3 frontiers

in Human Neuroscience

TECHNOLOGY AND CODE
published: 02 March 2021
doi: 10.3389/fnhum.2021.638052

OPEN ACCESS

Edited by:
Gopikrishna Deshpande,
Auburn University, United States

Reviewed by:

Christian Habeck,

Columbia University, United States
Tyler Davis,

Texas Tech University, United States

*Correspondence:
Matthew R. Johnson
matthew.r.johnson@gmail.com

Specialty section:

This article was submitted to
Cognitive Neuroscience,

a section of the journal

Frontiers in Human Neuroscience

Received: 04 December 2020
Accepted: 08 February 2021
Published: 02 March 2021

Citation:

Kuntzelman KM, Williams JM,

Lim PC, Samal A, Rao PK and
Johnson MR (2021)
Deep-Learning-Based Multivariate
Pattern Analysis (dMVFA): A Tutorial
and a Toolbox.

Front. Hum. Neurosci. 15:638052.
doi: 10.3389/fnhum.2021.638052

Check for
updates

Deep-Learning-Based Multivariate
Pattern Analysis (dMVPA): A Tutorial
and a Toolbox

Karl M. Kuntzelman'2, Jacob M. Williams?3, Phui Cheng Lim'4, Ashok Samal?,

Prahalada K. Rao® and Matthew R. Johnson'#*

" Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States, ¢ Office of Technology
Development and Coordination, National Institute of Mental Health, National Institutes of Health, Bethesda, MD,

United States, ° Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE,

United States, * Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, United States, ° Department
of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States

In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial
for cognitive neuroscience by making new experiment designs possible and by
increasing the inferential power of functional magnetic resonance imaging (fMRI),
electroencephalography (EEG), and other neuroimaging methodologies. In a similar
time frame, “deep learning” (a term for the use of artificial neural networks with
convolutional, recurrent, or similarly sophisticated architectures) has produced a parallel
revolution in the field of machine learning and has been employed across a wide
variety of applications. Traditional MVPA also uses a form of machine learning, but most
commonly with much simpler techniques based on linear calculations; a number of
studies have applied deep learning techniques to neuroimaging data, but we believe
that those have barely scratched the surface of the potential deep learning holds
for the field. In this paper, we provide a brief introduction to deep learning for those
new to the technique, explore the logistical pros and cons of using deep learning to
analyze neuroimaging data — which we term “deep MVPA,” or dMVPA — and introduce
a new software toolbox (the “Deep Learning In Neuroimaging: Exploration, Analysis,
Tools, and Education” package, DeLINEATE for short) intended to facilitate dMVPA for
neuroscientists (and indeed, scientists more broadly) everywhere.

Keywords: deep learning, cognitive neuroscience, machine learning, EEG, fMRI, neural networks, Python, MVPA

INTRODUCTION: A dMVPA TUTORIAL

Although the roots of cognitive neuroscience date to the 1920s (the advent of
electroencephalography, EEG; Berger, 1929), the modern neuroimaging era began in the
mid-1990s, with the development of functional magnetic resonance imaging (fMRI) methodology
and the increasingly widespread availability of (affordable) desktop computing workstations
powerful enough to process fMRI datasets. In those days, data analysis was primarily limited to
univariate investigations such as event-related potentials (ERPs) in EEG and univariate general

Abbreviations: ANN, artificial neural network; CNN, convolutional neural network; CUDA®, NVIDIA Compute
Unified Device Architecture; cuDNN, NVIDIA CUDA® Deep Neural Network library; DeLINEATE, Deep Learning In
Neuroimaging, Exploration, Analysis, Tools, and Education; dAMVPA, deep multivariate pattern analysis; DNN, deep neural
network; GAN, generative adversarial network; JSON, Javascript object notation; ML, machine learning; MVPA, multivariate
pattern analysis; SMLR, sparse multinomial logistic regression; SVM, support vector machine.

Frontiers in Human Neuroscience | www.frontiersin.org 1

March 2021 | Volume 15 | Article 638052

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2021.638052
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnhum.2021.638052
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2021.638052&domain=pdf&date_stamp=2021-03-02
https://www.frontiersin.org/articles/10.3389/fnhum.2021.638052/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

Kuntzelman et al.

Deep Learning and MVPA

linear model (GLM) analyses aimed at detecting “blobs” of
activation with fMRI (as well as differences in activity, e.g.,
between experimental conditions, within such blobs)'. However,
as the field has grown in quantity of research and expanded in
breadth of topics, researchers have naturally sought to create
ever-more sophisticated models of brain function and test ever-
more refined and detailed hypotheses; this, in turn, has created
a demand for corresponding developments in the form of more
complex and mathematically advanced analysis techniques.
Thus, somewhat more recently (beginning in the early-to-
mid-2000s), a second age in neuroimaging analysis arose with
the advent of multivariate pattern analysis (MVPA; Haxby et al.,
2001; Haxby et al., 2014). Rather than focusing on whether a
certain cognitive event elicits activity in a particular cluster of
fMRI voxels (or a voltage peak at a particular temporal latency
with ERP), MVPA is instead concerned with how a neural pattern
or multivariate “brain state” comprising multiple voxels (fMRI)
or electrode/timepoint combinations (EEG) might collectively
correspond to a certain cognitive event or state. Numerous
MVPA variations exist, including those based on correlation
(either Pearson or rank-based; Haxby et al., 2001), support
vector machines (SVMs; De Martino et al., 2008; Dosenbach
et al., 2010), logistic regression (Akama et al., 2012), sparse
multinomial logistic regression (SMLR; Krishnapuram et al,
2005; Kohler et al., 2013), naive Bayes classifiers (Kassam et al.,
2013), and more. Many of these techniques concern classification
of brain patterns into discrete cognitive states, whereas others
examine different aspects of the data (e.g., overall similarity
between brain patterns; Xue et al., 2010; Lim et al, 2019)
without explicit categorization, but all of them represent increases
in mathematical and conceptual sophistication over univariate
techniques. Importantly, when compared to earlier univariate
techniques, MVPA has enabled us to examine in a much more
nuanced fashion how brain activity patterns encode mental states.
Although traditional MVPA techniques are substantially
more complex than univariate techniques, they are nonetheless
still fairly simple, both mathematically and conceptually.
Traditional MVPA is a form of machine learning (ML), but
it is among the simplest forms; most MVPA approaches use
straightforward linear mathematical models. This comparative
simplicity certainly confers advantages - for example, faster
computation times than more complex techniques (with some
caveats’), and a generally lower risk of “overfitting™. However,

!Although most of our discussion focuses on fMRI and EEG, as those
are the most common techniques in our field of cognitive neuroscience,
most points should translate well to related technologies like structural MRI,
magnetoencephalography (MEG), or electrocorticography (ECoG), and even to
less closely related methods such as extracellular recordings (e.g., from rodents or
nonhuman primates).

2For example, SVMs may take inordinately long to converge on extremely high-
dimensional datasets that are handled more easily by deep neural networks. (At
least for the common SVM implementations included in contemporary MVPA
software packages; other, more scalable options may exist but are not, to our
knowledge, readily accessible to the MVPA research community). As discussed
later, deep networks also have better support for GPU-based parallelization than
simpler linear techniques, which can offset their computational costs.

3The creation of a predictive model that is highly customized to the data used to
train the model, but generalizes poorly to new datasets that do not perfectly match
the idiosyncrasies of the training data; a significant concern in ML. A good analogy

simpler mathematical formulations are necessarily limited in
what we call “informational resolution” - the specificity of the
neural patterns and cognitive states that they are able to capture.

How much informational resolution is required to glean
as much about brain function as is possible using current
neuroimaging technology? The answer is hard to pin down,
partly because it is difficult to establish firm estimates of
the “noise ceiling”™ for these techniques. As neuroimagers,
we often complain that our techniques are “noisy,” but with
proper usage, the signal-to-noise ratios of EEG and fMRI
are really rather high, when considering only measurement
noise from the instruments themselves and the surrounding
physical environment. Of significantly greater concern are
“noise” sources such as subject head/body motion, physiological
artifacts (cardiac, respiratory, muscular, etc.), and cognitive
artifacts (distraction, poor understanding of instructions, falling
asleep). Noise ceilings for certain analytic techniques and datasets
can be estimated (Kay et al., 2008; Nili et al., 2014), but ultimately
they will depend on which data components are considered
“noise”; aside from the noise that arises from the physics of the
measurement itself, other biological and subject-driven artifacts
have some hope of being detected, modeled, and/or removed.
And, much like the signal components we actually care about (i.e.,
those related to our experimental questions), our ability to detect
and account for noise depends largely on the sophistication of our
analytic techniques.

What we do know is that the brain is a highly complex,
highly nonlinear system (Koch and Laurent, 1999; Sporns
et al., 2000; Buzsaki and Mizuseki, 2014), and the addition
of noise sources that are also complex and nonlinear makes
brain data no easier to analyze and interpret. Although the
limits of the usefulness of traditional MVPA, with its relatively
low informational resolution, have not yet been reached, those
limits do loom on the horizon. As the size of neuroscience
data continues to grow’, traditional MVPA’s limitations become
ever more apparent. It is a statistical truism that more complex
analytic models, with more parameters to fit, allow us to account
for a greater proportion of a dataset’s variance, but they also
require larger input data to estimate their parameters reliably. Yet
the sizes of many contemporary datasets are now such that they
can potentially accommodate significantly more sophisticated
statistical models than traditional MVPA, with greater power
to identify, extract, and distinguish noise sources and signals of
interest. Thus, we believe it is time for cognitive neuroscience
and related fields to place increased emphasis on developing,
exploring, and using more mathematically and computationally

is a bespoke garment perfectly tailored to the contours of a specific individual,
which would fit him/her perfectly but look terrible on most others. Conversely,
an off-the-rack outfit with a simpler design would fit many individuals of roughly
similar proportions reasonably well.

“Informally defined, the best we might be expected to do in using statistics to
explain variance in the data, accounting for the fact that a certain amount of
unexplainable variance, aka noise, will always exist.

°E.g., from better spatiotemporal resolution due to technological improvements;
from increasingly large sample sizes, particularly from big-data initiatives such
as the Human Connectome Project (Van Essen et al., 2013) and OpenNeuro
(formerly OpenfMRI; Poldrack et al, 2013); and simply from the ongoing
accumulation of data stockpiles from many years’ worth of research studies.

Frontiers in Human Neuroscience | www.frontiersin.org

March 2021 | Volume 15 | Article 638052

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

Kuntzelman et al.

Deep Learning and MVPA

sophisticated techniques, and on producing tools that can be used
to perform that exploration more effectively and efficiently.

The Case for Deep Learning

There are numerous potential analytic methods of greater
complexity and sophistication than traditional MVPA. One class
of ML techniques that has been gaining popularity, and the one
we endorse in this paper, is “deep learning.” Deep learning, briefly
defined, refers to the use of artificial neural networks (ANNs),
typically with recurrent and/or convolutional architectures, that
are more complex, flexible, and (potentially) powerful than both
earlier generations of ANN architectures and the techniques
used for traditional MVPA. In the last few years, such deep
neural networks (DNNs) have been used increasingly heavily in
a number of fields that employ ML for all kinds of purposes. Such
usage includes an ever-growing collection of studies in human
neuroscience and related disciplines, although a relatively small
proportion have been devoted to neuroimaging analysis, and
fewer still devoted to decoding cognitive states from functional
measurements of brain activity, which is a topic of great interest
to many. Admittedly, the long-term utility of deep learning to
neuroscience remains unproven; however, based on the studies
we have seen so far and the extent of deep learning’s impact on
other fields, our conjecture is that those studies represent only
the tip of the proverbial iceberg in terms of what is achievable
by using DNNs to analyze neuroscience datasets. In fact, we
believe deep learning has the potential to perform most of the
tasks for which traditional MVPA is typically employed, but
with greater speed, flexibility, and power, and thus we advocate
for the more widespread use of what we call “deep MVPA,” or
dMVPA for short.

To achieve more widespread adoption of deep learning in
the neurosciences, notable challenges to confront include (1) a
relatively low level of knowledge/awareness of these techniques,
and (2) insufficient availability of software tools to make
dMVPA as approachable as traditional MVPA. In this paper
we address the first challenge by providing a brief review of
deep learning techniques, including how they can be used in
neuroscience investigations, and the pros and cons of dMVPA
versus traditional MVPA. We address the second challenge by
introducing a new Python-based software toolbox (the “Deep
Learning In Neuroimaging: Exploration, Analysis, Tools, and
Education” package; DeLINEATE for short) that builds upon
previous DNN and MVPA tools and aims to make dMVPA more
approachable and efficient for other researchers.

The Case Against Deep Learning

We have encountered two common points of resistance to the
adoption of deep learning methods for MVPA, which we will
address briefly here.

The first is that it does not always appear to be necessary;
shallower network architectures and simpler, more traditional
classifiers can often do the job. This is true. None of our
analytical tools are or can be ideally suited to every task, and
deep neural networks would be an inappropriate choice for
many neuroscience questions. However, we might counter that
this is also a time for exploration. We cannot know which

neuroscientific problems these techniques will be best suited for
until a great many more experimentalists and theoreticians have
spent some time with them, and enabling that exploration is the
primary goal of this paper and our software toolbox.

The second is a more general wariness of MVPA. Fully
addressing this topic is rather outside our current scope, but
skepticism is to be valued and we wish to address the most
immediately salient aspects of this viewpoint. MVPA, and by
extension our proposal for deep-learning-based versions thereof,
does not have so long a history of theoretical work and education
within the field to guide interpretation as the more traditional
inferential techniques. Given that substantial confusion still exists
in the field surrounding the proper use and interpretation of old-
fashioned statistics, some caution about using and interpreting
newer, more complex techniques is certainly warranted. With
that said, there are cases wherein no other existing tool answers
quite the question one wishes to ask. Better, we think, to
use new tools than to ask worse or more limited questions.
The most immediately obvious use case for MVPA, deep or
shallow, concerns multivariate outcomes. Condensing the results
of an fMRI or EEG recording session into a single traditional
dependent variable is a tremendously fraught task; it certainly
requires discarding potentially useful information along the way,
and at worst can obscure the true nature of the underlying
data. (For example, averaging ERPs with different latencies can
produce a grand average that appears lower in both amplitude
and frequency than any individual trial's ERP actually is). In
our own prior work, we have most certainly found that MVPA
enabled us to address questions that could not be answered with
previous univariate approaches; for example, that scene-selective
visual brain areas represented not only category but exemplar-
level information during mental imagery (Johnson and Johnson,
2014), that ERPs related to mental attention that did not exhibit
reliable differences between stimulus categories at a grand-
average level still contained category information with MVPA
(Johnson et al., 2015), and that gradual drift in fine-grained
information patterns in visual cortex during working memory
could be used to predict memory errors (Lim et al., 2019).

In short, we agree to a certain extent with (d)MVPA skeptics
that these should not be the tools of choice for every research
question, and in the long run, they may not even be the tools
of choice for a particularly large portion of questions. However,
more work is needed before we can truly understand the relative
values of these approaches, and performing that exploration
requires appropriate software tools.

Overview and Intended Audience

We have tried to make this paper as useful as possible to as
many readers as possible, although we recognize that readers
may come in with a wide variety of backgrounds, and thus it
is not possible to cover every topic as comprehensively as we
would like. For readers almost entirely unfamiliar with neural
networks and deep learning, the sections “A Brief History of
Neural Networks” through “The Deep Learning Renaissance”
cover the historical context of these methods and some general
overview of deep learning concepts, although complete novices
may wish to supplement with other introductory resources on

Frontiers in Human Neuroscience | www.frontiersin.org

March 2021 | Volume 15 | Article 638052

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

Kuntzelman et al.

Deep Learning and MVPA

machine learning generally and/or deep learning in particular.
The section “Pros, Cons, and Caveats of dMVPA” discusses pros
and cons of AMVPA, mostly by comparison to traditional MVPA,
so it may be most useful to researchers who already have some
familiarity with simpler machine-learning techniques but are
considering incorporating dMVPA into their research portfolio.
(Researchers almost entirely unfamiliar with traditional MVPA
may wish to read other review articles on that, and try running
traditional MVPA on their own datasets, before proceeding much
further into dMVPA territory). The section “A Brief Introduction
to Network Architecture” gives a fairly high-level introduction
to neural network architectures for readers who are ready to
begin experimenting with dMVPA and usage of the DeLINEATE
toolbox, although these readers may also wish to supplement
with other introductory resources to flesh out their knowledge
as they get deeper into their explorations of those concepts. The
section “Method: A Toolbox for AMVPA” contains an overview
of the more practical aspects of using the DeLINEATE toolbox;
however, for full implementation details, users should consult
the online documentation and video tutorials. We have also
included sample walkthroughs of some toolbox usage cases in
the Supplementary Material. The “Results” section contains
more practical information in the form of hardware/software
requirements and benchmark results (also discussed somewhat
further in the Supplementary Material), and The “Discussion”
section discusses future directions.

A Brief History of Neural Networks

The techniques we now collectively call “deep learning” are
generally extensions of older “shallow” ANNs, which are
significantly less complex and powerful than DNNs but not much
different in their basic principles. As such, although knowledge
of ANN history is not strictly necessary for conceptually
understanding deep learning, the historical development of
ANN techniques can provide a useful scaffold to help learners
structure their newfound knowledge. The concept behind all
ANNGs originates from a highly abstracted view of non-artificial
neural networks, i.e., the biological nervous system (Figure 1A).
In this framework, most implementation details are stripped
away, and what remains is the basic idea of a network of
simple computational units (“neurons”) that receive input (which
can typically be excitatory or inhibitory), perform an operation
on their inputs (typically some variation on summation), and
produce an output (typically a single value analogous to an action
potential or a firing rate), which might then serve as input to
one or more downstream neurons®. The original and simplest
case is the McCulloch-Pitts neuron (McCulloch and Pitts, 1943;
Figure 1B), a processing unit whose input and output values are
exclusively binary (0 or 1). The McCulloch-Pitts neuron sums its

61t should be noted up front that the artificial “neurons” used in ML applications
bear about as much resemblance to real neurons as a paper airplane bears to a
commercial airliner. In both cases, the barest core principles are similar between
the pared-down model and the real thing, but little else. However, despite the low
resemblance, ANNs can still be extremely useful tools for ML and data processing.
Readers are nonetheless cautioned to be as circumspect about over-aggressive
comparisons between artificial and real neural networks as they would about
buying transatlantic tickets on paper airplanes.

A Inputs: Action potentials ,
(orno A.P.) i

< (summation)
and thresholding

‘l Output:
J\,— J\,— Action potential OR
i i i Axon
@ ‘ i @ No action potential
N~ : |
i i
%] 1 :
| Cell body |
% ‘ ‘
i i
i i
A ‘
i i
i i
B Inputs: 0 or 1
Xo 1

Summation Threshold

Output: 0 or 1

C Inputs
Weights |

Summation Activation function E

Output

FIGURE 1 | Comparison of biological and artificial neural models. (A) A
simplified “textbook” model of a biological neuron. Inputs come in via the
dendrites in the form of action potentials (or the lack thereof). The inputs are
summed in the cell body (soma) and, if the threshold voltage is reached, the
cell produces an action potential as output that is delivered via the cell’s axon.
(B) The original and simplest version of an artificial neuron model, the
McCulloch-Pitts neuron. Similar to the biological neuron, inputs (x;) and
outputs are binary (although we now know this to be an oversimplified view of
biological neurons). Inputs are summed and the result passed to a
thresholding function; if the threshold is met, an output of 1 is produced, and
otherwise the output is 0. (C) A perceptron, a more sophisticated revision of
the McCulloch-Pitts neuron that has an important place in modern artificial
neural networks. The concept of trainable weights (w;; mimicking biological
potentiation at synapses) is introduced, and inputs are now multiplied by their
corresponding weight before summation. In addition, in contemporary
perceptron models, the threshold function can be replaced by any arbitrary
function, called the “activation function.” Popular activation functions like the
hyperbolic tangent may still act largely like thresholding functions, but with the
ability to deliver graded rather than strictly binary output values.

inputs, compares the sum to some threshold value, and outputs a
1 (“action potential”) or 0 according to whether the sum exceeds
the threshold. Although a pioneering idea and an interesting (if
highly simplified) early model of neural information processing,

Frontiers in Human Neuroscience | www.frontiersin.org

March 2021 | Volume 15 | Article 638052

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

Kuntzelman et al.

Deep Learning and MVPA

McCulloch-Pitts neurons can only implement a limited set of
functions and are thus not considered very useful for modern
ML applications.

A few years later, though, ANNSs took a significant step forward
when Rosenblatt (1958) incorporated Hebb’s theoretical views on
the strengthening and weakening of synaptic connections (Hebb,
1949) into a McCulloch-Pitts-like unit that came to be called
the perceptron’. In its simplest form, a perceptron (Figure 1C)
is largely identical to a McCulloch-Pitts neuron with one critical
addition: Each input is now associated with a “synaptic weight”
(often denoted wg, wp, etc.) that determines whether it is
excitatory or inhibitory and how strongly it influences the output.
Summation is then performed on the inputs after they have
been multiplied by their respective weights. Statistically inclined
readers may recognize this as not-dissimilar-to a regression
model, particularly logistic regression; to conceptually convert
between a multiple regression model and a perceptron, simply
rename the weights from the f; typically used in regression
equations to w; and pass the regression output through a
thresholding function, logistic function (to essentially replicate
logistic regression), or other function as desired®. This function
is known as the artificial neuron’s activation function; activation
functions are a key feature of contemporary ANN designs, and
there are many options to choose from.

In most important ways, the perceptron-like artificial neural
units used in some DNNs today are not substantially different
than the classical perceptrons discussed by Minsky and Papert
(1969) in their seminal book some 50 years ago. Yet the original
perceptron architectures retained many of the McCulloch-Pitts
neurons’ limitations and still had significant constraints on the
classes of problems they could solve. The key developments that
distinguish the more powerful deep learning techniques of today
from the toy models of the past are (1) improved methods for
establishing what the proper synaptic weights should be for a
given dataset/problem, i.e., training the neural network, and (2)
new and ultimately better ways of digitally connecting groups
of artificial neurons together into more complex structures, i.e.,
improved ANN architectures’.

Training Algorithms and Neural Network

Architectures
The earliest ANN architectures were very simple indeed; either
a single artificial neuron or, in the next major architectural

7 As originally conceived, “perceptron” referred to a more complex network of
units that could be implemented in a physical machine to produce artificial vision,
hence the name. However, the most salient feature that researchers latched onto
was the structure of the neural units, and via synecdoche “perceptron” came to be
the name of such a unit, so there is some degree of fuzziness around nomenclature
and definitions. Here, we use the contemporary sense of “perceptron” to refer to
the architecture of an artificial neural unit, rather than the original plan for the
physical perceptron machine.

8The concept of the perceptron is also somewhat looser than the McCulloch-Pitts
neuron regarding whether inputs and outputs are constrained to be binary or can
be continuously valued, and regarding what kind of thresholding or other function
the summed inputs are passed through in order to create the output.

Not to mention the ~billion-fold increase in computational power (IBM 704 at
12,000 flops versus a recent desktop GPU at ~11 teraflops, for an NVIDIA GeForce
GTX 1080 Ti) that helps to make such sophisticated architectures viable.

advance after that, a layer of such units. In this latter (still
very simple) architecture, the units are fully connected, meaning
that each unit receives a copy of each possible input value (see
Figure 2A). Note that in this figure, as in many neural network
diagrams, inputs and outputs are represented as “layers” of a
sort, but there is only one true layer of computational units'.
If the ANN is meant to calculate a classification problem (a
common application), the outputs are typically assumed to each
correspond to one of the possible classes, and are interpreted
in a winner-take-all fashion (i.e., for a given set of input data,
whichever output value is highest is interpreted as the network’s
prediction of the class that the input data belong to). Although the
transition from single-neuron to single-layer architectures laid
a critical foundation for later work, single layers of perceptrons
were soon shown not to be terribly useful as artificial intelligence
agents, no matter what their synaptic weights were or how those
weights were determined. As Minsky and Papert demonstrated in
Perceptrons (1969), it is mathematically impossible for any single-
layer perceptron network — no matter how many units are in it —
to perform certain fundamental computational operations''.

This revelation may not seem surprising in retrospect; after
all, a single layer of neurons, all receiving the same inputs, is
not a very viable architecture for a biological neural network
either. Still, it was enough to significantly dampen enthusiasm
for ANN research for over a decade. Although adding another
layer of computational units (known as a hidden layer) would
allow the network to maintain an intermediate representation of
the input and enable more complex operations'?, the algorithms
available for training single-layer perceptron networks could not
be readily extended to multi-layer architectures. In the 1980s,
however, interest was reignited with the popular (re-)discovery
of the backpropagation algorithm (or simply backprop, to its
friends). This algorithm was known and even applied to ANNs
previously (Linnainmaa, 1970; Werbos, 1974), but it did not
reach mainstream awareness until the publication of Rumelhart
and colleagues’ (Rumelhart et al., 1986a,b) seminal formulations
of it. Backprop proved to be a highly robust method for training
ANN' s across many applications, and is still the dominant training
algorithm in use today.

The main principle behind backprop is to take any
errors made by the network during training and propagate
responsibility for them from the output layer (where the error
is assessed, by comparing the network’s decision to the known
correct decision") backwards through the network towards the
input layer, penalizing the synaptic weights most responsible
for the error along the way. It is analogous to the human
behavior encapsulated by the vernacular phrase, “Shit rolls

%Tn a biological neural network, one might relate these to a layer of dendrites, a
layer of cell bodies, and a layer of axons, but all of those together would comprise
a single layer of neurons.

""Put more formally, single-layer networks cannot solve problems that are not
linearly separable, which famously includes the relatively simple XOR function.
(For binary inputs A and B, respond “yes” if A is true and B is false, or if A is false
and B is true, but respond “no” if A and B have the same value).

2Including XOR and many others.

13 As backprop is performed by comparing the performance of a network on a
training dataset against an already-known ground truth for that dataset, it is thus
considered a form of supervised learning, in ML parlance.

Frontiers in Human Neuroscience | www.frontiersin.org

March 2021 | Volume 15 | Article 638052

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

Kuntzelman et al.

Deep Learning and MVPA

2-unit
output layer
12 input values middle layer
(“input layer”)
* =
Convolution
operator
Convolutional
filter ‘
2-Dinput Output
Input layer Recurrent Output layer
layer
2x2x2 Convolutional
x:pﬁ dxa?a convolutional layer 2-unit
layer output output

layer
3-unit
dense

layer

FIGURE 2 | Examples of artificial neural network architectures. (A) A simple
fully connected multi-layer perceptron model with 12 input values, a middle
layer comprising three perceptrons, and an output layer with two perceptrons.
Line lightness is used to represent synaptic weight strength. (B) An example

of a convolutional neural network layer that might be used to analyze 2-D

input. Here, the layer looks less like a set of artificial neurons and more like a
digital filter used in image processing. Two-dimensional input is convolved

with a 2-D filter to yield a 2-D output, sized similarly to the input. During

training, it is the values in the convolutional filter that get adjusted. Square
lightness represents the numeric values in the cells of each 2-D matrix. (C) An

example of a simple recurrent neural network. There are many types of

recurrent neural network structures with varying degrees of complexity, but all
share the property that recurrent units” output gets passed back into them
(represented here by curved arrows), giving them some form of “memory” for

previous input values. (D) An example of a complete neural network

architecture that might be used to analyze 3-D input such as MRI data for a
two-class classification problem. In this simple example, 12 input values in a

2 x 2 x 3 array are first passed through a 2 x 2 x 2 convolutional filter,
yielding another 2 x 2 x 3 array as output. This is then passed through a

“flattening” layer to convert it to a 12 x 1 vector, which then passes through a

3-unit dense layer to a 2-unit output layer (as shown in panel A).

downhill.” For example, imagine that a CEO - the final decision-
maker in her company’s chain of command - makes a decision
that loses the company money. She turns to her immediate
inferiors and doles out punishment to them proportional to
how influential they were in guiding that decision, and decides
to trust those influential individuals less in the future. In turn,
each of those upper-level managers passes along the punishment
and distrust they have received to their immediate inferiors,
again proportional to their influence on the upper managers’
actions, and so on down the corporate hierarchy. In this way,
one hopes that the next time a similar decision is faced, the
shift in influences and communication channels throughout the
hierarchy will produce a better outcome.

The advent of effective backprop-based training for ANNs
reignited interest in them for a time, and backprop-trained ANNs
were found to perform admirably in a number of ML domains.
Still, before long, interest waned again, as neural nets with many
hidden layers were found to present mathematical difficulties for
backpropagation algorithms, and complex networks also took a
long time to train on the CPUs of the era. Concurrently, the
1990s also saw the development of promising alternative ML
algorithms, most notably the modern incarnation of support
vector machines (SVMs; Boser et al., 1992; Cortes and Vapnik,
1995). SVMs were easier to work with than ANNs and performed
nearly equivalently (or even better) in many problem domains
of the time. Thus, when traditional MVPA techniques arose
in neuroimaging in the 2000s, it is unsurprising that SVMs
and other similarly robust linear classification algorithms, well-
suited to the mid-sized datasets of the time, dominated within
that emerging field.

The Deep Learning Renaissance

Research interest in ANNs experienced another upswing, which
has continued to the present, beginning around 2006. This
rebirth happened for several reasons, including: (1) solutions
to some of the technical and mathematical problems that had
plagued networks with complex, many-layered architectures
(Hinton et al., 2006); (2) methods for training ANNs on desktop
workstations using the GPU instead of the CPU, producing
speed improvements of up to ~70x (Raina et al, 2009); (3)
the advent of the so-called “Big Data” era, which provided
the larger datasets required to adequately train more complex
neural architectures; and (4) the re-branding of neural net
research as “Deep Learning,” which, despite being more public
relations than true substance, still likely helped ignite new
interest in a field formerly seen as relatively tired and unpopular.
Since this Renaissance began, there have naturally been several
key architectural and methodological developments'. However,
these newer architectures are still trained and used similarly to
the older, simpler networks described above, and the variations
are not too difficult to comprehend once one understands the
fundamental concepts and terminology behind ANNs.

4E.g., the use of ReLU activation functions (Maas et al., 2013); new approaches
to regularization (Zeiler and Fergus, 2013); and other architectural elements that
were available earlier became more prominently used, once sufficient data and
computing power existed to use them more effectively (e.g., convolutional network
layers).

Frontiers in Human Neuroscience | www.frontiersin.org

March 2021 | Volume 15 | Article 638052

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

Kuntzelman et al.

Deep Learning and MVPA

During the early days of this revival, deep learning research
had a number of notable successes, including advances in
speech recognition, natural language processing, computer
vision, financial fraud detection, and more. Large technology
companies, who had access to Big Data and financial motivations
for finding better ways to process it, also had their interest
piqued. Thus they began to invest in deep learning research
themselves, including developing improved software tools (for
example, the TensorFlow toolbox, developed primarily at Google,
and PyTorch, developed primarily at Facebook). These tools
typically rely on lower-level driver and software library support
for GPU-based computation, most notably NVIDIAs CUDA
libraries for general GPU-accelerated computing and their
cuDNN framework, built atop CUDA, specifically for DNN
applications”. Although the use of such tools has exploded in
the technology sphere and in basic computer science research,
adoption in other areas, such as cognitive neuroscience, has
been slower. This lag can partly be attributed to fundamental
limitations and difficulties of DNN-based data analysis (e.g.,
potential for overfitting), but another large factor is the lack
of higher-level software tools that make it convenient for
neuroscience researchers to implement dMVPA without needing
to write large amounts of their own code. And, when better
software tools exist, it will be more efficient to explore the space
of possibilities and limitations of dMVPA, and thus establish
its long-term viability as one of the arrows in the working
neuroscientist’s quiver. In short, we argue that neuroscience and
related fields need more software tools that match, or exceed,
the versatility and ease-of-use of existing traditional MVPA tools.
This is the goal of the DeLINEATE toolbox (Deep Learning
In Neuroimaging: Exploration, Analysis, Tools, and Education),
which we introduce below.

Pros, Cons, and Caveats of dMVPA

Pro: Potentially Greater Suitability for Complex,
Many-Featured Datasets

As discussed earlier, one great promise of dMVPA is the
potential to unearth more fine-grained patterns in neuroscience
data than the simpler (and commonly linear) techniques of
traditional MVPA. However, a fundamental principle of statistics
is that more powerful (i.e., more complex) models require more
parameters'®, and reliably estimating more parameters requires
larger input datasets. Hence, why deep learning and Big Data
are commonly associated with each other. Unlike, say, the
Google Images team, most neuroscientists are unfortunately not
swimming in training data for sophisticated machine learning;
neuroscience data are frequently “Big,” but more from features'’

>However, alternatives for other GPU architectures do exist, such as the CoreML
library used in Apple devices, which use primarily non-NVIDIA GPUs. At the time
of writing, Apple had just recently released the first Macintosh computers powered
by their new Apple Silicon hardware, and developers were in the process of porting
TensorFlow and other machine learning tools to the new architecture. Thus, by the
time of publication or shortly thereafter, accelerated deep learning via TensorFlow,
our own toolbox, and other tools may be available on Apple Silicon devices as well.
16“Parameters” used in the statistical sense, i.e., numeric values that need to be
estimated.

7In the machine learning sense; for example, the number of voxels in a trial of
fMRI data or the number of (electrodes x timepoints) in a trial of EEG data.

than from number of examples'®. Of course, in deep learning (and
most statistical analyses), the inverse situation is usually more
desirable: A relatively large ratio of examples to features.

Potential solutions to the too-many-features problem include
finding ways to intelligently select (feature selection) or
algorithmically condense" the feature set. However, beyond
those options, most traditional MVPA techniques do not offer
many choices for constraining the feature set, and in particular
lack any built-in ability to take the structure of the input
data into account. This is unfortunate because neuroscience
data® tend to be highly structured (temporally and spatially)
in ways that could be informative for MVPA*. DNNs, on the
other hand, have numerous potential architectural configurations
that can be optimized to take advantage of known structure
in the input data. Most notably, certain types of ANN layers
(e.g., convolutional layers) can handle multi-dimensional input
data, whereas traditional MVPAS linear classifiers typically just
vectorize multi-dimensional inputs. Thus, dMVPA makes it
possible to design customized classifiers that are more suited to
a particular shape/dimensionality of input data. For example,
in one deep-learning-based analytic technique we recently
developed (Williams et al., 2020; discussed further below),
traditional MVPA was unable to learn to compare two different
trials of neuroimaging data and predict whether they were drawn
from the same class, but a dMVPA with properly structured input
data was able to learn that comparison operation easily.

Caveat

Having more architectural options for structuring and
condensing complex input data also leads to a paradox of choice;
how can one possibly decide on the best DNN architecture for
a given dataset? Unfortunately, dMVPA is still a young field,
and we are still working on establishing good heuristics for
network architectures to handle many-featured datasets. Also
unfortunately, this is not one of those methodological choices
where differences between options can be chalked up to rounding
error; the wrong dMVPA architecture may completely fail to
perform above chance in situations where a superior architecture
classifies the data fairly accurately. To the extent possible, we
have discussed some basic guiding principles of trying to design
a good dMVPA architecture in the section “Practical Advice”
below, and in the Supplementary Material.

18 Als0 in the machine learning sense, i.e., instances of a set of features that can
be assigned a category label. In psychology and neuroscience, such “examples” are
generally called “trials” (e.g., of a cognitive task), although in some cases examples
may correspond to experimental subjects — an even more limited resource.

YFor example, in techniques like elastic nets (Zou and Hastie, 2005) or SMLR,
which use regularization or similar tricks to reduce the number of predictor
features.

20 Again, our discussion focuses on neuroscience data, but these techniques,
lessons, and software tools can readily be translated to related (or even not-
so-related) research fields with similarly-structured datasets and classification
problems.

2'For example, it may be useful to condense several spatially adjacent EEG
electrodes with similar waveforms into a single data channel. Or, if trying to
classify whether a subject is viewing faces or houses, to construct a feature detector
that is sensitive to a certain voltage peak (say, the N170; Bentin et al., 1996)
but time-invariant within a ~20ms window, to account for trial-to-trial latency
variability.

Frontiers in Human Neuroscience | www.frontiersin.org

March 2021 | Volume 15 | Article 638052

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

Kuntzelman et al.

Deep Learning and MVPA

Con: Many Potential Types of Analysis Architecture;
Many of These Carry an Increased Danger of
Overfitting

Most conventional MVPA techniques (SVM, SMLR, etc.) have
a relatively small number of hyperparameters® to adjust, and
those hyperparameters can often either be left at default values
or automatically estimated by the algorithm without serious
adverse effects on performance. In contrast, the number of
possible hyperparameters to adjust in dMVPA is effectively
infinite. These hyperparameters include the number of layers
in the network, the number of units in each layer, the type of
each layer”, and any number of additional layer-type-specific
hyperparameters that can be separately specified for each layer.
Thus, even choosing a starting point for how to construct a
dMVPA model can be daunting for inexperienced researchers
(and experienced ones, too). Furthermore, thanks to the No Free
Lunch (NFL) theorem(s) (Wolpert and Macready, 1997; Shalev-
Shwartz and Ben-David, 2014), we know that no estimation- or
optimization-based analysis technique will be optimal for every
dataset or problem domain, and therefore it is impossible to know
a priori whether a given analysis technique will be optimal for
a particular problem. Put another way, if we knew in advance
that a particular analysis technique were optimal for our problem,
then that technique would necessarily be exquisitely tailored to
the problem - which means we would essentially already know
the structure of the data perfectly, which obviates the need to
conduct the analysis.

Compounding the problem, there is no real upper limit,
other than available computing power, to how complex dMVPA
models can be allowed to grow*. For the current status quo
of neuroscience data, most possible dMVPA models would be
far too complex; many would even contain more parameters to
estimate than there are data points in the input set! It would be
inaccurate to say these models would fit the data poorly; rather,
they would fit the training data foo well. It is not uncommon to
see a complex dAMVPA model effectively memorize its training
data, producing perfect classification of the training dataset but
extremely poor generalization to a test dataset — the classic
problem of overfitting.

Caveat

Much as SVMs provide a fairly robust method for classification
across a surprisingly wide range of data types and problem
domains (though they are rarely truly optimal due to NFL),
there is some hope that such “pretty good, most of the time”
dMVPA architectures might exist as well. Again, the field is

22This term is less commonly used in the MVPA literature than the ANN literature,
but it refers essentially to a parameter of the algorithm set by the user before
running the analysis (for example, the amount of regularization), to distinguish
those values from plain (non-hyper) parameters, which are the values estimated by
the statistical process or model-fitting algorithm.

23 A full rundown of layer types is beyond this article’s scope and better-suited to a
general introduction to deep learning, but common types include perceptron-style
“dense” layers, “convolutional” layers, “recurrent” layers, and supporting utility
layers that calculate simpler mathematical functions; discussed in more detail
below and in the Supplementary Material.

24Complexity could be defined many ways, but for now, we will use it mainly to
refer to how many parameters (not hyperparameters) need to be estimated for a
given model.

young, but during development of the DeLINEATE toolbox,
we have often found that relatively simple dMVPA models,
consisting of just 1-2 convolutional layers and 1-2 dense layers®,
perform comparably to (or better than) the industry workhorse
of SVMs. A bit of customization is often required to fit the
size and shape of the input dataset, and it can be useful to test
out different variations of dMVPA architecture on one portion
of the dataset before applying the best-performing architecture
to the remaining held-out data, but a satisfactory architecture
is typically not too difficult to find without excessive trial-and-
error. We have found that after some experience using dMVPA,
one begins to develop fairly good intuitions about what kinds of
architecture might be best suited to a specific problem, but it is
still far from an exact science.

As the field progresses, we hope that it will converge on
more heuristics for designing dMVPA architectures that perform
as robustly as SVMs across datasets, while still retaining the
flexibility and other advantages of dMVPA. Still, for many
practical applications, it is less important to identify an optimal
model than it is to determine if the data can be reliably
classified above chance (Hebart and Baker, 2018). With properly
implemented cross-validation, this can often be achieved by
a wide variety of architectures (assuming the data do contain
enough meaningful signal for reliable decoding), with the
accuracy difference between sets of hyperparameters being only
a few percentage points. Conversely, if the input data contain
only noise with respect to the classification problem, any sane
architecture should perform at chance on the test set. Thus, while
some trial and error may be necessary before deciding that data
cannot be classified, exhaustive model search is seldom required.
When possible, it is often helpful to conduct a traditional MVPA
to get a ballpark estimate of how a reasonably well-configured
dMVPA should be expected to perform. Further discussion of
these issues, along with a basic walkthrough of how one might
begin to explore the hyperparameter space for analyzing a sample
dataset, can be found in the Supplementary Material.

Pro: Intrinsically Multiclass Classification

One advantage of AMVPA that has historically received relatively
little attention in the literature is that it is straightforward to
design a “true” multiclass classifier, whereas most traditional
MVPA methods are intrinsically binary. Thus, in traditional
MVPA, multiclass decisions must generally be built from a
combination of binary classifiers®. While there is nothing
methodologically wrong per se with building multiclass decisions
from binary ones, the implications are slightly different than
those of a true multi-way decision, which should be taken
into account when interpreting results. Furthermore, in some
commonly used MVPA tools (e.g., PYMVPA), the multiclass

%Technically, these “deep” MVPA networks would not be very deep in terms of
how many layers they contain. Still, a fair portion of “deep” learning these days
does not use particularly complex network structures; the term now seems to refer
more to the contemporary era of ANN-based data analysis than any particular
network structure.

20Typically, if we have classes ABC, the multiclass decision would be made either
by training up classifiers “A vs not-A,” “B vs not-B,” and “C vs not-C,” or by training
up classifiers “A vs B “A vs C,” and “B vs C;” and then summing up the scores in
favor of each category across classifiers in order to obtain an overall score for that
category.

Frontiers in Human Neuroscience | www.frontiersin.org

March 2021 | Volume 15 | Article 638052

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

Kuntzelman et al.

Deep Learning and MVPA

TABLE 1 | Running times on synthetic benchmark datasets, in minutes.

Features Trials/ condition 100 400 900 1600 2500 3600 4900 6400 8100 10000
CNN
200 0.207 0.231 0.244 0.250 0.258 0.295 0.365 0.363 0.438 0.475
400 0.216 0.227 0.238 0.240 0.249 0.278 0.297 0.322 0.428 0.520
800 0.213 0.231 0.242 0.248 0.262 0.279 0.305 0.341 0.421 0.437
1600 0.202 0.258 0.270 0.282 0.298 0.337 0.367 0.414 0.499 0.532
3200 0.205 0.322 0.357 0.372 0.376 0.430 0.499 0.564 0.683 0.709
6400 0.195 0.326 0.505 0.542 0.657 0.678 0.724 0.900 1.18 1.156
12800 0.292 0.503 0.914 1.20 1.61 1.99 2.35 2.97 217 2.28
25600 0.360 0.920 1.32 2.49 3.71 7.41 7.73 9.43 13.5 121
SMLR
200 0.024 0.049 0.053 0.086 0.081 0.112 0.127 0.137 0.178 0.219
400 0.047 0.326 0.321 0.382 0.292 0.358 0.447 0.484 0.541 0.676
800 0.087 0.329 1.49 1.74 1.70 1.77 1.89 1.94 219 2.57
1600 0.137 0.563 1.70 5.40 7.78 9.09 101 10.3 10.8 10.8
3200 0.194 1.37 2.53 6.06 12.6 24.4 30.0 41.3 50.8 54.2
6400 0.258 2.59 5.59 9.57 16.6 29.4 46.9 70.7 112 140
12800 0.354 4.19 18.7 20.5 28.3 42.9 64.6 91.2 128 170
25600 0.456 5.90 23.6 52.8 63.8 76.6 104 144 192 253
SVM
200 0.003 0.108 0.516 1.09 2.28 6.37 20.6 47.5 88.1 148
400 0.004 0.067 1.25 3.71 5.67 16.7 65.1 155 304 502
800 0.008 0.090 0.710 5.32 10.4 32.0 169 439 920 1663
1600 0.014 0.216 0.950 2.76 9.70 36.9 240 855 2302 4794
3200 0.031 0.438 2.03 5.64 121 22.7 109 1098 3168]
6400 0.068 0.892 4.32 13.2 28.3 56.2 134 392 2065 [
12800 0.134 1.85 9.1 28.0 65.5 133 357 1241 00]
25600 0.263 3.72 18.5 57.1 138 314 1048 3699 [0

We processed a synthetic benchmark dataset with three models: a convolutional neural network (CNN), Sparse Multinomial Logistic Regression (SMLR), and Support
Vector Machines (SVM). Average running time is listed in minutes. A few SVM models never converged in any reasonable amount of time and are represented in the table

with the infinity symbol co. See text for further details.

decision procedure is not always transparent to the end user,
which can be a point of confusion. Conversely, dMVPA classifiers
are able to consider all classification options simultaneously;
as a consequence, it is also trivially easy to obtain meaningful
prediction scores across all classes for each example in the testing
set, which can then be used in analyses that go beyond simple
winner-take-all accuracy measures.

Pro/Con: Performance

Performance, in the sense of speed, can be either an advantage
or a disadvantage of dMVPA. Although dMVPA network
architectures can vary so widely that it is difficult to generalize,
prima facie IMVPA should typically run slower than traditional
MVPA, because the calculations involved in training a dMVPA
network are more complex. However, for larger datasets (in
terms of numbers of features and/or examples), the performance
of traditional MVPA techniques may scale more poorly than
dMVPA, depending on the particular hardware and the particular
software implementations involved. (See “Benchmarks” below,
Table 1 and the Supplementary Material for details). Thus,

beyond a certain dataset size, AMVPA may be the more attractive
choice. Also, because the network architecture of dMVPA can be
adjusted, researchers have more options; e.g., whether to employ
a simpler network that may not achieve maximum accuracy but
runs quickly, versus a more complex network that runs slower.

Caveat

As alluded earlier, dMVPAs computational costs can be
somewhat offset by parallelization, which is better supported
by deep-learning software tools than most traditional MVPA
tools. This is true even if parallelizing across CPUs/cores, but
especially true if using the computer’s GPU. Results vary widely
depending on dataset size, network architecture, and the specific
hardware involved, but users might roughly anticipate anywhere
from a 5x-100x or more speedup for running dMVPA on a
GPU versus a CPU. On one hand, these benefits make dMVPA
a more competitive option, speed-wise. On the other hand, GPU-
accelerated dMVPA does require more specialized hardware
and more human effort setting up the relevant drivers and
software packages. While we have striven in our toolbox and

Frontiers in Human Neuroscience | www.frontiersin.org

March 2021 | Volume 15 | Article 638052

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

Kuntzelman et al.

Deep Learning and MVPA

documentation to keep this process as painless as possible, it is
still more effort than is required to run non-GPU-accelerated
analyses; whether that effort is well-spent will heavily depend on
individual users and what tasks they are trying to accomplish.

Pro: Flexibility of Applications

Although our focus has been on dMVPA, we should note that
modern neural networks have an ever-increasing number of uses
beyond simple classification. For example, one currently popular
strategy is to train a model for categorization within some
domain (e.g., the contents of a photograph) and then interrogate
the model’s intermediate layers, in an attempt to understand
what strategy the model is using (Zeiler and Fergus, 2014).
Autoencoder-style architectures allow for, e.g., unsupervised
learning of feature structure (Xie et al., 2016), feature-sharpening
for degraded inputs (Lore et al., 2017), and principled fusion of
multimodal data (Ngiam et al., 2011). Deep networks can also
be used to implement classification techniques that are not well-
suited to traditional MVPA - for example, “transfer learning,”
in which a network is initially trained on one dataset, and then
refined by training it further on a different dataset. As another
example, we have recently explored using deep networks to
create “smarter” similarity/distance metrics tailored to particular
datasets/applications, unlike traditional formula-based metrics
(e.g., Pearson correlation, Euclidean distance), which do not
afford such flexibility (Williams et al., 2020). The DeLINEATE
toolbox can, with varying degrees of effort, support many of these
novel or specialized applications.

Con: Field and Dependencies Are in Active
Development

While the software tools for traditional MVPA will presumably
keep receiving periodic updates, the field overall is fairly mature
and not changing particularly rapidly. However, deep learning
and dMVPA are newer; as such, the techniques and their
underlying software tools are continually being updated. This
means that documentation can rapidly go out of date, and
incompatibilities can arise easily if developers are not careful.
We have aspired to make our own toolbox as robust as possible
to the changing software landscape, but it is still worth being
aware of. Of course, there are mitigating strategies: Users can
find one version that works and refuse to update anything, but
this deprives them of future enhancements. Alternately, they
can continually update, but this makes it harder to exactly
replicate earlier work run with previous software versions.
If only Python toolboxes (our DeLINEATE toolbox, and the
Keras/PyMVPA backends it relies on) are updated, Python’s
“virtual environment” feature can be helpful for maintaining
different software setups, each in their own containers. But, if
later updates require newer hardware drivers, and users wish to
maintain backward compatibility with their earlier work, they
may wish to do what our lab has done: Purchase several small
hard drives for each machine, set up a fresh operating system
for each new major driver version, and simply reboot from a
different boot drive when one wishes to work with current vs.
legacy versions of the software.

A Brief Introduction to Network

Architecture

In an abstract sense, all feedforward” neural networks may
be viewed as a collection of mathematical operations to be
applied in sequence to an input of some fixed size, along
with rules for updating the parameters of those operations
during training. In a classic perceptron, the core operations
are multiplication (input data times weight values), summation,
and then activation (a thresholding operation, traditionally). In
a multi-layer perceptron network (Figure 2A), this complete
multiplication-summation-activation sequence is repeated, with
each layer’s outputs becoming the next layer’s inputs. A typical,
slightly simplified mental model for such networks treats those
multiplication-summation-activation operations as all occurring
within a self-contained unit or node, like in a biological neuron;
a number of such units in parallel constitutes a layer of the
network, and the main free parameter chosen by the designer
of the network is the number of units in each layer. However,
unlike a biological neuron, in an ANN this set of operations
is not immutable - one might opt to omit activation, invert
values after every step, or do any other sort of mathematical
transformation, at any step of the sequence. One could also adopt
a different mental framework in which every individual operation
is a layer of the network, such that each layer of a perceptron
network expands into three sequential computational layers: a
multiplication layer, a summation layer, and an activation layer.
In Keras, the Python framework upon which the DeLINEATE
toolbox’s deep-learning functionality rests, it is possible to work
with either of these conceptualizations - e.g., there are individual
layer types that can perform thresholding/activation, but the
activation operation can also be specified as an argument of other
layer types, with the understanding that activation is applied last,
after that layer’s primary operation.

In lay terms, when sufficiently tortured and beaten into
submission, contemporary deep learning frameworks can be
mangled into performing virtually any kind of mathematical
operation or transformation on the input data. A full discussion
of all the possibilities could fill several books, and is thus beyond
the introductory scope of this paper. However, there are a few
broadly useful kinds of operation/layer that are particularly
worth understanding; novices to deep learning should focus on
understanding the basic gist of these fundamental tropes before
getting lost in the details. Here, they are described briefly in

%7“Feedforward” meaning that all outputs from earlier (closer to the input) layers

are fed “forward” into later (closer to the output) layers; outputs are never fed back
into earlier layers. Feedforward networks are generally easier to work with and
design. Our toolbox currently supports only networks with a broadly feedforward
design (implemented via the “Sequential” model class in Keras) when using the
graphical interface or text-based job files; however, when using it as a collection of
Python functions, other network types are possible. One exception is recurrent
layers, which feed their output back into themselves; thus networks containing
recurrent layers are not strictly feedforward. However, as implemented in our
toolbox and the Keras backend we rely on, the recurrency can be viewed as
something that recurrent layers handle within themselves; the user does not have
to think about this recurrency in terms of their network architecture. From the
user’s point of view, the layers of the network still follow a feedforward/sequential
structure, even if the individual units within some layers have recurrency built-in.

Frontiers in Human Neuroscience | www.frontiersin.org

March 2021 | Volume 15 | Article 638052

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

Kuntzelman et al.

Deep Learning and MVPA

broad categories; Keras has several subtypes of each depending
on details of the desired implementation.

Classic

Called “Dense” layers in Keras, these are layers made of
perceptrons (Figure 2A). They compute weighted sums
and apply an activation function. Varying the number of
computational units in such a layer allows one to increase (e.g.,
consider more potential weightings) or decrease (e.g., prune
less informative features) the dimensionality of the data as
it passes through the layer. By default, these layers are fully
connected, meaning that all outputs from one layer are used
as inputs for each computational unit in the next layer of the
network. As noted earlier, a neural network made entirely of
dense layers is sometimes called a “multi-layer perceptron”
network architecture.

Convolutional

Convolutional layers (Figure 2B) may be conceptualized as
collections of filters that are swept across (in mathematical
terms, convolved with) their input. When used to process 2-D
photographic data, their function is often likened to visual
neurons, which take input from a spatially restricted receptive
field, extract some feature if present, and pass along the result
to the next layer of the visual processing hierarchy. For readers
familiar with digital image processing, they are essentially
like other kinds of digital filters (e.g., a blur filter, an edge
detector), except that convolutional layers can work with any
dimensionality of data (not just 2-D images) and their parameters
are learned over the course of training, rather than being pre-
defined. The combination of filter shape and input data structure
will determine what kinds of feature may be selected for and
passed along as output. For example, if each example of input
data is a 32 x 1000 array of EEG voltages (e.g., 2 seconds of
32-channel data sampled at 500 Hz), a set of 1 x 10 filters
would be capable of detecting high-frequency patterns within
individual channels (in this example, patterns that fit inside
a 20 ms time window), but insensitive to lower-frequency or
purely spatial patterns. Conversely, a set of 10 x 1 filters could
detect patterns distributed across multiple channels, but only
those that occur instantaneously. However, one could instead
employ, for example, a set of 8 x 20 filters, which would be
capable of detecting patterns spread across up to eight adjacent
channels over a 40 ms time window. Choices about data structure
are consequently more important for this class of layers than
for a multi-layer perceptron; the input examples would contain
identical information if flattened from 32 channels x 1000
timepoints to a single 1 x 32,000 vector, but the meaning of a
1 x 10 filter bank’s outputs would be very different.

Recurrent

Recurrent layers (Figure 2C) are named for their property of
having their outputs fed back into themselves as inputs. By
maintaining an internal state determined by previous inputs,
recurrent units develop a form of memory for sequential data.
For example, a 1 x 10 vector input to a classic dense unit would
be combined to a single value in only two steps — multiplying

each element of the vector by its weight and then summing
the results. If the same vector were fed into a recurrent unit
(typically called a cell), the first element would be handled in
isolation, but evaluation of the second element would include
the output of the cell’s operation on the first element. The result
of this would, in turn, update the units state to influence its
response to the third element, and so on until each element of
the input is consumed. Recurrent networks are frequently used
to process natural language data (both audio and text) and in
general are considered good choices for timeseries data. In our
own work, we have not observed any significant benefit over
convolutional layers when working with human neuroscience
data, and have found recurrent-based networks to take longer to
train than convolutional-based networks; however, these findings
are likely highly dependent on details of the dataset and research
question. As alluded earlier, for common types of recurrent
cells, the recurrency is handled within the cell as a form of
internal “memory” that is not visible to the rest of the network,
so network architectures using recurrent layers can still be
considered broadly “sequential” or feedforward, and are thus
supported by our toolbox.

Supporting

This is a broad category of operations that, for various reasons,
are generally thought of as secondary or historically baked-
in to more interesting operations. In Keras, this includes
activation layers, various purely utilitarian data-reshaping or
simple mathematical operations, dropout (an operation in
which some percentage of a layer’s units are ignored; thought
to mitigate overfitting), etc. Some of these operations (e.g.,
activation functions) can be specified either as distinct layers or
as parameters to a primary layer, whereas others (e.g., a layer that
downsamples the output of the previous layer via averaging) can
only be specified as distinct layers.

Practical Advice

The following is a combination of our experience and advice we
have received from other colleagues. We hope it is helpful as
a starting point, but readers should not feel overly constrained
by it. While the modern leaders in image recognition involve
dozens of layers (Szegedy et al, 2016), in our experience
the aim of dMVPA can typically be accomplished with much
smaller networks. When working with minimally processed
fMRI/EEG/eye-tracking data, we have found that a good starting
point often consists of 1-2 convolutional layers followed by 2-3
dense layers; based on preliminary results from that architecture,
one could add or remove layers, adjust the layers’ sizes, or
tweak other hyperparameters. See Figure 2D for an example. For
maximal effectiveness and interpretability, consideration should
be given to the match between the shape of the per-example input
data and shape of convolutional filters (e.g., should the filters
look across EEG channels, or only within? If across, are channels
arranged to be spatially adjacent in the data?). Leaky ReLU is
usually our preferred activation function, and we have often
found dropout values of ~0.3 in dense layers to be beneficial.
We have found Stochastic Gradient Descent (SGD) with the
momentum parameter (classical or Nesterov) set to something

Frontiers in Human Neuroscience | www.frontiersin.org

March 2021 | Volume 15 | Article 638052

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

Kuntzelman et al.

Deep Learning and MVPA

on the order of 0.9 to be a generally successful optimizer, although
the Adam optimizer (Kingma and Ba, 2014) also performs well in
some situations™.

One of the great advantages of deep learning is the effectively
infinite configurability of neural network architectures and their
hyperparameters, which allow them to be exquisitely customized
to particular applications and datasets. However, as we alluded
above in the section “Pros, Cons, and Caveats of dMVPA,” it
is difficult to offer very many hard-and-fast rules about best
practices, because there really is no such thing as a “typical”
neuroimaging dataset or experimental structure. This is one
of the reasons that simpler linear techniques have dominated
MVPA for so long; they trade off decreased configurability for
increased generalizability. A good analogy is that traditional
MVPA is like a standard four-door sedan - a reasonably good
choice, for most people, most of the time — and deep learning
covers all other vehicles, from racecars to garbage trucks to
unicycles. Just as it is difficult to offer good advice on vehicles
without knowing whether the intended use case is racing or
garbage collection, it is rather difficult to offer detailed pointers
on network architecture without knowing all the details of a user’s
dataset and experimental design. However, in the Supplementary
Material, we have included a walkthrough of how users might
explore some architectural options for analyzing one dataset,
as well as a table of some of the most frequently encountered
options/hyperparameters, along with some guidelines on the
kinds of scenarios that might be appropriate for certain choices.

New users are encouraged to experiment with everything and
keep track of the results; soon, you will likely develop your own
favorite architectures and hyperparameters. Do not be afraid to
experiment broadly; dMVPA has some powerful advantages, but
we are also in a more exploratory phase for this kind of research,
and designing a sufficiently performant dMVPA architecture can
take significant trial-and-error. Of course, the extent to which
that exploration might constitute p-hacking depends on your
research aims; if that is a potential concern, you may want to
design your analysis based on an independent dataset (e.g., one
of the sample datasets included in our toolbox), or consider
a split-half design in which one half of your data is used to
explore analysis architectures and the other half is used for
confirmatory purposes.

METHOD: A TOOLBOX FOR dMVPA
Overview of the DeLINEATE Toolbox

Now that we have covered some of the fundamentals of
deep learning and dMVPA, and the combination of promises
and challenges entailed with these methods, we turn attention
to the more practical elements of conducting dMVPA with
our own DeLINEATE toolbox. One major purpose of the
DeLINEATE toolbox is to enable rapid exploration of model
architectures/hyperparameters while maintaining an accurate

2We realize that all this terminology can be overwhelming at first, but readers
unfamiliar with deep learning should try not to feel discouraged by the sheer
number of architecture/hyperparameter choices available. Rest assured that it does
become more familiar and accessible after some hands-on experience.

record of what was done and how it turned out. These are
conflicting goals in common practice - a researcher attempting
to iterate on an analysis is often tweaking a script or working
directly with a command-line interpreter, perhaps in a Notebook
type environment (Grus, 2018), and discarding fruitless branches
of exploration along the way. Maintaining an accurate record
of each tweak and its results during such rapid prototyping is
not easy, and can take more time and coding discipline than
many of us have.

Our solution to this problem was a processing pipeline in
which a single JSON (JavaScript Object Notation) format® job
configuration file fully specifies an analysis: the input data, how
it will be divided for cross-validation and rescaled, the model
architecture to be trained and evaluated, and the outputs to be
saved (Figure 3A). The toolbox translates this JSON file into
Python code to execute the specified analysis (or analyses), and
saves all desired outputs into .tsv (tab-separated values) files with
names that include a user-defined prefix linking them to the
original JSON file. A copy of that original JSON file can also
be saved alongside the other output, so that even if the original
is subsequently overwritten during the exploration process, the
“output” copy remains a pristine record of what was run to create
a particular set of results.

A secondary goal was to facilitate comparison of dMVPA
approaches to traditional MVPA while, as much as possible,
maintaining parity in data handling. To this end, classic MVPA
is also supported alongside the dMVPAs that are our primary
focus. This is currently implemented with a PyMVPA backend.
Traditional MVPA uses the same JSON job file format as AMVPA,
as well as similar output file formats, cross-validation/rescaling
options, etc., making it a simple task to conduct parallel MVPA
and dMVPA on the same data. Currently we support SVM
(Support Vector Machine) and SMLR (Sparse Multinomial
Logistic Regression) classifiers for traditional MVPA, although
our framework is readily extensible to most other classifiers in
the PYMVPA toolbox.

For a typical user, the primary entry point to the toolbox
is delineate.py, a simple script that accepts one or more JSON-
format configuration files as arguments, validates their contents,
and uses them to create and run one or more analysis job(s).
This allows users to run analyses without requiring them to write
any code of their own. To further increase accessibility, we have
recently developed a simple graphical user interface (GUI) that
some find more approachable than a text editor (Figure 3B).
GUI users can click on a collection of interactive menus to create
properly formatted job configuration files, which can then be
used as input to the main delineate.py script. The GUI can also
auto-populate selections based on an existing job configuration
file for users who have a starting point (such as one of the
included sample job files) they wish to modify for future analyses.

For Python-proficient users who want more complex or
flexible analysis options, the toolbox can also be used as a Python

29JSON is a format that allows data structures to be written to plain text files with
human-readable syntax. Although not as intuitive as a graphical interface, editing
JSON-formatted job files is certainly easier for beginners than writing their own
Python code. There are also JSON modules available for many popular text editors
and a handful of standalone JSON editing programs to make the task even easier.

Frontiers in Human Neuroscience | www.frontiersin.org

March 2021 | Volume 15 | Article 638052

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

Kuntzelman et al.

Deep Learning and MVPA

A B

) sample_jobfile_mvpa-smir.json
% ~/Desktop/dev/deli../sample_jobfiles/sample_jobfile_mvpa-smirjson . _(no function selected) . #. M. #. B
-

R [

2 v {

3~ “model": {

4~ “classifier": {

5 "classifier_type"

6 "implementation

7 “params": {

8 "ln": 0.1

9 - +

0 = +

1 “backend": “pymvpa"

12 - 0

i} 2 “data": {

14 v “loader_params": [

15 “sample_data/sample_fso_dataset_vs_study.mat"

16 = 1,

17 “loader": "fso_sample_flat_loader"
| 18 = Ty
| 19~ "analysi: {

20 "nits": 10,

21 "xval_type": "single",

2 v “"train_val_test": [

23 95,

24 9,

25 5

26 = 1,

27 “scaling": 90,

28 “classify_over": “category"

29 = +

30 v “output": {

3 “output_location": "sample_output”,

32 “output_filename_stem": "smlr_fso",

3 v “output_file_types": [

34 “acc_summary",

35 "labels",

36 "job_config",

37 "scores"

38 = 1

39 - }

40 - }

a1

JSON~ Unicode (UTF-8) + Unix (LF) - o Saved: 7/6/20, 1:57:31 AM 3 778/../ 44

FIGURE 3 | Ways that users can configure an analysis in the DeLINEATE toolbox. (A) Most users will likely configure analyses using a text-based JSON (JavaScript
Object Notation) format job file. In this example, the file is open in a generic text-editor program, but JSSON-format-specific editing software also exists. Each job has
four main sections: “model,” “data,” “analysis,” and “output,” corresponding to the major object types in the toolbox. The file shown is configured to run 10 iterations
of a PyMVPA-based SMLR analysis using a sample face-scene-object-viewing EEG dataset, using a randomly selected 95% of trials as training data and 5% as test
data on each iteration. (B) A basic graphical user interface (GUI) that allows users to configure a job file without having to edit the text directly. The most frequently
used options for several common analysis types are available (although editing the text file directly will always allow more flexibility than is possible to express in a
GUI). The GUI also contains sections for data, analysis, model, and output, as well as buttons for loading in an existing job file and saving the settings configured in
the dialog box to a new JSON file. The settings shown are configured to run 20 iterations of a Keras-based deep learning analysis, using 70% of trials as training

data, 15% as validation data, and 15% as test data on each iteration.

DTGui - o @

Select backend:

Loader parameters (one per line):
my_data

Loader function name: sample_generic_maffie I¢7/$2.%,

Compile options.
Select oss type:
categorical crossentropy |
Select optimizer type:

RMSprop [
Enter additional optimizer parameters (name,value format; one per line):

Select number of layers:
3 -

“Layer 0 p:
Input data shape (comma-separated dimensions)
18273

Layer type:
Conv2D

Analysis :
i Number of convolutional fters:

Number of terations:
20 £l
Crossvalidation type:
single I

Variable to classify:

3 2
Kernel size (comma-separated dimensions):
33

Kernel regularizer:
keras.regularizers.[2(0.01
Padding strategy:
Valid]
Additional layer parameters (name,value format; one per line):

utput
Path to output location:
output_files
‘Stem for output filenames:
ftest_output
Output file types:

my_category_variable
Percent of data to use for training:

Percent of data to use for validation:

15 E]
Percent of data to use for testing: | L2Y°" 1 parameters
x Layer type:
15 | yertyps:
Dense
Number of units:

Data scaling type:
standardize
Kernel regularizer:
keras.regularizers.2(0.01
Additional layer parameters (name,value format; one per line):

Layer 2 parameters.
Layer type:
Activation I
Activation function:

Additional layer parameters (namevalue format; one per line):

Load settings from JSON file
Save settings to JSON file
Close GUI

programming library, and users can write their own code instead
of creating JSON files. JSON functionality and code-library
functionality can also be mixed-and-matched (e.g., JSON files can
be used to create a template analysis, which can then be tweaked
and iterated upon with custom code). For users who wish to write
their own Python code as well as JSON users who simply want
some familiarity with the toolbox’s underlying functionality, we
next present a brief overview of the code structure; more detail is
available in the toolbox documentation.

DeLINEATE Toolbox Structure

The DeLINEATE toolbox is an object-oriented collection of
Python modules, each responsible for a different aspect of the
(d)MVPA process. It comprises five main object classes and a
small number of supporting files that contain utility functions
or facilitate batch analysis. Each main class is housed in a .py
file named for that class. In typical usage, the toolbox follows
a minimum-import philosophy; to use it as a code library, one
simply needs to navigate to its main directory and directly import
the desired class file(s). The primary classes are:

(1) DTJob, responsible for parsing JSON files that define
DeLINEATE jobs and passing the appropriate information
to constructors for the other object types. In typical usage,
a DTJob is responsible for creating one of each other
object type and then triggering the DTAnalysis object to
actually run the analysis. However, users can also eschew

DTJob entirely if they prefer to instantiate the other objects
manually in their own Python code.

DTAnalysis, a parent class that contains one instance each
of DTModel, DTData, and DTOutput; it is responsible for
coordinating the operations of those other objects. This
includes dividing data into training/validation/testing sets,
iterating through portions of the data when desired (e.g., to
loop through individual subjects), and initiating the model
training/testing procedures.

DTModel, responsible for constructing the model in
the appropriate machine learning backend (currently,
either Keras or PyMVPA). The “model” in this sense
refers either to the artificial neural network (Keras)
or an object representing a simpler classifier, e.g.,
a support vector machine with a linear kernel and
parameter C = 1 (PyMVPA).

DTData, responsible for loading the dataset from a data file,
storing it, and performing certain operations on it (such as
scaling/normalization or slicing it up into smaller training,
validation, and/or test subsets).
DTOutput, responsible for

to output files.

2)

©)

4

(5) results

writing analysis

The four main sections of a JSON-format job file are the
analysis, model, data, and output sections, which map directly
onto the corresponding Python classes; each section contains the
parameters necessary to instantiate an object of the appropriate

Frontiers in Human Neuroscience | www.frontiersin.org

13

March 2021 | Volume 15 | Article 638052

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

Kuntzelman et al.

Deep Learning and MVPA

class®. Another (purely optional) class, DTGui, implements the
aforementioned GUL

Current Functionality

Model Types and Backends

At present, the DeLINEATE toolbox has been used in-house for
approximately two years to conduct analyses across a number
of studies. It is a high-level toolbox with a flexible, extensible
architecture that potentially allows it to sit atop multiple
underlying machine-learning libraries. Currently, we support a
subset of functionality for two backends: Keras (Chollet, 2015)
for dAMVPA and PyMVPA (Hanke et al., 2009) for traditional
MVPA. With our heavy focus on providing a flexible architecture,
it is relatively easy to add support for additional backends in
the future, as well as enhancing the breadth of support for
features of Keras and PyMVPA, enabling new data types to be
imported, etc. The relative prioritization of such extensions will
be guided by user demand.

Cross-Validation

We currently support two approaches to cross-validation. The
first is a “universal” approach (specified in configuration files
with the name “single”) in which all data are treated as
belonging to a single pool, which is randomly divided into
training/validation/test sets according to percentages specified
in the configuration file. The second divides the data according
to some attribute of the samples® and iterates through each
value of this property, dividing the data within each iteration
into training/validation/test sets (specified in configuration files
as “loop_over_sa”). Regardless of which scheme is used, because
classification performance can be influenced by a model’s initial
conditions®, it is common practice to run multiple complete
cross-validation iterations in order to ensure a stable estimate of
the architecture’s performance. With properly configured input
data (see below), these two cross-validation schemes can cover
most common MVPA use cases; however, additional schemes can
be added in the future according to demand.

Rescaling

Although some MVPA methods are invariant to the scaling of the
input data, others, such as many dMVPA applications, require
data to be on a certain scale for good classification. The issue
is slightly complicated by the need to prevent features of the
test data from influencing the training data. We support several
methods for rescaling data that avoid this issue by calculating

30 Although a non-Python-savvy user does not need to know these implementation
details, the parity between job file sections and Python classes makes it easy for
more experienced coders to switch back and forth between job files and their
own Python scripts. As noted above, it is also possible to mix-and-match the two
approaches.

1A “sample attribute)” if you will, which is the terminology used by other MVPA
toolboxes for a tag or property associated with each data sample/example. For
instance, a subject ID or session ID.

32Especially for AMVPA; for a given architecture, a classification might sometimes
perform well and sometimes at chance depending on the random values assigned
to weights at the beginning of training, which is generally a sign that the
architecture needs adjusting. Other classification techniques, such as SVMs, can
be solved deterministically; as such, they may or may not benefit from multiple
cross-validation iterations, depending on dataset and cross-validation scheme.

necessary parameters solely on the training data, and using those
parameters to adjust validation/test data as well. Again, these
methods are readily extensible with additional options, or users
can always pre-scale their own data however they like. Currently
supported methods are:

(1) “percentile;” which identifies the value at a specified
percentile of the data and divides all data by that value,

(2) “standardize,” which mean-centers and divides all values by
the standard deviation of the data,

(3) “mean_center,” which subtracts the mean of the data from
all values,

(4) “map_range” which translates values into the range
between a user-specified minimum and maximum (0
and 1, by default).

Input Data and Loaders

By far, the most common question we have received from
potential users concerns the necessary format for input data.
The toolbox operates on, at minimum, one NumPy array and
one Python dictionary. The former contains the actual data
to be analyzed in a two-or-more-dimensional array, where
one dimension represents examples (e.g., trials) and the other
dimension(s) are feature dimensions. For instance, an fMRI
dataset might be shaped as (examples x voxels), whereas an EEG
dataset might be (examples x electrode x timepoint). Higher-
dimensional structure is ignored in traditional MVPA and simply
collapsed into a 2-D (examples x features) array, as those simple
classifiers can only operate on vectors of data. However, AMVPA,
when run with an appropriate network architecture, can operate
on any dimensionality of data and can potentially take that
information into account for classification. If the spatiotemporal
structure of the data is meaningful, this may produce superior
performance. The Python dictionary contains the metadata
needed to interpret the data array, in the form of one or more
“sample attributes” (defined earlier; e.g., experimental condition,
participant identity) for each sample. These sample attributes
may be used as targets for classification (i.e., the class labels to be
predicted) or as grouping variables in cross-validation (e.g., for
leave-one-subject-out cross-validation).

Data are read into the toolbox by a “loader” Python function
specified in the job configuration file. Loaders can reside in
a specific subdirectory of the toolbox or in an arbitrary user-
specified location. We include several example datasets and
corresponding loader functions that should be easily modifiable
by researchers to fit their own needs. This is the main place where
a typical user might need to write their own Python code; because
of the many idiosyncratic formats used to store experimental
data, some users may need to write a short function to read their
files in and reshape them into the expected format. However, if
the format is well-supported by NumPy or other Python libraries,
these functions can typically be quite short (on the order of 10
lines of code). We also provide generic functions included for
data in the NumPy and MATLAB native file formats, which
will accept any .mat or .npy file containing one array variable
of data examples and at least one variable of sample attributes.

Frontiers in Human Neuroscience | www.frontiersin.org

March 2021 | Volume 15 | Article 638052

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

Kuntzelman et al.

Deep Learning and MVPA

Thus, if users are able to save their data in one of those formats
beforehand, there may be no need for a custom loader function.

Because neuroscience data vary widely in format, we recognize
that a need for additional loader options could still present a
barrier to some researchers. We encourage such individuals to
reach out to us so that we can offer assistance and expand the
range of formats we are able to support natively. On the other
hand, the overall flexibility in format means that with just a few
lines of code, any dataset that can be represented as a multi-
dimensional array is a candidate for analysis with our toolbox,
not limited to neuroscience data; for instance, we have used the
toolbox to analyze eye-tracking data (Cole et al., under review),
photographic images, and more.

Output Types and Results Assessment

Most of the output from the toolbox will come in the form of tab-
separated value (TSV) text files, which are both human-readable
and easily imported into other analysis/statistics software for
further examination. Users can request only certain outputs to
be generated, or simply specify “all” output types (which will
generate all but a small number of specialized output types that
only make sense in specific circumstances). Foremost among
these are test accuracies, which include classification accuracy on
the test dataset for each iteration of cross-validation (and also, for
dMVPA, the value of the neural network’s loss function for each
iteration). Other TSV outputs include raw classification scores
(before thresholding them to make a categorical classification
decision), which could be used to generate receiver operating
characteristic (ROC) curves or perform other more nuanced
forms of results assessment; class labels for the test dataset
(typically useful in conjunction with the classification scores);
training/validation accuracies (potentially useful in assessing
overfitting/underfitting in conjunction with the test accuracies);
timestamps for each cross-validation iteration; and metadata
about the hardware/software used to run a particular analysis.

Non-TSV output consists primarily of the option, for dMVPA,
to write out a copy of the trained neural network, so that users
can potentially apply it to a different dataset than the one it
was trained on and thus assess generalizability (or use it for
other applications or research questions). As noted earlier, non-
TSV outputs can also include a duplicate copy of the JSON job
configuration used to generate a particular set of results.

For convenience in assessing classification accuracy, we
provide a simple Python command-line script that computes
and displays the mean, standard deviation, and standard error
across cross-validation iterations for one or more TSV-format
accuracy files. This is particularly helpful if the user has explored
a large number of models and wants a quick, concise synopsis
of their relative performance. Other options for assessing and/or
visualizing results are currently rather limited, as the needs
of research users are so variable, many other analysis/statistics
software packages already have highly advanced visualization
options (e.g., R, Matlab, the Python module Matplotlib, etc.),
and many users may already have preferred workflows using
those tools. Thus, our focus to date has been on making
our output straightforward to import using other software.
However, providing more advanced assessment/visualization

options within the DeLINEATE toolbox itself is certainly in our
development roadmap for future releases.

Graphical User Interface

As described earlier, the GUI currently allows users to generate
a job configuration structure via menu selections and free-entry
fields (Figure 3B) that can be auto-populated by loading an
existing job file. For frequently used Keras layer types, some
reasonable default hyperparameters are provided; however, there
are minimal defaults available for less common layer types,
and in general it is still recommended for users to have some
baseline knowledge of Keras’s workings and hyperparameter
options, even when using the GUIL As the number of potential
analysis configurations is effectively limitless and this module is
a relatively recent addition, error checking is currently somewhat
limited. Still, we recognize that a usable GUI is a critical feature
for some users, and we expect this to be a primary target for
expansion and refinement in upcoming releases.

RESULTS

Availability

All toolbox code is currently hosted at https://bitbucket.org/
delineate/delineate and is freely accessible and open-source under
the MIT License. There is also a project website at http://
delineate.it that hosts older releases, documentation, links to
video tutorials, and more.

Hardware/Software Requirements

The DeLINEATE toolbox has few software dependencies of its
own. However, as noted earlier, it requires either a Keras or
PyMVPA backend to perform dMVPA or traditional MVPA,
respectively, and those packages have their own corresponding
dependencies. Fortunately, both Keras and PyMVPA are well-
documented and readily available; we also provide start-to-finish
setup guides on the toolbox website. In brief, DeLINEATE
is compatible with any recent version of either backend, and
in principle can be run on any Python version from 2.7
onward, including all versions of Python 3; however, specific
Python version compatibility may depend on which version
of Keras/PyMVPA the user is running, and which Python
versions those libraries are compatible with. The only additional
dependency of DeLINEATE is Python support for Tcl/Tk (a
graphical interface toolkit) if one wishes to use DTGui; most
Python installations include Tcl/Tk libraries, but some might
require a separate installation. As Python is available on all major
operating systems (Windows, macOS, and Linux), DeLINEATE
will also run on any of them, although hardware choices may
constrain operating system options.

In terms of hardware, a bare-bones DeLINEATE installation
will run on any computer with enough RAM to hold the user’s
dataset in memory, as long as the user only wishes to run analyses
on the CPU. Traditional MVPA via PyYMVPA does not presently
employ GPU acceleration, but most dMVPA users will want
to enable GPU acceleration for a dramatic increase in speed
(see “Benchmarks” below). As Keras relies on the TensorFlow

Frontiers in Human Neuroscience | www.frontiersin.org

March 2021 | Volume 15 | Article 638052

https://bitbucket.org/delineate/delineate
https://bitbucket.org/delineate/delineate
http://delineate.it
http://delineate.it
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

Kuntzelman et al.

Deep Learning and MVPA

library for its own backend (or the older Theano library; now
deprecated in recent Keras versions but still supported by
DeLINEATE), which in turn relies on the CUDA (Compute
Unified Device Architecture) and cuDNN (CUDA deep neural
network) libraries from NVIDIA, effectively this means that an
NVIDIA-compatible GPU is required for accelerated dMVPA.
Different GPUs will have different compatibility with various
versions of CUDA, cuDNN, TensorFlow/Theano, and Keras;
however, as long as compatible versions of those tools are
installed, DeLINEATE should work with any of them. At the
time of writing, we recommend midrange to high-end GPUs
from the GeForce 10 series or higher; our labs workstations
mostly use GeForce GTX 1070 through GeForce GTX 1080 Ti
cards, but other users may have higher or lower requirements.
Currently, a reasonably powerful workstation for many dMVPA
applications could be built from parts for $1500-2000 US>,
although prices can vary widely depending on users’ specific
requirements and budgets. Since no current Apple computers
support compatible NVIDIA GPUs, GPU-accelerated dMVPA
is currently unavailable on macOS. Generally, for scientific
computing, we recommend Linux-based operating systems
for their widespread compatibility and open-source nature;
however, GPU-accelerated dMVPA will work on Windows as
well. If the macOS/NVIDIA compatibility situation changes,
if the recently released (at the time of writing) Apple Silicon
platform allows for hardware-accelerated TensorFlow support,
or if DeLINEATE adds support for additional backends, GPU-
accelerated dMVPA may become available on macOS in the
relatively near future.

It has historically been difficult to implement large neural
networks without setting up dedicated hardware, largely because
the virtualization approaches favored for cloud-based computing
do not provide sufficient access to GPUs. However, we have
recently seen the emergence of an option that may be useful to
those who lack either the budget or the technical confidence to
set up their own deep learning environments. Google Colab™ is a
browser-based Python environment akin to Jupyter Notebooks
with some access to GPUs. Because the provided environment
includes Keras/TensorFlow and allows interaction with files
stored on Google Drive, it is relatively straightforward to execute
DeLINEATE-based analyses by importing some of the classes
and manually calling the method that begins an analysis. An
example IPython notebook is provided in the Colab subfolder
of the DeLINEATE repository. This approach requires some
proficiency in Python and is subject to fluctuating resource
limitations, so no promises can be made about speed or
stability; however, it may be a good jumping-off point for
beginning users wishing to explore the toolbox before investing
in their own equipment.

*Based on market prices for parts to build a system similar to ours at the time they
were built, with an eight-core Intel i7-9700K CPU, GeForce GTX 1070 GPU, 32GB
RAM, 1TB SSD primary storage, 4TB HDD secondary storage, and a compatible
CPU cooler, motherboard, case, and power supply, for a total of $1750 US. Newer
GPUs and other parts have been released since those were built, but pricing for
current parts is in a similar range.

3*https://colab.research.google.com

Benchmarks

For both traditional MVPA and dMVPA, performance (both
accuracy and computation time) will vary drastically across
datasets, hardware, and choice of MVPA classifier or neural
network architecture. Thus, the generalizability of any
benchmarks is limited. However, to give readers a rough
sense of the computational advantages of dMVPA and how
running times scale for different dataset sizes, we prepared
several datasets and analyzed them with both traditional MVPA
and dMVPA. These benchmark datasets emulate the format of
an fMRI dataset, but are entirely synthetic. The code to generate
them is included in the toolbox.

We simulated datasets with three conditions (classes).
Datasets ranged from 200 features (e.g., voxels) to 25,600 features
in a doubling progression (200, 400, 800, ...). The number
of examples (trials) per condition ranged from 100 to 10,000
in the progression: 10°2, 20”2, 30°2, Full details are given
in the code and in the Supplementary Material. Briefly, for
each condition, a random signal with the appropriate number
of features was generated. Then, supposing for this example
that we are generating 900 trials/condition, 30 variations on
the “canonical” signal for that condition would be generated
by blending the canonical signal with a certain proportion of
random noise. Then, for each of those 30 variations, 30 sub-
variations were generated by the same process. Although we
did not particularly strive for biological verisimilitude, the intent
was to somewhat mimic a circumstance where brain patterns
had a small number of “true” variations (e.g., if the condition
were “faces,” subjects might have slightly different voxel response
patterns for different genders/races) as well as trial-to-trial
variations due to stimulus exemplar effects and/or measurement
noise. To make the classification more challenging, each trial’s
signal was also blended with a proportion of the signal of a trial
from each of the other two conditions.

The datasets were analyzed with three classifier models: a
simple CNN, SMLR, and SVM. The CNN used GPU acceleration
(NVIDIA GeForce GTX 1080 Ti), whereas the other models
used only the CPU (Intel Xeon X5650 @ 2.67GHz). Each
analysis was typically run for 10 iterations (cycles of training/test
with different randomly selected training/test sets) except when
running times became prohibitive, in which case the analysis was
terminated after as few as five iterations.

Mean running times (Table 1) ranged drastically, from less
than one second to several days. As expected, running times
for all model types generally increased with greater numbers
of features and trials. SVMs had both the shortest and longest
running times. Compared to SVMs, SMLR had both a longer
shortest running time and a shorter longest running time (i.e.,
the range was compressed on both ends), and CNNs continued
this trend with an even longer shortest running time and a
still shorter longest running time (i.e., the range was even more
compressed). Notably, the CNN never took less than 10 s (largely
due to a relatively fixed start-up time for Keras models) but its
longest running times, for the most complex datasets, were still
under 15 min. By comparison, SMLR’s longest running times
were over 4 h, and SVMs’ were multiple days. (And a few SVM
models never converged in any reasonable amount of time).

Frontiers in Human Neuroscience | www.frontiersin.org

March 2021 | Volume 15 | Article 638052

https://colab.research.google.com
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

Kuntzelman et al.

Deep Learning and MVPA

Thus, as expected, deep learning models were less time-efficient
than traditional MVPA for simpler datasets but were vastly more
scalable for large datasets.

Benchmark datasets were intended to be classifiable at
moderate accuracies but not particularly designed to be
benchmarks of accuracy, so we do not report comprehensive
accuracy results, which could invite misleading extrapolations
to real data. However, generally all methods performed above
chance, in a comparable range. Typically, the CNN had the
lowest accuracy of all three models on datasets with few trials but
usually had the highest accuracy with large trial counts, especially
when feature counts were low. Conversely, SVM had the highest
accuracy when trial counts were low or with very high feature
counts, although in those high-feature-count analyses, the SVM
running time was long enough to be unusable in many real-world
scenarios. SMLR accuracy almost always fell between CNN and
SVM. Again, we do not expect these accuracies on synthetic data
to perfectly reflect performance on real-world data, but they do fit
general expectations of how models of varying complexity might
be expected to overfit or underfit datasets of varying sizes.

DISCUSSION

Future Development

Toolbox development is ongoing and will largely be steered
by community feedback. Current goals include adding support
for non-sequential Keras models (e.g., those including feedback
connections), transfer learning, model introspection, Generative
Adversarial Networks (GANs), and additional built-in data
loaders and cross-validation schemes. We also plan to make
the GUI more informative and intuitive for users who are
less familiar with Keras, and to include additional tools for
visualization and potentially analysis of results (although this
remains an unsettled topic; see Hebart and Baker, 2018, for
relevant discussion). Although we have kept discussion in this
paper fairly general, information is still liable to go out-of-
date quickly due to the rapid pace of deep learning methods
development; users are encouraged to consult our website for the
most updated details.

Summary

Deep learning continues to grow and offer new possibilities for
computation in many areas of research and private industry.
While it is being increasingly used in neuroimaging and other
neuroscience applications, adoption has been hampered by the
complexity of the topic and the lack of approachable software
tools. We hope that this tutorial review will help researchers new
to deep learning address the former, and that the DeLINEATE

REFERENCES

Akama, H., Murphy, B., Na, L., Shimizu, Y., and Poesio, M. (2012). Decoding
semantics across fMRI sessions with different stimulus modalities: a practical
MVPA study. Front. Neuroinform. 6:24. doi: 10.3389/fninf.2012.00024

Bentin, S., Allison, T., Puce, A., Perez, E, and McCarthy, G. (1996).
Electrophysiological studies of face perception in humans. J. Cogn. Neurosci.
8, 551-565. doi: 10.1162/jocn.1996.8.6.551

software toolbox will help address the latter. In years to come,
we expect dMVPA to enable a forward leap in neuroscience
discoveries comparable to, or exceeding, that of traditional
MVPA over older analyses.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: http://delineate.it/,
https://bitbucket.org/delineate/delineate/src/master/.

AUTHOR CONTRIBUTIONS

KK, JW, PL, and MJ worked on toolbox code and co-wrote the
manuscript. AS and PR consulted on the analyses and related
projects intertwined with toolbox development and contributed
to the writing of the manuscript. All authors contributed to the
article and approved the submitted version.

FUNDING

This work was supported by the NSF Grant CMMI 1719388,
Biosensor Data Fusion for Real-time Monitoring of Global
Neurophysiological Function awarded to PR and colleagues,
as well as NSF/EPSCoR Grant 1632849, RII Track-2 FEC:
Neural networks underlying the integration of knowledge and
perception, and NIH P20 GM130461, Rural Drug Addiction
Research Center, awarded to MJ and colleagues. We also received
a GPU grant from NVIDIA Corporation. The content is solely the
responsibility of the authors and does not necessarily represent
the official views of the National Institutes of Health or the
University of Nebraska.

ACKNOWLEDGMENTS

We thank Aaron Halvorsen and Hannah Ross for assistance with
figure creation and manuscript editing.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2021.638052/full#supplementary- material

Berger, H. (1929). Uber das elektroenkephalogramm des menschen. Archiv
Psychiatrie Nervenkrankheiten 87, 527-570. doi: 10.1007/BF01797193

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). “A training algorithm for
optimal margin classifiers,” in Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, (New York, NY: ACM Press), 144-152.

Buzsaki, G., and Mizuseki, K. (2014). The log-dynamic brain: how skewed
distributions affect network operations. Nat. Rev. Neurosci. 15, 264-278. doi:
10.1038/nrn3687

Frontiers in Human Neuroscience | www.frontiersin.org

March 2021 | Volume 15 | Article 638052

http://delineate.it/
https://bitbucket.org/delineate/delineate/src/master/
https://www.frontiersin.org/articles/10.3389/fnhum.2021.638052/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2021.638052/full#supplementary-material
https://doi.org/10.3389/fninf.2012.00024
https://doi.org/10.1162/jocn.1996.8.6.551
https://doi.org/10.1007/BF01797193
https://doi.org/10.1038/nrn3687
https://doi.org/10.1038/nrn3687
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

Kuntzelman et al.

Deep Learning and MVPA

Chollet, F. (2015). Keras. Available online at: https://keras.io (accessed on
September 17, 2020).

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,
273-297. doi: 10.1007/BF00994018

De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., and Formisano,
E. (2008). Combining multivariate voxel selection and support vector machines
for mapping and classification of fMRI spatial patterns. Neuroimage 43, 44-58.
doi: 10.1016/j.neuroimage.2008.06.037

Dosenbach, N. U,, Nardos, B., Cohen, A. L., Fair, D. A,, Power, J. D., Church, J. A,,
et al. (2010). Prediction of individual brain maturity using fMRI. Science 329,
1358-1361. doi: 10.1126/science.1194144

Grus, J. (2018). I Don’t Like Notebooks. New York, NY: Talk given at Jupytercon.

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V., and
Pollmann, S. (2009). PyMVPA: a python toolbox for multivariate pattern
analysis of fMRI data. Neuroinformatics 7, 37-53. doi: 10.1007/s12021-008-
9041-y

Haxby, J. V., Connolly, A. C., and Guntupalli, J. S. (2014). Decoding neural
representational spaces using multivariate pattern analysis. Annu. Rev.
Neurosci. 37, 435-436. doi: 10.1146/annurev-neuro-062012-170325

Haxby, J. V., Gobbini, M. I, Furey, M. L., Ishai, A., Schouten, J. L., and Pietrini,
P. (2001). Distributed and overlapping representations of faces and objects in
ventral temporal cortex. Science 293, 2425-2430. doi: 10.1126/science.1063736

Hebart, M. N., and Baker, C. I. (2018). Deconstructing multivariate decoding for
the study of brain function. Neuroimage 180, 4-18. doi: 10.1016/j.neuroimage.
2017.08.005

Hebb, D. O. (1949). The organization of behavior: a neuropsychological theory.
New York: John Wiley.

Hinton, G. E., Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for
deep belief nets. Neural Comput. 18, 1527-1554. doi: 10.1162/neco.2006.18.7.
1527

Johnson, M. R,, and Johnson, M. K. (2014). Decoding individual natural scene
representations during perception and imagery. Front. Hum. Neurosci. 8:59.
doi: 10.3389/fnhum.2014.00059

Johnson, M. R., McCarthy, G., Muller, K. A., Brudner, S. N,, and Johnson,
M. K. (2015). Electrophysiological correlates of refreshing: event-related
potentials associated with directing reflective attention to face, scene, or
word representations. J. Cogn. Neurosci. 27, 1823-1839. doi: 10.1162/jocn_a_
00823

Kassam, K. S., Markey, A. R., Cherkassky, V. L., Loewenstein, G., and Just, M. A.
(2013). Identifying emotions on the basis of neural activation. PLoS One 8:6.
doi: 10.1371/journal.pone.0066032

Kay, K. N., David, S. V., Prenger, R. J., Hansen, K. A., and Gallant, J. L. (2008).
Modeling low-frequency fluctuation and hemodynamic response timecourse in
event-related fMRI. Hum. Brain Mapp. 29, 142-156. doi: 10.1002/hbm.20379

Kingma, D. P., and Ba, J. (2014). Adam: A Method for Stochastic Optimization.
arXiv [Preprint] Available online at: https://arxiv.org/abs/1412.6980 (accessed
on September 17, 2020).

Koch, C., and Laurent, G. (1999). Complexity and the nervous system. Science 284,
96-98. doi: 10.1126/science.284.5411.96

Kohler, P. J., Fogelson, S. V., Reavis, E. A., Meng, M., Guntupalli, J. S., Hanke,
M., et al. (2013). Pattern classification precedes region-average hemodynamic
response in early visual cortex. Neurolmage 78, 249-260. doi: 10.1016/j.
neuroimage.2013.04.019

Krishnapuram, B., Figueiredo, M., Carin, L., and Hartemink, A. (2005). Sparse
Multinomial Logistic Regression: Fast Algorithms and Generalization Bounds.
IEEE Transac. Patt. Anal. Mach. Intell. 27, 957-968. doi: 10.1109/TPAMI.20
05.127

Lim, P. C, Ward, E. J., Vickery, T. J., and Johnson, M. R. (2019). Not-so-
working memory: Drift in functional magnetic resonance imaging pattern
representations during maintenance predicts errors in a visual working
memory task. J. Cogn. Neurosci. 31, 1520-1534. doi: 10.1162/jocn_a_
01427

Linnainmaa, S. (1970). The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors. Ph. D Master’s
thesis]. Helsinki: University of Helsinki.

Lore, K. G., Akintayo, A., and Sarkar, S. (2017). LLNet: A deep autoencoder
approach to natural low-light image enhancement. Patt. Recogn. 61, 650-662.
doi: 10.1016/j.patcog.2016.06.008

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve
neural network acoustic models. Proc. ICML 30:3.

McCulloch, W. S., and Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. Bull. Mathem. Biophys. 5, 115-133. doi: 10.1007/BF02478259

Minsky, M., and Papert, S. (1969). Perceptrons: An Introduction to Computational
Geometry. Netherland: MIT Press.

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng, A. Y. (2011). Multimodal
deep learning. ICML 11, 689-696.

Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., and Kriegeskorte,
N. (2014). A toolbox for representational similarity analysis. PLoS Comput. Biol.
10:e1003553. doi: 10.1371/journal.pcbi.1003553

Poldrack, R. A., Barch, D. M., Mitchell, J., Wager, T., Wagner, A. D., Devlin, J. T.,
et al. (2013). Toward open sharing of task-based fMRI data: the OpenfMRI
project. Front. Neuroinform. 7:12. doi: 10.3389/fninf.2013.00012

Raina, R., Madhavan, A., and Ng, A. Y. (2009). “Large-scale deep unsupervised
learning using graphics processors,” in Proceedings of the 26th annual
international conference on machine learning, (Netherland: MIT Press), 873-
880. doi: 10.1145/1553374.1553486

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization in the brain. Psychol. Rev. 65, 386-408. doi: 10.1037/
h0042519

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986a). Learning
representations by back-propagating errors. Nature 323, 533-536. doi: 10.1038/
323533a0

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986b). Learning internal
representations by error propagation. Paral. Distr. Proc.: Expl. Microstruct.
Cogn. 1:1986. doi: 10.21236/ADA 164453

Shalev-Shwartz, S., and Ben-David, S. (2014). Understanding machine learning:
From theory to algorithms. Cambridge: Cambridge University Press.

Sporns, O., Tononi, G., and Edelman, G. M. (2000). Connectivity and complexity:
the relationship between neuroanatomy and brain dynamics. Neural. Networks
13, 909-922. doi: 10.1016/50893-6080(00)00053-8

Szegedy, C., loffe, S., Vanhoucke, V., and Alemi, A. (2016). Inception-v4, inception-
resnet and the impact of residual connections on learning. arXiv preprint
arXiv:1602.07261.

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., Ugurbil,
K., et al. (2013). The WU-Minn human connectome project: an overview.
Neuroimage 80, 62-79. doi: 10.1016/j.neuroimage.2013.05.041

Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. PhD thesis, Cambridge: Harvard University.

Williams, J. M., Samal, A., Rao, P. K., and Johnson, M. R. (2020). Paired Trial
Classification: A Novel Deep Learning Technique for MVPA. Front. Neurosci.
14:417. doi: 10.3389/fnins.2020.00417

Wolpert, D. H., and Macready, W. G. (1997). No Free Lunch Theorems for
Optimization. IEEE Transact. Evol. Comput. 1:67. doi: 10.1109/4235.585893

Xie, J., Girshick, R., and Farhadi, A. (2016). Unsupervised deep embedding for
clustering analysis. Int. conf. Mach. Learn. 478-487.

Xue, G., Dong, Q., Chen, C., Lu, Z., Mumford, J. A., and Poldrack, R. A. (2010).
Greater neural pattern similarity across repetitions is associated with better
memory. Science 330, 97-101. doi: 10.1126/science.1193125

Zeiler, M. D., and Fergus, R. (2013). Stochastic Pooling for Regularization of Deep
Convolutional Neural Networks. arXiv [Preprint], Available online at https:
/larxiv.org/abs/1301.3557 (accessed on September 17, 2020).

Zeiler, M. D., and Fergus, R. (2014). Visualizing and understanding convolutional
networks. Eur. Conf. Comput. Vision 2014, 818-833. doi: 10.1007/978-3-319-
10590-1_53

Zou, H., and Hastie, T. (2005). Regularization and variable selection via the elastic
net. J. Royal Statist. Soc. 67, 301-320. doi: 10.1111/j.1467-9868.2005.00503.x

Conflict of Interest: The authors declare that they requested and received one free
GPU for their deep learning research program from the NVIDIA Corporation, via
their GPU grant program for academics. NVIDIA was not involved in the study
design, collection, analysis, interpretation of data, the writing of this article, or the
decision to submit it for publication.

Copyright © 2021 Kuntzelman, Williams, Lim, Samal, Rao and Johnson. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org

March 2021 | Volume 15 | Article 638052

https://keras.io
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.neuroimage.2008.06.037
https://doi.org/10.1126/science.1194144
https://doi.org/10.1007/s12021-008-9041-y
https://doi.org/10.1007/s12021-008-9041-y
https://doi.org/10.1146/annurev-neuro-062012-170325
https://doi.org/10.1126/science.1063736
https://doi.org/10.1016/j.neuroimage.2017.08.005
https://doi.org/10.1016/j.neuroimage.2017.08.005
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.3389/fnhum.2014.00059
https://doi.org/10.1162/jocn_a_00823
https://doi.org/10.1162/jocn_a_00823
https://doi.org/10.1371/journal.pone.0066032
https://doi.org/10.1002/hbm.20379
https://arxiv.org/abs/1412.6980
https://doi.org/10.1126/science.284.5411.96
https://doi.org/10.1016/j.neuroimage.2013.04.019
https://doi.org/10.1016/j.neuroimage.2013.04.019
https://doi.org/10.1109/TPAMI.2005.127
https://doi.org/10.1109/TPAMI.2005.127
https://doi.org/10.1162/jocn_a_01427
https://doi.org/10.1162/jocn_a_01427
https://doi.org/10.1016/j.patcog.2016.06.008
https://doi.org/10.1007/BF02478259
https://doi.org/10.1371/journal.pcbi.1003553
https://doi.org/10.3389/fninf.2013.00012
https://doi.org/10.1145/1553374.1553486
https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.21236/ADA164453
https://doi.org/10.1016/S0893-6080(00)00053-8
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.3389/fnins.2020.00417
https://doi.org/10.1109/4235.585893
https://doi.org/10.1126/science.1193125
https://arxiv.org/abs/1301.3557
https://arxiv.org/abs/1301.3557
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1111/j.1467-9868.2005.00503.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

	Deep-Learning-Based Multivariate Pattern Analysis (dMVPA): A Tutorial and a Toolbox
	Introduction: a dMvpa Tutorial
	The Case for Deep Learning
	The Case Against Deep Learning
	Overview and Intended Audience
	A Brief History of Neural Networks
	Training Algorithms and Neural Network Architectures
	The Deep Learning Renaissance
	Pros, Cons, and Caveats of dMVPA
	Pro: Potentially Greater Suitability for Complex, Many-Featured Datasets
	Caveat
	Con: Many Potential Types of Analysis Architecture; Many of These Carry an Increased Danger of Overfitting
	Caveat
	Pro: Intrinsically Multiclass Classification
	Pro/Con: Performance
	Caveat
	Pro: Flexibility of Applications
	Con: Field and Dependencies Are in Active Development

	A Brief Introduction to Network Architecture
	Classic
	Convolutional
	Recurrent
	Supporting
	Practical Advice

	Method: a Toolbox for dMvpa
	Overview of the DeLINEATE Toolbox
	DeLINEATE Toolbox Structure
	Current Functionality
	Model Types and Backends
	Cross-Validation
	Rescaling
	Input Data and Loaders
	Output Types and Results Assessment
	Graphical User Interface

	Results
	Availability
	Hardware/Software Requirements
	Benchmarks

	Discussion
	Future Development
	Summary

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

