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Abstract—Motivated by decreased cost and climate change
concerns, the penetration of solar photovoltaic (PV) energy
generation and battery energy storage has been continually
increasing. The variability in solar PV power generation has
led to many new challenges for utilities and researchers. One
challenge is the quantification of the resilience contribution to
the grid from its assets and is the topic of this paper.

In this work, we propose a framework for evaluating the
resilience contribution of solar generation and battery storage
assets on the grid. The metric provides a quantifiable adaptive
capacity measure in terms of real and reactive power and includes
uncertainty for solar PV assets. A case study using very short-
term and short-term solar generation forecast demonstrates the
framework and provides useful insight to the resilience solar and
battery storage assets can contribute to the grid.

Index Terms—Resilience, Adaptive Capacity

I. INTRODUCTION

The electrical power system is the most vital component of
our nation’s critical infrastructure. Modern society has become
increasingly dependant on its ability to supply electrical power
without interruption. Historically, reliability metrics have been
adopted to ensure its continuous operation. However, there
has been an increasing amount of distributed resource which
provide intermitten and uncertain amounts of power genera-
tion. This has has presented utilities and researchers with new
challenges.

Reliability metrics have not adequately prepared the electric
grid for component failures during extreme events such as
hurricanes, winter storms, flooding, and wildfires. In the U.S.
between 2003 and 2012 extreme weather events caused an
estimated 679 power outages that affected at least 50,000
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customers [1]. Additionally, there has been an increasing
frequency and intensity of these events due to climate change.
A 2012 study [2] estimates the cost of weather related outages
between $25 and $70 billion annually. Furthermore, prolonged
power outages put the public safety at risk. Data indicates that
the 2003 blackout in New York resulted in approximately 90
deaths [3]. In order to curb climate change, global action has
been taken to reduce the amount of carbon emissions. In power
generation, this has resulted in an increasing penetration of
renewable sources like solar PV and wind power generation.

The increasing presence of renewable generation on the
power system may have been spurred by climate change
concerns. However, the dramatic reduction in investment have
made it cost competitive with traditional resources. In early
2011, solar generation comprised less than 0.1% of the U.S.
generation supply at just 3 gigawatts, by 2017 this number
had grown to over 47 gigawatts. From 2010 to 2017, the
adjusted cost for solar PV installed kilowatt-hour (kWh)
dropped from $0.52 to $0.16 for residential, from $0.40 to
$0.11 for commercial, and from $0.28 to $0.06 for utility scale
generation. The Solar Energy Technologies Office set a 2030
goal for a further 50% reduction to $0.03 per kWh. Achieving
this goal would make solar one of the cheapest sources of
electricity generation and push further expansion of solar PV
installation [4].

Integrating large amounts of variable and uncertain solar
PV generation onto the electric grid is a growing concern.
Power system operators accommodate for variability in system
load and solar PV generation through systems of reserve
power that can adjust output levels in dispatchable plants.
In this context, the notional measure of resilience as defined
by Woods [5] is how near a system is to its boundary, i.e.
how much reserve power does the system have available.
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Fig. 1. The disturbance and impact resilience evaluation curve, showing the
5R’s of resilience. Image adapted from [15].

Thus, resilience is a measure of the adaptive capacity of the
system. In power systems, McJunkin and Rieger [6] introduced
a resilience metric methodology based on assets aggregated
adaptive capacity, in terms of real and reactive power, to
quantify the system resilience looking forward in time. The
metric was later extended to an operational metric in [7]
with the ability to capture asymmetric assets, such as solar
generation. The adaptive capacity of real and reactive power
is of interest because it is used to maintain stability in both
frequency and voltage. To maintain frequency, the balance
of real power generation needs to meet demand, and the
balancing of reactive power is needed to maintain voltage.

In this work, we present a metric based on the adaptive
capacity to evaluate the resilience contribution that solar PV
generation and battery storage add to the grid. The novelty
of this paper is capturing the uncertainty of solar PV assets
and its effect on the contribution it provides to the adaptive
capacity of the grid. The reset of the paper is organized as
follows; Section II introduces resilience applied to the power
grid, as well as solar generation and its uncertainty. Section III
provides the details of our resilience metric framework. We
then carry out a case study in Section IV and give concluding
remarks and future work in Section V.

II. RESILIENCE IN POWER SYSTEMS

Hollnagel, Woods, and Leveson [8] introduced the resilience
concept in engineering systems. Today, many definitions ex-
ist from well respected organizations [9]–[12], policy direc-
tives [13], and the academic community [14]. They all share
a general commonality, resilience is the ability to anticipate
a possible disaster, adopt effective measures to reduce losses
or failures, and restore quickly. This is captured by the five
“R’s” of resilience; recon, resist, respond, recover, and restore,
by the Disturbance and Impact Resilience Evaluation (DIRE)
curve, shown in Fig. 1.

It can be seen that resilience is neither a short-term or
long-term property. It encompasses time frames prior to the
impact of the disturbance through the return to normalcy.
The reconnaissance phase requires the system to understand
the state and forecast potential threats. System operators may
focus on optimal economic efficiency rather than considering

the response to an unexpected disturbance. However, some
disturbances can be forecast and operators may consider
valuing resilience of the system as well as economic efficiency.
Resist is the phase which tends to be a measure of the inertial
components of the system, such as spinning synchronous
machines of generators and large motors. In general, the resist
phase is of short duration. Assets which contribute to the
resist phase slow the disturbance as opposed to devices that
require measurements and control decisions in the respond
phase through a control feedback loop. The respond phase
consist of assets which provide real and reactive power as well
as reconfiguration of the network to bring as much power back
online to customers. Restore requires line crews to fix physical
damage to the system and bring it to the pre disturbance level.

Rieger [15] presented the idea of the resilience threshold, or
maximum acceptable level of degradation of the system. There
are numerous metrics that can be used to quantify resilience,
such as demand not served [16] and maximum number of
customers out of service [17]. These metrics do a relatively
good job at describing power system resilience, however,
they do not capture the contribution from individual assets.
Additionally, they look back in time and quantify resilience
as the result of an event. Therefore, they do not give an
operational perspective on resilience.

A. Solar PV Generation

The output of solar PV generation is variable due to the
sun changing position throughout the day and seasons. This
regularly leads to a 10% change in generation over 15 minutes.
However, meteorological phenomena such as moving cloud
cover, contribute to uncertainty in the generation and can cause
rapid changes in power output. The size of the PV system,
cloud speed, cloud height, and others factors influence the rate
of change in power generation output. There is a rich body of
literature on forecasting solar irradiance and PV generation.
They can be broadly classified into four approaches; statistical
based on historical measured data [18], artificial intelligence or
machine learning such as neural networks [19], physics based
numerical weather prediction models or satellite images [20],
[21], and hybrid models [22].

The practical use of solar forecasting can be characterized
at different time horizons. From the perspective of power
system operation, very short-term (seconds to minutes) and
short-term (up to 48-72 hours) forecast are particularly useful
for activities like real-time unit scheduling, storage control,
automatic generation control, and electricity trading [23].
Medium-term forecast consider week long forecast and can
be used for maintenance scheduling, and long-term forecast
are months or years and useful for solar PV plant planning.
In this study, we consider very short-term and short-term time
horizons which correlate to the respond and recover of the
“R’s” of resilience.

There are various evaluation indices to apply to forecasting
accuracy. The commonly used indices include mean bias error,
mean absolute error, mean square error, and root mean square
error. These are all statistical formulas to measures of the
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difference between the predicted forecast and measured data.
The purpose of this work is not to cover the accuracy of solar
forecast generation, but demonstrate how the uncertainty cor-
relates to resilience of solar PV assets. In the following section,
we cover the details of the purposed resilience framework.

III. FRAMEWORK

In this section, we introduce the mathematical background
for the resilience metric proposed for solar and battery storage
assets. The metric is based on assets adaptive capacity and the
following steps are taken for their calculation: determine the
potential real and reactive power contribution, the flexibility
from the operating point, consider temporal constraints, and
then calculate the adaptive capacity.

A. Adaptive Capacity Calculation with Uncertainty

We begin by defining the potential contribution in real and
reactive power an asset has on the grid. The power output of
an asset is constrained by the apparent power in the complex
S-plane and the limiting power output in the positive and
negative plane. The apparent power in the S-plane is given
as

S(θ) =
√
P 2 +Q2 (1)

where P and Q are the nameplate capacity in real and reactive
power, respectively. Here the nameplate capacity is dependent
on the real power plane. In the positive plane it is the
nameplate capacity when the asset is a source. In the negative
plane it is the nameplate capacity as a sink, i.e. a battery at
max charging. The real and reactive power components of the
apparent power are given as

P (θ) = S cos(θ) (2)

and
Q(θ) = S sin(θ) (3)

respectively. The power contribution of assets are limited by
the apparent power and the limit of real power, therefore, the
contribution limit of the asset is given as

P (θ) =


min

[
P (θ), Pmax

]
, 0 ≤ θ ≤ π

2

min
[
P (θ), Pmax

]
, 3π

2 ≤ θ < 2π

−min
[
|P (θ)|, |Pmin|

]
, π

2 < θ < 3π
2

(4)

where Pmax and Pmin are the maximum output as a source in
the positive plane and the maximum output as a sink in the
negative plane, respectively.

In the context of solar assets, which only contribute to
the grid as a power source, the real power in the negative
plane is zero, Pmin= 0. Additionally, solar assets don’t have
a constant real power contribution due to changes in solar
intensity. This results in an uncertainty, u, in the maximum real
power generation. Therefore, the contribution of real power
from solar assets is limited by

P (θ)Solar =


min

[
P (θ), Pmax ± u

]
, 0 ≤ θ ≤ π

2

min
[
P (θ), Pmax ± u

]
, 3π

2 ≤ θ < 2π

0, π
2 < θ < 3π

2

(5)

Fig. 2. Normalized power capability of a solar asset (top) and a battery asset
(bottom). The positive uncertainty of the solar asset is shaded green and the
negative in red.

The resulting output bounds of a solar asset is shown notion-
ally by the normalized output in the top plot in Fig. 2. Here, the
bounding constraints on the output S(θ), Pmin, and Pmax±u
can be seen. The green region represents the upper uncertainty,
the red is the lower uncertainty, and the line between them
is the maximum real power output, which is consider the
forecasted output in this work.

On the other hand, battery storage assets may operate in
both the positive and negative plane as a source and a sink.
However, their nameplate capacity in real power in the positive
and negative plane may not be the same. Therefore, the power
in the negative plane in Equation 4 is not zero. The resulting
contribution in real and reactive power of a battery storage
asset is shown notionally by the normalized output in the
bottom plot in Fig. 2. Here, it is shown that the battery asset
can only operate at half the real power as a sink as when a
source.

Next, we determine the flexibility of the asset which is a
measure from the current operating point to the operating
capability limits. Thus, the flexibility is a translation from
P= 0, Q= 0 to the operating point P0, Q0. The limits of the
operating power S, Pmax and Pmin take the form S′, P ′max,
and P ′min after the translation for the flexibility. The flexibility
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Fig. 3. Flexibility in real power (P∆) and reactive power (Q∆) of a
normalized solar asset at current operation of P0= 0.25 and Q0= -0.25. The
flexibility is a translation from P = 0, Q = 0 to the operation point.

in real power is given mathematically as

P∆(θ) =


min

[
S′ cos(θ), P ′max ± u

]
, 0 ≤ θ ≤ π

2

min
[
S′ cos(θ), P ′max ± u

]
, 3π

2 ≤ θ ≤ 2π

−min
[
|S′ cos(θ)|, |P ′min|

]
, π

2 < θ < 3π
2

(6)

here, battery assets have an uncertainty of zero. The flexibility
in reactive power for both types of assets is given as

Q∆(θ) = S′ sin(θ) (7)

The flexibility of a solar asset with uncertainty is shown in
Fig. 3, the current operation point is P = 0.25 and Q = -0.25.

Next, we consider the temporal limitations of the asset over
the flexibility region. Temporal constraints include latency,
ramp rates, and energy limitations. The latency, λ, is the time
before a control action can make changes to the power output
of the system. The ramp rate is how quick the asset can adjust
the power output from the current operating point after the
latency. The temporal constraint in real power is given as

P (t) =

{
0, t ≤ λ
dP
dt (t− λ), t > λ

(8)

and the reactive power is

Q(t) =

{
0, t ≤ λ
dQ
dt (t− λ), t > λ

(9)

where t is the future time from current operation. Ramp rates
may be dependent on direction and non-linear, i.e. the asset
may ramp down quicker than it can ramp up. We denote the
the temporal real power ramping up as P (t)+ and as P (t)−

when ramping down. The same is done for the reactive power.
With the flexibility and temporal constraints, we can cal-

culate the adaptive capacity at all power factor angles. The
adaptive capacity in real power is given as

PAC(θ, t) =


min

[
P∆, P (t)

+
]
, 0 ≤ θ ≤ π

2

min
[
P∆, P (t)

+
]
, 3π

2 ≤ θ ≤ 2π

−min
[
|P∆|, |P (t)−|

]
, π

2 < θ < 3π
2

(10)

Fig. 4. Top plot shows the flexibility of a normalized solar asset and indicates
the flexibility in real power at power factor angles of 0 and π. Bottom plot
shows the real power flexibility from the operation point with latency and
ramp rate constraints.

and the adaptive capacity in reactive power is given as

QAC(θ, t) =

{
min

[
Q∆, Q(t)+

]
, 0 ≤ θ ≤ π

−min
[
|Q∆|, |Q(t)−|

]
, π < θ < 2π

(11)

The adaptive capacity in real power at a power factor angle of
0 and π is depicted in Fig. 4. In the top plot, it can be seen that
the flexibility of the asset is constrained by the maximum and
minimum power at these power factor angles. The bottom plot
indicates the temporal constraints of the asset. The manifold
shows the three dimensional view of these calculations at all
power factor angles.

The adaptive capacity of assets can be aggregated together
to give the adaptive capacity of a group of asset. The aggre-
gation of real power is given as

PAC(θ, t) =
n∑
k=1

PACk
(12)

and the reactive power is given as

QAC(θ, t) =
n∑
k=1

QACk
(13)
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Fig. 5. Normalized adaptive capacity of solar and battery storage asset
with operating point indicated by the data marker. Aggregation is shown and
indicates the adaptive capacity of the system assets with uncertainty. Note,
that temporal constraints are not considered here.

where n is the number of assets. The aggregation of a solar
and battery asset is shown in Fig. 5. It can be seen that the
aggregated adaptive capacity is the sum of the individual assets
at any given power factor angle.

IV. CASE STUDIES

In this section we demonstrate the resilience metric pur-
posed in a case study using very short-term and short-term
solar PV forecast data. First, we introduce the data set used
in this study.

A. Solar Generation and Forecast Data Set

National Renewable Energy Laboratory (NREL) provides
synthetic year long data for approximately 6,000 simulated
PV plants1. The forecast data consist of 60-minute intervals
for both day-ahead and 4 hour-ahead predictions. The data
was generated using the 3TIER based on numerical weather
predication simulations. In this work, solar data from Saturday,
August 19th, 2006, in Arizona at location 33.45, -112.95
(latitude, longitude) was selected. The forecast data does not
provide uncertainty, therefore, we generate uncertainty similar
to that in [24]. We point out that the accuracy of uncertainty
is not the focus of this work, but the effect it has on the
adaptive capacity of solar PV generation. The forecast data
and uncertainty used in the case studies is shown in Fig. 6.
We begin with the very short-term forecast.

B. Very Short-term Power Forecast

Very short-term solar generation forecast are on the order of
seconds or minutes. At this time scale the latency and ramp
rate constraints are highly important for the assets adaptive
capacity. To demonstrate the very short-term adaptive capacity
of a solar PV asset we use the forecast data in Fig. 6 at
noon. We apply a current power generation output of 50
MW, use a 1 second latency, and assume ramp rates for the
real power in the positive and negative direction to be 10
MW/s and the reactive in both directions is 10 MVAR/s. The

1https://www.nrel.gov/grid/solar-power-data.html

Fig. 6. Day-ahead solar forecast data. Yellow line represents the forecast
(Pmax) and the green and red regions are the upper and lower uncertainty,
respectively.

resulting adaptive capacity of the asset using the forecasted
power data is shown by the yellow plot in the top plot of
Fig. 7. In this figure, the red middle plot represents the negative
uncertainty, and the green bottom plot represents the positive
uncertainty. The plots have been zoomed in near the operating
point to show the difference in the adaptive capacity in the
positive real direction (all plots in the negative real direction
are identical). It can be seen that when when solar generation
is in the negative uncertainty direction the adaptive capacity
in real power is very small. On the other hand, when it is in
the positive uncertainty direction there is additional adaptive
capacity in real power. In the following section, we will look
at the short-term forecast using day-long forecast data.

C. Short-term Power Forecast

In this scenario, we consider the short-term power forecast
to be day-ahead forecast power generation over a day, i.e.
the full data shown in Fig. 6. We assume that the forecasted
generation will be the operating point of the asset over the
day. The results of the adaptive capacity, again near the origin
to highlight the real power adaptive capacity differences, are
shown in Fig. 8. Here, the top plot represents the asset adaptive
capacity at the solar forecast, the middle represents the adap-
tive capacity for the negative uncertainty, and the lower plot
represent the adaptive capacity for the positive uncertainty. It
can be seen that when the forecast generation is correct the
adaptive capacity in the positive real power direction is zero.
When the generation is at the positive uncertainty the solar PV
asset contributes to additional real power adaptive capacity,
therefore adding to the resilience of the overall grid. On the
other hand, when the generation is at the negative uncertainty
the real power adaptive capacity is negative and the asset may
be considered a disturbance on the power system. In this case,
reserve power must be used in order to maintain the desired
frequency of the grid. For this reason, we next consider the
addition of battery storage to this scenario.

The additional battery storage asset is assumed to have a
maximum power output of 20 MW as a source and -10 MW
as a sink with ±20 MVAR reactive capability. The operating
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Fig. 7. Very short-term adaptive capacity at 12:00 noon assuming power
output of 50 MW. Top plot represents forecast data, middle represents negative
uncertainty, and the bottom is positive uncertainty.

point is assumed to be idle, where P0 = 0 and Q0 = 0. The
results of the aggregation of the solar adaptive capacity at
negative uncertainty and the battery storage asset is shown
in Fig. 9. It can be seen that the addition of the battery
asset contributes to the adaptive capacity in the positive real
power. Therefore, the system has the capability to respond to
a disturbances in this direction, i.e. there is reserve power for
an operator to maintain frequency stability of the system.

V. CONCLUSION AND FUTURE WORK

This paper has provided a framework for considering the
resilience contribution of solar and battery storage assets to
the grid. The novel contribution is addition of uncertainty in
adaptive capacity for solar generation assets. We demonstrated
the metric in a case study using very sort-term (seconds)
and short-term (day-long) solar forecast with uncertainty and
provided the resilience that both the solar and battery assets
contribute to the grid. It was demonstrated that when solar
generation is above the forecast it provides additional adaptive
capacity in the positive direction of real power. However, when
it is below the forecasted generation, the adaptive capacity
in the positive real power direction is negative, and may be

Fig. 8. Day-long adaptive capacity of the solar asset at forecast generation
(top), negative uncertainty (middle), and positive uncertainty (bottom). Here
the operation point is assumed to be the forecast output in each plot.

considered a disturbance to the system. The addition of battery
storage in this case demonstrated the ability to aggregate assets
and provide the needed adaptive capacity in real power.

Future work includes implementation of the metric in a
simulated environment such as Simulink or OPAL-RT. It is
envisioned that the resilience metric will be used to influence
the control decisions and result in a lower loss of power served
to consumers during physical degradation and cyber attack
scenarios.
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Fig. 9. Aggregation of day-long adaptive capacity of a solar asset at negative
uncertainty (middle plot in Fig. 8) and battery storage asset at idle.
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