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The effects of transcranial direct current stimulation (tDCS) on working memory (WM) 
performance are promising but variable and contested. In particular, designs involving 
one session of tDCS are prone to variable outcomes with notable effects of individual 
differences. Some participants benefit, whereas others are impaired by the same tDCS 
protocol. In contrast, protocols including multiple sessions of tDCS more consistently 
report WM improvement across participants. The objective of the current project was to 
test whether differences in resting-state connectivity between stimulation site and two 
WM-relevant networks [default mode network (DMN) and central executive network (CEN)] 
could account for initial and longitudinal responses to tDCS. Healthy young adults 
completed 5 days of visual WM training during sham or anodal right frontal tDCS. The 
behavioral data showed that only the active tDCS group significantly improved over the 
visual WM training period. There were no significant correlations between initial response 
to tDCS and resting-state activity. DMN activity in the anterior cingulate cortex significantly 
correlated with WM training slope. These data underscore the importance of sampling in 
studies applying tDCS; homogeneity (e.g., of gender, special population, and WM capacity) 
may produce more consistent data in a single experiment with limited power, whereas 
heterogeneity is important in determining the mechanism(s) and potential for tDCS-linked 
protocols. This issue is a limitation in tDCS findings that continues to hamper its optimization 
and translational value.
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INTRODUCTION

Neurostimulation offers hope as a way to improve capacity-limited working memory (WM; 
Cowan, 2001) and its age-related decline (Reuter-Lorenz and Park, 2010). To date, cognitive 
training regimens produce modest results with little evidence of transfer to untrained tasks 
(for reviews see: Morrison and Chein, 2011; Shipstead et  al., 2012; Melby-Lervåg et  al., 2016; 
Simons et al., 2016; Katz et al., 2018; Redick, 2019; Sala and Gobet, 2019; Teixeira-Santos et al., 2019; 
but see: Au et  al., 2016a).
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When WM benefits are found, the underlying mechanism 
appears to be  enhanced frontoparietal connectivity (McNab 
and Klingberg, 2008; Constantinidis and Klingberg, 2016; Chen 
et al., 2019). These networks can be  targeted using noninvasive 
transcranial direct current stimulation (tDCS). Some evidence 
shows that one session of tDCS can improve WM performance 
in healthy (Sandrini et  al., 2012; Brunoni and Vanderhasselt, 
2014; Trumbo et  al., 2016; Brunye et  al., 2017), and patient 
populations (Boggio et al., 2006; Jo et al., 2009; Saunders et al., 
2015; Wu et al., 2016), reviewed in Berryhill and Martin (2018). 
In contrast to the variability in single-session protocols, 
tDCS-WM training protocols show more consistent WM benefits 
(Martin et  al., 2013; Richmond et  al., 2014; Jones et  al., 2015b, 
2017; Au et  al., 2016b; Stephens and Berryhill, 2016; Katz 
et  al., 2017; Ke et  al., 2019; but see: Möller et  al., 2017). 
However, the jury remains split as several reviews, and meta-
analyses provide differing conclusions, suggesting that there 
are few cognitive benefits associated with tDCS (Horvath et al., 
2015), that meta-analyses minimizing tDCS-effects are flawed 
(Antal et  al., 2015), or that there are benefits under certain 
conditions, such as longitudinal designs (Brunoni and 
Vanderhasselt, 2014; Elmasry et  al., 2015; Hill et  al., 2016; 
Jantz et  al., 2016; Mancuso et  al., 2016).

We reiterate our stance that one underlying challenge is 
that individual differences play an important, but poorly 
understood, role in determining how a participant responds 
to tDCS. Individual participants show different behavioral effects 
in response to the same tDCS protocol (Benwell et  al., 2015; 
Brunye et  al., 2015; London and Slagter, 2015; Filmer et  al., 
2019). We previously reported that tDCS effects interacted with 
individual differences based on participants’ WM capacity (Jones 
and Berryhill, 2012; Gözenman and Berryhill, 2016; Arciniega 
et  al., 2018), level of educational attainment (Berryhill and 
Jones, 2012), and even level of motivation (Jones et al., 2015a). 
Others find that the temporal spacing of sessions (Au et  al., 
2016b; Katz et  al., 2017), brain morphology (Kim et  al., 2014), 
and even genetics (Wiegand et al., 2016) modulate tDCS effects. 
A few studies examining individual differences in longitudinal 
designs find evidence of different responses even after multiple 
sessions (Stephens et  al., 2017; Talsma et  al., 2017; Ke et  al., 
2019). Individual differences appear to be  more consequential 
in single-session compared to multiple-session tDCS studies. 
One persistent difficulty is to sufficiently understand the 
underlying mechanism of tDCS-linked WM benefits to leverage 
these differences into tailored, efficacious protocols.

Here, we  test the hypothesis that initial resting-state 
connectivity will predict the initial response as well as the 
longitudinal response to tDCS in a visual WM task. This 
hypothesis builds on prior findings showing that tDCS alters 
synaptic strength in task-relevant networks (Filmer et al., 2014) 
for a period of time after stimulation (Callan et  al., 2016; 
Jones et  al., 2017; Möller et  al., 2017; Antonenko et  al., 2018; 
Fiori et  al., 2018; Nissim et  al., 2019). Furthermore, tDCS 
targeting the right prefrontal cortex (PFC) revealed strengthened 
functional connectivity in frontoparietal networks (Peña-Gómez 
et al., 2012) within the central executive network (CEN; Collette 
and Van der Linden, 2002; Owen et al., 2005; Seeley et al., 2007; 

Bressler and Menon, 2010; Peña-Gómez et al., 2012) and other 
cortical-subcortical networks (Polania et  al., 2011). The CEN 
is a task-positive network with stronger connectivity between 
dorsolateral PFC (DLPFC) and posterior parietal cortex associated 
with superior WM performance (Duncan and Owen, 2000; 
Curtis and D’Esposito, 2003; Bunge and Wright, 2007; Palva 
et  al., 2010). In addition, connectivity in the task-negative 
default mode network (DMN) is important for WM performance 
(Hampson et al., 2010; Sambataro et al., 2010; Vatansever et al., 
2017) and can predict individual differences in WM performance 
(Sala-Llonch et  al., 2012). tDCS can also modulate DMN 
connectivity (Keeser et  al., 2011; Abellaneda-Perez et  al., 2019; 
Chase et al., 2019; Donaldson et al., 2019; Mezger et al., 2019). 
Finally, to complete the circle on these two networks, the 
relationship between the CEN and DMN is related to WM 
performance (Hampson et  al., 2010).

Collectively, these findings raise the possibility that an 
individual’s pattern of connectivity may predict their response 
to tDCS. We  collected baseline resting-state fMRI (rsfMRI) 
and conducted a tDCS-WM training study in the same 
individuals. We predicted that we would replicate the observation 
that stronger resting-state connectivity in the DMN or CEN 
would predict higher WM capacity before tDCS. The next 
prediction related to initial response to tDCS. Our logic was 
that the subtle effect of one tDCS session would be  enough 
to modulate well-functioning networks in those with higher 
WM capacity and stronger connectivity. Whereas in low WM 
capacity participants, we  anticipated insufficient connectivity 
that would require multiple tDCS sessions to improve WM 
performance. The prediction associated with the more consistent 
response associated with longitudinal response was that there 
might be  distinct pattern of connectivity that collectively 
predicted performance gains over multiple tDCS sessions.

MATERIALS AND METHODS

Participants
Forty-six University of Nevada, Reno students participated in 
exchange for their choice of $15/h or course credit (active 
tDCS: N = 28, ages 18–36, M = 22.7, 12 females; sham: N = 18 
ages 18–32, M  =  21.4, eight females). Participants had no 
history of neurological conditions and were not taking any 
sedative-hypnotic medications that might alter neural excitability. 
All protocols were approved by the Internal Review Board of 
the University of Nevada, and informed consent was collected 
prior to participation. The data from three participants in the 
active tDCS group were excluded: one participant due to below 
chance (<50%) performance across all sessions and two others 
for failing to complete all five sessions.

Resting-State MRI Acquisition and 
Preprocessing
First, participants completed one rsfMRI session prior to WM 
testing or any tDCS. Participants kept eyes closed during 2–3 
rsfMRI runs (~5.3 min each); 14 active group members completed 
two runs, and the remaining participants completed three runs. 
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Images were acquired on a 3 T Philips (Andover, MA, United States) 
MRI scanner with an eight-channel SENSE parallel head coil. 
A set of 155 T2*-weighted volumes were obtained [repetition 
time (TR)  =  2,000  ms, echo time  (TE)  =  30  ms, 32 slices per 
volumes, slice thickness = 3 mm, field of view (FOV) = 240 mm2, 
matrix size 128 × 128, in-plane resolution = 1.875 mm]. Functional 
data were aligned to a high-resolution 3D structural dataset using 
an echo-planar 3D T1-weighted image.

Preprocessing was completed in analysis of functional 
neuroimages (AFNI; Cox, 1996; http://afni.nimh.nih.gov/afni/), 
SUMA (Saad et  al., 2004; http://afni.nimh.nih.gov/afni/suma/), 
and FreeSurfer (Dale et al., 1999; Fischl et al., 1999; http://surfer.
nmr.mgh.harvard.edu/) using the standardized script afni_proc.
py.1 The first two TRs were removed, then the data were despiked, 
and slice-time and motion were corrected, as well as spatially 
normalized to an Montreal Neurological Institute (MNI) template. 
Bandpass filtering was employed to temporally filter and retain 
frequencies between 0.01 and 0.1  Hz. Censoring was based on 
motion parameters and signal outliers within the BOLD data 
(Power et  al., 2014, 2015). Six motion parameter estimates, 
ventricular and white matter signals, and baseline, linear, quadratic, 
and cubic trends were removed by linear regression (Fox et al., 2009).

Regions of Interest and Producing Seeds
Seeds were restricted to right hemispheric areas, as we  used 
spatial WM tasks. Seed regions of interest (ROIs) were manually 
generated in AFNI. The seeds were 12  mm spheres to allow 
for broader connectivity maps and to be consistent with existing 
guidelines (Fox et  al., 2005). The following seed locations were 
selected: (1) right DLPFC, a node in the CEN for correlations 
related to executive functioning during resting-state (MNI 
coordinates: 44, 36, and 20; Seeley et  al., 2007); and (2) right 
posterior cingulate cortex (PCC) within the DMN to acquire 
canonical resting-state activity maps (MNI coordinates: 5, −49, 
and 40; Fox et  al., 2005).

Resting-State Analysis
To determine connectivity strength between these seed regions 
and the rest of the brain, AFNI’s 3dUndump created the ROI 
by generating a 3D dataset from the specified coordinates. 
3dmaskave was used to generate the time course of activity 
in the given seed region. To determine correlation values, 
3dfim+ was used to correlate time course correlations within 
either the DMN seed (right PCC) or CEN seed (right DLPFC) 
and behavioral performance. 3dfim+ was also used to correlate 
the DMN and CEN time courses with time courses throughout 
the whole brain, generating resting-state connectivity maps of 
Pearson’s r values. Pearson’s r values were converted to z-scores 
using Fisher’s r-to-z transformation and the expression 
“log[(1  +  a)/(1  −  a)]/2.” In SPSS (version 24, IBM, Armonk, 
NY, United  States), z-scores, and performance scores for each 
individual were compared across all participants, as well as 
by high and low WM capacity groups (see below), to identify 
significant differences in hemodynamic activity and performance.

1�http://afni.nimh.nih.gov/pub/dist/doc/program_help/afni_proc.py.html

Transcranial Direct Current Stimulation
Anodal tDCS stimulation was applied via two saline-dampened 
scalp electrodes (5  ×  7  cm2) and delivered at 2  mA for 20  min 
by a continuous current stimulator (neuroConn DC Stimulator, 
GmbH, Germany). The anode was centered over the right (F4) 
DLPFC. The cathode was placed on the contralateral cheek 
(Berryhill et  al., 2010; Jones et  al., 2015b). Sham stimulation 
also involved placement of electrodes in these areas, but 
unbeknownst to the participant, only brief (20 s ramp up/down) 
stimulation was applied. Current modeling was also investigated 
using the Realistic vOlumetric Approach to Simulate Transcranial 
Electric Stimulation (ROAST, Huang et  al., 2019; see Figure  1).

Behavioral Paradigms
On Day 1 of the five-session WM training period, participants 
completed the Automated Operation Span (OSPAN) to provide 
an independent baseline measure of WM performance (Unsworth 
et  al., 2005), prior to any tDCS. Participants remembered the 
order of a string of sequentially presented letters interleaved 
with arithmetic problems that also required WM.

Participants received tDCS during WM training tasks 
performance. Participants completed three tasks: a change detection 
task (set sizes 6 and 8) and a two-back visuospatial task (described 
below). In the change detection tasks, participants viewed six- 
or eight-colored squares (250  ms, 3  ×  3°, white, black, red, 
pink, orange, yellow, green, teal, blue, aqua, and purple; Jones 
and Berryhill, 2012). After a delay (1,000  ms) a probe image 
(2,200  ms) appeared that was unchanged from encoding (50%) 
or included one color change (50%). Participants responded via 
key press (“o” match and “n” mismatch). There were 100 trials 
per set size, and the task lasted ~10  min. The change detection 
task was used because although attention is needed for the 
task, WM is crucial for accessing the representation stored during 
encoding for comparison. In the spatial n-back task participants 

FIGURE 1  |  Current modeling for the transcranial direct current stimulation 
(tDCS) montage (anode: F4; cathode: contralateral cheek); 2.0 mA tDCS was 
applied via scalp-based electrodes.
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monitored the location of a green circle (500  ms) across nine 
possible locations (Stephens and Berryhill, 2016). During each 
presentation, participants reported via key press (“j” match and 
“f ” mismatch) whether the current location matched the location 
occupied two presentations previously. Participants completed 
450 trials (150 match and 300 no match) in ~10  min.

The primary measure for each task was percent accuracy. 
Percent accuracy on the two-back task was calculated for each 
day individually, with analyses geared toward revealing any 
significant differences in percent accuracy dependent on session 
number. The same analyses were completed for the change 
detection task with set sizes 6 and 8, individually. Subsequently, 
performance slope over the five sessions was also considered 
to further investigate improvement.

RESULTS

The Active-tDCS Group Improved on the 
Two-Back Task With Training
The first question to address was to determine whether active 
tDCS significantly changed WM performance compared to 
sham stimulation. We first conducted separate repeated measures 
ANOVAs with the factors of group (active tDCS and sham) 
and session (Days 1–5) for each WM training task. This revealed 
that neither group significantly improved on either of the change 
detection tasks [set sizes 6 and 8; set size 6: F(4,168)  =  2.04, 
p  =  0.09, ηp

2  =  0.05; set size 8: F(4,164)  =  0.96, p  =  0.43, 
ηp

2  =  0.02]. Performance on the change detection task was 
poor and varied little across sessions (set size 6: active: Day 
1: mean, SD: 65.68, 7.95%; Day 5: 68.20, 7.37%; sham: 66.00, 
7.39%, Day 5: 69.18, 7.04%; set size 8: active: Day 1: 62.16, 
6.44%; Day 5: 62.84, 7.15%; sham: Day 1: 61.13, 7.04%; Day 
5: 63.06, 4.52%). However, performance on the two-back task 
revealed a significant group  ×  session interaction indicating 
that only the active group significantly improved across sessions 
[F(4.88,75.66) = 7.15, p < 0.001, ηp

2 = 0.16; Greenhouse-Geisser 
correction applied for violation of sphericity; see Figure  2, 
but this effect did not survive when performance on Day 1 
was entered as a covariate F(1,40)  =  0.54, p  =  0.47]. A 
complementary analysis of slope across training sessions provided 

confirmation that the active tDCS group improved more steeply 
than did the sham group [sham: mean slope (M)  =  0.06, 
95%CI  =  (−0.47, 0.60); active: M  =  3.36, CI  =  (1.75, 4.97); 
independent-samples t-test, t(31.70) = 2.96, p = 0.006, η2 = 0.23; 
Levene’s test: p  =  0.004]. This effect did survive an ANCOVA 
with Day 1 performance as a covariate [F(1,40) = 7.00, p = 0.012]. 
In sum, only the active tDCS group showed significant 
improvement in WM performance over the 5  days of training.

Reaction times on the two-back task were investigated, but 
no significant difference in reaction time performance was 
found between active and sham groups [Greenhouse-Geisser 
corrected, F(2.146,87.968)  =  0.10, p  =  0.92].

Active tDCS Group: Predicting Training 
Response to tDCS
Resting-State fMRI Does Not Predict Initial 
Response to tDCS (Day 1 Response)
With regard to the rsfMRI data, we  were interested in the 
relationship between pre-existing rsfMRI and an individual’s 
WM response to initial and longitudinal tDCS. We  planned 
on probing rsfMRI within the DMN and CEN to test whether 
connectivity in these networks predicted the initial and/or later 
responsivity to tDCS. The logic was that this might be  useful 
in predicting tDCS-linked WM performance. There were no 
significant correlations reflecting initial response to tDCS on 
Day 1 of WM training (two-back task) and either rsfMRI 
seed. In other words, we  found no support for our hypothesis 
that resting-state differences in connectivity would predict initial 
response to tDCS.

Resting-State fMRI Does Predict Longitudinal 
tDCS Response (Training Slope)
In the active tDCS group, we  investigated whether rsfMRI 
predicted WM performance across tDCS-linked WM training. 
To address this question, we sought correlations between training 
slope on the two-back task and rsfMRI correlations with two 
networks, the DMN, and CEN. For the CEN seed, there was 
no significant correlation that predicted WM performance slope. 
However, the connectivity between the DMN seed (PCC) and 
the anterior cingulate cortex positively correlated with WM 
performance slope for the active group [Pearson’s r(25) = 0.39, 
p  =  0.05, MNI coordinates: (4, 12, and 36); see Figure  3], 
but not for the sham group [r(18)  =  0.25, p  =  0.31]. DMN 
connectivity before training predicted active group gains in 
the 2-back task.

DISCUSSION

In this experiment, WM training, tDCS, and rsfMRI measures 
were combined to clarify the basis of individual differences in 
tDCS-linked WM response. We  tested whether pre-existing 
connectivity predicted initial or longitudinal responses to tDCS-
linked cognitive performance. Participants completed change 
detection and n-back WM tasks across five training sessions 
with or without active right frontal tDCS. The data showed that 

FIGURE 2  |  Behavioral results: two-back task. Performance (% correct) on 
the two-back task for the active and sham tDCS stimulation conditions. Error 
bars represent 95% CIs.
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only the active tDCS group significantly improved. Improvement 
was isolated to performance on the two-back task as performance 
on the change detection task was consistent across sessions.

Notably, there were no patterns of resting-state connectivity 
that corresponded with Day 1 responses to tDCS. This held 
across both seed locations, one in the DMN and one in the 
CEN. These data provide no support for our intuition that 
connectivity could characterize the effects of individual differences 
after a single session of tDCS. As noted above, we  have 
previously seen data that conform to a phenomenon of the 
“rich get richer” such that performance improvements occur 
in the subset of participants with high WM capacity (Jones 
and Berryhill, 2012) or high education level (Berryhill and 
Jones, 2012). If existing connectivity patterns do not explain 
initial responses to tDCS, we  speculate that neural excitability 
during tDCS explains immediate effects. In short, it has been 
found that those who show greater increase in BOLD during 
anodal parietal tDCS demonstrate superior performance in a 
visual navigation task (Falcone et  al., 2018). Alternatively, the 
effect of connectivity may be  quite small, and only detected 
with more participants, or higher resolution scanning.

In contrast, two-back WM training slope was predicted by 
the coupling strength between the DMN seed and the anterior 
cingulate cortex. After WM training, resting-state scans have 
shown that the anterior cingulate cortex exhibits increased 
functional connectivity with frontoparietal networks, with 
personality indices correlating with changes in anterior cingulate 
cortex activity (Gray and Braver, 2002; Jolles et  al., 2013). 
Lesions to this area impair WM ability in identifying errors 

and executing a corrective action (Rushworth et  al., 2003). 
Our interpretation is that the tDCS builds on existing connectivity 
to further improve WM performance. It predicts that individuals 
with well-developed connectivity between these areas may 
benefit more from longitudinal tDCS than those with less. In 
other words, the current analyses may have identified the tips 
of the icebergs, and further work is needed to clarify those 
who will benefit from tDCS.

Assuredly, with more rsfMRI scans and more participants, 
we  may be  better able to identify more subtle relationships. 
It is now quite clear that tDCS provides a modest 
neuromodulatory effect that serves as a tipping factor to alter 
neural firing. A major challenge in going forward in developing 
effective tDCS protocols for cognition or clinical populations 
is that in addition to individual differences such as connectivity, 
there are many factors and stimulation parameters that predict 
an individual’s response to tDCS. These variables include neural 
excitability, amount of sleep, engagement with the task, genotype 
(see Katz et  al., 2017 for review).

LIMITATIONS

A major limitation is that our participants exhibited low 
heterogeneity in their WM performance than in our participant 
samples in previous studies. Because we  were conducting 
resting-state scans paired with a longitudinal tDCS design, 
we  worried about attrition, and consequently, we  recruited 
from department affiliates (e.g., graduate students and research 
assistants). This meant that we were drawing from a homogeneous 
pool and a group that was strongly motivated to provide quality 
data. Thus, solving one problem raised a second, unanticipated 
challenge: less range in our participants’ performance, especially 
in the sham group. Additional differences in connectivity might 
be more nuanced or clearer in a more representative population. 
In addition, connectivity patterns in older adults change over 
time (Chan et al., 2014), and what may be useful in predicting 
tDCS responsiveness in young adults may differ in the elderly. 
These issues served to weaken our statistics and render null 
the difference between the active and sham group correlations.

A second limitation that reduced generalizability was that 
the change detection tasks showed no improvement across sessions, 
possibly due to a lack of engagement with the task and leading 
us to eliminate these data from further analyses. We implemented 
multiple tasks to address generality of any observed effects, and 
we  did not want our participants to be  bored with many trials 
of the same task over multiple days. Finally, we  would like to 
have been able to collect more resting-state scans per person 
to have cleaner, more powerful data. A major advantage to 
using rsfMRI over task-related fMRI is the reduced time and 
number of scans necessary compared to when typically using 
a task. More subjects can be  used, and sensitive subjects do 
not have to be in the scanner for as long. An additional possibility 
is that despite existing findings associating rsfMRI with task 
performance, it may not be as sensitive to subtle changes elicited 
by tDCS. In other words, task-related fMRI may be  superior 
in these situations. Future work with more powerful rsfMRI 

FIGURE 3  |  Resting-state fMRI (rsfMRI) activity correlates with behavior 
learning across the training in the active tDCS group. Top: The average of 
default mode network (DMN) activity (whole brain connectivity generated from 
the PCC seed and circled in black) in the active tDCS group participants. The 
left hemisphere is shown on the left. Bottom: Training slope on the two-back 
task significantly correlated with DMN activity in the anterior cingulate cortex 
[Montreal Neurological Institute (MNI) seed: (4, 12, and 36), black circle]. The 
sham group participants are shown as orange triangles, and the active group 
participants are shown as blue circles.
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protocols is essential in building the optimized, tailored tDCS 
protocol to maximize performance in an efficient manner.

OPEN QUESTIONS

TDCS may yet prove to be  a generally useful translational 
approach. Converging evidence supports the importance of 
neural synchronization to change neural networks during WM 
task performance. A major challenge is to determine a priori 
who respond to stimulation. Individual differences are an 
acknowledged aspect of the noninvasive stimulation literature 
and help to explain inconsistent results. Converging evidence 
from various techniques, including further testing of tDCS 
parameters, morphological and functional differences in the 
brain, and genetic differences are needed.
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