
Formal Specification and Verification of User-centric Privacy
Policies for Ubiquitous Systems

Rezvan Joshaghani

rezvanjoshaghani@u.boisestate.edu

Boise State University

Boise, Idaho

Stacy Black

stacyblack@u.boisestate.edu

Boise State University

Boise, Idaho

Elena Sherman

elenasherman@boisestate.edu

Boise State University

Boise, Idaho

Hoda Mehrpouyan

hodamehrpouyan@boisestate.edu

Boise State University

Boise, Idaho

ABSTRACT
As our society has become more information oriented, each in-

dividual is expressed, defined, and impacted by information and

information technology. While valuable, the current state-of-the-

art mostly are designed to protect the enterprise/ organizational

privacy requirements and leave the main actor, i.e., the user, un-

involved or with the limited ability to have control over his/her

information sharing practices. In order to overcome these limi-

tations, algorithms and tools that provide a user-centric privacy

management system to individuals with different privacy concerns

are required to take into the consideration the dynamic nature of

privacy policies which are constantly changing based on the infor-

mation sharing context and environmental variables. This paper

extends the concept of contextual integrity to provide mathematical

models and algorithms that enables the creations and management

of privacy norms for individual users. The extension includes the

augmentation of environmental variables, i.e. time, date, etc. as part

of the privacy norms, while introducing an abstraction and a partial

relation over information attributes. Further, a formal verification

technique is proposed to ensure privacy norms are enforced for

each information sharing action.

CCS CONCEPTS
• Security and privacy→ Logic and verification; • Computer
systems organization→ Embedded systems; Redundancy; Ro-
botics; • Networks → Network reliability.

KEYWORDS
Privacy, Formal Methods, User-Centric Policies

ACM Reference Format:
Rezvan Joshaghani, Stacy Black, Elena Sherman, and Hoda Mehrpouyan.

2019. Formal Specification and Verification of User-centric Privacy Policies

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IDEAS’19, June 10–12, 2019, Athens, Greece
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6249-8/19/06. . . $15.00

https://doi.org/10.1145/3331076.3331105

for Ubiquitous Systems. In 23rd International Database Engineering Appli-
cations Symposium (IDEAS’19), June 10–12, 2019, Athens, Greece. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3331076.3331105

1 INTRODUCTION
A Privacy Bill of Rights was endorsed by theWhite House in 2012, a

response to an increasingly loud objection of citizens on the lack of

privacy and fair information practices guidelines [20]. The predica-

ment was not only recognized by the US government, but has also

been investigated and studied at the international stage and has re-

sulted in reports such as "Rethinking personal data: Strengthening

trust" by the World Economic Forum (WEF) [40] and "Recommen-

dations for businesses and policymakers" by the Federal Trade

Commission (FTC) [12]. Despite all these efforts, ubiquitous online

monitoring of users’ activities [29] and scandalous data breaches,

i.e. Facebook and Cambridge Analytica, continue to haunt Online

Social Network (OSN) users [2, 11]. These privacy breaches are

often due to a lack of regulatory standardization. Hence, the onus is

on the user to take control of: what types of information should be

shared with whom and when. However, controlling and managing

the information sharing parameters could be a cumbersome and

difficult process [15, 21, 44]. Therefore, ample tools and algorithms

should be developed and provided to users so they are able to define

and enforce their own customized, unambiguous privacy policies

and have control over how their information is shared. The state-of-

the-art research on privacy management mostly consist of: access

control languages [4, 33, 39], different privacy settings in applica-

tions, and formal privacy policies [5, 10, 14, 22, 36]. While valuable,

the previous works are mostly based on enterprise/organizational

privacy management and leave the main actor, i.e., the user, unin-

volved or with limited ability to control the information sharing

parameter. In addition, existing privacy regulations like HIPAA

or a corporation’s privacy policies are domain-specific and static

with a little or no change over time. On the other hand, the user’s

privacy policies are dynamic and changing based on many factors,

i.e. context, environment, relationship status, etc. In addition to

dynamicity, the privacy framework should provide the user with

the ability to adapt the policies to their own personal needs, since

the definition of privacy varies from person to person based on

their personality, cultural background, etc [30].

In order to move towards a more practical solution, this paper

proposes a framework to build a user-centric privacy management

https://doi.org/10.1145/3331076.3331105
https://doi.org/10.1145/3331076.3331105

IDEAS’19, June 10–12, 2019, Athens, Greece Joshaghani, et al.

system. We focus on developing the main core of this framework,

which is the privacy formalization and verification engine that allows
for the guided and flexible specification of users’ privacy intentions.

The formalization and verification engine performs formal rea-

soning about the user’s privacy rules to detect privacy violations.

Further, the proposed approach ensures that the defined privacy

policy is unambiguous and a consistency checking approach is

proposed so that all the exiting and newly defined policies are

consistent with one another. The underlying formalization utilizes

two formal models: 1- the user’s information sharing model, and

2- the privacy-preserving model. The user’s information sharing

model represents all the user’s information sharing activities to oth-

ers. The privacy verification is performed by mapping each user’s

information sharing parameters (known as a state) to a state in

the privacy-preserving model; a state with no mapping indicates a

privacy violation. As a proof of concept, the privacy formalization

and verification engine is implemented as a Java program that de-

tects privacy violations as the user shares information in real-time.

Since this framework is targeted for smart devices, which usually

have low memory and low processing power, its performance was

evaluated on both a PC and a Raspberry Pi model B to show the

practicality of our approach.

The future work will extend the current effort to include: user

privacy requirement elicitation, identification and categorization of

the information shared by users, and detection of the relationship

changes between a user and recipients.

The rest of the paper is organized as follows: section 2 provide

the related works. Section 3 has a detailed description of our for-

malism and verification engine, and the implementation details of

our framework are given in section 4. Moreover, the performance

evaluation of the proposed framework is given in section 5. Finally,

section 6 draws the conclusion of this paper and discusses the future

works of our approach.

2 RELATED WORKS
For over 120 years researchers have studied privacy in different

settings of technological advances [41, 45]. The first privacy theory

emerged when newspapers started to publish personally intru-

sive articles and photographs[41]. This led to seclusion and non-

intrusion theory of privacy that defined the user’s privacy as “the

right to be left alone” [45] or being free from intrusion [18]. As new

technologies were introduced such as databases containing the per-

sonal information of the users [41] the information-related privacy

concerns [38] emerged. To address these concerns researchers devel-

oped the control [46], limitation [16], and Restricted Access/Limited

Control (RACL) [32] theories to enable users to control and limit

their privacy while share information with others. In RACL the-

ory, the user’s privacy is implied as “a situation with regard to

others [if] in that situation the individual. . . is protected from in-

trusion, interference, and information access by others.” [42] The

control, limitation and RACL theories assume a rigid definition

of privacy, while in the current technological era the meaning of

privacy changes based on the societal norms. To address this issue,

Nissenbaum proposed the Contextual Integrity (CI) theory of pri-

vacy, [34] where privacy behaviors are affected by the context of

the information sharing environment.

To implement the above theories, privacy policy languages were

created based on the theories of limitation, control and RACL. The

early privacy languages were either created by augmentation of

access control languages or have the same structure of specify-

ing policies as a set of access roles and information categories

in a structured format like Extensible Markup Language (XML).

Some well-known examples of such Languages are Platform for

Privacy Preferences Project (P3P) [39], Enterprise Privacy Autho-

rization Language (EPAL) [4], eXtensible Access Control Markup

Language (XACML) [33], and Confab [19]. The early version of

these languages lacked temporal modalities that were solved in

the extended versions of them such as adding spatio-temporal at-

tributes to XACML [27, 35, 43].

Another common formalism for privacy is based on transition sys-

tems where the policies are specified as action and state of infor-

mation sharing. Formalizing privacy policies were based on the

privacy-preserving and privacy-violating actions in the system.

Also, in this formalism, the temporal characteristic of privacy was

modeled using Linear Temporal Logic (LTL). Lu et al. [28] proposed

a technique that translated the privacy specification of web ser-

vices to LTL formulas. Then a Privacy Interface Automata (PIA)

is presented to transform the messaging structure extracted from

the web service business process execution language (WS-BPEL)

into an automaton, creating their privacy policy model. Krishnan et

al. [26] also proposed an approach to enforce privacy requirements

using role-based access control and LTL. Their technique contains

behavior automata that model the system behavior (gathering or us-

ing data) and an access control automata which enforce the privacy

policies. Kouzapas et al. [25], combined the π -calculus and privacy

calculus to verify privacy policies formally. Their framework has a

type system to capture privacy related notations and a language for

expressing the privacy policies. Grace et al. [17] proposed a model

of user-centric privacy with a labeled transition system, which

compares the cloud service privacy policies with the users’ privacy

preferences. However, while they provide customizable privacy

preferences, they do not consider environmental variables in their

model. Although this group specifies the privacy utilizing a formal

semantic and considers the temporal modalities, the action based

modeling of the system is not scalable [5].

The scalability issue in action based systems were addressed by

Aucher et al. [5] that proposed to specify the privacy policies over

the knowledge that the information sharing action exposes to the

recipients of the information. In this model, privacy policy is speci-

fied as allowed and prohibited knowledge rather than actions, and

different actions can result in different knowledge exchange. They

used dynamic epistemic deontic logic (DEDL) as the foundation of

their language. The authors define information sharing conditions

as permitted or forbidden knowledge and the proposed language

does not support temporal modalities. Also, Pardo et al. [36], pre-

sented a formal language for privacy policy, using epistemic logic

for social network models. However, their formal privacy policy did

not contain time features; later, [24, 37] extended [36] to include

time characteristics to the privacy language by adding time interval

and LTL which led to the creation of timed privacy framework for

social media. Both frameworks used a social network model and

privacy policies as properties for model checking [7] verification.

Formal Specification and Verification of User-centric Privacy Policies for Ubiquitous Systems IDEAS’19, June 10–12, 2019, Athens, Greece

while a verity of implementation based on the theory of lim-

itation, control and RACL continues to grow, another group of

studies focused on the implementation of CI theory of privacy.

Barth et al. [8] have utilized first-order logic and LTL to model

the transfer of knowledge between agents during the information

sharing activities that are governed by Nissenbaum’s concept of

norms. In this context, a positive norm is defined as a permission

that allows information sharing activity and a negative norm pre-

vents the information sharing activity. Further, implementation of

CI was extended by DeYoung et al . [14] to include the notion of

purpose and self-reference based on their Privacy Least Fixed Point

(LFP) framework. The proposed framework resulted in the broader

formalization of HIPAA and GLBA privacy laws.

The above approaches assume that the privacy policies will be

created in a manner that are consistent with one another. How-

ever, privacy is dynamic in nature and as relationships and user’s

requirements changes it is required for privacy policies to change.

These changes can result in privacy policy conflicts. Therefore,

Breaux et al. [10] proposed Eddy that utilized CI. The goal of their

research was to find privacy conflicts in multi-stakeholder privacy

policies. In order to achieve that goal, natural language policies

are translated to Description Logic (DL)[6] so it can be used in the

formal reasoning process to investigate whether the policies are

consistent. Eddy and many other frameworks that are based on

CI theory are designed and develop based on the organizational

privacy requirements which are not compatible with individual

users privacy requirements.

For that reason, this paper defines and formalizes a user-centric

privacy model utilizing CI theory. The next section describes the

details on the methodology of our framework.

3 A FORMAL MODEL FOR USER-CENTRIC
PRIVACY MANAGEMENT

This research extends the concept of contextual integrity [8] to

provide mathematical models and algorithms that enables the cre-

ations and management of privacy norms for individual users. The

extension includes the augmentation of environmental variables,

i.e. time. date, etc. as part of the privacy norms, while introducing

an abstraction and a partial relation over information attributes.

The proposed framework is based on two sets of formal models:

1- User’s Information Sharing Model (UISM) that represents the in-

formation sharing activities in real-time, and 2- Privacy-Preserving

Model (PPM) that formally specifies the user’s privacy require-

ments. Finally, the privacy verification is performed by mapping

each action in UISM to its corresponding action in the PPM. In

the case of not being able to map an action a privacy violation is

detected and reported to user to get confirmation. The rest of this

section explains the above concepts in details.

3.1 User Information Sharing Model (UISM)
UISM is designed based on the formal definition of entities that

construct Information Communication machanism based on agent.

This is done to model user’s information sharing behavior with the

recipients, which are defined as agents [5, 8]. Hence, P is defined as

a set of agents that are the recipient of the information sent from

the user. For example, Alice and Bob are agents that the user shares

information with them. In addition, T is a set of attributes that

defines the information shared with p ∈ P such as “home address"

or “credit card number".

From the above definitions, a knowledge state κ is defined as

a set of tuples of the form (p, {t1, . . . , tk }), which describes the

attributes ti ∈ T that is shared with an agent p. For example

(Alice, {home address, credit card number})means that Alice knows

about the “home address" and “credit card number". As a result, if

agents have no knowledge about the user then κ can be an empty

set. Therefore, the absence of tuples for p indicates that the agent p
possesses no information about the user, i.e., the elements (p, ∅) < κ.
Thus, κ can be defined as follows where P is a set of agents and

P(T) is the power set of attributes,

κ ⊆ ∅ ∪ (P × (P(T) \ ∅))

For brevitywe use t̃ to represent an element ofP(T), i.e., {t1, . . . , tk }.
In the proposed framework the user can perform two commands

to share or stop sharing information with an agent. Each share,

sh, or stops sharing, st command results in a communication ac-

tion which we define as a triple (a,p, t̃), where a ∈ {sh, st}. For
example, when user intend to share his/her home address with

Alice, the following communication action has to be performed:

(sh,Alice, {home address}). Thus, all possible communication ac-

tions can be defined as

Act = {sh, st} × P × (P(T) \ ∅)

Based on the entities defined so far, the user’s behavior model

could be defined by a transition system where each state represents

the information shared with the agents. Further, each transition is

triggered by the communication action performed by the user.

Definition 1. (TheUser Information SharingModel (UISM)
LetU ISMM = (K ,Act ,→,κ0) be a 4-tuple transition system where:

• K is a finite set of knowledge states κ.
• κ0 ∈ K is the initial state κ0 = ∅ (no initial disclosures).
• Act is a set of communication actions.
• →⊆ K ×Act ×K is a transition relation, transform the system
state with actions (a,p, t̃) as follows:

– κ
(sh,p, t̃)
−−−−−−−→ κ ′, where κ ′ = κ ∪ {(p, t̃)},

– κ
(st,p, t̃)
−−−−−−−→ κ ′, where κ ′ = κ \ {(p, t̃ ′) | t̃ ∩ t̃ ′ , ∅}.

It is important to note that the proposed model differentiates

between the sequentially/simultaneously sharing of t1 and t2 with
p. The sequential sharing results in κ1 = {(p, {t1}), (p, {t2})} while
the simultaneous sharing results in κ2 = {(p, {t1, t2})}. In κ2 if

the action (sh,p, {t1, t2}) occurs (p, {t1, t2}) is added to the new

knowledge set. Thus a state contains all the three tuples κ3 =
{(p, {t1}), (p, {t2}), (p, {t1, t2})}. On the other hand, the performance

of the stop command (st ,p, t2) on κ3 will result in deletion of all

the information attribute that contained t2 from κ ′ = {(p, {t1})}.
For the sequential information sharing model, we consider a sce-

nario where user first shares his “GPS" information with Alice,

second shares his “home address" with her, and third shares his

billing information which is a combination of {home address, credit

card number} with Alice. If the commutation action of stop sharing

“home address" with Alice occurs then all the tuples that contain

IDEAS’19, June 10–12, 2019, Athens, Greece Joshaghani, et al.

“home address" like billing information will be removed from the

state.

3.2 Privacy-Preserving Model (PPM)
The Privacy-Preserving Model is designed to manage and gov-

ern user’s information sharing activities at run-time. Therefore,

based on the proposed UISM in the previous section, PPM model

is required to govern the transitions between knowledge states

according to the norms that the user specifies.
Since in a user-centric approach is inefficient to define a separate

privacy norm for each ρ (role) and τ (attribute type), the proposed

model abstracts these two elements. This abstraction allows to have

the same information disclosure norms with a set of agents or dis-

close a collection of attributes in a similar manner. For example,

the user could share her current location with all transportation

applications, or the user could share her credit and debit cards’

numbers with her close family members. The following section

describes the structure of the abstractions.

3.2.1 Abstractions and Conditions. Let T be a set of attribute types
and let AT be a partial map AT : P(T) 7→ T . That is, AT maps t̃
to an attribute type τ ∈ T . We can impose a partial order ⪯ on τ
based on the subset relation between AT ’s domain elements t̃ . We

say that τ1 ⪯ τ2 if there are exist t̃1 and t̃2 such that AT (̃t1) = τ1,
AT (̃t2) = τ2 and t̃1 ⊆ t̃2.
Figure 1a, and 1b demonstrate an example of hierarchy structure

and some attributes and attribute types in that structure. The dashed

line represents the mapping between an attribute and its type and

the solid lines depict the order relation between the attribute and

types.

Similar to [8] that defines the concept of role abstraction, we

define a set of agent roles R that can be assigned to an agent p.
An agent can be assigned to multiple roles and roles are partially

ordered based on their implication relation of their semantics.

In this paper, the partial order ≤ on R is predefined as an input to

the model, such that the role, ρ1, “close friend” implies the role, ρ2,
“friend”, i.e., ρ2 ≤ ρ1. The order between roles implies the amount

of relative privacy restriction of them where ρ2 ≤ ρ1 means that

ρ2 is more restrictive compared to ρ1.
In this approach each agent must be associated with at least one

role. Thus, we define the agent role as a function AR that maps an

agent to a nonempty set of roles: AR : P 7→ P(R) \ ∅. When role

ρ is assigned to an agent p, then the systems adds additional roles

that related to ρ through ≤. In other words, the set of roles for p
should be closed under ≤. For example, if the agent p is assigned

the role “close friend” ρ1, then the system adds “friend” role ρ2 to
p as well, resulting in AR(p) = {ρ1, ρ2}.
For brevity to show the roles and information attributes that have

a common child but are not in a partial relation with each other we

use the < child > notation as follow:

(1) ρ1 < p > ρ2 = ∃p ∈ P : ρ1 ∈ AR(p) ∧ ρ2 ∈ AR(p) ∧ ρ1✚⪯ρ2 ∧
ρ2✚⪯ρ1

(2) τ1 < t > τ2 = ∃̃t ∈ P(T) : AT (̃t) ⪯ τ1 ∧AT (̃t) ⪯ τ2 ∧τ1✚⪯τ2 ∧
τ2✚⪯τ1

Using these abstractions the user can define access permissions
A as a subset of R × T such that if an element (ρ,τ) ∈ A then all

agents with role ρ are allowed to access attributes with type τ .

The above abstractions of roles and information attributes provide a

better flexibility in defining privacy norms. However, this definition

is not complete yet, as it does not take into the consideration the

environmental conditions where the information is disclosed to the

recipients and has no sensitivity over the patterns and sequence of

the information disclosure. Imagine, user is interested in restricting

access of agents in ρ role to its attribute type τ to a particular time

interval during a work day. Moreover, the user might allow only

up to two (ρ,τ) accesses per such interval.

In order to overcome this limitation, our formalism introduces the

logic for environmental conditionsψ and temporal conditions φ to

the definition of the privacy norm. In this model, environmental

conditions are represented a set of variables V , where each v ∈ V
describes the state of an environment such as system’s time, day and

other attributes. Then, V is partitioned into subsets Vi by variables’

type like integers, boolean, reals and so on. It is assumed that each

type has a set of predicates Predi and set of syntax rules to construct
such predicates from the variables and non-logical symbols, e.g.,

constants. Then an environmental condition (Ψ) is expressed as a

propositional logic over those predicates and variables, i.e., v ∈ Vi ,
predi ∈ Predi as follows:

ψ ::= ¬ψ | ψ ∧ψ | ψ ∨ψ | predi ,∀Vi ∈ V

While Predi could be produced by an arbitrary complex yet

decidable theory for the data type such as Presburger arithmetic for

integers, we argue that less complex theories could be adequate[3].

For example, for integer environmental variablesVI and booleanVB
environmental variables the following grammar could be sufficient

to express basic and easily comprehensible predicates predi :

predI ::= v ≤ n | v < n | v == n,v ∈ VI ,n ∈ Z

predB ::= v | true | f alse, v ∈ VB

The next entity that is defined as part of the privacy norm is the

temporal condition φ. In order to keep the conditions flexible and

generic, we utilize temporal logic expressions to describe tempo-

ral features of the privacy requirements. While Linear Temporal

Logic (LTL) is very popular in expressing broad range of liveness

conditions, they are difficult to read and understand. Utilizing LTL

requires a strong mathematical background, and is cumbersome for

an average system modeler to implement. Further, for the purpose

of defining temporal conditions in privacy norm a simplified gram-

mar will suffice, i.e define the precedence of two communication

actions or a constant occurrence a communication actions can be

sufficiently defined by the concatenation and Kleen star operations

over A (the alphabet):

φ,ϕ ::= (ρ,τ) | φ · ϕ | φ∗, (ρ,τ) ∈ A

The Φ notation is used to represent a set of φ, in which each φ for

a given role ρ, can be expressed as a regular expression that allows

sharing attributes of type τ2 after the sharing of attributes of type
τ2 as follows:

φ = A∗
1
· ((ρ,τ1) · A

∗
1
· (ρ,τ2))

∗ · A∗
1

Formal Specification and Verification of User-centric Privacy Policies for Ubiquitous Systems IDEAS’19, June 10–12, 2019, Athens, Greece

(a)
(b)

Figure 1: (a) An example of the partial order of the attributes and attribute types where the top layer show the attribute types
and the bottom layer show the information themselves. (b) t1 =GPS information, t2 = home address, and t3 = credit card
number. The middle layer represents the information that are used together for example the credit card number and the
home address go together for billing information that is a considered as financial type.

Here A1 = A \ {(ρ,τ1), (ρ,τ2)} In addition, the repetition of an

event up to a constant k times could be expressed with the following

formula, where the power operator describes the number of times

a regular expression should be repeated.

φ = A∗
2
((ρ,τ) · A∗

2
)k

where A2 = A \ {(ρ,τ)}.
Now that we have defined each elements in the privacy norm, the

next section describes the formal specification of the privacy norm

and techniques to ensure the consistency of the privacy require-

ments.

3.2.2 Norms and their Consistency. In this research, norms are the

formal definition of user’s privacy requirements that are used to

govern user’s information sharing behavior. In order to minimize

the risk of unwanted information sharing, we assume that if an

action is not explicitly defined as part of the user’s privacy policies

then it is forbidden. Therefore, the only type of norms that the user

defines are positive norms, i.e., allowed norms.

In this context norm is formulated as a relation between access

permission, environmental, and temporal conditions. Hence, norm

is represented as a tuple ((ρ,τ),ψ ,φ,), where (ρ,τ) ∈ A andψ ∈ Ψ,
φ ∈ Φ. The first element of the tuple represents the privacy policy,

while the second and the third elements of the tuple describe the

conditions under which the transfer of information should occur.

The set of such is referred to as a set of norms N .

The setN has the uniqueness property, that is, only one tuple with

the given (ρ,τ) values is allowed in the set. However, the uniqueness
property is not sufficient to ensure the consistency of the privacy

norms due to the partial relations that exist among the roles and

attribute types. Thus, in order to utilizeN for privacy management

and detection of information disclosure, a consistency check is

required. The Table 1 demonstrates a detailed explanation with

examples of the different possible cases of role and attributes types

that two norms can have during consistency checking. The row

headers show the roles and the column headers show the attribute

types. The cells in gray are the example of their above conditions.

Definition 2. (ConsistentNorms) Two normsn1 = ((ρ1,τ1),ψ1,φ1)
and n2 = ((ρ2,τ2),ψ2,φ2) are consistent when one of the four consis-
tency conditions holds:

C1. ∄p ∈ P : ρ1 ∈ AR(p) ∧ ρ2 ∈ AR(p), that is, the norms defined
for the roles with no common agents. (Table 1 row G)

C2. ∄̃t ∈ P(T) : AT (̃t) ⪯ τ1 ∧ AT (̃t) ⪯ τ2, that is, norms are de-
fined for attribute types with no common information attribute.(Table
1 column 5)

Before defining the last two conditions of consistency, we pro-

pose some limitations over the access permission and sequencing

conditions of the privacy norms. Since both of these elements are

defined for a specific roles and attribute type parameters, the first

restriction is defined over the roles so that the same role should

be used in the access permission and the sequencing condition

of a norm. In the absence of this restriction, it is possible to cre-

ate two norms that have a consistent sequencing condition but

inconsistent access permission or vice versa. In addition, this re-

striction enforces a constant role across the regular expression of

the sequencing condition that reduces the regular expression’s com-

plexity by eliminating the need for a homomorphic function over

the roles. The second restriction is defined over the attribute types,

∀τ ∈ φ τi✚⪯τj 0 ≤ i, j ≤ n (An attribute type and its children

IDEAS’19, June 10–12, 2019, Athens, Greece Joshaghani, et al.

Table 1: The possible consistency cases based on the roles and information attribute types relations and the constrains
over the conditions that result in consistency. The notations Fr=Friends, BFr=Best Friends, CoWr=Co-Workers, Fml=Family,
Loc=Location, Fin=Finance, Hlth=Health, and Bank=Banking information

1 2 3 4 5

τ1 < τ2 τ2 < τ1 τ1 = τ2 τ1 < e > τ2 τ1 < none > τ2
Loc < Fin Loc < Fin Loc = Loc Fin < Loc > HLth Loc < none > Bank

A ρ1 < ρ2
c2 ⇔ c1
L(s1) = L(s2)

c2 =⇒ c1
L(s1) ⊆ L(s2)

c2 =⇒ c1
L(s1) ⊆ L(s2)

c2 =⇒ c1
L(s1) ⊆ L(s2)

True

B Fr < BFr Share Loc with Fr when c1 an

s1, share Fin with BFr when c2

and s2. Fin should be guarded

the same or better, c1 =⇒ c2,
L(s2) ⊆ L(s1). BFr can have

less restrictive access, c2 =⇒
c1, L(s1) ⊆ L(s2)

Share Fin with Fr when c1 and

s1, share Loc with BFr when c2

and s2. Fin should be guarded

the same or better, c2 =⇒ c1,
L(s1) ⊆ L(s2). BFr can have

less restrictive access c2 =⇒

c1, L(s1) ⊆ L(s2)

Share Loc with Fr when c1 and

s1, sare Loc with Bfr when c2

and s2. Loc should be guarded

at least the same way, c1 ⇔

c2, L(s1) = L(s2). BFr can

have less restrictive conditions,

c2 =⇒ c1, L(s1) ⊆ L(s2)

Share Fin with Fr and Health

with BFr (or vice versa) which

can share Loc. Loc should be

guarded at least the same way

c1 ⇔ c2, L(s1) = L(s2). BFr
can have less restrictive condi-

tion, c2 =⇒ c1, L(s1) ⊆ L(s2)

Since Loc and Bank are in-

comparable then those norms

should always be consistent.

C ρ1 = ρ2
c1 =⇒ c2
L(s2) ⊆ L(s1)

c2 =⇒ c1
L(s1) ⊆ L(s2)

False

c2 ⇔ c1
L(s1) = L(s2)

True

D Fr = Fr Share Loc with Fr when c1 and

s1, share Fin with Fr when c1

and s2. Fin should be guarded

the same or better way c1 =⇒
c2, L(s2) ⊆ L(s1). Fr should

have at least the same access,

c1 ⇔ c2, L(s1) = L(s2).

Share Fin with Fr when c1 and

s1, share Loc with Frien when

c2 and s1. Fin should be guarded

the same or better way, c2 =⇒
c1, L(s1) ⊆ L(s2). Fr should

have at least the same access

c1 ⇔ c2, L(s1) = L(s2)

There should be only one rule

for the same role and attribute

type - the uniqueness property

Share Fin with Fr when c1 and

s1, share Health with Fr when

c2 and s2, which can share the

same attribute Loc. Loc should

be guarded at least the same

way c1 ⇔ c2, L(s1) = L(s2).
Fr should have the same access

c1 ⇔ c2, L(s1) = L(s2)

Since Loc and Bank are in-

comparable then those norms

should always be consistent.

E ρ1 < p > ρ2
c1 =⇒ c2
L(s2) ⊆ L(s1)

c2 =⇒ c1
L(s1) ⊆ L(s2)

c2 ⇔ c1
L(s1) = L(s2)

c2 ⇔ c1
L(s1) = L(s2)

True

F Fr Anna CoWr Share Loc with Fr when c1 and

s1, share Fin with CoWr when

c2 and s2, which have Anna as

a common agent. Fin should be

guarded the same or better way

c1 =⇒ c2, L(s2) ⊆ L(s1). Fr
and CoWrk should have at least

the same access to Loc c1 ⇔ c2,
L(s2) = L(s1), since they share

an agent.

Share Fin with Fr when c1 and

s1, share Loc with CoWrk when

c2 and s2, which have Anna a

common agent. Fin should be

guarded better than Loc c2 =⇒
c1, L(s1) ⊆ L(s2). Fr and

CoWrk should have at least the

same access to Loc c2 ⇔ c1,
L(s1) = L(s2), since they share

an agent.

Share Loc with Fr when c1

and s1, share Loc with CoWrk,

when c1 and s2, which have

Anna as a common agent. Loc

should be guarded the same

way c1 ⇔ c2, L(s1) = L(s2).
Fr and Cowrk should have the

least the same access to Loc,

c1 ⇔ c2, L(s1) = L(s2), since
they share an agent.

Share Fin with Fr when c1 and

s1, share Health with CoWrk

when c2 and s2, which have

Anna as a common agent. Loc

should be guarded at least the

same way c1 ⇔ c2, L(s1) =
L(s2). Fr and CoWrk should

have the same access to Loc

c1 ⇔ c2, L(s1) = L(s2), since
they share an agent.

Since Loc and Bank are in-

comparable then those norms

should always be consistent.

G ρ1 < none > ρ2 True True True True True

H Fr, none, Fml Since Fr and Fml are incompa-

rable then those norms should

always be consistent.

Since Fr and Fml are incompa-

rable then those norms should

always be consistent.

Since Fr and Fml are incompa-

rable then those norms should

always be consistent.

Since Fr and Fml are incompa-

rable then those norms should

always be consistent.

Since Fr and Fml are incompa-

rable then those norms should

always be consistent.

are not allowed to exist in the same regular expression). This re-

striction ensures that all the communication actions are inspected

not only for the super-type τ , that is explicitly inferred from the

communication action, but also for all the children of τ that will

be implicitly revealed by that communication action. Without this

restriction, it is possible to create a regular expression that allows

for sharing an attribute type and its children consecutively while

it is not taking into the account that the children are shared more

than once.

Further, the comparisons of the access permission component of the

norms are conducted based on the partial relations that exists over

the roles and attribute types. In addition, the comparison between

the environmental conditions is implemented based on the Boolean

algebra. To examine the sequencing conditions for consistency, we

need to compare the regular expressions. the comparison of two

regular expressions is not possible if they do not share the same al-

phabet. Therefore, we need to introduce a mechanism that projects

the language of one regular expression to the other one and brings

the regular expressions to a common alphabet.

Definition 3. (Projection of the Language) Let φ1 and φ2
have the following symbols to be tracked:

φ1 = {(ρ,τ1), (ρ,τ2), . . . , (ρ,τk)}

φ2 = {(ρ ′,τ ′
1
), (ρ ′,τ ′

2
), . . . , (ρ ′,τ ′n)}

We define φ̃1 = L↓(φ1)φ2
as the projection of φ1 on φ2 where L↓

receives a regular expression and maps it to another one. To achieve
a similar language to compare φ1,φ2 we traverse over the attribute
types. For each attribute type, we check for its children or another
attribute type that has a common child in the other regular expression
and add the children or the common child to a set in a map. After
traversing over all the attribute types in both φ1,φ2 to substitute the
uncommon parts, we generate all the possible substitution for attribute
type τi exist in the map. The substitution for τi for reaching a common
language is a disjunctive regular expression. The disjunctive regular
expression is generated as follows. Let sub be a set of all τi children and
common children that have been found in the other regular expression.
We define s̃ub = P(sub) \ ∅. For each s ∈ s̃ub we generate all the
permutations of elements of s and add them to the regular expression
with disjunction operator. For example, sub = {τa ,τb } then s̃ub =
{{τa }, {τa }, {τa ,τb }} and the result of the regular expression that
is used for substitution is τa |τb |τaτb |τbτa . After reaching the same
alphabet, the consistency of the regular expressions can be decides
based on the norms’ access permission.

C3 . ρ1 < ρ2 and either τ1 ⪯ τ2 or τ2 ⪯ τ1 then ψ1 =⇒ ψ2 ∧
L↓(φ1)φ2

⊆ L↓(φ2)φ1
, that is,n2 is for a specialized role ρ2 of ρ1 and

its attribute type τ2 encompasses τ1 or vise verse then environmental
condition ofψ2 should be the same or less restrictive than ofψ1 and
its regular expression φ2 should describe the same or less restricted
projected language than of φ1.(Table 1 row A,C and columns 1,2,3)

Formal Specification and Verification of User-centric Privacy Policies for Ubiquitous Systems IDEAS’19, June 10–12, 2019, Athens, Greece

C4 . ρ1 < p > ρ2 or τ1 < t > τ2 then ψ1 ⇔ ψ2 ∧ L↓(φ1)φ2
=

L↓(φ2)φ1
. If there is at least one agent that can be assigned to both

unrelated roles or an information attribute that share a common child
then the environmental conditions and the projected language of the
regular expressions must be equivalent.(Table 1 row E and columns 4)

3.2.3 Policy Compliance Verification. The set of norm N defines

a Privacy-Preserving Model, (PBM) which describes compliant in-

formation communication actions at the level of attribute type and

agent role abstraction levels. The knowledge states of PBM are

consists of tuples (ρ,τ), which indicate that at least one agent with

ρ role know about attribute represented by τ . The transitions repre-

sent the abstracted communication actions Âct from {sh, st}×R×T

guarded by conditions Φ and Ψ defined in N .

Definition 4. (Privacy-Preserving Model) is a set of observers
over norms N where each observer is a tuple of (K̂ , Âct , c,m) rep-
resenting ni = ((ρ,τ),ψ ,φ) ∈ N where K̂ = (ρ,τ), c = ψ is the
pre-condition andm is a monitor representing φ regular expression.
The transition Âct is given to Monitorm to update the state of the
monitor.

3.2.4 Verification. To ensure that the user’s behavior is compliant

with the privacy policy, we need to map the current state and

the next state of user’s behavior model to the privacy preserving

behavior model.

Definition 5. (Mapping from user behavior to privacy pre-
serving domain) Let MS : K → K̂ be a surjective function, where
MS(p, t̂) = {(ρ,τ)|ρ = AR(p),τ = AT (̃t)} and MT : Act → Âct
where:

MT (a,p, t) = {(ρ,τ)|ρ ∈ AR(p) ∧ τ ∈ AT (t)} i f a = sh

In the case that there is no mapping for the next state in the

PPM, the communication action that triggered that transition will

be reported to the user as disclosing.

Definition 6. (Valid user behavior) Let user behavior system
be at state k that maps to k̂ in the privacy preserving behavior model
and the action (sh,p, t) happens. IfMP(p, t) exists, and the environ-
mental variables satisfyψ andm(MS(a,p, t)) is in the final state then
the communication action Act is valid.

The goal of privacy rules is to prevent the user from entering

into a privacy violating states.

After reporting a privacy-violating action the user can ignore

it and the framework allow the information sharing to happen.

All this communication happens through the user interface of the

framework. The next section provides implementation details of

the framework’s components.

4 IMPLEMENTATION
As a proof of the concept, we prototyped the proposed framework

in the Java programming language
1
. Figure 2 depicts a diagram

of the implementation’s architecture. The blue components show

the libraries and technologies used in the proposed framework.

The proposed framework is modularized into three layers:(1) User

interface layer which takes the user’s intentions in a structured

1
https://github.com/wxyzabc/UserCentricPrivacy

Figure 2: The architecture of user-centric privacy frame-
work.

format,(2) Translation layer which translates the frameworks from

UI to privacy norms and formal notation, (3) Verification layer that

evaluates norms consistency and compliance of the information

sharing action with privacy norms.The following sections describe

the implementation details of each of the components in each layer.

4.1 User Interface Layer
The user interface (UI) layer facilitates interactions between the

user and the proposed framework. Through the UI the user can

add and view the existing privacy norms and get privacy violation

reports. The UI is designed to conceal the complexity of the un-

derlying formalism and verification from the user. The UI hides

the complexities by allowing the users to express their privacy

intentions as a structured input. Using the UI the user can select

the role and attribute type from a drop-down list. To create the

environmental conditions, the user can provide arbitrary inputs for

environmental variables or choose between predefined conditions

e.g., daytime, nighttime, weekends. Also, the user can specify the

desired information sequence in the form of precedence or repe-

tition templates like “X happens after Y" or “X happens k times”.

These templates will be translated to sequencing conditions.

4.2 Translation Layer
The translation layer receives the structured input from the UI

and translates it into formal notation. The formal notations and

maps described in the methodology section can be implemented as

tables in a database. The norm are stored in the norms table where

the table attributes are the role, attribute type, the environmental

conditions, and the DFA state of the sequencing conditions. The

primary key of the norms table is the pair of (ρ,τ). The system

IDEAS’19, June 10–12, 2019, Athens, Greece Joshaghani, et al.

queries the database to retrieve the norms in order to either verify

an action or check the consistency of a new norm. To evaluate each

action with the attribute t and the agent p, norms that have roles

where ρ = AR(p) and attribute type τ = AT (t) will be retrieved
from the norm table and sent to the verification layer.

4.3 Verification Layer
This layer verifies the information sharing actions compliance with

the privacy norms and the consistency of a new norm with existing

norms. If an information sharing action violates the privacy norms

or a new norm causes inconsistency, then this layer sends a violation

report to the UI to inform the user. The user can ignore the violation

caused by the information sharing action and allow the information

to be shared. With an inconsistent norm, the user has to change

the new norm so that it will be consistent with other norms. The

rest of this section describes the verification method of information

sharing actions and privacy norms in more detail.

4.3.1 Verification of norms for Inconsistency. When a new norm

is created, the framework checks the consistency of the new norm

with the existing norms. Based on the consistency constraints in

section 3.2.2 the framework first ensures that the new norm access

permission does not exist in the database. Then the new norm’s

environmental conditions are checked for consistency. The frame-

work parses the string of the environmental conditions and changes

them to SMT solver formulas. Then the SMT solver needs to prove

that the implication or equivalency relation holds and it is always

valid. Validation assessment of formula f by SMT solvers is done

by proving that ¬f is unsatisfiable, hence f always evaluates to

true. By proving that there is no combination of variables that sat-

isfy ¬f it can be concluded that f is a tautology. In a case that

the solver finds a solution to ¬f , the user is asked to change the

inconsistent new norms. Further, since efficiency is important in

real-time systems, we need to assign a time limit for the solver. If

the solver times out or returns UNKNOWN the user will be notified.

Finally, if the norm was consistent it will be added to the database.

The implementation of the proposed framework utilizes JavaSMT

[23] with the Z3 solver version 4.3.2 [13] for consistency checking

over the environmental variables and “brics" library version 1.12-1

[31] for sequencing conditions.

4.3.2 Verification of Actions for violation. For each action (sh,p, t)
, the framework finds the attribute type of t and the role of p.
Then the privacy norms tables are queried to find the norms with

the access permission (AR(p),AT (t)) as their primary key. If the

query returns no results, it means that no norm allows sharing

information t with agent p. However, If the query returns results,

it indicates that there exists a mapping from a state in UBM to a

state in the PPM. Then the framework checks for the satisfaction

of the environmental conditions and sequencing conditions before

taking the transition to the mapped state.

Since the norm conditions are dynamic, they cannot be hard-

coded in the verification engine. Therefore to check the environ-

mental variables a mechanism is needed to enable the verification

engine to handle change in the conditions. Therefore, the condi-

tions are formed and evaluated at run-time based on the stored

environmental constraints in the database. For the implementation

of such a mechanism that allows for dynamic manipulation and

evaluation of conditions, the Expression Languages (EL) can be

used. EL receives an object and a logical expression as a string and

evaluates whether the object properties satisfy the expression or

not. In our implementation,the current snapshot of the environment

is given to the EL as the input object that has the environmental val-

ues and the EL expression string is the environmental constraints

of the retrieved privacy norms. This framework employs Spring

Expression Language (SpEL) [1] as the EL library. EL only checks

for the satisfaction of the environmental conditions and if they are

not satisfied then the transition guard is not satisfied. Therefore,

the action violates the privacy model. However, if the environmen-

tal conditions are satisfied then we check for the satisfaction of

sequencing conditions.

Sequencing conditions implemented as run-time monitors from

the regular expressions stored in the database. A run-time monitor

is a deterministic finite automaton (DFA) that is created based on a

regular expression. The DFA representing the sequencing condition

has a pointer to its current state and changes its state with the

occurrence of information sharing actions. If the new state in the

DFA monitor is not a final state, then the action is not valid, and

the system reports the violation to the user. Different libraries exist

for creating run-time monitors such as AspectJ, but the monitors

created by them are static. Therefore, a change in one of the regular

expressions demands a reset in all the monitors. In the proposed

framework the regular expressions are dynamic, and changing a

regular expression only causes a reset in the corresponding DFA.

Another method for implementing the sequencing conditions is to

store a history of information sharing actions; however, with each

information sharing action, the history will grow, and to potentially

infinite size. With the run-time monitors, the number of the DFAs

are constant and equal to the number of the norms with sequencing

conditions. Algorithm 1 shows the general steps taken to implement

the information sharing action verification process.

Algorithm 1: Action verification algorithm.

1 Input: CA (Communication action)

2 Output:Boolean value indicating the verification result.

3 norms=[]

4 roles=CA.recipient.getRoles()

5 types=CA.informationAttribute.getType()

6 for r in roles and t in types do
7 norms.append(getnorms(r,t))

8 if (norms.size> 0) then
9 for j in norms do

10 if !(j.evalEnvironmentalCondition (CA.environment))
then

11 return false

12 else
13 if !(j.evalSequencingCondition(CA)) then
14 return false

15 return true

16 return false

Formal Specification and Verification of User-centric Privacy Policies for Ubiquitous Systems IDEAS’19, June 10–12, 2019, Athens, Greece

Considering the above implementation, in the next section we

discuss the performance evaluation of the proposed framework.

5 PERFORMANCE EVALUATION
The proposed framework is designed for user-centric applications;

therefore, it should have acceptable performance on smart devices

such as smart-phones, internet of things devices and etc. The main

challenge in this area is that usually, these devices have low mem-

ory and computational power. Since detection of privacy violations

in such applications supposed to be real-time, a framework with a

substantial performance overhead cannot deliver the desired results.

Therefore, our implementation was tested for performance evalua-

tion on a Raspberry Pi model B with 700 MHz CPU, 512 MB RAM

and running Raspbian 4.9 operating system. As well as a PC with

3.0 GHz AMD Phenom II X4 945 processor, with 8 GB of memory

and Windows 7 operating system. The privacy policy created for

this test contained 81 privacy norms over 12 attribute types and 16

roles which 8 of them have nonempty intersections with another

groups.

Table 2 shows the results of the information sharing action veri-

fication performance evaluation. The number in each column in-

dicates the average verification response time for each part of the

a privacy norm. The average was computed for 20 information

sharing actions which half were privacy violating actions and the

other half were non-violating actions. Also, notice that the perfor-

mance of the action verification depends on the performance of

underlying database software and expression language library. In

the implementation of our framework, we used MariaDB version

10.2 database and SpEL 3.1.0 as the EL library.

Table 2: Action verification performance evaluation results.
The columns show the response time for Access Permis-
sion (AP), Environmental Conditions (EC), Sequencing Con-
ditions (SC).

Machine

Action Verification

AP EC SC

PC 1.5 ms 0.5 ms 3.5 ms

Pi B 39 ms 6 ms 540 ms

The average time for the consistency check performance evalua-

tion on the PC was 39 ms and for Raspberry Pi model B was 849 ms.

Also, notice that the performance of this consistency checking de-

pends on the performance of the underlying solver and the domain

size of the environmental variables (since the solvers are faster when

the search domain is smaller). For example, in our implementation,

the norms time conditions were specified as (hours×100+minutes)

and time intervals could be subsets of each other. Table 3 shows the

SMT-solver performance for constraints with 5,10,20,50,100, and

500 environmental variables. The over-head of bric library for lan-

guage sunset and equivalency is around 7ms on average. However,

the projection algorithm is the bottleneck since it computes the

permutation of the information types that are needed for substitu-

tion in the regular expression. Due to this drawback the framework

limits the number of children for each attribute to 5 children.

Table 3: Performance of consistency checking for Environ-
mental Variables

Number of Variables 5 10 20 50 100 500
Implication time (ms) 26 28 30 40 35 66

Equivalency time (ms) 32 34 35 46 41 67

6 CONCLUSION AND FUTUREWORKS
Administrating and managing users’ privacy is a major challenge in

the digital age. Privacy has a different meaning to different users de-

pending on their personality, age, social status, cultural background,

and many other factors. However, current privacy management sys-

tems cannot address these privacy needs adequately since they are

not designed based on the users’ privacy perspectives. Therefore,

the lack of user-centric privacy management tools and algorithms

limits users’ ability to have control over their data sharing activities

and puts unaware users at risk of information disclosure. In order

to overcome these limitations, the proposed framework provides

a privacy formalism and verification engine to specify and model

privacy from the user’s perspective. Moreover, as a proof of concept,

a framework was implemented and tested based on the described

formalism. In the proposed model, the contextual integrity theory

has been customized to address the privacy needs of individual

users. Further, the user-centric privacy framework is meant to be

utilized in the new generation of smart devices and IoT, which

compared to servers and general purpose computers, have lower

memory and computational power. These limitations justify the

use of regular expressions instead of Linear Temporal Logic (LTL)

in our paper since empirical evidence [9] shows that the evaluation

of the regular expressions has significantly less overhead compared

to LTL.

The future work will eliminate the current user interface and user’s

privacy norms will be generated automatically utilizing text anal-

ysis, speech recognition, and AI algorithms that can infer user’s

privacy policies based on the user’s relationships and information

sharing behaviors.

ACKNOWLEDGMENTS
The authors would like to thank National Science Foundation for

its support through the Computer and Information Science and

Engineering (CISE) program and Research Initiation Initiative(CRII)

grant number 1657774 of the Secure and Trustworthy Cyberspace

(SaTC) program: A System for Privacy Management in Ubiquitous

Environments.

REFERENCES
[1] [n. d.]. Spring Expression Language. https://docs.spring.io/spring/docs/3.0.x/

reference/expressions.html. Accessed: August 31, 2018.

[2] Alessandro Acquisti, Laura Brandimarte, and George Loewenstein. 2015. Privacy

and human behavior in the age of information. Science 347, 6221 (2015), 509–514.
[3] Alessandro Acquisti and Jens Grossklags. 2005. Privacy and rationality in indi-

vidual decision making. IEEE security & privacy 3, 1 (2005), 26–33.

[4] Paul Ashley, Satoshi Hada, Günter Karjoth, Calvin Powers, andMatthias Schunter.

2003. Enterprise privacy authorization language (EPAL). IBM Research (2003).

[5] Guillaume Aucher, Guido Boella, and Leendert Van Der Torre. 2011. A dynamic

logic for privacy compliance. Artificial Intelligence and Law 19, 2-3 (2011), 187.

[6] Franz Baader, Ian Horrocks, and Ulrike Sattler. 2008. Description logics. Founda-
tions of Artificial Intelligence 3 (2008), 135–179.

[7] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. 2008. Principles
of model checking. MIT press.

https://docs.spring.io/spring/docs/3.0.x/ reference/expressions.html
https://docs.spring.io/spring/docs/3.0.x/ reference/expressions.html

IDEAS’19, June 10–12, 2019, Athens, Greece Joshaghani, et al.

[8] Adam Barth, Anupam Datta, John C Mitchell, and Helen Nissenbaum. 2006.

Privacy and contextual integrity: Framework and applications. In Security and
Privacy, 2006 IEEE Symposium on. IEEE, 15–pp.

[9] Ilan Beer, Shoham Ben-David, and Avner Landver. 1998. On-the-fly model check-

ing of RCTL formulas. In International Conference on Computer Aided Verification.
Springer, 184–194.

[10] Travis D Breaux, Hanan Hibshi, and Ashwini Rao. 2014. Eddy, a formal language

for specifying and analyzing data flow specifications for conflicting privacy

requirements. Requirements Engineering 19, 3 (2014), 281–307.

[11] Carole Cadwalladr and Emma Graham-Harrison. 2018. Revealed: 50 million

Facebook profiles harvested for Cambridge Analytica in major data breach. The
Guardian 17 (2018).

[12] Federal Trade Commission et al. 2012. Recommenda-

tions for Businesses and Policymakers. Washington, DC
(http://www. ftc. gov/sites/default/files/documents/reports/federal-trade-
commission-report-protecting-consumer-privacy-era-rapid-change-
recommendations/120326privacyreport. pdf) (2012).

[13] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In

International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[14] Henry DeYoung, Deepak Garg, Limin Jia, Dilsun Kaynar, and Anupam Datta.

2010. Experiences in the logical specification of the HIPAA and GLBA privacy

laws. In Proceedings of the 9th annual ACM workshop on Privacy in the electronic
society. ACM, 73–82.

[15] Michael D Ekstrand, Rezvan Joshaghani, and Hoda Mehrpouyan. 2018. Privacy

for All: Ensuring Fair and Equitable Privacy Protections. In Conference on Fairness,
Accountability and Transparency. 35–47.

[16] Ruth Gavison. 1980. Privacy and the Limits of Law. The Yale Law Journal 89, 3
(1980), 421–471.

[17] Paul Grace and Michael Surridge. 2017. Towards a model of user-centered privacy

preservation. (2017).

[18] Jamal Greene. 2009. The So-Called Right to Privacy. UC Davis L. Rev. 43 (2009),
715.

[19] Jason I Hong and James A Landay. 2004. An architecture for privacy-sensitive

ubiquitous computing. In Proceedings of the 2nd international conference on Mobile
systems, applications, and services. ACM, 177–189.

[20] White House. 2015. Administration discussion draft: Consumer Privacy Bill of

Rights Act of 2015. Retrieved on November 15 (2015), 2015.
[21] Rezvan Joshaghani, Michael D. Ekstrand, Bart Knijnenburg, and Hoda

Mehrpouyan. 2018. Do Different Groups Have Comparable Privacy Tradeoffs?

At Moving Beyond a One-Size Fits All Approach: Exploring Individual Differences
in Privacy, a workshop at the ACM Conference on Human Factors in Computing
Systems (CHI) (2018).

[22] Rezvan Joshaghani and Hoda Mehrpouyan. 2017. A Model-Checking Approach

for Enforcing Purpose-Based Privacy Policies. In 2017 IEEE Symposium on Privacy-
Aware Computing (PAC). IEEE, 178–179.

[23] Egor George Karpenkov, Karlheinz Friedberger, and Dirk Beyer. 2016. JavaSMT:

A unified interface for SMT solvers in Java. In Working Conference on Verified
Software: Theories, Tools, and Experiments. Springer, 139–148.

[24] Ivana Kellyérová. 2017. A Real-Time Extension of the Formal Privacy Policy

Framework. (2017).

[25] Dimitrios Kouzapas and Anna Philippou. 2017. Privacy by typing in the pi-
calculus. arXiv preprint arXiv:1710.06494 (2017).

[26] Padmanabhan Krishnan and Kostyantyn Vorobyov. 2013. Enforcement of privacy

requirements. In IFIP International Information Security Conference. Springer,
272–285.

[27] Ki Young Lee, AleumKim, Ye Eun Jeon, Jeong Joon Kim, Yong Soon Im, Gyoo Seok

Choi, Sang Bong Park, Yun Sik Lim, and Jeong Jin Kang. 2015. Spatio–temporal

XACML: the expansion of XACML for access control. International Journal of
Security and Networks 10, 1 (2015), 56–63.

[28] Jiajun Lu, Zhiqiu Huang, and Changbo Ke. 2014. Verification of Behavior-aware

Privacy Requirements in Web Services Composition. JSW 9, 4 (2014), 944–951.

[29] Mary Madden, Aaron Smith, and Jessica Vitak. 2007. Digital Footprints: Online

identity management and search in the age of transparency. (2007).

[30] Hoda Mehrpouyan, Ion Madrazo Azpiazu, and Maria Soledad Pera. 2017. Mea-

suring Personality for Automatic Elicitation of Privacy Preferences. In 2017 IEEE
Symposium on Privacy-Aware Computing (PAC). IEEE, 84–95.

[31] Anders Møller. 2017. dk.brics.automaton – Finite-State Automata and Regular

Expressions for Java. http://www.brics.dk/automaton/.
[32] James H Moor. 1997. Towards a theory of privacy in the information age. ACM

SIGCAS Computers and Society 27, 3 (1997), 27–32.

[33] Tim Moses. 2005. Privacy policy profile of XACML v2. 0. Oasis standard, OASIS
2 (2005).

[34] Helen Nissenbaum. 2004. Privacy as contextual integrity. Wash. L. Rev. 79 (2004),
119.

[35] Minolini Nithyanandam. 2016. An active rule-based system for XACML 3.0.

(2016).

[36] Raúl Pardo, Musard Balliu, and Gerardo Schneider. 2017. Formalising privacy poli-

cies in social networks. Journal of Logical and Algebraic Methods in Programming
(2017).

[37] Raúl Pardo, César Sánchez, and Gerardo Schneider. 2018. Timed Epistemic

Knowledge Bases for Social Networks. In International Symposium on Formal
Methods. Springer, 185–202.

[38] Joseph Phelps, Glen Nowak, and Elizabeth Ferrell. 2000. Privacy concerns and

consumer willingness to provide personal information. Journal of Public Policy
& Marketing 19, 1 (2000), 27–41.

[39] Joseph Reagle and Lorrie Faith Cranor. 1999. The platform for privacy preferences.

Commun. ACM 42, 2 (1999), 48–55.

[40] J Rose and C Kalapesi. 2012. Rethinking personal data: Strengthening trust. BCG
Perspectives 16, 05 (2012), 2012.

[41] Herman T Tavani. 2007. Philosophical theories of privacy: Implications for an

adequate online privacy policy. Metaphilosophy 38, 1 (2007), 1–22.

[42] Herman T Tavani and James H Moor. 2001. Privacy protection, control of in-

formation, and privacy-enhancing technologies. ACM SIGCAS Computers and
Society 31, 1 (2001), 6–11.

[43] Que Nguyet Tran Thi and Tran Khanh Dang. 2012. X-STROWL: A generalized

extension of XACML for context-aware spatio-temporal RBAC model with OWL.

InDigital Information Management (ICDIM), 2012 Seventh International Conference
on. IEEE, 253–258.

[44] Giuseppe A Veltri and Andriy Ivchenko. 2017. The impact of different forms of

cognitive scarcity on online privacy disclosure. Computers in Human Behavior
73 (2017), 238–246.

[45] Samuel D Warren and Louis D Brandeis. 1890. The right to privacy. Harvard law
review (1890), 193–220.

[46] Alan F Westin. 1968. Privacy and freedom. Washington and Lee Law Review 25, 1

(1968), 166.

	Abstract
	1 Introduction
	2 Related Works
	3 A Formal Model for User-centric Privacy Management
	3.1 User Information Sharing Model (UISM)
	3.2 Privacy-Preserving Model (PPM)

	4 Implementation
	4.1 User Interface Layer
	4.2 Translation Layer
	4.3 Verification Layer

	5 Performance Evaluation
	6 Conclusion and Future Works
	Acknowledgments
	References

