Formal Specification and Verification of User-centric Privacy
Policies for Ubiquitous Systems

Rezvan Joshaghani
rezvanjoshaghani@u.boisestate.edu
Boise State University
Boise, Idaho

Elena Sherman
elenasherman@boisestate.edu
Boise State University
Boise, Idaho

ABSTRACT

As our society has become more information oriented, each in-
dividual is expressed, defined, and impacted by information and
information technology. While valuable, the current state-of-the-
art mostly are designed to protect the enterprise/ organizational
privacy requirements and leave the main actor, i.e., the user, un-
involved or with the limited ability to have control over his/her
information sharing practices. In order to overcome these limi-
tations, algorithms and tools that provide a user-centric privacy
management system to individuals with different privacy concerns
are required to take into the consideration the dynamic nature of
privacy policies which are constantly changing based on the infor-
mation sharing context and environmental variables. This paper
extends the concept of contextual integrity to provide mathematical
models and algorithms that enables the creations and management
of privacy norms for individual users. The extension includes the
augmentation of environmental variables, i.e. time, date, etc. as part
of the privacy norms, while introducing an abstraction and a partial
relation over information attributes. Further, a formal verification
technique is proposed to ensure privacy norms are enforced for
each information sharing action.

CCS CONCEPTS

« Security and privacy — Logic and verification; - Computer
systems organization — Embedded systems; Redundancy; Ro-
botics; « Networks — Network reliability.

KEYWORDS

Privacy, Formal Methods, User-Centric Policies

ACM Reference Format:
Rezvan Joshaghani, Stacy Black, Elena Sherman, and Hoda Mehrpouyan.
2019. Formal Specification and Verification of User-centric Privacy Policies

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IDEAS’19, June 10-12, 2019, Athens, Greece

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6249-8/19/06...$15.00
https://doi.org/10.1145/3331076.3331105

Stacy Black
stacyblack@u.boisestate.edu
Boise State University
Boise, Idaho

Hoda Mehrpouyan
hodamehrpouyan@boisestate.edu

Boise State University
Boise, Idaho

for Ubiquitous Systems. In 23rd International Database Engineering Appli-
cations Symposium (IDEAS’19), June 10-12, 2019, Athens, Greece. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3331076.3331105

1 INTRODUCTION

A Privacy Bill of Rights was endorsed by the White House in 2012, a
response to an increasingly loud objection of citizens on the lack of
privacy and fair information practices guidelines [20]. The predica-
ment was not only recognized by the US government, but has also
been investigated and studied at the international stage and has re-
sulted in reports such as "Rethinking personal data: Strengthening
trust" by the World Economic Forum (WEF) [40] and "Recommen-
dations for businesses and policymakers" by the Federal Trade
Commission (FTC) [12]. Despite all these efforts, ubiquitous online
monitoring of users’ activities [29] and scandalous data breaches,
i.e. Facebook and Cambridge Analytica, continue to haunt Online
Social Network (OSN) users [2, 11]. These privacy breaches are
often due to a lack of regulatory standardization. Hence, the onus is
on the user to take control of: what types of information should be
shared with whom and when. However, controlling and managing
the information sharing parameters could be a cumbersome and
difficult process [15, 21, 44]. Therefore, ample tools and algorithms
should be developed and provided to users so they are able to define
and enforce their own customized, unambiguous privacy policies
and have control over how their information is shared. The state-of-
the-art research on privacy management mostly consist of: access
control languages [4, 33, 39], different privacy settings in applica-
tions, and formal privacy policies [5, 10, 14, 22, 36]. While valuable,
the previous works are mostly based on enterprise/organizational
privacy management and leave the main actor, i.e., the user, unin-
volved or with limited ability to control the information sharing
parameter. In addition, existing privacy regulations like HIPAA
or a corporation’s privacy policies are domain-specific and static
with a little or no change over time. On the other hand, the user’s
privacy policies are dynamic and changing based on many factors,
i.e. context, environment, relationship status, etc. In addition to
dynamicity, the privacy framework should provide the user with
the ability to adapt the policies to their own personal needs, since
the definition of privacy varies from person to person based on
their personality, cultural background, etc [30].

In order to move towards a more practical solution, this paper
proposes a framework to build a user-centric privacy management

https://doi.org/10.1145/3331076.3331105
https://doi.org/10.1145/3331076.3331105

IDEAS’19, June 10-12, 2019, Athens, Greece

system. We focus on developing the main core of this framework,
which is the privacy formalization and verification engine that allows
for the guided and flexible specification of users’ privacy intentions.
The formalization and verification engine performs formal rea-
soning about the user’s privacy rules to detect privacy violations.
Further, the proposed approach ensures that the defined privacy
policy is unambiguous and a consistency checking approach is
proposed so that all the exiting and newly defined policies are
consistent with one another. The underlying formalization utilizes
two formal models: 1- the user’s information sharing model, and
2- the privacy-preserving model. The user’s information sharing
model represents all the user’s information sharing activities to oth-
ers. The privacy verification is performed by mapping each user’s
information sharing parameters (known as a state) to a state in
the privacy-preserving model; a state with no mapping indicates a
privacy violation. As a proof of concept, the privacy formalization
and verification engine is implemented as a Java program that de-
tects privacy violations as the user shares information in real-time.
Since this framework is targeted for smart devices, which usually
have low memory and low processing power, its performance was
evaluated on both a PC and a Raspberry Pi model B to show the
practicality of our approach.

The future work will extend the current effort to include: user
privacy requirement elicitation, identification and categorization of
the information shared by users, and detection of the relationship
changes between a user and recipients.

The rest of the paper is organized as follows: section 2 provide
the related works. Section 3 has a detailed description of our for-
malism and verification engine, and the implementation details of
our framework are given in section 4. Moreover, the performance
evaluation of the proposed framework is given in section 5. Finally,
section 6 draws the conclusion of this paper and discusses the future
works of our approach.

2 RELATED WORKS

For over 120 years researchers have studied privacy in different
settings of technological advances [41, 45]. The first privacy theory
emerged when newspapers started to publish personally intru-
sive articles and photographs[41]. This led to seclusion and non-
intrusion theory of privacy that defined the user’s privacy as “the
right to be left alone” [45] or being free from intrusion [18]. As new
technologies were introduced such as databases containing the per-
sonal information of the users [41] the information-related privacy
concerns [38] emerged. To address these concerns researchers devel-
oped the control [46], limitation [16], and Restricted Access/Limited
Control (RACL) [32] theories to enable users to control and limit
their privacy while share information with others. In RACL the-
ory, the user’s privacy is implied as “a situation with regard to
others [if] in that situation the individual...is protected from in-
trusion, interference, and information access by others” [42] The
control, limitation and RACL theories assume a rigid definition
of privacy, while in the current technological era the meaning of
privacy changes based on the societal norms. To address this issue,
Nissenbaum proposed the Contextual Integrity (CI) theory of pri-
vacy, [34] where privacy behaviors are affected by the context of
the information sharing environment.

Joshaghani, et al.

To implement the above theories, privacy policy languages were
created based on the theories of limitation, control and RACL. The
early privacy languages were either created by augmentation of
access control languages or have the same structure of specify-
ing policies as a set of access roles and information categories
in a structured format like Extensible Markup Language (XML).
Some well-known examples of such Languages are Platform for
Privacy Preferences Project (P3P) [39], Enterprise Privacy Autho-
rization Language (EPAL) [4], eXtensible Access Control Markup
Language (XACML) [33], and Confab [19]. The early version of
these languages lacked temporal modalities that were solved in
the extended versions of them such as adding spatio-temporal at-
tributes to XACML [27, 35, 43].

Another common formalism for privacy is based on transition sys-
tems where the policies are specified as action and state of infor-
mation sharing. Formalizing privacy policies were based on the
privacy-preserving and privacy-violating actions in the system.
Also, in this formalism, the temporal characteristic of privacy was
modeled using Linear Temporal Logic (LTL). Lu et al. [28] proposed
a technique that translated the privacy specification of web ser-
vices to LTL formulas. Then a Privacy Interface Automata (PIA)
is presented to transform the messaging structure extracted from
the web service business process execution language (WS-BPEL)
into an automaton, creating their privacy policy model. Krishnan et
al. [26] also proposed an approach to enforce privacy requirements
using role-based access control and LTL. Their technique contains
behavior automata that model the system behavior (gathering or us-
ing data) and an access control automata which enforce the privacy
policies. Kouzapas et al. [25], combined the z-calculus and privacy
calculus to verify privacy policies formally. Their framework has a
type system to capture privacy related notations and a language for
expressing the privacy policies. Grace et al. [17] proposed a model
of user-centric privacy with a labeled transition system, which
compares the cloud service privacy policies with the users’ privacy
preferences. However, while they provide customizable privacy
preferences, they do not consider environmental variables in their
model. Although this group specifies the privacy utilizing a formal
semantic and considers the temporal modalities, the action based
modeling of the system is not scalable [5].

The scalability issue in action based systems were addressed by
Aucher et al. [5] that proposed to specify the privacy policies over
the knowledge that the information sharing action exposes to the
recipients of the information. In this model, privacy policy is speci-
fied as allowed and prohibited knowledge rather than actions, and
different actions can result in different knowledge exchange. They
used dynamic epistemic deontic logic (DEDL) as the foundation of
their language. The authors define information sharing conditions
as permitted or forbidden knowledge and the proposed language
does not support temporal modalities. Also, Pardo et al. [36], pre-
sented a formal language for privacy policy, using epistemic logic
for social network models. However, their formal privacy policy did
not contain time features; later, [24, 37] extended [36] to include
time characteristics to the privacy language by adding time interval
and LTL which led to the creation of timed privacy framework for
social media. Both frameworks used a social network model and
privacy policies as properties for model checking [7] verification.

Formal Specification and Verification of User-centric Privacy Policies for Ubiquitous Systems IDEAS’19, June 10-12, 2019, Athens, Greece

while a verity of implementation based on the theory of lim-
itation, control and RACL continues to grow, another group of
studies focused on the implementation of CI theory of privacy.
Barth et al. [8] have utilized first-order logic and LTL to model
the transfer of knowledge between agents during the information
sharing activities that are governed by Nissenbaum’s concept of
norms. In this context, a positive norm is defined as a permission
that allows information sharing activity and a negative norm pre-
vents the information sharing activity. Further, implementation of
CI was extended by DeYoung et al . [14] to include the notion of
purpose and self-reference based on their Privacy Least Fixed Point
(LFP) framework. The proposed framework resulted in the broader
formalization of HIPAA and GLBA privacy laws.

The above approaches assume that the privacy policies will be
created in a manner that are consistent with one another. How-
ever, privacy is dynamic in nature and as relationships and user’s
requirements changes it is required for privacy policies to change.
These changes can result in privacy policy conflicts. Therefore,
Breaux et al. [10] proposed Eddy that utilized CI. The goal of their
research was to find privacy conflicts in multi-stakeholder privacy
policies. In order to achieve that goal, natural language policies
are translated to Description Logic (DL)[6] so it can be used in the
formal reasoning process to investigate whether the policies are
consistent. Eddy and many other frameworks that are based on
CI theory are designed and develop based on the organizational
privacy requirements which are not compatible with individual
users privacy requirements.

For that reason, this paper defines and formalizes a user-centric
privacy model utilizing CI theory. The next section describes the
details on the methodology of our framework.

3 A FORMAL MODEL FOR USER-CENTRIC
PRIVACY MANAGEMENT

This research extends the concept of contextual integrity [8] to
provide mathematical models and algorithms that enables the cre-
ations and management of privacy norms for individual users. The
extension includes the augmentation of environmental variables,
i.e. time. date, etc. as part of the privacy norms, while introducing
an abstraction and a partial relation over information attributes.

The proposed framework is based on two sets of formal models:
1- User’s Information Sharing Model (UISM) that represents the in-
formation sharing activities in real-time, and 2- Privacy-Preserving
Model (PPM) that formally specifies the user’s privacy require-
ments. Finally, the privacy verification is performed by mapping
each action in UISM to its corresponding action in the PPM. In
the case of not being able to map an action a privacy violation is
detected and reported to user to get confirmation. The rest of this
section explains the above concepts in details.

3.1 User Information Sharing Model (UISM)

UISM is designed based on the formal definition of entities that
construct Information Communication machanism based on agent.
This is done to model user’s information sharing behavior with the
recipients, which are defined as agents [5, 8]. Hence, P is defined as
a set of agents that are the recipient of the information sent from
the user. For example, Alice and Bob are agents that the user shares

information with them. In addition, T is a set of attributes that
defines the information shared with p € P such as “home address”
or “credit card number".

From the above definitions, a knowledge state x is defined as
a set of tuples of the form (p, {t1,...,}), which describes the
attributes t; € T that is shared with an agent p. For example
(Alice, {home address, credit card number}) means that Alice knows
about the “home address" and “credit card number". As a result, if
agents have no knowledge about the user then x can be an empty
set. Therefore, the absence of tuples for p indicates that the agent p
possesses no information about the user, i.e., the elements (p, 0) ¢ .
Thus, x can be defined as follows where P is a set of agents and
P(T) is the power set of attributes,

Kk COU(PX(PT)\0)

For brevity we use to represent an element of P(T), i.e., {t1, ..., t; }.

In the proposed framework the user can perform two commands
to share or stop sharing information with an agent. Each share,
sh, or stops sharing, st command results in a communication ac-
tion which we define as a triple (a,p,t), where a € {sh, st}. For
example, when user intend to share his/her home address with
Alice, the following communication action has to be performed:
(sh, Alice, {home address}). Thus, all possible communication ac-
tions can be defined as

Act = {sh,st} X Px (P(T)\ 0)

Based on the entities defined so far, the user’s behavior model
could be defined by a transition system where each state represents
the information shared with the agents. Further, each transition is
triggered by the communication action performed by the user.

DerFINITION 1. (The User Information Sharing Model (UISM)
Let UISMM = (K, Act, —, ko) be a 4-tuple transition system where:

o K is a finite set of knowledge states k.
o ko € K is the initial state ko = O (no initial disclosures).
o Act is a set of communication actions.
o — C K XAct XK is a transition relation, transform the system
state with actions (a, p,t) as follows:
(sh,p,?) , , -
- k — k', wherex’ =k U {(p,t)},

(st,p.1) _ i~
Kk —— k’, wherex’ =k \ {(p,t") | t Nt £ 0}.

It is important to note that the proposed model differentiates
between the sequentially/simultaneously sharing of t; and t; with
p. The sequential sharing results in x; = {(p, {t1}), (p, {t2})} while
the simultaneous sharing results in k3 = {(p, {t1,2})}. In K3 if
the action (sh, p, {t1,12}) occurs (p, {t1,t2}) is added to the new
knowledge set. Thus a state contains all the three tuples k3 =
{(p, {t1}), (p, {t2}), (p, {t1, t2})}. On the other hand, the performance
of the stop command (st, p, t2) on k3 will result in deletion of all
the information attribute that contained t, from x” = {(p, {t1})}.
For the sequential information sharing model, we consider a sce-
nario where user first shares his “GPS" information with Alice,
second shares his “home address" with her, and third shares his
billing information which is a combination of {home address, credit
card number} with Alice. If the commutation action of stop sharing
“home address" with Alice occurs then all the tuples that contain

IDEAS’19, June 10-12, 2019, Athens, Greece

“home address" like billing information will be removed from the
state.

3.2 Privacy-Preserving Model (PPM)

The Privacy-Preserving Model is designed to manage and gov-
ern user’s information sharing activities at run-time. Therefore,
based on the proposed UISM in the previous section, PPM model
is required to govern the transitions between knowledge states
according to the norms that the user specifies.

Since in a user-centric approach is inefficient to define a separate
privacy norm for each p (role) and (attribute type), the proposed
model abstracts these two elements. This abstraction allows to have
the same information disclosure norms with a set of agents or dis-
close a collection of attributes in a similar manner. For example,
the user could share her current location with all transportation
applications, or the user could share her credit and debit cards’
numbers with her close family members. The following section
describes the structure of the abstractions.

3.2.1 Abstractions and Conditions. Let 7 be a set of attribute types
and let AT be a partial map AT : P(T) > 7. That is, AT maps t
to an attribute type 7 € 7. We can impose a partial order < on 7
based on the subset relation between AT’s domain elements . We
say that 7; < 1y if there are exist f; and 7 such that AT(t;) = i,
AT(ty) = and t; C 1.

Figure 1a, and 1b demonstrate an example of hierarchy structure
and some attributes and attribute types in that structure. The dashed
line represents the mapping between an attribute and its type and
the solid lines depict the order relation between the attribute and
types.

Similar to [8] that defines the concept of role abstraction, we
define a set of agent roles R that can be assigned to an agent p.
An agent can be assigned to multiple roles and roles are partially
ordered based on their implication relation of their semantics.

In this paper, the partial order < on R is predefined as an input to
the model, such that the role, p;, “close friend” implies the role, p,
“friend”, i.e., p2 < p1. The order between roles implies the amount
of relative privacy restriction of them where ps < p; means that
p2 is more restrictive compared to pj.

In this approach each agent must be associated with at least one
role. Thus, we define the agent role as a function AR that maps an
agent to a nonempty set of roles: AR : P — P(R) \ 0. When role
p is assigned to an agent p, then the systems adds additional roles
that related to p through <. In other words, the set of roles for p
should be closed under <. For example, if the agent p is assigned
the role “close friend” p1, then the system adds “friend” role py to
p as well, resulting in AR(p) = {p1, p2}.

For brevity to show the roles and information attributes that have
a common child but are not in a partial relation with each other we
use the < child > notation as follow:

(1) pr<p>pz2=3peP:p1 €ARP)Apz € AR(p) A pLXp2 A

P2ZPp1 N N N
@) <t>n=3tePT): AT(t) < 11 NAT(t) < 2 ATLZT2 A
T2XT1
Using these abstractions the user can define access permissions
A as a subset of R X 7~ such that if an element (p, 7) € A then all
agents with role p are allowed to access attributes with type .

Joshaghani, et al.

The above abstractions of roles and information attributes provide a
better flexibility in defining privacy norms. However, this definition
is not complete yet, as it does not take into the consideration the
environmental conditions where the information is disclosed to the
recipients and has no sensitivity over the patterns and sequence of
the information disclosure. Imagine, user is interested in restricting
access of agents in p role to its attribute type 7 to a particular time
interval during a work day. Moreover, the user might allow only
up to two (p, 7) accesses per such interval.

In order to overcome this limitation, our formalism introduces the
logic for environmental conditions ¢ and temporal conditions ¢ to
the definition of the privacy norm. In this model, environmental
conditions are represented a set of variables V, where each v € V
describes the state of an environment such as system’s time, day and
other attributes. Then, V is partitioned into subsets V; by variables’
type like integers, boolean, reals and so on. It is assumed that each
type has a set of predicates Pred; and set of syntax rules to construct
such predicates from the variables and non-logical symbols, e.g.,
constants. Then an environmental condition (¥) is expressed as a
propositional logic over those predicates and variables, i.e., v € V;,
pred; € Pred; as follows:

Yo=Y |YyAY |y VY |pred,VV;eV

While Pred; could be produced by an arbitrary complex yet
decidable theory for the data type such as Presburger arithmetic for
integers, we argue that less complex theories could be adequate[3].
For example, for integer environmental variables V; and boolean Vg
environmental variables the following grammar could be sufficient
to express basic and easily comprehensible predicates pred;:

prediz==v<n|v<n|v==nveV,nelZ
predp == v | true | false, v € Vp

The next entity that is defined as part of the privacy norm is the
temporal condition ¢. In order to keep the conditions flexible and
generic, we utilize temporal logic expressions to describe tempo-
ral features of the privacy requirements. While Linear Temporal
Logic (LTL) is very popular in expressing broad range of liveness
conditions, they are difficult to read and understand. Utilizing LTL
requires a strong mathematical background, and is cumbersome for
an average system modeler to implement. Further, for the purpose
of defining temporal conditions in privacy norm a simplified gram-
mar will suffice, i.e define the precedence of two communication
actions or a constant occurrence a communication actions can be
sufficiently defined by the concatenation and Kleen star operations
over A (the alphabet):

0.9 :u=(p1) |99 19" (p,7) €A

The ® notation is used to represent a set of ¢, in which each ¢ for
a given role p, can be expressed as a regular expression that allows
sharing attributes of type 73 after the sharing of attributes of type
19 as follows:

p=A-((p,11) - A} - (p,12))" - A}

Formal Specification and Verification of User-centric Privacy Policies for Ubiquitous Systems IDEAS’19, June 10-12, 2019, Athens, Greece

Information
Types

Information

(@)

Banking

Information Types

Billing
Information

Information

{Credit card
number}

{Home
Address}

(b)

Figure 1: (a) An example of the partial order of the attributes and attribute types where the top layer show the attribute types
and the bottom layer show the information themselves. (b) t; =GPS information, t;, = home address, and t3 = credit card
number. The middle layer represents the information that are used together for example the credit card number and the
home address go together for billing information that is a considered as financial type.

Here Ay = A\ {(p, 1), (p, 72)} In addition, the repetition of an
event up to a constant k times could be expressed with the following
formula, where the power operator describes the number of times
a regular expression should be repeated.

¢ = A ((p.7) - A

where Ay = A\ {(p,)}
Now that we have defined each elements in the privacy norm, the
next section describes the formal specification of the privacy norm
and techniques to ensure the consistency of the privacy require-
ments.

3.22 Norms and their Consistency. In this research, norms are the
formal definition of user’s privacy requirements that are used to
govern user’s information sharing behavior. In order to minimize
the risk of unwanted information sharing, we assume that if an
action is not explicitly defined as part of the user’s privacy policies
then it is forbidden. Therefore, the only type of norms that the user
defines are positive norms, i.e., allowed norms.

In this context norm is formulated as a relation between access
permission, environmental, and temporal conditions. Hence, norm
is represented as a tuple ((p, 7), ¥/, ¢,), where (p,7) € Aand ¥ € ¥,
¢ € ®. The first element of the tuple represents the privacy policy,
while the second and the third elements of the tuple describe the

conditions under which the transfer of information should occur.

The set of such is referred to as a set of norms N.

The set NV has the uniqueness property, that is, only one tuple with
the given (p, 7) values is allowed in the set. However, the uniqueness
property is not sufficient to ensure the consistency of the privacy
norms due to the partial relations that exist among the roles and
attribute types. Thus, in order to utilize N for privacy management

and detection of information disclosure, a consistency check is
required. The Table 1 demonstrates a detailed explanation with
examples of the different possible cases of role and attributes types
that two norms can have during consistency checking. The row
headers show the roles and the column headers show the attribute
types. The cells in gray are the example of their above conditions.

DEFINITION 2. (Consistent Norms) Two normsny = ((p1, 1), Y1, ¢1)

and ny = ((p2, 12), Y2, 2) are consistent when one of the four consis-
tency conditions holds:

Cl. Pp € P : p1 € AR(P) A p2 € AR(p), that is, the norms defined

for the roles with no common agents. (Table 1 row G)

C2. fit € P(T) : AT(t) < 11 A AT(f) < 12, that is, norms are de-
fined for attribute types with no common information attribute.(Table
1 column 5)

Before defining the last two conditions of consistency, we pro-
pose some limitations over the access permission and sequencing
conditions of the privacy norms. Since both of these elements are
defined for a specific roles and attribute type parameters, the first
restriction is defined over the roles so that the same role should
be used in the access permission and the sequencing condition
of a norm. In the absence of this restriction, it is possible to cre-
ate two norms that have a consistent sequencing condition but
inconsistent access permission or vice versa. In addition, this re-
striction enforces a constant role across the regular expression of
the sequencing condition that reduces the regular expression’s com-
plexity by eliminating the need for a homomorphic function over
the roles. The second restriction is defined over the attribute types,
Yr € ¢ 1;27; 0 < i,j < n(An attribute type and its children

IDEAS’19, June 10-12, 2019, Athens, Greece

Joshaghani, et al.

Table 1: The possible consistency cases based on the roles and information attribute types relations and the constrains
over the conditions that result in consistency. The notations Fr=Friends, BFr=Best Friends, CoWr=Co-Workers, Fm/=Family,
Loc=Location, Fin=Finance, Hith=Health, and Bank=Banking information

1

2

3

4

5

Lis2) € Ls1)

Lis1) € L(s2)

L(s1) = L(s2)

11 < Ty <71 =1 T1<e>T1 71 < none > 1z
Loc < Fin Loc < Fin Loc = Loc Fin < Loc > HLth Loc < none > Bank

N e c = ¢ = 2 = ¢ Trae
L(s1) = L(s2) L(s1) € L(s2) L(s1) € L(s2) L(s1) € L(s2)

B | Fr < BFr Share Loc with Fr when c1 an | Share Fin with Fr when c1 and | Share Loc with Fr when c1 and | Share Fin with Fr and Health | Since Loc and Bank are in-
s1, share Fin with BFr when c2 | s1, share Loc with BFr when ¢2 | s1, sare Loc with Bfr when ¢2 | with BFr (or vice versa) which | comparable then those norms
and s2. Fin should be guarded | and s2. Fin should be guarded | and s2. Loc should be guarded | can share Loc. Loc should be | should always be consistent.
the same or better, c; = ¢y, | the same or better, c; = ¢, | at least the same way, ¢; & | guarded at least the same way
L(sz) € L(s1). BFr can have | L(s;) € L(s2). BFr can have | ¢z, L(s;) = ZL(s2). BFr can | ¢; © ca, L(s1) = L(s2). BFr
less restrictive access, c; = | less restrictive access ¢c; = | have less restrictive conditions, | can have less restrictive condi-
c1, L(s1) € L(s2) c1, L(s1) € L(s2) 2 = c1, L(s1) € L(s2) tion, c = c¢1, L(s1) € L(s2)

_ g = ¢ = Fal & e T

Lo L(s2) € Lis1) Ls1) € L(s2) * Lis1) = L(s2) e

Fr=Fr Share Loc with Fr when c1 and | Share Fin with Fr when c1 and | There should be only one rule | Share Fin with Fr when c1 and | Since Loc and Bank are in-
s1, share Fin with Fr when c1 | s1, share Loc with Frien when | for the same role and attribute | s1, share Health with Fr when | comparable then those norms
and s2. Fin should be guarded | c2 and s1. Fin should be guarded | type - the uniqueness property | c2 and s2, which can share the | should always be consistent.
the same or better way ¢; = | the same or better way, c; = same attribute Loc. Loc should
c2, L(s2) € L(s1). Fr should | ¢1, L(s1) € L(s2). Fr should be guarded at least the same
have at least the same access, | have at least the same access way ¢1 © ¢z, L(s1) = L(s2).
1 © ¢z, L(s1) = L(s2). c1 © ¢, L(s1) = L(s2) Fr should have the same access

c1 © oz, L(s1) = L(s2)
E | pi<p>ps g = ¢ = ¢ e e True

L(s1) = L(s2)

F | Fr Anna CoWr

Share Loc with Fr when c1 and
s1, share Fin with CoWr when
c2 and s2, which have Anna as
a common agent. Fin should be
guarded the same or better way
g = ¢z, L(s2) € L(s1). Fr
and CoWrk should have at least
the same access to Loc ¢; & c¢2,
L(sz) = L(s1), since they share
an agent.

Share Fin with Fr when c1 and
s1, share Loc with CoWrk when
c2 and s2, which have Anna a
common agent. Fin should be
guarded better than Loc c; =
cy, L(s1) € L(s2). Fr and
CoWrk should have at least the
same access to Loc ¢z & c1,
L(s1) = L(s2), since they share
an agent.

Share Loc with Fr when c1
and s1, share Loc with CoWrk,
when c1 and s2, which have
Anna as a common agent. Loc
should be guarded the same
way ¢; & ¢z, L(s1)) = L(s2).
Fr and Cowrk should have the
least the same access to Loc,
c1 & ¢z, L(s1) = L(s2), since
they share an agent.

Share Fin with Fr when c1 and
s1, share Health with CoWrk
when c¢2 and s2, which have
Anna as a common agent. Loc
should be guarded at least the
same way ¢; & c2, L(s1) =
L(sz). Fr and CoWrk should
have the same access to Loc
¢ © c, L(s1) = L(s2), since
they share an agent.

Since Loc and Bank are in-
comparable then those norms
should always be consistent.

G | p1 < none > p

True

True

True

True

True

H | Fr, none, Fml

Since Fr and Fml are incompa-
rable then those norms should
always be consistent.

Since Fr and Fml are incompa-
rable then those norms should
always be consistent.

Since Fr and Fml are incompa-
rable then those norms should
always be consistent.

Since Fr and Fml are incompa-
rable then those norms should
always be consistent.

Since Fr and Fml are incompa-
rable then those norms should
always be consistent.

are not allowed to exist in the same regular expression). This re-
striction ensures that all the communication actions are inspected
not only for the super-type 7, that is explicitly inferred from the
communication action, but also for all the children of 7 that will
be implicitly revealed by that communication action. Without this
restriction, it is possible to create a regular expression that allows
for sharing an attribute type and its children consecutively while
it is not taking into the account that the children are shared more
than once.

Further, the comparisons of the access permission component of the
norms are conducted based on the partial relations that exists over
the roles and attribute types. In addition, the comparison between
the environmental conditions is implemented based on the Boolean
algebra. To examine the sequencing conditions for consistency, we
need to compare the regular expressions. the comparison of two
regular expressions is not possible if they do not share the same al-
phabet. Therefore, we need to introduce a mechanism that projects
the language of one regular expression to the other one and brings
the regular expressions to a common alphabet.

DEFINITION 3. (Projection of the Language) Let ¢1 and ¢3
have the following symbols to be tracked:

o1 =A{(p,), (P, 72)5 - - -, (P, Tk)}

o2 ={(p". 1)), (p" 75), ... (p" 7))

We define 91 = L |(¢1)¢, as the projection of ¢1 on @z where L|
receives a regular expression and maps it to another one. To achieve
a similar language to compare @1, p2 we traverse over the attribute
types. For each attribute type, we check for its children or another
attribute type that has a common child in the other regular expression
and add the children or the common child to a set in a map. After
traversing over all the attribute types in both @1, @2 to substitute the
uncommon parts, we generate all the possible substitution for attribute
type t; exist in the map. The substitution for t; for reaching a common
language is a disjunctive regular expression. The disjunctive regular
expression is generated as follows. Let sub be a set of all t; children and
common children that have been found in the other regular expression.
We define sub = P(sub) \ 0. For each s € sub we generate all the
permutations of elements of s and add them to the regular expression
with disjunction operator. For example, sub = {t4, 1}, } then sub =
{{ra}. {ra}, {ra, ©p}} and the result of the regular expression that
is used for substitution is 4|7y |TqTp |7y Ta. After reaching the same
alphabet, the consistency of the regular expressions can be decides
based on the norms’ access permission.

C3. p1 < p and either 7y < 13 or1y < 71 theny1 = Yo A
L(91)p, € L(92)g,, that is, ny is for a specialized role py of p1 and
its attribute type 1o encompasses T1 or vise verse then environmental
condition of Y, should be the same or less restrictive than of Y, and
its regular expression ¢y should describe the same or less restricted
projected language than of ¢1.(Table 1 row A,C and columns 1,2,3)

Formal Specification and Verification of User-centric Privacy Policies for Ubiquitous Systems IDEAS’19, June 10-12, 2019, Athens, Greece

C4.p1 <p>ppormy <t >rythenyn & Y2 AL |(¢1)g, =
L (p2)p, - If there is at least one agent that can be assigned to both
unrelated roles or an information attribute that share a common child
then the environmental conditions and the projected language of the
regular expressions must be equivalent.(Table 1 row E and columns 4)

3.2.3 Policy Compliance Verification. The set of norm N defines
a Privacy-Preserving Model, (PBM) which describes compliant in-
formation communication actions at the level of attribute type and
agent role abstraction levels. The knowledge states of PBM are
consists of tuples (p, 7), which indicate that at least one agent with
p role know about attribute represented by 7. The transitions repre-
sent the abstracted communication actions Act from {sh, st} xRxXT~
guarded by conditions ® and ¥ defined in N.

DEFINITION 4. (Privacy-Preserving Model) is a set of observers
over norms N where each observer is a tuple of(i, Act,c,m) rep-
resenting n; = ((p,7),¥,9) € N where K = (p,7), ¢ = ¢ is the
pre-condition and m is a monitor representing ¢ regular expression.
The transition Act is given to Monitor m to update the state of the
monitor.

3.24 Verification. To ensure that the user’s behavior is compliant
with the privacy policy, we need to map the current state and
the next state of user’s behavior model to the privacy preserving
behavior model.

DEFINITION 5. (Mapping from user behavior to privacy pre-
serving domain) Let MS : K — K be a surjective function, where
MS(p, 1) = {(p,7)lp = AR(p),r = AT(t)} and MT : Act — Act
where:

MT(a,p,t) = {(p,7)|p € AR(p) A7 € AT(t)}if a = sh

In the case that there is no mapping for the next state in the
PPM, the communication action that triggered that transition will
be reported to the user as disclosing.

DErFINITION 6. (Valid user behavior) Let user behavior system
be at state k that maps to k in the privacy preserving behavior model
and the action (sh, p, t) happens. If MP(p, t) exists, and the environ-
mental variables satisfy y and m(MS(a, p, t)) is in the final state then
the communication action Act is valid.

The goal of privacy rules is to prevent the user from entering
into a privacy violating states.

After reporting a privacy-violating action the user can ignore
it and the framework allow the information sharing to happen.
All this communication happens through the user interface of the
framework. The next section provides implementation details of
the framework’s components.

4 IMPLEMENTATION

As a proof of the concept, we prototyped the proposed framework
in the Java programming language . Figure 2 depicts a diagram
of the implementation’s architecture. The blue components show
the libraries and technologies used in the proposed framework.
The proposed framework is modularized into three layers:(1) User
interface layer which takes the user’s intentions in a structured

Ihttps://github.com/wxyzabc/UserCentricPrivacy

User Interface Layer

] Rule
Action Manipulation
Simulator Ul ?
Ul
Translation Layer
Tra,:S!_ate to Translate to
ction Rule Formula
Formula -
Store and Ret”ev'e
L Intersecting
retrieve Rules
Rules

Verification Layer

Expression
Language
(SPel)
SMT-Solver
(JavaSMT with
73 Solver)

Runtime
Monitors

Figure 2: The architecture of user-centric privacy frame-
work.

format,(2) Translation layer which translates the frameworks from
UI to privacy norms and formal notation, (3) Verification layer that
evaluates norms consistency and compliance of the information
sharing action with privacy norms.The following sections describe
the implementation details of each of the components in each layer.

4.1 User Interface Layer

The user interface (UI) layer facilitates interactions between the
user and the proposed framework. Through the UI the user can
add and view the existing privacy norms and get privacy violation
reports. The Ul is designed to conceal the complexity of the un-
derlying formalism and verification from the user. The UI hides
the complexities by allowing the users to express their privacy
intentions as a structured input. Using the UI the user can select
the role and attribute type from a drop-down list. To create the
environmental conditions, the user can provide arbitrary inputs for
environmental variables or choose between predefined conditions
e.g., daytime, nighttime, weekends. Also, the user can specify the
desired information sequence in the form of precedence or repe-
tition templates like “X happens after Y" or “X happens k times”.
These templates will be translated to sequencing conditions.

4.2 Translation Layer

The translation layer receives the structured input from the UI
and translates it into formal notation. The formal notations and
maps described in the methodology section can be implemented as
tables in a database. The norm are stored in the norms table where
the table attributes are the role, attribute type, the environmental
conditions, and the DFA state of the sequencing conditions. The
primary key of the norms table is the pair of (p,). The system

IDEAS’19, June 10-12, 2019, Athens, Greece

queries the database to retrieve the norms in order to either verify
an action or check the consistency of a new norm. To evaluate each
action with the attribute ¢ and the agent p, norms that have roles
where p = AR(p) and attribute type v = AT(t) will be retrieved
from the norm table and sent to the verification layer.

4.3 Verification Layer

This layer verifies the information sharing actions compliance with
the privacy norms and the consistency of a new norm with existing
norms. If an information sharing action violates the privacy norms
or anew norm causes inconsistency, then this layer sends a violation
report to the Ul to inform the user. The user can ignore the violation
caused by the information sharing action and allow the information
to be shared. With an inconsistent norm, the user has to change
the new norm so that it will be consistent with other norms. The
rest of this section describes the verification method of information
sharing actions and privacy norms in more detail.

4.3.1 Verification of norms for Inconsistency. When a new norm
is created, the framework checks the consistency of the new norm
with the existing norms. Based on the consistency constraints in
section 3.2.2 the framework first ensures that the new norm access
permission does not exist in the database. Then the new norm’s
environmental conditions are checked for consistency. The frame-
work parses the string of the environmental conditions and changes
them to SMT solver formulas. Then the SMT solver needs to prove
that the implication or equivalency relation holds and it is always
valid. Validation assessment of formula f by SMT solvers is done
by proving that - f is unsatisfiable, hence f always evaluates to
true. By proving that there is no combination of variables that sat-
isfy = f it can be concluded that f is a tautology. In a case that
the solver finds a solution to —f, the user is asked to change the
inconsistent new norms. Further, since efficiency is important in
real-time systems, we need to assign a time limit for the solver. If
the solver times out or returns UNKNOWN the user will be notified.
Finally, if the norm was consistent it will be added to the database.
The implementation of the proposed framework utilizes JavaSMT
[23] with the Z3 solver version 4.3.2 [13] for consistency checking
over the environmental variables and “brics" library version 1.12-1
[31] for sequencing conditions.

4.3.2 Verification of Actions for violation. For each action (sh, p, t)
, the framework finds the attribute type of ¢ and the role of p.
Then the privacy norms tables are queried to find the norms with
the access permission (AR(p), AT(t)) as their primary key. If the
query returns no results, it means that no norm allows sharing
information t with agent p. However, If the query returns results,
it indicates that there exists a mapping from a state in UBM to a
state in the PPM. Then the framework checks for the satisfaction
of the environmental conditions and sequencing conditions before
taking the transition to the mapped state.

Since the norm conditions are dynamic, they cannot be hard-
coded in the verification engine. Therefore to check the environ-
mental variables a mechanism is needed to enable the verification
engine to handle change in the conditions. Therefore, the condi-
tions are formed and evaluated at run-time based on the stored
environmental constraints in the database. For the implementation

Joshaghani, et al.

of such a mechanism that allows for dynamic manipulation and
evaluation of conditions, the Expression Languages (EL) can be
used. EL receives an object and a logical expression as a string and
evaluates whether the object properties satisfy the expression or
not. In our implementation,the current snapshot of the environment
is given to the EL as the input object that has the environmental val-
ues and the EL expression string is the environmental constraints
of the retrieved privacy norms. This framework employs Spring
Expression Language (SpEL) [1] as the EL library. EL only checks
for the satisfaction of the environmental conditions and if they are
not satisfied then the transition guard is not satisfied. Therefore,
the action violates the privacy model. However, if the environmen-
tal conditions are satisfied then we check for the satisfaction of
sequencing conditions.

Sequencing conditions implemented as run-time monitors from
the regular expressions stored in the database. A run-time monitor
is a deterministic finite automaton (DFA) that is created based on a
regular expression. The DFA representing the sequencing condition
has a pointer to its current state and changes its state with the
occurrence of information sharing actions. If the new state in the
DFA monitor is not a final state, then the action is not valid, and
the system reports the violation to the user. Different libraries exist
for creating run-time monitors such as Aspect], but the monitors
created by them are static. Therefore, a change in one of the regular
expressions demands a reset in all the monitors. In the proposed
framework the regular expressions are dynamic, and changing a
regular expression only causes a reset in the corresponding DFA.
Another method for implementing the sequencing conditions is to
store a history of information sharing actions; however, with each
information sharing action, the history will grow, and to potentially
infinite size. With the run-time monitors, the number of the DFAs
are constant and equal to the number of the norms with sequencing
conditions. Algorithm 1 shows the general steps taken to implement
the information sharing action verification process.

Algorithm 1: Action verification algorithm.

[

Input: CA (Communication action)

)

Output:Boolean value indicating the verification result.
norms=|]

w

'

roles=CA recipient.getRoles()

@«

types=CA.informationAttribute.getType()

=)

for r in roles and t in types do
‘ norms.append(getnorms(r,t))

N

o

if (norms.size> 0) then

9 for j in norms do

10 if !(j.evalEnvironmentalCondition (CA.environment))
then

11 ‘ return false

12 else

13 if !(j.evalSequencingCondition(CA)) then

14 ‘ return false

15 return true

6 return false

=

Formal Specification and Verification of User-centric Privacy Policies for Ubiquitous Systems IDEAS’19, June 10-12, 2019, Athens, Greece

Considering the above implementation, in the next section we
discuss the performance evaluation of the proposed framework.

5 PERFORMANCE EVALUATION

The proposed framework is designed for user-centric applications;
therefore, it should have acceptable performance on smart devices
such as smart-phones, internet of things devices and etc. The main
challenge in this area is that usually, these devices have low mem-
ory and computational power. Since detection of privacy violations
in such applications supposed to be real-time, a framework with a
substantial performance overhead cannot deliver the desired results.
Therefore, our implementation was tested for performance evalua-
tion on a Raspberry Pi model B with 700 MHz CPU, 512 MB RAM
and running Raspbian 4.9 operating system. As well as a PC with
3.0 GHz AMD Phenom II X4 945 processor, with 8 GB of memory
and Windows 7 operating system. The privacy policy created for
this test contained 81 privacy norms over 12 attribute types and 16
roles which 8 of them have nonempty intersections with another
groups.

Table 2 shows the results of the information sharing action veri-
fication performance evaluation. The number in each column in-
dicates the average verification response time for each part of the
a privacy norm. The average was computed for 20 information
sharing actions which half were privacy violating actions and the
other half were non-violating actions. Also, notice that the perfor-
mance of the action verification depends on the performance of
underlying database software and expression language library. In
the implementation of our framework, we used MariaDB version
10.2 database and SpEL 3.1.0 as the EL library.

Table 2: Action verification performance evaluation results.
The columns show the response time for Access Permis-
sion (AP), Environmental Conditions (EC), Sequencing Con-
ditions (SC).

Action Verification
AP EC SC
PC 1.5ms | 0.5ms | 3.5ms
PiB 39ms | 6ms | 540 ms

Machine

The average time for the consistency check performance evalua-
tion on the PC was 39 ms and for Raspberry Pi model B was 849 ms.
Also, notice that the performance of this consistency checking de-
pends on the performance of the underlying solver and the domain
size of the environmental variables (since the solvers are faster when
the search domain is smaller). For example, in our implementation,
the norms time conditions were specified as (hoursx100+minutes)
and time intervals could be subsets of each other. Table 3 shows the
SMT-solver performance for constraints with 5,10,20,50,100, and
500 environmental variables. The over-head of bric library for lan-
guage sunset and equivalency is around 7ms on average. However,
the projection algorithm is the bottleneck since it computes the
permutation of the information types that are needed for substitu-
tion in the regular expression. Due to this drawback the framework
limits the number of children for each attribute to 5 children.

Table 3: Performance of consistency checking for Environ-
mental Variables

Number of Variables | 5 | 10 | 20 | 50 | 100 | 500
Implication time (ms) | 26 | 28 | 30 | 40 | 35 66
Equivalency time (ms) | 32 | 34 | 35 | 46 | 41 67

6 CONCLUSION AND FUTURE WORKS

Administrating and managing users’ privacy is a major challenge in
the digital age. Privacy has a different meaning to different users de-
pending on their personality, age, social status, cultural background,
and many other factors. However, current privacy management sys-
tems cannot address these privacy needs adequately since they are
not designed based on the users’ privacy perspectives. Therefore,
the lack of user-centric privacy management tools and algorithms
limits users’ ability to have control over their data sharing activities
and puts unaware users at risk of information disclosure. In order
to overcome these limitations, the proposed framework provides
a privacy formalism and verification engine to specify and model
privacy from the user’s perspective. Moreover, as a proof of concept,
a framework was implemented and tested based on the described
formalism. In the proposed model, the contextual integrity theory
has been customized to address the privacy needs of individual
users. Further, the user-centric privacy framework is meant to be
utilized in the new generation of smart devices and IoT, which
compared to servers and general purpose computers, have lower
memory and computational power. These limitations justify the
use of regular expressions instead of Linear Temporal Logic (LTL)
in our paper since empirical evidence [9] shows that the evaluation
of the regular expressions has significantly less overhead compared
to LTL.

The future work will eliminate the current user interface and user’s
privacy norms will be generated automatically utilizing text anal-
ysis, speech recognition, and Al algorithms that can infer user’s
privacy policies based on the user’s relationships and information
sharing behaviors.

ACKNOWLEDGMENTS

The authors would like to thank National Science Foundation for
its support through the Computer and Information Science and
Engineering (CISE) program and Research Initiation Initiative(CRII)
grant number 1657774 of the Secure and Trustworthy Cyberspace
(SaTC) program: A System for Privacy Management in Ubiquitous
Environments.

REFERENCES

[1] [n.d.]. Spring Expression Language. https://docs.spring.io/spring/docs/3.0.x/
reference/expressions.html. Accessed: August 31, 2018.

[2] Alessandro Acquisti, Laura Brandimarte, and George Loewenstein. 2015. Privacy
and human behavior in the age of information. Science 347, 6221 (2015), 509-514.

[3] Alessandro Acquisti and Jens Grossklags. 2005. Privacy and rationality in indi-
vidual decision making. IEEE security & privacy 3, 1 (2005), 26-33.

[4] Paul Ashley, Satoshi Hada, Giinter Karjoth, Calvin Powers, and Matthias Schunter.
2003. Enterprise privacy authorization language (EPAL). IBM Research (2003).

[5] Guillaume Aucher, Guido Boella, and Leendert Van Der Torre. 2011. A dynamic
logic for privacy compliance. Artificial Intelligence and Law 19, 2-3 (2011), 187.

[6] Franz Baader, Ian Horrocks, and Ulrike Sattler. 2008. Description logics. Founda-
tions of Artificial Intelligence 3 (2008), 135-179.

[7] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. 2008. Principles
of model checking. MIT press.

https://docs.spring.io/spring/docs/3.0.x/ reference/expressions.html
https://docs.spring.io/spring/docs/3.0.x/ reference/expressions.html

IDEAS’19, June 10-12, 2019, Athens, Greece

=

[10]

[11

=
&

[13

[14]

[15]

[16]
[17]
(18]

[19]

[20]

[21]

[22

[23

[24]

[25

[26]

[27

[28]
[29]

[30]

[32]
[33]
[34]

[35

Adam Barth, Anupam Datta, John C Mitchell, and Helen Nissenbaum. 2006.
Privacy and contextual integrity: Framework and applications. In Security and
Privacy, 2006 IEEE Symposium on. IEEE, 15-pp.

Ilan Beer, Shoham Ben-David, and Avner Landver. 1998. On-the-fly model check-
ing of RCTL formulas. In International Conference on Computer Aided Verification.
Springer, 184-194.

Travis D Breaux, Hanan Hibshi, and Ashwini Rao. 2014. Eddy, a formal language
for specifying and analyzing data flow specifications for conflicting privacy
requirements. Requirements Engineering 19, 3 (2014), 281-307.

Carole Cadwalladr and Emma Graham-Harrison. 2018. Revealed: 50 million
Facebook profiles harvested for Cambridge Analytica in major data breach. The
Guardian 17 (2018).

Federal Trade Commission et al. 2012 Recommenda-
tions for Businesses and Policymakers. Washington, DC
(http://www. fre. gov/sites/default/files/documents/reports/federal-trade-
commission-report-protecting-consumer-privacy-era-rapid-change-
recommendations/120326privacyreport. pdf) (2012).

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337-340.

Henry DeYoung, Deepak Garg, Limin Jia, Dilsun Kaynar, and Anupam Datta.
2010. Experiences in the logical specification of the HIPAA and GLBA privacy
laws. In Proceedings of the 9th annual ACM workshop on Privacy in the electronic
society. ACM, 73-82.

Michael D Ekstrand, Rezvan Joshaghani, and Hoda Mehrpouyan. 2018. Privacy
for All: Ensuring Fair and Equitable Privacy Protections. In Conference on Fairness,
Accountability and Transparency. 35-47.

Ruth Gavison. 1980. Privacy and the Limits of Law. The Yale Law Journal 89, 3
(1980), 421-471.

Paul Grace and Michael Surridge. 2017. Towards a model of user-centered privacy
preservation. (2017).

Jamal Greene. 2009. The So-Called Right to Privacy. UC Davis L. Rev. 43 (2009),
715.

Jason I Hong and James A Landay. 2004. An architecture for privacy-sensitive
ubiquitous computing. In Proceedings of the 2nd international conference on Mobile
systems, applications, and services. ACM, 177-189.

White House. 2015. Administration discussion draft: Consumer Privacy Bill of
Rights Act of 2015. Retrieved on November 15 (2015), 2015.

Rezvan Joshaghani, Michael D. Ekstrand, Bart Knijnenburg, and Hoda
Mehrpouyan. 2018. Do Different Groups Have Comparable Privacy Tradeoffs?
At Moving Beyond a One-Size Fits All Approach: Exploring Individual Differences
in Privacy, a workshop at the ACM Conference on Human Factors in Computing
Systems (CHI) (2018).

Rezvan Joshaghani and Hoda Mehrpouyan. 2017. A Model-Checking Approach
for Enforcing Purpose-Based Privacy Policies. In 2017 IEEE Symposium on Privacy-
Aware Computing (PAC). IEEE, 178-179.

Egor George Karpenkov, Karlheinz Friedberger, and Dirk Beyer. 2016. JavaSMT:
A unified interface for SMT solvers in Java. In Working Conference on Verified
Software: Theories, Tools, and Experiments. Springer, 139-148.

Ivana Kellyérova. 2017. A Real-Time Extension of the Formal Privacy Policy
Framework. (2017).

Dimitrios Kouzapas and Anna Philippou. 2017. Privacy by typing in the pi-
calculus. arXiv preprint arXiv:1710.06494 (2017).

Padmanabhan Krishnan and Kostyantyn Vorobyov. 2013. Enforcement of privacy
requirements. In IFIP International Information Security Conference. Springer,
272-285.

Ki Young Lee, Aleum Kim, Ye Eun Jeon, Jeong Joon Kim, Yong Soon Im, Gyoo Seok
Choi, Sang Bong Park, Yun Sik Lim, and Jeong Jin Kang. 2015. Spatio-temporal
XACML: the expansion of XACML for access control. International Journal of
Security and Networks 10, 1 (2015), 56-63.

Jiajun Lu, Zhiqiu Huang, and Changbo Ke. 2014. Verification of Behavior-aware
Privacy Requirements in Web Services Composition. JSW 9, 4 (2014), 944-951.
Mary Madden, Aaron Smith, and Jessica Vitak. 2007. Digital Footprints: Online
identity management and search in the age of transparency. (2007).

Hoda Mehrpouyan, Ion Madrazo Azpiazu, and Maria Soledad Pera. 2017. Mea-
suring Personality for Automatic Elicitation of Privacy Preferences. In 2017 IEEE
Symposium on Privacy-Aware Computing (PAC). IEEE, 84-95.

Anders Moller. 2017. dk.brics.automaton — Finite-State Automata and Regular
Expressions for Java. http://www.brics.dk/automaton/.

James H Moor. 1997. Towards a theory of privacy in the information age. ACM
SIGCAS Computers and Society 27, 3 (1997), 27-32.

Tim Moses. 2005. Privacy policy profile of XACML v2. 0. Oasis standard, OASIS
2 (2005).

Helen Nissenbaum. 2004. Privacy as contextual integrity. Wash. L. Rev. 79 (2004),
119.

Minolini Nithyanandam. 2016. An active rule-based system for XACML 3.0.
(2016).

[36

(37]

Joshaghani, et al.

Raul Pardo, Musard Balliu, and Gerardo Schneider. 2017. Formalising privacy poli-
cies in social networks. Journal of Logical and Algebraic Methods in Programming
(2017).

Raul Pardo, César Sanchez, and Gerardo Schneider. 2018. Timed Epistemic
Knowledge Bases for Social Networks. In International Symposium on Formal
Methods. Springer, 185-202.

[38] Joseph Phelps, Glen Nowak, and Elizabeth Ferrell. 2000. Privacy concerns and

consumer willingness to provide personal information. Journal of Public Policy
& Marketing 19, 1 (2000), 27-41.

[39] JosephReagle and Lorrie Faith Cranor. 1999. The platform for privacy preferences.

Commun. ACM 42, 2 (1999), 48-55.

[40] J Rose and C Kalapesi. 2012. Rethinking personal data: Strengthening trust. BCG

[41]

[42]

[43]

[44

'S
)

[46]

Perspectives 16, 05 (2012), 2012.

Herman T Tavani. 2007. Philosophical theories of privacy: Implications for an
adequate online privacy policy. Metaphilosophy 38, 1 (2007), 1-22.

Herman T Tavani and James H Moor. 2001. Privacy protection, control of in-
formation, and privacy-enhancing technologies. ACM SIGCAS Computers and
Society 31, 1 (2001), 6-11.

Que Nguyet Tran Thi and Tran Khanh Dang. 2012. X-STROWL: A generalized
extension of XACML for context-aware spatio-temporal RBAC model with OWL.
In Digital Information Management (ICDIM), 2012 Seventh International Conference
on. IEEE, 253-258.

Giuseppe A Veltri and Andriy Ivchenko. 2017. The impact of different forms of
cognitive scarcity on online privacy disclosure. Computers in Human Behavior
73 (2017), 238-246.

Samuel D Warren and Louis D Brandeis. 1890. The right to privacy. Harvard law
review (1890), 193-220.

Alan F Westin. 1968. Privacy and freedom. Washington and Lee Law Review 25, 1
(1968), 166.

	Abstract
	1 Introduction
	2 Related Works
	3 A Formal Model for User-centric Privacy Management
	3.1 User Information Sharing Model (UISM)
	3.2 Privacy-Preserving Model (PPM)

	4 Implementation
	4.1 User Interface Layer
	4.2 Translation Layer
	4.3 Verification Layer

	5 Performance Evaluation
	6 Conclusion and Future Works
	Acknowledgments
	References

