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Abstract—The electrical power system is the backbone of
our nations critical infrastructure. It has been designed to
withstand single component failures based on a set of reliability
metrics which have proven acceptable during normal operating
conditions. However, in recent years there has been an increasing
frequency of extreme weather events. Many have resulted in
widespread long-term power outages, proving reliability metrics
do not provide adequate energy security.

As a result, researchers have focused their efforts resilience
metrics to ensure efficient operation of power systems during
extreme events. A resilient system has the ability to resist,
adapt, and recover from disruptions. Therefore, resilience has
demonstrated itself as a promising concept for currently faced
challenges in power distribution systems.

In this work, we propose an operational resilience metric
for modern power distribution systems. The metric is based on
the aggregation of system assets adaptive capacity in real and
reactive power. This metric gives information to the magnitude
and duration of a disturbance the system can withstand. We
demonstrate resilience metric in a case study under normal
operation and during a power contingency on a microgrid. In
the future, this information can be used by operators to make
more informed decisions based on system resilience in an effort
to prevent power outages.

Index Terms—Resilience, Adaptive Capacity, Power distribu-
tion

I. INTRODUCTION

Today’s modern society has become increasingly dependent

on the safety and efficiency of modern control systems. At the

foundation of our social and economic way of life, you will

find the electrical power system. It constitutes the most vital

component of the nation’s interdependent critical infrastructure

systems. To ensure a constant supply of electrical power,

utilities and researchers have designed and operated the power

system under the consideration of a set of reliability metrics.

These metrics account for normal weather conditions and
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component failure but do not consider extreme events [1] as

it is generally not cost effective [2].

In the early stages of power system construction, relatively

little attention was given to the distribution networks when

compared with generation and transmission. Generation and

transmission outages are large impact events, whereas distribu-

tion outages have smaller localized effects. However, analysis

of practical utility failure registers and fault statistics reveals

that distribution networks contribute the most to customer

interruptions and failure events [3]. The data shows that 90%

of the power outages occur in the distribution system alone [4].

Complete disaster-resistant protection of the distribution

system is highly impractical, requiring far too much invest-

ment [5]. Therefore, researchers have begun to focus their

efforts on resilience, not reliability, metrics. The concept of re-

liability and resilience are similar but have distinct differences

in both scale and duration. Reliability research concentrates on

small-scale random faults of power system components caused

by internal factors [6]. For example, reliability encompass

the N-1 contingency planning or a single component failure.

At the basic level, it ensures that no single point of failure

would cause the entire system to stop working. In contrast,

resilience considers extreme conditions, or N-k failures, where

k may extend well beyond a single failure point. Resilience

anticipates that during extreme events a certain amount of

degradation to the system is unavoidable. Thus, it can be said

that resilience is characterized by a systems ability to resist,

respond, and recover from a disturbance or attack in order to

maintain core operations [7].

Electrical component failures during extreme weather events

such as hurricanes, winter storms, flooding, wildfires, etc.,

push well beyond the limitations of the current distribution

system which has been design to meet reliability metrics. In

the United States, between 2003 and 2012, extreme weather

events caused an estimated 679 widespread power outages,

affecting at least 50,000 customers [4]. Notable events include
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Hurricane Katrina [8], Hurricane Sandy [9], and the wildfires

across California [10] which forced the utility company to de-

energize power lines in an effort to mitigate the risk of starting

new fires, resulting in widespread blackouts. Making matters

worse, our energy infrastructure is aging [11] and climate

change is expected to continually increase the frequency and

intensity of extreme weather [4]. A 2012 study [12] estimates

the cost of weather-related outages to the tune of $25 to $70

billion annually. Moreover, these prolonged power outages can

put the public at a significant risk, having the potential for loss

of life. Data indicates that the 2003 blackout in New York

resulted in approximately 90 deaths [13]. In light of these

factors, it is of upmost importance for researchers to address

the growing concern of electrical power supply during extreme

weather events. New methodologies which enable utilities to

effectively manage power systems must be developed.

In this work, we present a novel real-time operational

resilience metric that utilizes the controllable assets in modern

distribution systems. The metric is an operational aggregation

of assets adaptive capacity in real and reactive power. It

indicates the magnitude and duration of a disturbance a system

is capable of withstanding, and maintain load demand and

stability in voltage and frequency.

The rest of this paper is organized as follows: Section II

gives an introduction to resilience and a literature review. The

modern distribution system (MDS) and background on power

stability is discussed in sectionIII. We introduce our resilience

metric and give the mathematical details in Section IV. Finally,

the conclusion and future work are covered in Section VI.

II. RESILIENCE IN POWER SYSTEMS

Pioneering work in resilience of engineering systems is

presented by Hollnagel, Woods, and Leveson in [14]. Many

definitions have been coined by well respected organizations

in engineering literature [15]–[19], policy directives [20], and

the academic community [21]. A general commonality among

sources are the ability to anticipate a possible disaster, adopt

effective measures to decrease loss of load and system compo-

nent failure before and during the disaster, and restore power

quickly through controlled reconfiguration. Quantification of

resilience in power systems is an emerging field. It is an

important open area of research, of great interest to utilities

and stakeholders.

To date, power systems are regulated based upon reliability

metrics. This dates back to the Energy Policy Act of 2005 [22],

where Congress gave the Federal Energy Regulatory Com-

mission authority to oversee the reliability of the bulk-power

systems. The purpose was to ensure the reliable operation

where an instability, uncontrolled separation, or cascading

failures would not occur as a result of a sudden disturbance.

There are two main metrics used to measure the reliability;

the system average interruption duration index and the system

average interruption frequency index. However, some juris-

dictions consider storm related outages as extreme events,

and thus, do not include them as inputs into the reliability

metrics [23].

Fig. 1. The disturbance and impact resilience evaluation curve, showing the
5R’s of resilience. Image adapted from [30].

There have been several proposed resilience metrics, such as

the resilience triangle and trapezoid. The resilience trapezoid

is an extension of the resilience triangle proposed in [24] by

Tierney and Bruneau. Unlike the triangle which only consid-

ers the disturbance of a system, the trapezoid assesses the

resilience through three phases; the disturbance, degradation,

and the restorative state. The resilience trapezoid has been

applied to a power system framework as proposed by Panteli

et. al [25], which extends the works in [26]–[29].

Another proposed resilience approach is introduced by

Rieger [30]. In this work he takes a controls systems perspec-

tive but doesn’t apply the metric directly to power systems.

System resilience is shown by the notional disturbance and

impact resilience evaluation (DIRE) curve in Fig. 1. The novel

concept introduced is the idea of a resilience threshold, or

the maximum acceptable level of degradation to the system.

This degradation level may be defined by a percentage of loss

load in the system, ability to retain critical loads, etc. The

performance level from optimal operation to the resilience

threshold is defined by the systems adaptive capacity. The

adaptive capacity can be defined as the ability of the system

to adapt or transform from an impact event. An adaptive

insufficiency can be considered the inability of the system to

adapt or transform from an impact, indicating an unacceptable

performance loss due to the given disturbance.

In [31], Woods describes an aspect of assessing a sys-

tems resilience is whether the system is known to be near

an operation boundary condition. This provides information

about how well the system can stretch in response to a

future disturbance. In the context of power systems, McJunkin

and Rieger expand this concept and introduce a resilience

metric to evaluate the design of modern distribution systems

(MDS) [32]. Their approach is based on the adaptive capacity

of a system, defined by an asset or aggregation of assets. In

this work, they demonstrate the temporal adaptive capacity,

or amount of flexibility or stretch, in the real and reactive

power of the controllable assets while also considering energy

limitations. The resulting metric can by represented by a three

dimensional surface, referred to as a manifold, that represents

the maximum adaptive capacity in real and reactive power
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over time. The metric can be thought of as a mapping to the

DIRE curve, indicating the maximum disturbance in amplitude

and duration due to cyber or physical disturbances that can be

withstood.

The most recent contributions of the resilience metric pro-

posed in [32] have been developed as a design tool for MDS.

The metric uses a neutral bias assumption to describe the

adaptive capacity of the assets which limits the ability to

accurately model many assets. In addition, the metric does

not lend itself well for use as a real-time operational metric.

Therefore, the goal of this paper is to develop the metric

to have a more accurate representation of the asset adaptive

capacity. In addition, we will bring the metric to a state

where it is suitable to be used as a real-time operational

tool. Therefore, it and can be utilized by control operators

to make resilience based decisions before, during, and after

disturbances. The details of the extension of the metric are

covered in section IV. First, a background on MDS is covered

in the following section.

III. POWER DISTRIBUTION SYSTEM

In this section, a brief introduction to the modernization of

the power grid is given. Then the concepts of power stability

in voltage and frequency necessary for the development of the

metric proposed in this paper are covered in sufficient detail.

A. Grid Modernization

The current modernization of the electrical power system,

has presented a dramatic shift in the way power is generated

and transmitted. It is moving from the traditional centralized

generation to a more distributed power generation architecture.

The MDS integrates information and operational technologies

which can monitor, communicate, and control assets in real-

time. It is predicted that these systems will include a high

penetration of controllable distributed assets in generation and

storage, as well as controllable loads. Control of these assets

have many purposes, including support of the voltage and

frequency across the distribution network, economic benefits,

and reliable utilization of interconnections such as power lines,

transformers, and switches.

This evolving landscape has added a new layer of complex-

ity to distribution systems. It presents many new technical

challenges and opportunities for researchers. For example,

what metric best describes the systems resilience and how

should these metrics be utilized to make control decisions

during normal operation or before, during, and after extreme

events? The modernization of the grid has a tremendous po-

tential for increasing resilience but much work is still needed

in how to accomplish it. In this context, researchers have

suggested numerous resilience based improvements in areas

including microgrids [33], [34], circuit reconfiguration [35]–

[42], improved dispatch and scheduling of resources [43]–

[45], and flexible local resources, such as generation, load,

and energy storage [46].

Fig. 2. Normalized apparent power, S, in quadrant I of the complex S-plane.
The highlighted region represents the domain or reachable output in real and
reactive power.

B. Power and Stability

Stability of the distribution system is defined in terms of

voltage and frequency. Frequency stability requires balancing

of the generation of real power, P , and the load demand.

On the other hand, voltage stability requires the balancing of

reactive power, Q, across the network due to different types

of loading on the system. Therefore, a resilience metric must

address both the real and reactive power to be extensible in

distribution systems. The real and reactive power components

define a systems apparent power, S in the complex S-plane

where

S(θ) =
√
P 2 +Q2 (1)

where the real power in relation to the apparent power is

P (θ) = S cos(θ) (2)

and the reactive power is

Q(θ) = S sin(θ) (3)

here θ is the angle measured from horizontal. In power systems

this angle is often referred to as the power factor angle, given

as

θ = arctan

(
Q

P

)
(4)

In this paper, the angle θ is the measurement from 0 to 2π.

Here, the left hand plane, π/2 < θ < 3π/4, is where an asset

acts as a sink absorbing power from the system.

The normalized maximum apparent power at power factor

angle θ is depicted in the S-plane in Fig. 2. Here, only quadrant

I is shown, where real and reactive power are positive. The

highlighted region is the domain or reachable output in real

and reactive power. In the following section we use this

principals to define the domain of assets power output used in

our operational adaptive capacity metric.

IV. ADAPTIVE CAPACITY METHODOLOGY

This section describes the mathematical background to

calculate the operational adaptive capacity resilience metric

herein proposed. The metric is based on the adaptive capacity
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of the assets, which is a measure of their control ability

to move from the current operating point in both real and

reactive power over time. Assets must be described by a

set of operational characteristics which include the nameplate

rated capacity, energy capacity, latency, and rate of change

limitations. Using these characteristics, the general process to

calculate the adaptive capacity is as follows: determine the

control domain of the real and reactive power, determine the

flexibility from the current operating point, then account for

latency and ramp rates, then impose energy constraints.

A. Real and Reactive Power Domain

The real and reactive power domain, or capability of the

asset, is denoted P∈ and Q∈, respectively. The assets name-

plate capacity defines the real power maximum, Pmax, and

minimum, Pmin, as well as the reactive power maximum,

Qmax, and minimum, Qmin. Thus, the first limit placed on

the domain of the real power is

Pmin ≤ P ≤ Pmax (5)

and the reactive power is

Qmin ≤ Q ≤ Qmax (6)

here, the maximum is assumed to be in the positive plane and

the minimum in the negative plane, given mathematically for

the real power

Pmin ≤ 0 ≤ Pmax (7)

and for the reactive power

Qmin ≤ 0 ≤ Qmax (8)

These values are then used to determine the bounding con-

straints of the asset in the complex S-plane, given as

S(θ) ≤ (
P 2 +Q2

) 1
2 (9)

here, the real and reactive power is a function of the power

factor angle and dependant on the maximum power in each

quadrant of the S-plane. The calculation for the apparent

power constraint for quadrant I to quadrant IV is then given

respectively as

S(θ)
0≤θ≤π

2

≤ (
P 2
max cos(θ) +Q2

max sin(θ)
) 1

2 (10)

S(θ)
π
2 ≤θ≤π

≤ (
P 2
min cos(θ) +Q2

max sin(θ)
) 1

2 (11)

S(θ)
π≤θ≤ 3π

2

≤ (
P 2
min cos(θ) +Q2

min sin(θ)
) 1

2 (12)

S(θ)
3π
2 ≤θ≤2π

≤ (
P 2
max cos(θ) +Q2

min sin(θ)
) 1

2 (13)

Using the rated power and limits in the S-plane, the asset

capability in the real and reactive power can be calculated.

In the positive plane the minimum of the two constraints will

define the boundary of the domain. In the negative plane, the

absolute minimum of the two constraints defines the domain

Fig. 3. The shaded region represents an assets real and reactive power
domain based on its rated nameplate power capacity. The negative real power
represents an asset absorbing power from the grid, such as battery storage
when charging.

boundary. Therefore, the real power domain for quadrants I

and IV, where the real power is positive, is given by

P (θ)
3π
2 ≤θ≤π

2

≤ min
[
S cos(θ), Pmax

]
(14)

and the domain for quadrants II and III, where the real power

is negative is

P (θ)
π
2 ≤θ≤ 3π

2

≥ −min
[|S cos(θ)|, |Pmin|

]
(15)

Similarly, the domain of reactive power in quadrants I and II

is given by

Q(θ)
0≤θ≤π

≤ min
[
S sin(θ), Qmax

]
(16)

and in quadrants III and IV are

Q(θ)
π≤θ≤2π

≥ −min
[|S sin(θ)|, |Qmin|

]
(17)

Using the real and reactive power domain in the positive and

negative quadrants, the union of the two gives the overall

domain. For the real power this is given as

P∈(θ) =
{
P
∣∣3π
2

≤ θ ≤ π

2

}
∪
{
P
∣∣π
2
≤ θ ≤ 3π

2

}
(18)

and similar for the reactive power

Q∈(θ) =
{
Q
∣∣0 ≤ θ ≤ π

}
∪
{
Q
∣∣π ≤ θ ≤ 2π

}
(19)

The domain of the asset real and reactive power capability

is depicted by the shaded region in Fig. 3. It should be noted

that some assets, such as solar, wind, and hydro, should not be

considered to have constant rated limits and the domain may

need to be updated. For example, solar generation is dependant

on the real-time solar irradiation and therefore should be

updated as solar conditions change. Next, we will discuss how

the power flexibility is calculated using the operational power

output.
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B. Real and Reactive Flexibility

The amount of flexibility the asset has in the real and reac-

tive power from the operating point is denoted as, PΔ and QΔ,

respectively. This flexibility is calculated using the real and

reactive power domain of the asset and the current operation

point of the asset, P0 and Q0. Thus, it is a transformation of

the power domain around the operating point, given as

PΔ(θ) = P∈ − P0 (20)

and the flexibility of the reactive power is the same trans-

formation using the reactive power domain and the current

operating point

QΔ(θ) = Q∈ −Q0 (21)

Here, and in further adaptive capacity derivation, θ is the angle

measured from the operating point. The resulting flexibility

is depicted in the top plot of Fig. 4. However, the temporal

characteristics of the asset, shown in the bottom plot of Fig. 4,

need to be accounted for and are developed in the following

section.

C. Latency and Ramp Rate

The latency of an asset is the time delay before changes

to the power output can be made. It may consist of multiple

factors including starting latency or a control latency. Starting

latency is a property of the asset, for example, a diesel

generator can’t supply power right when turned on. Control

latency is the time required between data being received,

adjustments made to the output power, computationally or by

an operator, to the time the control command is received by the

asset. For the purpose of this paper, we consider all latency’s

to be aggregated into a single latency variable, λ.

The ramp rate defines how quick an asset can ramp up or

down, after the latency, from the current operating position

over time, t. The real power output when ramping up is given

as

P (t)+ =

{
0, if t ≤ λ
dP+

dt (t− λ) if t > λ
(22)

and when ramping down is

P (t)− =

{
0, if t ≤ λ
dP−
dt (t− λ) if t > λ

(23)

Similarly, the reactive power is given as

Q(t)+ =

{
0, if t ≤ λ
dQ+

dt (t− λ) if t > λ
(24)

when ramping up, and

Q(t)− =

{
0, if t ≤ λ
dQ−

dt (t− λ) if t > λ
(25)

when ramping down. The latency and ramp rate constraints are

depicted by the temporal flexibility in real power shown in the

bottom plot in Fig. 4. Here, the shaded region represents the

real power domain and the bounds are defined by the latency

Fig. 4. Top plot shows an assets real and reactive power flexibility from its
current operating point. The bottom plot shows the temporal flexibility from
the operating point which considers latency, ramp rates, and energy limits.

and ramp rates from the operation point, the maximum flexi-

bility, and energy constraints. The following section describes

the energy constraint of the asset.

D. Energy Constraints

It is possible that assets are constrained with energy limi-

tations in the amount of real power when acting as a source

providing power, or as a sink absorbing power. In the case of

battery storage, it is constrained on both ends where it has an

initial energy of E0, and can only be charged (sink) to 100%,

or Emax, and it can only output power (source) until it is fully

drained at 0%, or Emin. The energy of the system changes as

E(t) = E0 +

∫ t

t=0

P (t) ∗ dt (26)

where P (t) is the operating real power over time. When an

asset runs out of energy or the ability to absorb energy, the real

power must go to zero. The necessary mathematical details

have been covered to give the adaptive capacity equations

covered in the next section.

E. Adaptive Capacity and Aggregation of Assets

The adaptive capacity of the asset is the bounded region

between the flexibility and the temporal constraints in the

positive and negative planes with respect to the operating

point. The real power in the positive plane is given as

PAC(θ, t)
3π
2 ≤θ≤π

2

= min
[
P (t)+, PΔ(θ)

]
(27)
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and the negative plane

PAC(θ, t)
π
2 ≤θ≤ 3π

2

= −min
[|P (t)−|, |PΔ(θ)|

]
(28)

The reactive power it is given as

QAC(θ, t)
0≤θ≤π

= min
[
Q(t)+, QΔ(θ)

]
(29)

in the positive plane, and

QAC(θ, t)
π≤θ≤2π

= −min
[|Q(t)−|, |QΔ(θ)|

]
(30)

for the negative plane. The resulting adaptive capacity using

the ongoing example in this section is depicted by the manifold

in Fig. 5. The manifold surface represents the maximum

change the asset can make in real and reactive power, from

the current operating point, over time. Recall that the x/y

axis represent the adaptive capacity from the operating power.

Therefore, when the energy limit has been reached the output

power goes to zero which is indicated by the dashed line

separating where the asset transitions between a sink and a

source.

It is expected that the MDS will comprise a collection of

distributed assets. The adaptive capacity may be an aggre-

gation of local assets, such as a microgrid. The aggregation

of assets determines the adaptive capacity of the controllable

assets in the microgrid including the network connection. The

aggregation in terms of real power is

PAC(θ, t) =

n∑
k=1

PACk
(31)

and the reactive power is given by

QAC(θ, t) =
n∑

k=1

QACk
(32)

where n represents the total number of assets. The following

section will demonstrate how this metric can be utilized as an

operational metric.

F. Real-Time Operational Metric

Power distribution is a real-time system, therefore it’s imper-

ative that a resilience metric has the ability to reflect the real-

time operation and conditions on the system. In this context,

our algorithm updates the adaptive capacity using threshold

triggers in power outputs, energy changes, and environmental

conditions which we denote C. Relevant environmental con-

ditions depend on the assets in the system but may include

factors such as solar irradiation, wind velocity, head pressure,

etc... The operational metric is outlined by Algorithm 1.

V. CASE STUDY

In this section, we demonstrate the adaptive capacity re-

silience metric proposed using the modified Institute of Elec-

trical and Electronics Engineers (IEEE) 33-bus distribution

system. We first introduce the modified IEEE 33-bus system

and use a selected portion, or microgrid, to demonstrate in

Fig. 5. Asset’s adaptive capacity manifold which represents the maximum
change in real and reactive power, from current operation, over time.

Algorithm 1: Real-Time Adaptive Capacity Algorithm

Input : System assets, Real-time system data

Output: Assets adaptive capacity

1 begin
2 Initialize: P∈, Q∈
3 while system running

4 Pδ = |P0n−1 − P0n |
5 Qδ = |Q0n−1

−Q0n |
6 Eδ = |E0n−1

− E0n |
7 Cδ = |C0n−1

− C0n |
8 if any δ > threshold

9 Update P∈, Q∈
10 Update PΔ, QΔ

11 for time = 0 to tend

12 Update P (t), Q(t)
13 Update E(t)
14 for θ = 0 to 2π
15 Solve PAC(θ, t)
16 Solve QAC(θ, t)
17 end
18 end
19 end
20 for k=1 to n

21
∑

PACk
(θ, t)

22
∑

QACk
(θ, t)

23 end
24 end
25 end
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Fig. 6. IEEE 33-bus distribution system model. Image adapted from [47].

a case study the resilience of the system under two different

scenarios. The first case represents the system under normal

operation and the second represents a scenario where the

network line experiences an outage.

A. IEEE 33-bus Model

The original IEEE model was designed as a radial network

configuration. However, many studies have adapted the model

to include tie-lines, thus, resembling a MDS meshed network,

shown in Fig. 6. Here, the section used for this study has

been highlighted and additional solar and battery storage assets

have been added. The capacity limitations on the power line

conductor for the network is given as 1, 050 kW and 1, 050
kVAR, and the tie-line limits are 500 kW and 500 kVAR for

real and reactive power, respectively. Loading on buses 23-25

for the real power is 90, 420, and 420 kW, and the reactive

power is 50, 200, and 200 kVAR, respectively.

To resemble a MDS solar generation and battery storage

asset have been added to the model. Their limits are based

on a high penetration of DERs. The maximum power is 30%

of the maximum load which can be supplied by the network

conductor, 315 kW. The battery storage is assumed to have a

total capacity of 1,260 kWh, i.e. under its max output (315

kW) it would go from fully charged to empty in four hours.

The asset operational characteristics are given in Table I.

B. Simulation and Results

Two scenarios are considered to demonstrate the difference

in adaptive capacity of the system assets acting as a micro-

grid. The first case is under what can be considered normal

operation and the second case is when network connection has

been lost, such as a storm outage or potentially a cyberattack,

where the attacker forces a breaker open. For these cases, the

loading conditions on the system are assumed to be constant

and the assets operational power output for both cases is given

in Table I.

Under normal operation the load is fully supplied by the

network and the solar generation is therefore being used to

charge the battery storage asset which is currently assumed to

be at 75% of capacity. The adaptive capacity is calculated for

each of the assets and their manifolds are shown in the top two

rows of Fig. 7, and the aggregation of the assets is shown by

the large manifold at the bottom. The temporal flexibility of

Fig. 7. Resulting adaptive capacity of the assets under normal conditions:
a) network connection, b) tie-line connection, c) solar generation, d) battery
storage, and e) aggregation of the assets.

Fig. 8. Resulting adaptive capacity of the assets when network connection
lost: a) tie-line connection, b) solar generation, c) battery storage, and d)
aggregation of the assets.

the assets real and reactive power in the positive and negative

direction is shown in the top of Fig. 9.

The second case which considered a loss of the network

connection with reconfiguration where the tie-line is being

used to supply power. However, based on its limiting char-

acteristics, it cannot fully support the high loading conditions.

In this situation, the solar asset is supplying power at its full

capacity and the battery storage is able to supply the reaming

load. In this case, we assume that the battery has 197 kWh of
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TABLE I
ASSETS POWER PARAMETERS.

Limits Case I Case II

Asset Pmax Pmin Qmax Qmin P0 Q0 P0 Q0

Network 1,050 -1,050 1,050 -1,050 930 450 0 0
Tie-line 500 -500 500 -500 0 0 450 217
Solar PV 315 0 315 -315 315 0 283 137
Battery 315 -315 315 -315 -315 0 197 96

Fig. 9. Flexibility at power factor angles in the direction of real (kW) and
reactive (kVAR) power. The top plot is under normal operation and the bottom
is when network connection is lost.

stored energy, and therefore can maintain its output of 197 kW

for one hour. The aggregation of the assets adaptive capacity

is shown in Fig. 8. The temporal flexibility in real and reactive

power is shown in the bottom of Fig. 9.

C. Discussion
Results of the case study bring to light a few important

concepts in reliability and resilience of power systems. It can

be stated that even when the network was lost the system

is reliable, as no load needed to be shed. However, when

evaluating the systems using the proposed adaptive capacity

metric there is a quantifiable impact to the resilience of

the system. This is visible by examining the difference in

manifolds and easy to distinguish by inspection of Fig. 9. The

top plot shows that there is adaptive capacity in the real and

reactive power in all directions, but is most “constrained” by

the real (1,149 kW) and reactive (627 kVAR) power in the

positive direction. In the case of losing network connection

this constrain becomes 113 kW and 171 kVAR. Therefore, the

ability to adapt to a future disturbance has been dramatically

reduced. In fact, the system will lose capability to supply the

real power necessary in one hour when the battery storage

runs out of energy. This will result in a loss of the ability to

maintain the frequency of the system if loads are not shed.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a resilience metric based on

adaptive capacity for modern distribution systems that have a

high penetration of distributed resources. The proposed metric

provides insight to the ability to control aggregated assets in

terms of real and reactive power over time. The metric is

used to analyze a microgrid under different scenarios, such

as a loss of network connection. The metric is demonstrated

indicating the distributed resources can maintain the loads

when the connection is lost, however, the systems adaptive

capacity is greatly reduced, having very little capability to

support stability of voltage and frequency if further disruptions

occur.

Future work with respect to improvements to the adaptive

capacity metric include replacing the linear ramp rates with

non-linear rates. Similarly, the real and reactive bounds in

certain assets which are not constant, should be replaced by

a function or table to provide better accuracy in the metric.

For example, the ramp rate of a hydro generator is not

constant but dependant on the head pressure. Additionally, the

maximum power is also dependant on the pressure and should

be reflected in the metric.
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