
2020 IEEE International Conference on Big Data (Big Data)

978-1-7281-6251-5/20/$31.00 ©2020 IEEE 2508

Who killed Lilly Kane? A case study in applying

knowledge graphs to crime fiction.

Mariam Alaverdian

Department of Mathematics

Los Angeles City College

Los Angeles, CA 90029

masha.alaverdyan@gmail.com

William Gilroy

Department of Mathematics

Harvey Mudd College

Claremont, CA

wgilroy@hmc.edu

Veronica Kirgios

Department of Mathematics

Notre Dame Univ.

Notre Dame, IN 46556

vkirgios@nd.edu

Xia Li

Department of Mathematics

University of California, Los Angeles

Los Angeles, USA 90095

xli51@math.ucla.edu

Carolina Matuk

Department of Mathematics

Univ. of Iowa

Iowa City, Iowa 52242-1419

carolinamatuk@hotmail.com

Daniel McKenzie

Department of Mathematics

University of California, Los Angeles

Los Angeles, USA 90095

mckenzie@math.ucla.edu

Tachin Ruangkriengsin

Department of Mathematics

University of California, Los Angeles

Los Angeles, USA 90095

bankcrub@g.ucla.edu

Andrea L. Bertozzi

Department of Mathematics

University of California, Los Angeles

Los Angeles, USA 90095

bertozzi@ucla.edu

P. Jeffrey Brantingham

Department of Anthropology

University of California, Los Angeles

Los Angeles, USA 90095

branting@ucla.edu

Abstract—We present a preliminary study of a knowledge
graph created from season one of the television show Veronica

Mars, which follows the eponymous young private investigator as
she attempts to solve the murder of her best friend Lilly Kane.
We discuss various techniques for mining the knowledge graph
for clues and potential suspects. We also discuss best practice
for collaboratively constructing knowledge graphs from television
shows.

I. INTRODUCTION

Knowledge graphs are a powerful tool for organizing,

storing and presenting complex data. A knowledge graph is

a graph of data whose nodes represent entities of interest

and whose edges represent relations between these entities.

Formally, a knowledge graph consists of a set of entities, V ,

a set of relations or predicates, R and a set of facts, E , which

specify pairwise relations between entities. Crucially, the facts

must obey rules specified by an accompanying ontology, O,

which dictates which kinds of relations can be present between

which kinds of entities. For a comprehensive and modern

introduction to knowledge graphs, we refer the reader to

[HBC+20].

A. Knowledge graphs for fiction

Despite the promise that knowledge graphs hold in analyz-

ing semantic data, they have not yet been extensively applied

We are grateful for support from UCLA and Harvey Mudd College as well
as the Los Angeles City College STEM Pathways program, supported by
Department of Education PR# P031C160251. This work was also partially
supported by NSF grants DMS-1737770 and DMS-2027277.

in analyzing fiction. We believe that knowledge graphs are

a promising tool for encoding and analyzing the complex

human-human interactions present in novels, movies and tele-

vision shows, and further that these domains form a realistic

proxy for real-world human-human interactions. Inspired by a

knowledge graph challenge problem [KET+19], we chose to

study the genre of crime fiction. Unlike the Sherlock Holmes

novel studied in [KET+19], we chose to focus on a television

show, Veronica Mars. While there has been prior work on

analyzing movies and television shows using graph theory

[BDE+16], [BEGM18], we believe that we are the first to

apply knowledge graphs to television. Television has at least

two distinct advantages over novels:

• T.V. scripts are more structured than novels. In principle

this makes it easier to automate knowledge graph con-

struction.

• Continuity over episodes and seasons allows for the

construction of a larger and richer knowledge graph.

B. Veronica Mars

Set in a fictional town in California, Veronica Mars is a

modern day spin on Nancy Drew. The teenage protagonist,

Veronica Mars, is a private investigator. The series begins

with the murder of Veronica’s best friend, Lilly Kane. A

minor character, Abel Koontz, is convicted of her muder but

there is reason to suspect that he is not the true culprit.

This search for Lilly’s true murderer forms the overarching

plot motif. Within each episode Veronica is presented with a

crime, gathers evidence and (usually) solves the case. Unlike

2
0
2
0
 I

E
E

E
 I

n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 B

ig
 D

at
a

(B
ig

 D
at

a)
 |

9
7
8
-1

-7
2
8
1
-6

2
5
1
-5

/2
0
/$

3
1
.0

0
 ©

2
0
2
0
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/B

ig
D

at
a5

0
0
2
2
.2

0
2
0
.9

3
7
8
0
7
9

Authorized licensed use limited to: UCLA Library. Downloaded on April 20,2021 at 16:51:47 UTC from IEEE Xplore. Restrictions apply.

2511

It is not clear how to adapt this to analyze a season of a

television show. The key issue is how to “slice” the season

into documents. The naive solution of declaring each episode

to be a document is unsatisfactory because:

• There are relatively few episodes in a season.

• A given story arc is often developed over multiple

episodes. For example, in Veronica Mars details relating

to Lilly Kane’s murder are presented to the viewer in the

form of flashbacks interspersed throughout season one.

Inspired by [LNB19], [LMS19] we propose a novel approach:

1) Fix a required number of documents, n.

2) Let G denote the undirected graph obtained by forgetting

the orientation and type of each relation in G.

3) For i = 1, . . . , n, choose a random initial vertex v
(i)
0 and

perform a ` step random walk starting from v
(i)
0 . Let:

di =
(

v
(i)
0 , e

(i)
1 , v

(i)
1 , . . . , v

(i)
`

)

be the collection of vertices and edges traversed by this

walk.

4) Using d1, . . . , dn our documents, perform the topic

modeling as described earlier.

Note that using this “motif sampling”, one can easily gen-

erate a large corpus from a single season. More importantly,

we hypothesize that these randomly sampled “motifs” are

more likely to capture important topics than episodes, as

they will contain related elements that span multiple episodes.

We applied the technique to the Veronica Mars knowledge

graph with n = 1000 and l = 50. We used TF-IDF to

vectorize the resulting documents, and performed NMF with

r = 25. The reason we use TF-IDF here is to balance out

the importance of nodes—as nearly every character is related

to Veronica, it is very likely that every random walk will

contain Veronica_Mars. While the resulting topics were

somewhat noisy, the results are encouraging. For example,

Topic 12 contains the entities Aaron_Echolls, tapes

affair_with and Lilly_Kane. This topic neatly summa-

rizes the circumstances of Lilly Kane’s death: Aaron Echolls

killed Lilly Kane in a fit of rage after video tapes documenting

their affair came to light. Other topics relate to important

characters (Topic 13) or to episode-specific cases (Topic 20).

The complete list of topics is available at [AGK+20].

Topic 12 Topic 13 Topic 20

Aaron_Echolls Duncan_Kane Wanda_Varner

Lilly_Kane blackout rigged_election

affair_with epilepsy ballot_instructions

tapes oxcarbazepine Madison_Sinclair
TABLE II

SELECTED TOPICS

C. Link Prediction

The link prediction problem takes two entities, v1 and v2,

and a relation r ∈ R and asks whether the triple (v1, r, v2)
should be a fact in the knowledge graph G. Ideally, one

would like to use link prediction to deduce the guilty

parties in the various cases solved by Veronica Mars by

taking v1 =Character_A, r =described_as and v2 =
perpetrator. Due to the lack of training data (there are

only 20 cases), we found this challenging. Thus, we also

investigated using link prediction to determine whether or not

two characters were friends by choosing v1 =Character_A,

v2 = Character_B and r =friend_of.

Many approaches to link prediction first construct a vector

embedding of G and then assign a probability to (v1, r, v2)
being a fact inversely proportional to ‖u1 + ur − uv2

‖2 (see

[RFM+20] for an overview). We experimented with using

TransE for link prediction in this manner, but found the results

to be unsatisfactory. We hypothesize that this is because the

complex social links we are seeking to predict are more

appropriately captured by a subgraph than by an embedding.

For example, the data of a crime could be represented by a

subgraph connecting the perpetrator, the victim, a motive for

the crime, a location of the crime and several damning pieces

of evidence.

Motivated by this hypothesis, we investigated link

prediction algorithms that are subgraph based. In particular,

we used SEAL [ZC18]. Given a putative triple (v1, r, v2),
SEAL constructs an enclosing subgraph around this link and

then uses a trained graph neural network (GNN) to output a

probability of this link being a true fact. It is important to

note that SEAL is designed for undirected graphs, and thus is

not cognizant of the type or direction of the relation r. SEAL

also does not use the ontology in any way. Like any GNN,

SEAL requires training in the form of positive examples

of the link we are trying to predict. Negative examples are

generated by random sampling. We experimented with 50%,

75% and 90% of our data as training data (with the rest held

back as a test set).

We found mixed results. For example, using a 90%

split SEAL assigned an encouraging 71% probability to the

triple (Aaron Echolls, described as, perpetrator), cor-

rectly identifying Aaron Echolls as a suspect even though

this was not given in the training data. Unfortunately it

assigned similarly high probabilities to false triples such as

(Logan Echolls, described as, perpetrator). We sus-

pect that the poor performance of SEAL here can be explained

by the paucity of training data—our knowledge graph has

only 541 vertices, whilst the examples considered in [ZC18]

all have at least 10,000. Moreover, SEAL ignores the rich

information encoded in the types of relations, treating them all

uniformly as edges. A recent work [TDH19] extends SEAL

to handle multiple kinds of relations and might yield better

results.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we considered the novel problem of studying

television series using knowledge graphs. We introduced a new

Authorized licensed use limited to: UCLA Library. Downloaded on April 20,2021 at 16:51:47 UTC from IEEE Xplore. Restrictions apply.

2512

knowledge graph data set, which may be of interest to the com-

munity. We proposed several novel analysis techniques, such

as random walk topic modelling, and tested the applicability

of existing techniques to this new domain. We believe that

applying knowledge graphs to fiction has tremendous scope,

and for future groups we offer the following recommendations:

• Before adding any facts to the knowledge graph, develop

an application-specific ontology allowing for fewer rela-

tions. When developing the knowledge graph, only add

additional relations if strictly necessary. This will mitigate

a problem that we encountered, namely rare relations that

only occur once or twice in the knowledge graph.

• While it is tempting to use natural language processing to

automate the process of extracting facts, we found these

tools unable to deal with the linguistic complexity of

fiction. Hence, we recommend manually extracting facts.

• We recommend using time stamps. This can be done

either using reification (as we have done) or by using

an attributed knowledge graph.

• The proposed random walk topic modelling scheme

seems very promising. An interesting question for fu-

ture groups would be to compute statistics on coverage

(i.e. how many entities are included in at least one

document) and repetition (i.e. how many documents the

average entity appears in). This could assist in selecting

the number of documents to generate from a given a

knowledge graph. Another interesting line of research

would be to make the random walk ontology aware.

For example, if the edge traversed at step i represents

a certain kind of relation, this information could be used

to restrict the relations which the edges at step i + 1
can represent. It seems likely that incorporating such

additional structural information into the random walks

will yield more coherent documents.

• We suspect that GNN approaches may play an increas-

ingly important role in link prediction; further studies

might consider starting their work with GRAIL [TDH19].

• Template matching [MCT+18], [KET+19] is promising

strategy for identifying meaningful subgraphs within the

knowledge graph. We note that this approach would ben-

efit from a more principled ontology with fewer relations,

as discussed above.

REFERENCES

[AGK+20] Mariam Alaverdian, William Gilroy, Veronica Kirgios, Xia Li,
Carolina Matuk, Daniel Mckenzie, and Tachin Ruangkriengsin.
https://github.com/DanielMckenzie/KnowledgeGraphs
REU2020, 2020.

[BDE+16] Anthony Bonato, David Ryan D’Angelo, Ethan R Elenberg,
David F Gleich, and Yangyang Hou. Mining and modeling
character networks. In International workshop on algorithms

and models for the web-graph, pages 100–114. Springer, 2016.
[BEGM18] Anthony Bonato, Nicole Eikmeier, David F Gleich, and Rehan

Malik. Dynamic competition networks: detecting alliances and
leaders. In International Workshop on Algorithms and Models

for the Web-Graph, pages 115–144. Springer, 2018.
[BUGD+13] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason

Weston, and Oksana Yakhnenko. Translating embeddings
for modeling multi-relational data. In Advances in neural

information processing systems, pages 2787–2795, 2013.

[HBC+20] Aidan Hogan, Eva Blomqvist, Michael Cochez, Clau-
dia d’Amato, Gerard de Melo, Claudio Gutierrez, Jose
Emilio Labra Gayo, Sabrina Kirrane, Sebastian Neumaier,
Axel Polleres, et al. Knowledge graphs. arXiv preprint

arXiv:2003.02320, 2020.
[KET+19] Takahiro Kawamura, Shusaku Egami, Koutarou Tamura, Ya-

sunori Hokazono, Takanori Ugai, Yusuke Koyanagi, Fumihito
Nishino, Seiji Okajima, Katsuhiko Murakami, Kunihiko Taka-
matsu, et al. Report on the first knowledge graph reasoning
challenge 2018. In Joint International Semantic Technology

Conference, pages 18–34. Springer, 2019.
[KI17] Natthawut Kertkeidkachorn and Ryutaro Ichise. T2kg: An end-

to-end system for creating knowledge graph from unstructured
text. In AAAI Workshops, 2017.

[KSA+12] Craig A Knoblock, Pedro Szekely, José Luis Ambite, Aman
Goel, Shubham Gupta, Kristina Lerman, Maria Muslea,
Mohsen Taheriyan, and Parag Mallick. Semi-automatically
mapping structured sources into the semantic web. In Extended

Semantic Web Conference, pages 375–390. Springer, 2012.
[LMS19] Hanbaek Lyu, Facundo Memoli, and David Sivakoff. Sampling

random graph homomorphisms and applications to network
data analysis. arXiv preprint arXiv:1910.09483, 2019.

[LNB19] Hanbaek Lyu, Deana Needell, and Laura Balzano. Online
matrix factorization for Markovian data and applications to
network dictionary learning. arXiv preprint arXiv:1911.01931,
2019.

[LZL+18] Yue Liu, Tongtao Zhang, Zhicheng Liang, Heng Ji, and Deb-
orah L McGuinness. Seq2rdf: An end-to-end application for
deriving triples from natural language text. arXiv preprint

arXiv:1807.01763, 2018.
[MCT+18] Jacob D Moorman, Qinyi Chen, Thomas K Tu, Zachary M

Boyd, and Andrea L Bertozzi. Filtering methods for subgraph
matching on multiplex networks. In 2018 IEEE International

Conference on Big Data (Big Data), pages 3980–3985. IEEE,
2018.

[MH08] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research,
9(Nov):2579–2605, 2008.

[RFM+20] Andrea Rossi, Donatella Firmani, Antonio Matinata, Paolo
Merialdo, and Denilson Barbosa. Knowledge graph embedding
for link prediction: A comparative analysis. arXiv preprint

arXiv:2002.00819, 2020.
[TDH19] Komal K Teru, Etienne Denis, and William L Hamilton. In-

ductive relation prediction by subgraph reasoning. arXiv, pages
arXiv–1911, 2019.

[ZC18] Muhan Zhang and Yixin Chen. Link prediction based on graph
neural networks. In Advances in Neural Information Processing

Systems, pages 5165–5175, 2018.

Authorized licensed use limited to: UCLA Library. Downloaded on April 20,2021 at 16:51:47 UTC from IEEE Xplore. Restrictions apply.

