specifically, by attaching an

Figure 7: (a) The coherent generation in the
UV spectra via χ(2) and χ(3) processes
simultaneously from a chirp-modulated ta-
per AlN waveguide. (b) The broad spectrum
obtained from near-the chirp-tapered AlN
waveguide using a near-visible pumping
wavelength. Reprinted from [221]. Distrib-
uted under a Creative Commons Attribution
NonCommercial License 4.0 (CC BY-NC)
http://creativecommons.org/licenses/by-
nc/4.0/ (c) The coherent dispersive wave
generation in the UV and visible spectra
through soliton dynamics using silica ridge
waveguides. Red and blue curves indicate
TE and TM mode operation, respectively.
Reprinted from [224]. Distributed under a
Creative Commons Attribution NonCom-
mercial License 4.0 (CC BY-NC) http://
creativecommons.org/licenses/by-nc/4.0/
(d) The supercontinuum generation from AlN
waveguide pumped near zero dispersion
wavelength in TE00 and TE10 modes. (e) The
geometry dependence of ZDW for TE10
mode. Anomalous dispersion can be ob-

tained above the ZDW. Reprinted from [225]. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC) http://
creativecommons.org/licenses/by-nc/4.0/.
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oriented siloxane monolayer (Si-O-Si) on a silica surface,
the ability of the underlying device to generate stimulated
Raman scattering or create a Raman laser is enhanced due
to the creation of a surface Raman mode in this oriented
and ordered layer. As expected, due to the ordering, the
threshold and efficiencies of this mode are polarization
dependent, unlike in the amorphous device. Raman
(Stokes) is a particularly flexible excitation mechanism
because it is not dependent on a specific electronic tran-
sition. As such, this approach for increasing the efficiency
of Stokes and Anti-Stokes generation could provide an
accelerated path towards UV emission.

In the near future, it is expected that the harmonic
signals can reach the UV range by precisely tuning the
organic NLO materials and the frequencies/wavelengths
among the pump, Raman Stokes, and parametric

oscillation photons. The innovations of photonic devices
are also probable as nanofabrication allows more options
to design on-chip photonic devices as long as the func-
tionalization of organic NLO materials are feasible.

5 Future directions

5.1 New materials

Recently, a new class of wide band gap semiconductor
beta-phase gallium oxide (β-Ga2O3) has emerged with
many promising properties. β-Ga2O3 possesses a bandgap
energy of 4.8 eV and exhibits large laser induced damage
threshold (LIDT) [239], which is promising for high power
PICs. The low refractive index contrast between core and
cladding layers also minimize the scattering loss [240].
Furthermore, β-Ga2O3 also has a small lattice mismatch
with the InAlGaN material system, which leads to possible
active integration of Ga2O3 photonic devices with InAlGaN
lasers and detectors.

Preliminary efforts have been paid towards the
fundamental optical properties as well as device perfor-
mance of β-Ga2O3. H. Chen et al. characterized the optical
nonlinearity of β-Ga2O3, where a TPA coefficient of 0.6–
3.2 cm/GW, and an n2 in the range of −2.1 × 10−15 cm2W−1

to −2.9 × 10−15 cm2W−1 were obtained at 404 nm [128]. It’s
noteworthy that bulk crystalline β-Ga2O3 was obtained
using the floating zone growthmethod [241], which leads to
much superior crystal quality with less defect density on
β-Ga2O3 compared toGaNbulk crystals. As a result, the TPA
coefficient of β-Ga2O3 is lower than GaN (see Figures 9a and
b). More recently, J. Zhou et al. successfully fabricated the
β-Ga2O3 waveguides and analyzed their performance in the
UV to near infrared (NIR) region [240] (see Figures 9c andd)
[240]. A low propagation loss of 3.7 dB/cmwas obtained on
the β-Ga2O3 waveguide at the wavelength of 810 nm, which

Figure 8: DASP coated silica resonant cavity for four wavemixing.
(a) Overview of surface chemistry method used to create an aligned
monolayer of DASP molecules on the device surface.
(b) Representative optical parametric oscillation (OPO) spectrum.
(c) Threshold power comparing non-functionalized and
DASP-functionalized devices. Reproduced from reference [232].
Distributed under a Creative Commons Attribution NonCommercial
License 4.0 (CC BY-NC) http://creativecommons.org/licenses/by-
nc/4.0/.

Figure 9: (a) The schematic of β-Ga2O3

crystal structures showing (010) and (2 01)
crystal planes [128]. (b) The estimated
wavelength dependence of TPA coefficient
for (010) and (2 01) β-Ga2O3 samples. “E⊥”
indicates that the electricalfield intensity is
perpendicular to [102] direction, while
“E ” indicates that field intensity is
parallel to [102] direction. Reprinted with
permission from [128]. Copyright 2018 by
the Optical Society of America. (c) Top

image captured by the linear CMOS camera of a β-Ga2O3 waveguide with 1.5 µm width at 810 nm wavelength. (d) Experimental data and
regressionanalysis ofβ-Ga2O3waveguidewith 3.7 dB/cm loss. Reprintedwithpermission from [240]. Copyright 2019by theAmerican Physical
Society.
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is comparable to the state of the art. Combined with theo-
retical simulations, various loss mechanisms from two-
photon absorption, sidewall scattering, top surface scat-
tering, and bulk scattering were discussed for β-Ga2O3

waveguides, and their contributions to the total optical loss
were estimated. It is expected that the performance of
β-Ga2O3 photonic devices could be greatly improved with
the further development in materials synthesis, optical
design, and device fabrications, whichwill unleash the full
potential of β-Ga2O3 for UV–Vis photonics applications.

In addition to emerging crystalline materials, there is a
whole host of new organic materials on the horizon. One
simple organic platform is Anthracene [150, 153, 242, 243].
This molecule is characterized by its unique structure
which consists of three fused benzene rings, giving it a
highly conjugated, resonant structure and allowing it to
readily pack into a semi-crystalline structure in the
condensed phase. It has previously been used as an
organic dye and as a scintillator in organic semi-
conductors. Moreover, because of their extended conju-
gation length, anthracenes can make for highly nonlinear
molecules due to the delocalization of π electrons over the
extent of the entire molecule [244]. This delocalization al-
lows the molecule to become more polarized given an
external oscillating field. This higher polarizability gives
rise to second and third order phenomenon even at modest
field strengths.

Qualitative reports on the nonlinear activity of an-
thracenes varies widely due to the multitude of unique
derivativeswhich can be synthesized. Basic DFTmodels on
anthracene crystals without additional functional groups
report only modest values for χ(3) [242]. In contrast, other
theoretical studies report marked enhancement of the first
hyperpolarizability, and therefore nonlinear optical prop-
erties, when anthracenes are coordinatedwith halide acids
[166]. However, studies on oriented, orderedmonolayers of
anthracene thin films or integration of anthracenes with
integrated photonic devices have yet to be performed.

If one considers moving to a slightly more complex
molecular structure, experimental reports have shown
large enhancements in both second-harmonic generation
and third-harmonic generation when anthracene is syn-
thesized into a highly-conjugated one-dimensional crys-
talline polymer, or metal organic framework (MOF) [245].
The developed MOFs ligands possess an acceptor–π–
donor–π–acceptor structure which is symmetric and a
singlet biradical electronic ground state, thus boosting its
χ(3) and χ(5) optical nonlinearities. The reported complex’s χ(3)

can reach as high as 8 × 10−11 esu, which is roughly three
orders of magnitude higher than typical bulk dielectrics
such as SiO2 and ZnO [246]. When anthracene is attached

along the backbone of amethyl methacrylate repeat unit in
PMMA thin films, the enhancement in χ(3) is even larger,
reaching values of about ∼10−7 esu [243]. This is due to the
expanded conjugation length, as the polarizable cross-
section now spans the length of a polymer chain
(∼100 kDa), allowing for an increased nonlinear response.
Reaching χ(5) optical nonlinearities in classic crystalline
materials is typically not experimentally achievable due to
the optical intensities that would be required. Thus,
organic small molecules truly provide a route to achieve
currently unavailable device performance.

Lastly, though not the focus of this work, an emerging
area is creating low-power integrated optical systems by
leveraging the intrinsic material properties to achieve
functionality, such as phase change materials for Q
switching. Organic materials offer a particularly unique
strategy to achieve this goal. Specifically, unlike in con-
ventional devices where layers consist of a single material
type, with organics, it is possible to attach more than one
type of molecule to a device surface, creating a multi-
functional multi-material monolayer. This concept was
demonstrated recently using a photo-responsive group
[247, 248], but it has yet to be extended into the realm of
nonlinear optical devices.

5.2 Inverse design to advance device
performance

Thus far, this review has focused on the relatively linear
advances in new materials and in more complex device
architectures. Recent advances in theoretical device design
has opened the door for transformational changes.

Nanophotonic devices often span many wavelengths
while having feature sizes on the order of a wavelength,
implying that neither lumped nor ray optic approxima-
tions suffice and they must be modeled via full-wave so-
lution of Maxwell’s equation. The difficulty in modeling
nanophotonic devices and lack of analytical solutions
makes designing new devices especially challenging. In-
verse design, which is the automated design of new de-
vices given target specifications and design constraints as
input via optimization, has recently emerged and seen
considerable success in the nanophotonics field [249].
Although many optimization algorithms have been
applied successfully towards the inverse design of nano-
photonic devices, including Direct Binary Search [250] and
Binary Particle Swarm Optimization [251], local gradient-
based search methods have become among the most
popular and successful approaches largely due to the
adjoint method.
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The adjoint method, which first appeared in the
context of fluid dynamics [252], enables the computation of
the full gradient of the objective function being optimized
with respect to the optimization variables with just two
simulations regardless of the number of parameters—the
forward problem and the adjoint system [253]. This is in
contrast to naïve approaches such as finite difference ap-
proximations which require N+1 simulations per gradient
evaluation where N is the number of optimization param-
eters. The adjoint method has been applied to designmany
different devices as shown in Figure 10 including wave-
length demultiplexers [254, 255], polarization splitters
[250], power splitters [251], photonic switches [256], nano-
photonic resonators [257], and grating couplers [258].
Furthermore, thanks to the flexibility of the gradient-based
optimization approach, arbitrary nonlinear objective
functions with highly complex constraints can be handled,
which has enabled incorporating fabrication [259] and
robustness constraints at design time [256, 260].

Although traditionally most inverse design imple-
mentations in nanophotonics have leveraged the Finite
Difference Time Domain (FDTD) method [265] to solve the
forward problem, recent work has shown that Boundary

Integral Equation (BIE) based techniques can be used to
simulate nanophotonic devices up to several orders of
magnitude faster and more accurately than finite differ-
ence andfinite element approaches [261]. Furthermore, due
to the discretization of global integral operators rather than
local difference operators, integral equation methods are
essentially dispersion-free, unlike FDTD and finite element
method (FEM) which suffer significantly from numerical
dispersion. Finally, since BIE methods only discretize the
boundaries between different dielectric regions rather than
the whole volumes, device optimization via boundary
perturbation methods can be implemented naturally and
seamlessly without having to resort to level-set approaches
[261].

Initial research in inverse design for nanophotonics
focused on passive, linear devices on Silicon-on-Insulator
(SOI) platforms. Recently, the approach has been extended
to time-varying active devices [266–268], topological in-
sulators [264], and nonlinear optics [263], as well as alter-
native substrates such as diamond [262]. In conclusion,
inverse design for nanophotonics has demonstrated a
strong track record for producing high-performance,
compact, and robust devices in numerous different

Figure 10: (a) Convergence comparison of BIE, FDTD, FDFD, and FEM solvers with respect to mesh resolution [261]. Reprinted with permission
from C. Sideris, E. Garza, O. P. Bruno, ACS Photonics. 6(12):3233–40 (2019). Copyright (2019) American Chemical Society. Example devices
that have been designed using inverse design include: (b) a vertical coupler on diamond substrate (Reproduced from reference [262].
Distributedunder a Creative CommonsAttributionNonCommercial License4.0 (CCBY-NC) http://creativecommons.org/licenses/by-nc/4.0/),
(c)/(d) nonlinear intensity-based beam splitter [263] (Reprinted with permission from T. W. Hughes, M. Minkov, I.A.D. Williamson, S. Fan, ACS
Photonics. 5(12):4781-87 (2018). Copyright (2018) American Chemical Society), (e)–(h) 2 × 2 power splitter design using BIE solver and adjoint
method before and after optimization [261] (Reprinted with permission from C. Sideris, E. Garza, O. P. Bruno, ACS Photonics. 6(12):3233–40
(2019). Copyright (2019) American Chemical Society), (i)/(j) and acoustic topological insulator [264] (Reprinted with permission from R. E.
Christiansen, F. Wang, O. Sigmund, Physical Review Letters, 122 (23) (2019). Copyright (2019) by the American Physical Society).
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contexts and it has proven to be an invaluable tool for the
photonics designer.

6 Summary

In summary, the ever-growing materials toolbox provided
by emerging semiconductors and small organic molecules
optimized for UV–Vis operation will continue to enable
device innovation. When coupled with emerging theoret-
ical predictive constructs, such as inverse design for
accelerated device design, it is easy to anticipate rapid
growth in the field. These new devices will support appli-
cations in imaging, cryptography, and spectroscopy as
well as enable new fundamental science.
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