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Abstract

We develop a framework for learning sparse nonparametric directed acyclic graphs (DAGs) from data.
Our approach is based on a recent algebraic characterization of DAGs that led to a fully continuous
program for score-based learning of DAG models parametrized by a linear structural equation model
(SEM). We extend this algebraic characterization to nonparametric SEM by leveraging nonparametric
sparsity based on partial derivatives, resulting in a continuous optimization problem that can be applied to
a variety of nonparametric and semiparametric models including GLMs, additive noise models, and index
models as special cases. Unlike existing approaches that require specific modeling choices, loss functions,
or algorithms, we present a completely general framework that can be applied to general nonlinear models
(e.g. without additive noise), general differentiable loss functions, and generic black-box optimization
routines. The code is available at https://github.com/xunzheng/notears.

1 Introduction

Learning DAGs from data is an important and classical problem in machine learning, with a diverse array
of applications in causal inference (Spirtes et al., 2000), fairness and accountability (Kusner et al., 2017),
medicine (Heckerman et al., 1992); and finance (Sanford and Moosa, 2012). In addition to their undirected
counterparts, DAG models offer a parsimonious, interpretable representation of a joint distribution that
is useful in practice. Unfortunately, existing methods for learning DAGs typically rely on specific model
assumptions (e.g. linear or additive) and specialized algorithms (e.g. constraint-based or greedy optimization).
As a result, the burden is on the user to choose amongst many possible models and algorithms, which
requires significant expertise. Thus, there is a need for a general framework for learning different DAG
models—subsuming, for example, linear, parametric, and nonparametric—that does not require specialized
algorithms. Ideally, the problem could be formulated as a conventional optimization problem that can be
tackled with general purpose solvers, much like the current state-of-the-art for undirected graphical models
(e.g. Suggala et al., 2017; Yang et al., 2015; Liu et al., 2009; Hsieh et al., 2013; Banerjee et al., 2008).

In this paper, we develop such a general algorithmic framework for score-based learning of DAG models.
This framework is flexible enough to learn general nonparametric dependence while also easily adapting to
parametric and semiparametric models, including nonlinear models. The framework is based on a recent
algebraic characterization of acyclicity due to Zheng et al. (2018) that recasts the score-based optimization
problem as a continuous problem, instead of the traditional combinatorial approach. This allows generic
optimization routines to be used in minimizing the score, providing a clean conceptual formulation of the
problem that can be approached using any of the well-known algorithms from the optimization literature.
This work relies heavily on the linear parametrization in terms of a weighted adjacency matrix W € R¥*¢,
which is a stringent restriction on the class of models. One of the key technical contributions of the current
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work is extending this to general nonparametric problems, where no such parametrization in terms of a
weighted adjacency matrix exists.

Contributions Our main contributions can be summarized as follows:

e We develop a generic optimization problem that can be applied to nonlinear and nonparametric SEM and
discuss various special cases including additive models and index models. In contrast to existing work,
we show how this optimization problem can be solved to stationarity with generic solvers, eliminating
the necessity for specialized algorithms and models.

e We extend the existing smooth characterization of acyclicity from Zheng et al. (2018) to general
nonparametric models, show that the linear parametrization is a special case of the general framework,
and apply this to several popular examples for modeling nonlinear dependencies (Section 3).

e We consider in detail two classes of nonparametric estimators defined through 1) Neural networks and
2) Orthogonal basis expansions, and study their properties (Section 4).

e We run extensive empirical evaluations on a variety of nonparametric and semiparametric models
against recent state-of-the-art methods in order to demonstrate the effectiveness and generality of our
framework (Section 5).

As with all score-based approaches to learning DAGs, ours relies on a nonconvex optimization problem.
Despite this, we show that off-the-shelf solvers return stationary points that outperform other state-of-the-art
methods. Finally, the algorithm itself can be implemented in standard machine learning libraries such as
PyTorch, which should help the community to extend our approach to richer models moving forward.

Related work The problem of learning nonlinear and nonparametric DAGs from data has generated

significant interest in recent years, including additive models (Biithlmann et al., 2014; Voorman et al., 2014;
Ernest et al., 2016), generalized linear models (Park, 2018; Park and Raskutti, 2017; Park and Park, 2019;
Gu et al,, 2018), additive noise models (Hoyer et al., 2009; Peters et al., 2014; Blobaum et al., 2018; Mooij
et al., )1(») post-nonlinear models (Zhang and H‘\'\(nllu n, 20 /lmnu et al., 2016) and general nonlinear
SEM (J\lun i et al., 2019; Goudet et al., 2018; Kalainathan et ‘11., 2018; bgulmim et al., 2015). Recently, Yu

et al. (2019) proposed to use graph neural networks for nonlinear measurement models and Huang et al.
(2018) proposed a generalized score function for general SEM. The latter work is based on recent work

in kernel-based measures of dependence (Gretton et al., 2005; Fukumizu et al., 2008; Zhang et al., 2012).
Another line of work uses quantile scoring (' -zlgn\‘()\\l{zl et al., 2018). Also of relevance is the literature
on nonparametric variable selection (Bertin et al., 2008; Laﬂut\ et al., 2008; Miller et al., 2010; Rosasco
et al., 2()1'}; Gregorova et al., 2018) and approaches based on neural networks (Feng and Smmn, 2017; Ye
and Sun, 2018; Abid et al., 2019). The main distinction between our work and previous work is that our
framework is not tied to a spe(nﬁc model—as in Yu et al. (2019); Bithlmann et al. (2014); Park (2018)—as

our focus is on a generic formulation of an optimization problem that can be solved with generic solvers
(see Section 2 for a more detailed comparison). This also distinguishes this paper from concurrent work
by Lachapelle et al. (2019) that focuses on neural network-based nonlinearities in the local conditional
probabilities. Furthermore, compared to Huang et al. (2018) and Yu et al. (2019), our approach can be much
more efficient (Section 5.1; Appendix C). As such, we hope that this work is able to spur future work using
more sophisticated nonparametric estimators and optimization schemes.

Notation Norms will always be explicitly subscripted to avoid confusion: || - ||, is the £,-norm on vectors,
Il - ||e is the LP-norm on functions, || - ||,,q is the (p, ¢)-norm on matrices, and || - [|[p = || - ||2,2 is the matrix
Frobenius norm. For functions f : R® — R and a matrix A € R"*®, we adopt the convention that f(A) € R"
is the vector whose ith element is f(a?), where a' is the ith row of A.



2 Background

Our approach is based on (acyclic) structural equation models as follows. Let X = (X1,..., X4) be a random
vector and G = (V,E) a DAG with V = X. We assume that there exist functions f; : R? — R ? and
g; : R = R such that

E[X; | Xpa(y] = 9;(f5(X)),  Ef3(X) =0 (1)

and fj(u1,...,uq) does not depend on uy if X3, ¢ pa(j), where pa(j) denotes the parents of X; in G. Formally,
the 1ndependence statement means that for any X, ¢ pa(j), the function a(u) := f;(X;, .. Xk_l, Uy X1, Xd)
is constant for all © € R. Thus, G encodes the conditional independence structure of X . The functions g;,
which are typically known, allow for possible non-additive errors such as in generalized linear models (GLMs).
The model (1) is quite general and includes additive noise models, linear and generalized linear models, and
additive models as special cases (Section 3.3).

In this setting, the DAG learning problem can be stated as follows: Given a data matrix X = [x1 | - -+ |x4] €
R"™*9 consisting of n i.i.d. observations of the model (1), we seek to learn the DAG G(X) that encodes the
dependency between the variables in X. Our approach is to learn f = (fi,..., fq4) such that G(f) = G(X)
using a score-based approach. Given a loss function £(y, §) such as least squares or the negative log-likelihood,
we consider the following program:

mfin L(f) subject to G(f) € DAG,

1 (2)
where L(f) = - ZE(Xj,fj(X)).

There are two challenges in this formulation: 1) How to enforce the acyclicity constraint that G(f) € DAG,
and 2) How to enforce sparsity in the learned DAG G(f)? Previous work using linear and generalized linear
models rely on a parametric representation of G via a weighted adjacency matrix W € R**¢, which is no
longer well-defined in the model (1). To address this, we develop a suitable surrogate of W defined for general
nonparametric models, to which we can apply the trace exponential regularizer from ( ).

2.1 Identifiability

Existing papers approach this problem as follows: 1) Assume a specific model for (1), 2) Prove identifiability
for this specific model, and 3) Develop a specialized algorithm for learning this specific model. By contrast,
our approach is generic: We do not assume any particular model form or algorithm, and instead develop a
general framework that applies to any model that is identifiable. By now, there is a well-catalogued list of
identifiability results for various linear, parametric, and nonlinear models, which we review briefly below (see
also Section 3.3).
When the model (1) holds, the graph G is not necessarily uniquely defined: A well-known example is when
X is jointly normally distributed, in which case the f; are linear functions, and where it can be shown that the
graph G is not uniquely specified. Fortunately, it is known that this case is somewhat exceptional: Assuming
additive noise, as long as the f; are linear with non-Gaussian errors ( , ; , ;
, ) or the functions f; are nonlinear ( , ;
, ), then the graph G is generally identifiable. We refer the reader to ( ) for
details. Another example are so-called quadratic variance function models, which are parametric models that
subsume many generalized linear models ( ; , ). In the sequel, we assume
that the model is chosen such that the graph G is uniquely deﬁned from (1), and this dependence will be
emphasized by writing G = G(X). Similarly, any collection of functions f = (f1,..., fa) defines a graph G(f)
in the obvious way. See Section 3.3 for specific examples with discussion on identifiability.

2The reason for writing f;(X) instead of fj(Xpa(j)) is to simplify notation by ensuring each f; is defined on the same space.



2.2 Comparison to existing approaches

It is instructive at this point to highlight the main distinction between our approach and existing approaches.
A common approach is to assume the f; are easily parametrized (e.g. linearity) ( , ;
7 ) 7 ’ 7 7 ) ) 7
). In this case, one can easily encode the structure of G via, e.g. a weighted adjacency matrix, and
learning G reduces to a parametric estimation problem. Nonparametric extensions of this approach include
additive models ( , ; , ), where the graph structure is easily deduced
from the additive structure of the f;. More recent work ( , ; , ) uses specific
parametrizations via neural networks to encode G. An alternative approach relies on exploiting the conditional
independence structure of X, such as the post-nonlinear model ( ; ,
), the additive noise model ( , ), and kernel-based measures of condltlonal independence
( , ). Our framework can be viewed as a substantial generalization of these approaches: We
use partial derivatives to measure dependence in the general nonparametric model (1) without assuming a
particular form or parametrization, and do not explicitly require any of the machinery of nonparametric
conditional independence (although we note in some places this machinery is implicit). This allows us to use
nonparametric estimators such as multilayer perceptrons and basis expansions, for which these derivatives
are easily computed. As a result, the score-based learning problem is reduced to an optimization problem
that can be tackled using existing techniques, making our approach easily accessible.

3 Characterizing acyclicity in nonparametric SEM

In this section, we discuss how to extend the trace exponential regularizer from ( ) beyond
the linear setting, and then discuss several special cases.

3.1 Linear SEM and the trace exponential regularizer

We begin by briefly reviewing ( ) in the linear case, i.e. g;(s) = s and f;(X) = w] X for
some w; € R?. This defines a matrix W = [wy | -+ |w,] € R™? that precisely encodes the graph G(f), i.e.
there is an edge X — X; in G(f) if and only if wy; # 0. In this case, we can formulate the entire problem
in terms of W: If L(W) = || X — XW||%/(2n), then optimizing L(W) is equivalent to optimizing L(f) over
linear functions. Define the function h(W) = treV°W — d, where [W o W]y, = wj;. Then ( )
show that (2) is equivalent to

i L(W) subject to h(W) =0, (3)
The key insight from ( ) is replacing the combinatorial constraint G(W) € DAG with the
continuous constraint h(W) = 0. Our goal is to define a suitable surrogate of W for general nonparametric
models, so that the same continuous program can be used to optimize (2).

3.2 A notion of nonparametric acyclicity

Unfortunately, for general models of the form (1), there is no W, and hence the trace exponential formulation
seems to break down. To remedy this, we use partial derivatives to measure the dependence of f; on the kth
variable, an idea that dates back to at least ( ). First, we need to make precise the spaces
we are working on: Let H'(RY) C L2(R?) denote the usual Sobolev space of square-integrable functions
whose derivatives are also square integrable (for background on Sobolev spaces see ( )). Assume
hereafter that f; € H'(R?) and denote the partial derivative with respect to Xy by O f;. It is then easy to
show that f; is independent of Xy if and only if ||k f;]|z2 = 0, where || - ||z2 is the usual L?>norm. This
observation implies that the matrix W (f) = W(f1,..., f4) € R¥? with entries

W(Nkj = 10k 5l 2- (4)



precisely encodes the dependency structure amongst the X;. Thus the program (2) is equivalent to

L(f) subject to h(W(f)) =0. (5)

min
f:fi€HY(RY),Vj€(d]

This implies an equivalent continuous formulation of the program (2). Moreover, when the functions f; are all
linear, W(f) is the same as the weighted adjacency matrix W defined in Section 3.1. Thus, (5) is a genuine
generalization of the linear case (3).

3.3 Special cases

In addition to applying to general nonparametric models of the form (2) and linear models, the program (5)
applies to a variety of parametric and semiparametric models including additive noise models, generalized
linear models, additive models, and index models. In this section we discuss these examples along with
identifiability results for each case.

Additive noise models The nonparametric additive noise model (ANM) ( , ; ,
) assumes that

X; = fi(X) + 25, Efj(X) =0, z 1L f;(X). (6)

and z; ~ IP; is the random noise. Clearly this is a special case of (1) with g;(s) = s. In contrast to the
remaining examples below, without additional assumptions, it is not possible to simplify the condition for
(W(f)]k; =0in (4). Assuming the f; are three times differentiable and not linear in any of its arguments,
this model is identifiable ( , , Corollary 31).

Generalized linear models A traditional GLM assumes that E[X; | X,a(;)] = g;(w] X) for some known
link functions g; : R — R and w; € R?. For example, we can use logistic regression for X; € {0,1} with
g;j(s) = e®/(1 + e®). This is easily generalized to nonparametric mean functions f; € H'(R?) by setting

E[XJ | Xpa(j)] = gj(fJ(X)) (7)

Clearly, (6) is a special case of (7). Furthermore, for linear mean functions, [W(f)]x; = 0 if and only if
wj, = 0, recovering the parametric approach in ( ). Several special cases of GLMs are known
to be identifiable: Linear Gaussian with equal variances ( , ), linear non-Gaussian
models ( , ), Poisson models ( , ), and quadratic variance function models

( ;

Polynomial regression In polynomial regression, we assume that f;(X) is a polynomial in X3, ..., Xy.
More generally, given a known dictionary of functions ne(u1, ..., uq), we require that f;(X) =>", 8. n:(X).
Then it is easy to check that [W(f)]x; = 0 if and only if 3;, = 0 whenever 7, depends on wuy. For each k,
define a;x(u) := f;(X1,..., Xp—1,u, Xp+1,Xq). As long as a;ji(u) is not a linear function (i.e. each f; is
a degree-2 polynomial or higher in Xj) for all £ and j, then Corollary 31 in ( ) implies
identifiability of this model.

Additive models In an additive model ( , ; , ), we assume
that f;(X) =32, ; fir(Xk) for some fj\ € H'(R). Then it is straightforward to show that || f;z2 = 0 if
and only if fj; = 0. In other words, [W(f)]x; = 0 if and only if || f;x||z2 = 0. Assuming the f;; are three
times differentiable and not linear in any of its arguments, this model is identifiable ( , ,
Corollary 31, see also , ).



Index models The multiple index model ( , ; , ) assumes f;(X) =
Z%:l hjm(ﬁjj;nX) for some hj,, € H'(R) and B, € R%. As long as M is sufficiently large, these functions
are universal approximators ( , ). When M = 1, this is known as a single-index
model. As long as the functions hj, (m = 1,...,M) are linearly independent, it is straightforward to
show that |0k f;||z2 = 0 if and only if B} = 0 for each m. In other words, [W(f)]x; = 0 if and only if
Zﬁ/f:l ?mk = 0. Once again, assuming three-times differentiability and nonlinearity of hj,,, Corollary 31 in
( ) implies identifiability of this model.

Among these examples, both polynomial regression and GLMs with linear mean function are nonlinear

but finite-dimensional, and hence the problem (5) is straightforward to solve (see Section 4.3).

4 Optimization

In general, the program (5) is infinite-dimensional. In this section we discuss different ways to reduce this
to a tractable, finite-dimensional optimization problem. One of the advantages of encoding dependence via
W (f) is that it provides a plug-and-play framework for plugging in various nonparametric estimators whose
derivatives can be computed. We will illustrate two examples using multilayer perceptrons and orthogonal
basis expansions, however, we emphasize that it is straightforward to implement other differentiable models
for the f;. These flexible nonparametric estimators will help reduce (5) to a straightforward optimization
problem, as we discuss at the end of this section.
The basic recipe is the following:

1. Choose a model family for the conditional expectations E[X | X,

pa(j)] (€.g. general nonparametric,
additive, index, etc.);

2. Choose a suitable family of approximations (e.g. neural networks, orthogonal series, etc.);

3. Translate the loss function L(f) and constraint W (f) into parametric forms L(#) and W (0) using the
approximating family;

4. Solve the resulting finite-dimensional problem.

Step 3 above is the key step that enables transforming (5) into a tractable optimization problem. By
approximating the f; with a flexible family of functions parametrized by 6, we can replace the infinite-
dimensional quantity W (f) with the simpler W (). As is standard in the literature on nonparametric
estimation, the dimension of 6 is allowed to depend on n, although this dependence will be suppressed.

4.1 Multilayer perceptrons

We first consider the use of neural networks to approximate the f;, as in an ANM (6) or GLM (7). Consider
a multilayer perceptron (MLP) with A hidden layers and a single activation o : R — R, given by

MLP(u; AV .. AWY = g(AW (.. AP g (ADy))),
AW© g Rmexmet o =

By increasing the capacity of the MLP (e.g. increasing the number of layers h or the number of hidden units
my in each layer), we can approximate any f; € H'(R?) arbitrarily well.

First, we must determine under what conditions MLP(u; A, ... A™) is independent of u,—this is
important both for enforcing acyclicity and sparsity. It is not hard to see that if the kth column of A()
consists of all zeros (i.e. A,()}c) =0forallb=1,...,my), then MLP(u; A, ..., AM) will be independent of
ug. In fact, we have the following proposition, which implies that this constraint precisely identifies the set of
MLPs that are independent of w:

Proposition 1. Consider the function class F of all MLPs that are independent of uy and the function class
Fo of all MLPs such that the kth column of AY) consists of all zeros. Then F = Fy.



This important proposition provides a rigorous way to enforce that an MLP approximation depends only
on a few coordinates. Indeed, it is clear that constraining A,()i) = 0 for each b will remove the dependence
on k, however, there is a concern that we could lose the expressivity of multiple hidden layers in doing so.
Fortunately, this proposition implies that there is in fact no loss of expressivity or approximating power.
Furthermore, it follows that [W(f)]x; = 0 if Hk:th—column(A;l))Hg = 0. This result enables us to characterize
acyclicity independent of the depth of the neural network, as opposed to handling individual paths through
the entire neural network as in ( ), which depends linearly on the depth.

Let 0; = (A;l), ey Agh)) denote the parameters for the jth MLP and 6 = (61,...,04). Define [W(0)]x; =

|\kth—column(A§1))||2. The problem (2) thus reduces to

d
. 1 1
min 5 205, MUP(X:6)) + A4
=
subject to h(W(0)) = 0. (8)

4.2 Basis expansions

As an alternative to neural networks, we also consider the use of orthogonal basis expansions ( ,

, ; , ; , ). While many techniques are valid, we adopt an approach based
on (2009). Let {¢,}22; be an orthonormal basis of H*(R?) such that Eep,(X) = 0 for each
r. Then any f € H'(R?) can be written uniquely

= Z ar@r(u)v Qpr = Pr (u)f(u) du. (9)
Rd

As long as the coefficients «,. decay sufficiently fast, f can be well-approximated by the finite series fR =
Zle appr. Similar claims are true for one-dimensional Sobolev functions, which applies to both additive
(i.e. for f;r) and index (i.e. for hjp,) models.

We illustrate here an application with additive models and one-dimensional expansions. It is straightforward
to extend these ideas to more general models using a tensor product basis, though this quickly becomes

computationally infeasible. For more on high-dimensional orthogonal series, see ( ). Thus,
filur, . ua) = fin(ug)
kj
o (10)
=22 amriprue).
k#j r=1

Given integers Ry and assuming f;; is sufficiently smooth, we have || fjr — fﬁk‘ Iz = O(1/Ry) ( ,
), so that the overall approximation error is on the order O(d/ming Ry). Furthermore, [W(f)]x; =
0 < ||fjkllez =0 <= ajr, =0 for all r. Since we are discarding terms for r > Ry, in practice it suffices

to check that ajp, =0forr =1 ..., Ry, or Zf; %2'1” =0.
Letting 6 denote the parameters oy, for all j, k,r, it thus suffices to define [W(8)]x; = [ka1 a]kr]1/2

for the purposes of checking acyclicity. Let @, be the matrix [®g]: = pr (X ,Ei) ). To estimate the coefficients
gy, We solve

Hbin % zd: Z(xj, Z @g%‘k)

j=1 k#j
1
+ )\1 Z ﬁa?k@zékajk + )\2 Z Haijl
k#j k#j
subject to h(W(9)) = 0. (11)
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Figure 1: Structure recovery measured by SHD (lower is better) to ground truth. Left: n = 1000. Middle:
n = 200. Right: Average over all configurations. Rows: random graph model (Erdos-Renyi and scale-
free). Columns: different types of SEM. NOTEARS-MLP performs well on a wide range of settings, while
NOTEARS-Sob shows good accuracy on additive models.

This is similar to Ravikumar et al. (2009) with the addition of an explicit ¢; constraint.

4.3 Solving the continuous program

Having converted L(f) and W (f) to their finite-dimensional counterparts, we are now ready to solve (5) by
applying standard optimization techniques. We emphasize that the hard work went into formulating the
programs (8) and (11) as generic problems for which off-the-shelf solvers can be used. Importantly, since
in both (8) and (11) the term W () is differentiable w.r.t. 6, the optimization program is an ¢;-penalized
smooth minimization under a differentiable equality constraint. As in Zheng et al. (2018), the standard
machinery of augmented Lagrangian can be applied, resulting in a series of unconstrained problems:

min F(6) + \o]1,

(12)
F(0) = L(9) + glh(W(Q))l2 +ah(W(0))

where p is a penalty parameter and « is a dual variable.

A number of optimization algorithms can be applied to the above unconstmined {1-penalized smooth
minimization problem. A natural choice is the L-BFGS-B algorithm (Byrd et al., 1995), which can be directly
applied by casting (12) into a box-constrained form:

min F(0) + Al|6]y

13
= min ~ F(O —07)+ A1 (0" +67) (13)
0+>0,0->0
where 1 is a vector of all ones. We note that as in Zheng et al. (2018), (12) is a nonconvex program, and at

best can be solved to stationarity. Our experiments indicate that this nonetheless leads to competitive and
often superior performance in practice.

5 Experiments

We study the empirical performance of two instances of the general framework: MLP (4.1) and Sobolev
expansions (4.2), denoted by NOTEARS-MLP and NOTEARS-Sob. For NOTEARS-MLP we use an MLP
with one hidden layer with 10 hidden units and sigmoid activation function. For NOTEARS-Sob we use
Sobolev basis ¢, (u) = s,sin(u/s,), s, =2/((2r — 1)7) (r =1,...,10). Complete details on all baselines and
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Figure 2: Structure recovery measured by SHD (lower is better) to ground truth. Left: n = 1000. Middle:
n = 200. Right: Average over all configurations. Rows: random graph model (Erdos-Renyi and scale-free).
Columns: different types of SEM. Either NOTEARS-MLP or NOTEARS-MLP++ (i.e. NOTEARS-MLP with
neighborhood selection and pruning) achieves competitive accuracy compared to CAM.

simulations, including a discussion of computational complexity and runtimes, can be found in the appendix.
Code implementing our method is available at https://github.com/xunzheng/notears.

Baselines For comparison, the following methods are chosen as baselines: fast greedy equivalence search

(FGS) (Ramsey et al., 2017), greedy equivalence search with generalized scores (GSGES) (Huang et al., 2018),
DAG-GNN (GNN) (Yu et al., 2019), NOTEARS (Linear) (Zheng et al., 2018) for linear SEM, and causal
additive models (CAM) (Biihlmann et al., 2014). To summarize, FGS and Linear are specialized at linear
models, whereas GSGES, GNN, and CAM targets general nonlinear dependencies. Comparisons with other
score-based methods (KGV score (Bach and Jordan, 2003), Spearman correlatlon (Sokolova et al., 2014)) and
constraint-based methods (PC (Spirtes et al., 2(1()(1), MM-MB (Aliferis et al., 2010)) can be found in previous
work (Huang et al., 2018), hence are omitted.

Simulation The ground truth DAG is generated from two random graph models: Erdos-Renyi (ER) and
scale-free (SF). We use ER2 to denote an ER graph with sy = 2d edges, likewise for SF. Given the ground truth
DAG, we simulate the SEM X; = f;(Xpa(j)) + 25 for all j € [d] in topological order, and each z; ~ N(0, 1).
To evaluate the performance under different data generation mechanisms, we consider four models for the f;:
1) Additive models with Gaussian processes (GPs) for each f;x, 2) Index models (M = 3), 3) ANM with
MLPs, and 4) ANM with GPs.

Metrics We evaluate the estimated DAG structure using the following common metrics: false discovery
rate (FDR), true positive rate (TPR), false positive rate (FPR), and structural Hamming distance (SHD).
Note that both FGS and GSGES return a CPDAG that may contain undirected edges, in which case we

evaluate them favorably by assuming correct orientation for undirected edges whenever possible, similar to
(Zheng et al., 2018).

5.1 Structure learning

In this experiment we examine the structure recovery of different methods by comparing the DAG estimates
against the ground truth. We simulate {ER1, ER2, ER4, SF1, SF2, SF4} graphs with d = {10, 20,40}
nodes. For each graph, n = {1000,200} data samples are generated. The above process is repeated 10 times
and we report the mean and standard deviations of the results. For NOTEARS-MLP and NOTEARS-Sob,
A ={0.01,0.03} are used for n = {1000, 200} respectively.



Figure 1 shows the SHD in various settings; the complete set of results for the remaining metrics are
deferred to the supplement. Overall, the proposed NOTEARS-MLP method attains the best SHD (lower
the better) across a wide range of settings, particularly when the data generating mechanism is an MLP
or an index model. One can also observe that the performance of NOTEARS-MLP stays stable for different
graph types with varying density and degree distribution, as it does not make explicit assumptions on the
topological properties of the graph such as density or degree distribution. Not surprisingly, NOTEARS-Sob
performs well when the underlying SEM is additive GP. On the other hand, when the ground truth is
not an additive model, the performance of NOTEARS-Sob degrades as expected. Finally, we observe that
GSGES outperforms NOTEARS-MLP and NOTEARS-Sob on GP, which is a nonparametric setting in which a
kernel-based dependency measure can excel, however, we note that the kernel-based approach accompanies an
O(n?) time complexity, compared to linear dependency on n in NOTEARS-MLP and NOTEARS-Sob. Also,
with by properly tuning the regularization parameter, the performance of NOTEARS-MLP for each individual
setting can be improved considerably, for example in the GP setting. Since such hyperparameter tuning is
not the main focus of this paper, we fix a reasonable A for all settings (see Appendix C for more discussion).

With respect to runtime and scalability, we note that the computational complexity of our approach
depends on the choice of nonparametric estimator. For example, NOTEARS-MLP requires O(nd?m+d?*m+d®)
flops per iteration of L-BFGS-B. In terms of runtime, the average runtime of GSGES on ER2 with d = 40,
n = 1000 is over 90 minutes, whereas NOTEARS-MLP takes less than five minutes on average (see Appendix C
for more discussion).

Figure 2 shows the SHD compared with CAM. We first observe that NOTEARS-MLP outperforms CAM
in multiple index models and MLP models, on the other hand, CAM achieves better accuracy on additive GP
and the full GP setting. Recall that the CAM algorithm involves three steps: 1) Preliminary neighborhood
search (PNS), 2) Order search by greedy optimization of the likelihood, and 3) Edge pruning. By comparison,
our methods effectively only perform the second step, and can easily be pre- and post-processed with the
first (PNS) and third (edge pruning) steps. To further investigate the efficacy of these additional steps, we
applied both preliminary neighborhood selection and edge pruning to NOTEARS-MLP and NOTEARS-Sob on
additive GP and GP settings, denoted as NOTEARS-MLP++ and NOTEARS-Sob++. Noticeably, the output
from PNS simply translates to a set of constraints in the form of §; = 0 that can be easily incorporated into
the L-BFGS-B algorithm for (13), demonstrating the flexibility of the proposed approach. The performance
improves in both cases, matching or improving vs. CAM.

5.2 Sensitivity to number of hidden units

We also investigated the effect of number of hidden units in the NOTEARS-MLP estimate. It is well-known
that as the size of the hidden layer increases, the functions representable by an MLP become more flexible.
On the other hand, larger networks require more samples to estimate the parameters. Indeed, Figure 3
confirms this intuition. We plot the SHD with varying number of hidden units ranging from zero (i.e. linear
function) to 100 units, using n = 1000 and n = 200 samples generated from the additive GP model on SF2
graph with d = 20 nodes. One can first observe a sharp phase transition between zero and very few hidden
units, which suggests the power of nonlinearity. Moreover, as the number of hidden units increases to 20, the
performance for both n = 1000 and n = 200 steadily improves, in which case the increased flexibility brings
benefit. However, as we further increase the number of hidden units, while SHD for n = 1000 remains similar,
the SHD for n = 200 deteriorates, hinting at the lack of samples to take advantage of the increased flexibility.

5.3 Real data

Finally, we evaluated NOTEARS-MLP on a real dataset from ( ) that is commonly used
as a benchmark as it comes with a consensus network that is accepted by the biological community. The
dataset consists of n = 7466 continuous measurements of expression levels of proteins and phospholipids
in human immune system cells for d = 11 cell types. We report an SHD of 16 with 13 edges estimated by
NOTEARS-MLP. In comparison, NOTEARS predicts 16 edges with SHD of 22 and GNN predicts 18 edges
that attains SHD of 19. (Due to the large number of samples, we could not run GSGES on this dataset.)
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Figure 3: SHD (lower is better) with varying hidden layer size in NOTEARS-MLP.

Among the 13 edges predicted by NOTEARS-MLP, 7 edges agree with the consensus network: raf — mek,
mek — erk, PLCg — PIP2, PIP3 — PLCg, PIP3 — PIP2, PKC — mek, PKC — jnk; and 3 edges are
predicted but in a reversed direction: raf + PKC, akt + erk, p38 +— PKC. Among the true positives, 3 edges
are not found by other methods: mek — erk, PIP3 — PLCg, PKC — mek.

6 Discussion

We present a framework for score-based learning of sparse directed acyclic graphical models that subsumes
many popular parametric, semiparametric, and nonparametric models as special cases. The key technical
device is a notion of nonparametric acyclicity that leverages partial derivatives in the algebraic characterization
of DAGs. With a suitable choice of the approximation family, the estimation problem becomes a finite-
dimensional differentiable program that can be solved by standard optimization algorithms. The resulting
continuous optimization algorithm updates the entire graph (i.e. all edges simultaneously) in each iteration
using global information about the current state of the network, as opposed to traditional local search methods
that update one edge at a time based on local information. Notably, our approach is generally more efficient
and more accurate than existing approaches, despite relying on generic algorithms. This out-of-the-box
performance is desirable, especially when noting that future improvements and specializations can be expected
to improve the approach substantially.
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A Proofs

In this Appendix, we prove Proposition 1. For completeness, note that
F={f| fu) = MLP(u; AD ... A",
f independent of wuy}
and
Fo={f | f(u) = MLP(u; AV, ..., AM),
AL =0,¥b=1,...,m}.
We omit the bias terms in each layer as it does not affect the statement.

Proof of Proposition 1. We will show that F C Fo and Fyq C F.
1) Fo C F: for any fo € Fo, we have fo(u) = MLP(u; AD ..., AM), where AW Z 0 for all b = 1,...,m.
bk
Hence the linear function AMw is independent of uy,. Therefore,
fo(u) = MLP(u; AV ... AW)
=o(AMg(-.. AP g (AMy)))
is also independent of wu, which means fy € F.

(2) F € Fo: for any f € F, we have f(u) = MLP(u; AW AMY) and f is independent of uy. We will
show that f € Fy by constructing a matrix A such that

flu) = MLP(u; AD A®) - A()) (14)
and Al}) =0 forallb=1,...,ms.

Let @ be the vector such that 4, = 0 and @y = uy, for all k' # k. Since @ and u differ only on the kth
dimension, and f is independent of uy, we have

f(u) = f(@) = MLP(a; A, ..., AM), (15)

Now define A®) be the matrix such that flg? =0 and AIEB = AIE}C) for all k' # k. Then we have the following
observation: for each entry s € {1,...,m1},

d
(AW, = Z Agprugy = Z Agprug

k=1 k' #k
d
= Agin = (AVa),.
k=1
Hence,
ANy = AWg, (16)
Therefore, by (15)
fu) = f(a)

= MLP(a; AD, ..., AM)
=o(AMWg (... AP 5 (A 7))
=o(AMg(... AP g (AMy)))
= MLP(u; A, A A()

By definition of Fy, we know that MLP(u; fl(l), A ,A(h)) € Fo. Thus, f € Fp and we have completed
the proof. O
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B Experiment details

Baselines We consider the following baselines.

e Fast greedy equivalence search (FGS)? ( , ) is based on greedy search and assumes
linear dependency between variables.

e Greedy equivalence search with generalized scores (GSGES)* ( ) ) is also based on greedy
search, but uses generalized scores without assuming a particular model class.

e DAG-GNN (GNN)® ( , ) learns a (noisy) nonlinear transformation of a linear SEM using
neural networks.

e NOTEARS (Linear) ( , ) learns a linear SEM using continuous optimization.

e Causal additive model (CAM)7 ( , ) learns an additive SEM by leveraging efficient

nonparametric regression techniques and greedy search over edges.

For all experiments, default parameter settings are used, except for CAM where both preliminary neighborhood
selection and pruning are applied.

Simulation Given the graph G, we simulate the SEM X; = f;(Xa(;)) + 2; for all j € [d] in the topological
order induced by G. We consider the following instances of f;:

o Additive GP: fj(Xpa(j)) = X jepa(y) fik(Xk), where each fji is a draw from Gaussian process with
RBF kernel with length-scale one.

e Index model: f;(Xpa(;)) = anzl hm(zk@a(]—) 0jmiXk), where hy = tanh, hy = cos, hy = sin, and
each 0,1 is drawn uniformly from range [—2,—0.5] U [0.5, 2].

e MLP: f; is a randomly initialized MLP with one hidden layer of size 100 and sigmoid activation.
e GP: f; is a draw from Gaussian process with RBF kernel with length-scale one.

In all settings, z; is i.i.d. standard Gaussian noise.

C Additional results

Full comparison We show {SHD, FDR, TPR, FPR} results on all {ER1, ER2, ER4, SF1, SF2, SF4}
graphs in Figure 4, 5, 6, 7 respectively. Similarly, see Figure 8, 9, 10, 11 for full comparison with CAM. As in
Figure 1, each row is a random graph model, each column is a type of SEM. Overall NOTEARS-MLP has low
FDR/FPR and high TPR, and same for NOTEARS-Sob on additive GP. Also observe that in most settings
GNN has low FDR as well as low TPR, which is a consequence of only predicting a small number of edges.

Complexity and runtime Recall that numerical evaluation of matrix exponential involves solving linear
systems, hence the time complexity is typically O(d?) for a dense d x d matrix. Taking NOTEARS-MLP with
one hidden layer of m units as an example, it takes O(nd?>m+d?m+d?®) time to evaluate the objective and the
gradient. If m/d = O(1), this is comparable to the linear case O(nd?+ d®), except for the inevitable extra cost
from using a nonlinear function. This highlights the benefit of Proposition 1: the acyclicity constraint almost
comes for free. Furthermore, we used a quasi-Newton method to reduce the number of calls to evaluate the

3https://github.com/bd2kccd/py—causal
4https://github.com/Bivei-Huang/Generalized-Score-Functions-for-Causal-Discovery/
Shttps://github.com/fishmoon1234/DAG-GNN

6https://github.com/xunzheng/notears

"https://cran.r-project.org/package=CAM
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NOTEARS-MLP NOTEARS-Sob  FGS Linear GNN GSGES

d=20 92.12 + 22.51 62.90 £ 16.83  0.55 £ 0.43 10.95 £ 4.52  498.32 & 43.72 1547.42 £+ 109.83
d=40 282.64 £ 67.46  321.88 £57.33 0.59 £ 0.17 43.15 £ 12.43 706.35 £ 64.49 6379.98 £ 359.67

Table 1: Runtime (in seconds) of various algorithms on ER2 graph with n = 1000 samples.

SEM Method SHD FDR TPR FPR Predicted #

Additive-GP  NOTEARS-MLP  124.3 £+ 6.65 0.30 £ 0.07 0.35+0.04 0.04 £0.01 81.70 & 10.49
GSGES 121.3 £ 5.02 0.36 £ 0.05 0.28 £0.03 0.04 £ 0.00 69.30 & 5.01

MLP NOTEARS-MLP 88.40 £ 11.29  0.18 £ 0.08 0.57 £ 0.06 0.03 &+ 0.02 111.70 £+ 15.97
GSGES 121.60 £ 11.95 0.33 £0.09 0.33 +£0.06 0.04 £0.01 77.10 &+ 7.13

Table 2: ER4, d = 40, n = 200 with A = 0.03 and threshold = 0.5.

gradient, which involves computing the matrix exponential. Table 1 contains runtime comparison of different
algorithms on ER2 graph with n = 1000 samples. Recall that the kernel-based approach of GSGES comes
with a O(n?) computational complexity, whereas NOTEARS-MLP and NOTEARS-Sob has O(n) dependency
on n. This can be confirmed from the table, which shows GSGES has a significantly longer runtime.

Comments on hyperparameter tuning The experiments presented in this paper were conducted under
a fixed (and therefore suboptimal) value of A and weight threshold across all graph types, sparsity levels, and
SEM types, despite the fact that each configuration may prefer different regularization strengths. Indeed,
we observe substantially improved performance by choosing different values of hyperparameters in some
settings. As our focus is not on attaining the best possible accuracy in all settings by carefully tuning the
hyperparameters, we omit these results in the main text and only include here as a supplement. For instance,
for ER4 graph with d = 40 variables and n = 200 samples, when the SEM is additive GP and MLP, setting
A = 0.03 and threshold = 0.5 gives results summarized in Table 2.
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Figure 6: Structure recovery measured by TPR (higher is better) to ground truth.
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Figure 7: Structure recovery measured by FPR (lower is better) to ground truth.
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Figure 8: Structure recovery measured by SHD (lower is better) to ground truth, compared with CAM.

Additive GP Index Model MLP

[12E)

<t—

ey3

—
—
4
e
—

vd3

[EN]

——

False discovery rate (FDR)

248

1l HW{MH(

"
ﬁ/‘\'

10 20 30 4010 20 30 4010 20 30 4010 20 30 40
d (Number of nodes)

method —— NOTEARS-MLP —— NOTEARS-Sob

False discovery rate (FDR)

Additive GP Index Model MLP

False discovery rate (FDR)

0.1

Pr -

£ 0.0
10 20 30 4010 20 30 4010 20 30 4010 20 30 40

d (Number of nodes)

20
d (Number of nodes)

30 40

CAM NOTEARS-MLP++ NOTEARS-Sob++

Figure 9: Structure recovery measured by FDR (lower is better) to ground truth, compared with CAM.
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Figure 10: Structure recovery measured by TPR (higher is better) to ground truth, compared with CAM.
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Figure 11: Structure recovery measured by FPR (lower is better) to ground truth, compared with CAM.
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