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Abstract

We study the problem of learning Ising models in a setting where some of the
samples from the underlying distribution can be arbitrarily corrupted. In such
a setup, we aim to design statistically optimal estimators in a high-dimensional
scaling in which the number of nodes p, the number of edges k and the maximal
node degree d are allowed to increase to infinity as a function of the sample size n.
Our analysis is based on exploiting moments of the underlying distribution, coupled
with novel reductions to univariate estimation. Our proposed estimators achieve an
optimal dimension independent dependence on the fraction of corrupted data in the
contaminated setting, while also simultaneously achieving high-probability error
guarantees with optimal sample-complexity. We corroborate our theoretical results
by simulations.

1 Introduction

Undirected graphical models (also known as Markov random fields (MRFs)) have gained significant
attention as a tool for discovering and visualizing dependencies among covariates in multivariate
data. Graphical models provide compact and structured representations of the joint distribution
of multiple random variables using graphs that represent conditional independences between the
individual random variables. They are used in domains as varied as natural language processing[37],
image processing [9, 24, 26], spatial statistics [43] and computational biology [23], among others.
Given samples drawn from the distribution, a key problem of interest is to recover the underlying
dependencies represented by the graph. A slew of recent results [39, 42, 44] have shown that it is
possible to learn such models even in domains and settings where the number of samples is potentially
smaller than the number of variables. These results however make the common assumption that
the sample data is clean, and have no corruptions. However, modern data sets that arise in various
branches of science and engineering are no longer carefully curated. They are often collected in a
decentralized and distributed fashion, and consequently are plagued with the complexities of outliers,
and even adversarial manipulations.

Huber [27] proposed the ε-contamination model as a framework to study such datasets with potentially
arbitrary corruptions. In this setting, instead of observing samples directly from the true distribution
P?, we observe samples drawn from Pε, which for an arbitrary distribution Q is defined as a mixture
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model,
Pε = (1− ε)P? + εQ. (1)

Then, given n samples from Pε, the goal is to recover functionals of P?. There has been a lot of
classical work on estimators for the ε-contamination model setting that largely trade off computational
versus statistical efficiency (see [28] and references therein). Moreover, there has been substantial
progress [3, 7, 15, 16, 18, 31, 34, 41] on designing provably robust estimators which are computa-
tionally tractable while achieving near-optimal contamination dependence (i.e. dependence on the
fraction of outliers ε). However, to the best of our knowledge, there are no known results for learning
general graphical models robustly.

1.1 Related Work

In this work, we focus on the specific undirected graphical model sub-class of Ising models [29].
There has been a lot of work for learning Ising models in the uncontaminated setting dating back
to the classical work of Chow and Liu [8]. Csiszár and Talata [10] discuss pseudo likelihood based
approaches for estimating the neighborhood at a given node in MRFs. Subsequently, a simple search
based method is described in [6] with provable guarantees. Later, Ravikumar et al. [42] showed that
under an incoherence assumption, node-wise (regularized) estimators provably recover the correct
dependency graph with a small number of samples. Recently, there has been a flurry of work [5,
30, 36, 47, 49] to get computationally efficient estimators which recover the true graph structure
without the incoherence assumption, including extensions to identity and independence testing [12].
However, all the aforementioned results are in the uncontaminated setting. Recently, Lindgren et al.
[35] derived preliminary results for learning Ising models robustly. However, their upper and lower
bounds do not match. Moreover, their analysis primarily focuses on the robustness of the Sparsitron
algorithm in [30], and they do not explore the effect of the underlying graph and correlation structures
comprehensively.

Contributions. In this work, we give the first statistically optimal estimator for learning Ising
models under the ε-contamination model. Our estimators achieve a dimension-independent asymptotic
error as a function of the fraction of outliers ε, while simultaneously achieving high probability
deviation bounds. As an important special case of our results, we also close known sample complexity
gaps in the uncontaminated setting for some classes of Ising models. We finally corroborate our
theoretical findings with simulation studies.

1.2 Background and Problem Setup

We begin with some background on Ising models and then provide the precise formulation of the
problem. We follow the notation of Santhanam and Wainwright [45] very closely.

Consider an undirected graphG = (V,E) defined over a set of vertices V = {1, 2, . . . , p} with edges
E ⊂ {(s, t) : s, t ∈ V, s 6= t}. The neighborhood of any node s ∈ V is the subset N (s) ⊂ V given
byN (s)

def
= {t|(s, t) ∈ E}, and the degree of any vertex s is given by ds = |N (s)|. Then, the degree

of a graph d = maxs ds is the maximum vertex degree, and k = |E| is the total number of edges.
We obtain an MRF by associating a random variable Xv at each vertex v ∈ V , and then considering
a joint distribution P over the random vector (X1, . . . , Xp). An Ising model is a special instantiation
of an MRF where each random variable Xs take values in {−1,+1}, and the joint probability mass
function is given by:

Pθ(x1, . . . , xp) ∝ exp

 ∑
1≤s<t≤p

θstxsxt

 , (2)

where we view θ as the parameter vector of the distribution. Note that θ ∈ Rp×p is such that
θij = 0⇔ (i, j) 6∈ E and θ = θT .

Graph Classes. In this work, we consider two classes of Ising models (2) based on the conditions
imposed on the edge set:

1. Gp,d: the collection of graphsG with p vertices such that each vertex has at most d neighbors
for some d ≥ 1, and
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2. Gp,k: the collection of graphs G with p vertices such that the total number of edges in the
graph is at most k for some k ≥ 1.

In addition to these structural properties, we also consider some subclasses based on the parameters
of the Ising model. We define the model width as:

ω∗(θ(G))
def
= max

u∈V

∑
v∈V
|θuv|.

It is well-known (see for instance [45]) that estimation in Ising models becomes harder with increasing
value of edge parameters, since, large values of edge parameters may hide the contributions of other
edges. Similarly, we define the minimum edge weight as:

λ∗(θ(G))
def
= min

(s,t)∈E
|θst| .

With these structural and parameter properties in place, we define the classes of Ising models that we
will be studying in the rest of the paper. Given a pair of positive numbers (λ, ω):

1. Gp,d(λ, ω): the set of all Ising models defined over a graphs G with p vertices, with each
vertex having degree at most d and parameters satisfying

λ∗(θ(G)) ≥ λ and ω∗(θ(G)) ≤ ω.
2. Gp,k(λ, ω): the set of all Ising models defined over a graphs G with p vertices, with total

number of edges at most k and parameters satisfying
λ∗(θ(G)) ≥ λ and ω∗(θ(G)) ≤ ω.

Furthermore, we work in the high temperature regime where we assume that the model width
bound ω∗(θ(G)) ≤ 1−α for some α > 0. Note that this assumption implies the Dobrushin condition
[19], which in case of Ising models is given by

max
u∈V

∑
v∈V

tanh(|θuv|) ≤ 1− α, α ∈ (0, 1). (3)

While this may seem restrictive, this assumption is widely popular for studying Ising models, for
example, see related works in statistical physics [20, 46], mixing times of Glauber dynamics [13, 32],
correlation decay [33] and more recently in estimation and testing problems [11, 12].

Notation: Given a matrix M of dimensions l ×m, we will denote the ith row of matrix by Mi or
M(i) and the (i, j)th element by Mij or M(i, j). M−i or M(−i) denotes the sub-matrix formed by
all rows except i, and analogously M:,−j or M(:,−j) denotes the sub-matrix formed by all columns
except j. Given a vector v, ‖v‖p = p

√∑
i |vi|p denotes its `p-norm, and its `∞-norm is given by

‖v‖max = maxi |vi|. For a matrix M , ‖M‖p,q denotes the mixed `p,q-norm, which is the q-norm
of the collection of p-norms of the rows of M . We also use the shorthand [d] = {1, 2, . . . , d}. We
denote the total variation (TV) distance between two discrete distributions p, q with support X by
dTV(p, q) =

1
2

∑
x∈X |p(x)− q(x)|.

2 Information-theoretic bounds for the ε-contamination model
Recall that in the ε-contamination model (1), we observe n samples from Pε = (1− ε)P? + εQ. In
this model, even in the asymptotic setting as n→∞, we cannot expect to recover the true parameters
exactly. To see this, suppose that P?1,P?2 are such that there exist two distributions Q1 and Q2 such
that

Pε = (1− ε)P?1 + εQ1 = (1− ε)P?2 + εQ2,

then, we cannot hope to distinguish between the two distributions. It is easy to show (see [17])
that the above condition is equivalent to assuming that dTV(P?1,P?2) = ε

1−ε . Thus, for any given
contaminated distribution Pε, there is a set of possible uncontaminated distributions (including the
ground truth uncontaminated distribution among others) within a ball of some fixed radius with
respect to the TV distance, any of which could give rise to the given contaminated distribution Pε.
Thus, when estimating the uncontaminated distribution with respect to some loss function, in the
worst case we could incur loss corresponding to the farthest pair of distributions in the ball of some
fixed radius with respect to TV distance. This is captured by the geometric notion of modulus of
continuity [22], which can then be used to derive sharp bounds on estimation in such a setting:
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Definition 1 (TV modulus of continuity). Given a loss function L : Θ ×Θ → R+ defined over the
parameter space Θ, a class of distributions D, a functional f : D → Θ and a proximity parameter ε,
the modulus of continuity ω(f,D, L, ε) is defined as

ω(f,D, L, ε) def
= sup

P1,P2∈D
dTV(P1,P2)≤ε

L(f(P1), f(P2)). (4)

Intuitively, this quantity controls how far the functionals of two distributions can be, subject to the
constraint that the TV distance between them is ε. Note that for general Ising models, there do not
exist any results that directly relate the total variation distance to the difference in parameters i.e.
which study the TV modulus of continuity for the parameters of an Ising model.

A key contribution of our work is to establish sharp upper bounds on the TV modulus of continuity
for parameter error in the high temperature regime. The loss function is considered to be the `2,∞
norm i.e. for matrices x, y ∈ Rp×p, L(x, y) = maxi ‖xi − yi‖2.

Theorem 1. Consider two Ising models defined over two graphs G(1) and G(2) with p vertices with
parameters θ(1) and θ(2) respectively, each of which satisfy the high temperature condition (3) with
constant α. If dTV (Pθ(1) ,Pθ(2)) ≤ ε, then we have that:

‖θ(1)(i)− θ(2)(i)‖2 . 1ε

√
C1(α) log

(
2

ε

)
for all i ∈ [p],

where C1(α) is a constant depending on α.

Observe that Theorem 1 shows that the parameter error is independent of the dimension p, degree
d and the number of edges k. Furthermore, it is also independent of the minimum edge weight
λ. As expected, when ε → 0, we see that the parameters are equal providing an alternate route to
showing that the parameters of an Ising model are identifiable in the high temperature setting. We
also establish that the dependence on ε is tight upto logarithmic factors by providing a complementary
lower bound – proofs of which are made available in the appendix (Sections C.1 and C.2).

Lemma 1. There exists two Ising models satisfying the properties in Theorem 1 whose parameters
θ(1) and θ(2) satisfy:

‖θ(1)(i)− θ(2)(i)‖2 & ε for all i ∈ [p].

3 TV Projection Estimators
Recall the geometric picture of TV contamination discussed in the previous section: given the
contaminated distribution, there is a set of possible uncontaminated distributions within a ball of some
fixed radius with respect to TV. It is thus natural to consider the TV projection of the contaminated
distribution onto the set of all possible uncontaminated distributions. These are also called minimum
distance estimators and were proposed by Donoho and Liu [21], which we consider for our setting to
learn Ising models robustly, leveraging our Theorem 1.

3.1 Population Robust Estimators for Gp
Let us first consider the population setting i.e., in which we have distribution access to the con-
taminated distribution Pε = (1 − ε)Pθ? + εQ, where Pθ? ∈ Gp(λ, ω) 2. In this setting, we use
the minimum distance estimator [21] to construct robust estimators. In particular, let Pθ̂MDE

be the
minimum distance estimate defined as

Pθ̂MDE
= argmin

Pθ∈Gp
dTV(Pθ,Pε). (5)

This estimator is effectively the TV projection of the contaminated distribution onto the set of all
Ising model distributions whose underlying graph lies in Gp.

1Here and throughout our paper we use the notation . to denote an inequality with universal constants
dropped for conciseness.

2We define the class Gp(λ, ω) as the set of Ising models defined over p vertices with minimum edge weight
λ and model width ω
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Noting that dTV(Pθ? ,Pθ̂MDE
) ≤ ε, by an application of the triangle inequality we have that

dTV(Pθ? ,Pθ̂MDE
) ≤ 2ε. Combining this with Theorem 1, we get that,

‖θ̂MDE(i)− θ?(i)‖2 . ε

√
C(α) log

(
2

ε

)
for all i ∈ [p].

Corollary 1. Let Pθ̂MDE,λ
be the TV projection of the contaminated distribution Pε onto the class of

Ising models Gp,d with minimum edge weight at least λ. Define the edge set of Pθ̂MDE
asE(θ̂MDE,λ) =

{(i, j) : |θ̂MDE,λ(i, j)| > λ
2 }. When ε

√
C(α) log

(
2
ε

)
≤ λ

2C1
, where C1 is a universal constant, the

edge sets of Pθ̂MDE,λ
and Pθ? coincide i.e.,

E(θ̂MDE,λ) = E(θ?).

Observe that this result is interesting and surprising, because one would generally not expect to be
able to recover the true edge E(θ?) under contamination. Additionally, as mentioned earlier, there is
no dependence on p, d or k, which means that the irrespective of the size of graph, if the minimum
edge weight is sufficiently large or the level of contamination is sufficiently small, we would be able
to recover the true edge set in the infinite sample limit.

3.2 Empirical Robust Estimators for Gp,k
The minimum distance estimator is not suitable for non-asymptotic settings since we do not have
access to the population contaminated distribution, but only to its discrete empirical counterpart,
obtained via samples from the contaminated distribution. It would thus be ideal if there were an
approximation to the TV distance that is amenable to projections of discrete distributions, and that
preserves the optimality properties of the full TV projections.

Remarkably, Yatracos [50] proposed just such an approximation to TV projections. Consider a class
of distributions P . It is known that dTV(P,Q) = supA |P (A)−Q(A)|, where the supremum is over
all possible measurable sets A ⊆ supp(P ). While uniform convergence fails over all sets, Yatracos
[50] showed that we can consider a much smaller collection of clevely chosen sets. In particular,
Yatracos [50] suggested approximating the TV distance between distribution P,Q ∈ P as

dTV(P,Q) ≈ sup
A∈A
|P (A)−Q(A)|,

where A are sets of the form
A = {A(P1,P2) : P1,P2 ∈ P}, (6)

and A(P1,P2) = {x : P1(x) > P2(x)}. This approximation allows us to construct statistically
optimal estimators for Gp,k.

3.2.1 Non-Asymptotic Robust Estimators for Gp,k
Given samples {x(i)}ni=1 from the mixture model Pε defined in (1), define P̂n,ε(A) =

1
n

n∑
i=1

I
{
x(i) ∈ A

}
for all A ∈ A, where A is the same as defined in (6) with the class of dis-

tributions Gp,k. Our estimator is defined as

Pθ̂ = argmin
Pθ∈Gp,k

sup
A∈A

∣∣∣Pθ(A)− P̂n,ε(A)
∣∣∣ . (7)

The following lemma characterizes the performance of our estimator.

Lemma 2. Given n samples from a contaminated distribution Pε, the Yatracos estimate (7) satisfies
with probability least 1− δ:

dTV(Pθ̂,Pθ?) ≤ 2ε+O

(√
k log(p

2e/k)

n
+

√
log(1/δ)

n

)
.

The lemma above shows that the Yatracos estimate is close to the true Ising model in TV distance
with high-probability. Combining Lemma 2 and Theorem 1, we get parameter error guarantees for
the Yatracos estimate.
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Corollary 2. Given n samples from Pε, the Yatracos’ estimator returns a θ̂ such that with probability
at least 1− δ,

‖θ̂(i)− θ?(i)‖2 . 2ε
√
log(1/ε) + Õ

(√
k log(p

2e/k)

n
+

√
log(1/δ)

n

)
for all i ∈ [p], (8)

where Õ(.) hides logarithmic factors involving its argument.

Remarks. Note that the proposed estimator achieves the same (asymptotic) dimension-independent
error as the Minimum Distance Estimate discussed in Section 3.1, while simultaneously achieving

an Õ
(√

k log p
n

)
error rate. Moreover, observe that in the uncontaminated setting, i.e., when ε = 0,

this is the first estimator to get an Õ
(√

k log p
n

)
error rate. As a consequence, Yatracos’ estimator

followed by an additional thresholding step gives the first estimator to recover the true edge set
E(θ?) with only Õ

(
k log(p)
λ2

)
samples. In contrast, the estimator proposed by [45] posit that the

sample size should satisfy O(1/λ4) when the parameters are unknown. In the contaminated case, note
that we show a better dependence on ε – O(ε

√
log(1/ε)) vs.

√
ε in [35]. The proof for Lemma 2 is

presented in Section D.2 of the appendix. A similar analysis was conducted in [14], however [14]
study density estimation, and not parameter estimation. The bound on the modulus of continuity
obtained in Theorem 1 allows us to relate the TV distance between the estimated distribution and the
true distribution to the parameter error, thus giving us bounds for parameter estimation.

3.2.2 Non-Asymptotic Robust Estimators for Gp,d
Under the same setting as considered for Gp,k, we see that directly employing the estimator (7)
would lead to a sub-optimal rate. Our guarantee for (7) for Gp,k relies on the fact that parameters
for Ising models in Gp,k contain at most k non-zero elements, hence the subset A(θ(1), θ(2)) = {x :
Pθ(1)(x) > Pθ(2)(x)} is a half-space defined by a vector with at most 2k + 1 non-zero elements.
However, these subsets defined with parameters θ(1), θ(2) of two Ising models in Gp,d is a half-space
defined by a vector that have at most pd + 1 non-zero elements. This leads to a rate term that is
proportional to

√
pd log(p)/n, which does not scale well in high-dimensional settings.

4 Robust Conditional Likelihood Estimators
In the previous section, we have seen that the estimator based on Yatracos classes [50] provides an
approximate TV projection for Gp,k but not for Gp,d. The main caveat with this estimator is that it is
not tractable and takes infinite time. To circumvent this issue, we consider a more direct approach
to robust estimation: we “robustify” the gradient samples obtained from samples {x(i)}ni=1 of the
contaminated distribution Pε = (1− ε)Pθ? + εQ.

Neighborhood-based logistic regression. In a classical paper, Besag [4] made the key structural
observation that under model (2), the conditional distribution of node Xi given the other variables
X−i = x−i is given by

Pθ?(Xi = xi|X−i = x−i) =
exp(2xi

∑
t∈N (i) θ

?
itxt)

exp(2xi
∑
t∈N (i) θ

?
itxt) + 1

= σ(xi 〈2θ?(i), x−i〉).

Thus the variable Xi can be viewed as the response variable in a logistic regression model
with X−i as the covariates and 2θ?(i) as the regression vector. In particular, this implies that
Ex∼Pθ? [∇li(2θ?(i);x)] = 0 where `i(θ(i);x) = log σ(xi 〈θ(i), x−i〉) is the conditional log-
likelihood of x under Pθ. Note that for graphs with maximum degree at most d, the parameter
vector θ?(i) has at most d non-zero entries, and for graphs with at most k edges, the parameter
vector θ?(i) has at most k non-zero entries. Ravikumar et al. [42] solved an `1-regularized logistic
regression to recover the node parameters for graphs with bounded maximum degree. However, in
our setting, the data is contaminated with outliers, and hence the minimizer of the likelihood can
be arbitrarily bad. While there has been recent work giving provably optimal algorithms for robust
logistic regression [41], all of these results are in the low-dimensional setting. We propose the first
statistically optimal estimator for sparse logistic regression, and use that to provide estimators for
learning Ising models.

6



Algorithm 1 Robust1DMean - Robust univariate mean estimator

Require: Samples {z(i)}2ni=1, corruption level ε, confidence level δ
1: Split {z(i)}2ni=1 into two subsets Z1 = {z(i)}ni=1and Z2 = {z(i)}2ni=n+1

2: Set β = max
(
ε, log(1/δ)

n

)
3: n1 = n

(
1− 2β −

√
2β log(4/δ)/n− log(4/δ)/n

)
4: Using Z1, identify Î = [a, b] which is the shortest interval containing n1 points

5: return 1
n2

2n∑
i=n+1

z(i)I
{
z(i) ∈ Î

}
where n2 =

2n∑
i=n+1

I
{
z(i) ∈ Î

}

Robust Sparse Logistic Regression. Our approach is based on a reduction to robust univariate
estimation initially proposed by [40]. In particular, note that when we have clean data, then, in the
population setting, θ?(i) is the unique solution to the equation ‖Ex∼Pθ? [∇`i(θ(i);x)] ‖2 = 0 or
equivalently, it is the unique minimizer for the following optimization problem:

θ?(i) = argmin
w:‖w‖0≤s

sup
u∈Sp−2

∣∣Ex∼Pθ? [uT∇`i(w;x)]∣∣ ,
where we have simply used the variational form of the norm of a vector. Observe that
Ex∼Pθ? [uT∇`i(w;x)] is simply the population (uncontaminated) mean of the gradients, when
projected along the direction u. Unfortunately, we only have finite samples which are moreover
contaminated. We can pass these univariate projections of the gradient through a robust univariate
mean estimator, and return a point which has the smallest (robust) mean along any direction. This
leads to the following program,

θ̂(i) = argmin
w∈Nγs (Sp−2)

sup
u∈N

1/2
2s (Sp−2)

∣∣∣Robust1DMean({uT∇`i(w;x(j))}nj=1)
∣∣∣ , (9)

where N γ
s (Sp−2) is a γ-cover of the unit sphere over p− 1 dimensions with s non-zero entries i.e.,

for every x ∈ Sp−2 that has s non-zero entries, there exists y ∈ N γ
s (Sp−2) such that ‖x− y‖2 ≤ γ.

Our robust univariate mean estimator is based on the shortest interval estimator (Shorth) studied
in [2, 34, 40]. The estimator, presented in Algorithm 1, proceeds by using half of the samples to
identify the shortest interval containing roughly (1−ε)n fraction of the points, and then the remaining
half of the points is used to return an estimate of the mean. Intuitively, this estimator effectively trims
distant outliers, thereby limiting their influence on the estimate.

We assume that the contamination level ε, confidence parameter δ, and sparsity s are such that,

2ε+

√
ε

(
s log(p)

n
+

log(p/δ)

n

)
+
s log(p)

n
+

log(4p/δ)

n
< c, (10)

for some small constant c > 0. As noted earlier, the sparsity parameter s is the maximum degree d
for Gp,d and the maximum number of edges k for Gp,k.

Theorem 2 (Guarantees for Gp,d). Under the setting considered in 4 along with Assumption (3), the

estimator in (9) returns estimates {θ̂(i)}pi=1 with γ = max
{
ε
p ,

log(1/δ)
np

}
returns with probability at

least 1− δ

‖θ̂(i)−θ?(i)‖2 . ε

√
C(α) log

(
1

ε

)
+

√
C(α)

d

n
log

(
3ep2

dγ

)
+max

(
ε,
log(1/δ)

n

)
for all i ∈ [p].

Corollary 3 (Guarantees for Gp,k). Under the setup considered in Theorem 2, the estimator in (9)

returns estimates {θ̂(i)}pi=1 with γ = max
{
ε
p ,

log(1/δ)
np

}
returns with probability at least 1− δ

‖θ̂(i)−θ?(i)‖2 . ε

√
C(α) log

(
1

ε

)
+

√
C(α)

k

n
log

(
3ep2

kγ

)
+max

(
ε,
log(1/δ)

n

)
for all i ∈ [p].

Remarks. Observe that our estimator achieves the same (asymptotic) bias as the Minimum Distance
Estimator, previously discussed in Section 3.1. Define the recovered edge set as those edges (i, j)
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Figure 1: Left: Variation of ‖θ(1) − θ(2)‖2,∞ with dTV(Pθ(1) ,Pθ(2)) for G(1), G(2) ∈ Gclique
15,4 (top)

and G(1), G(2) ∈ Gstar
15,4 (bottom) graphs with varying ω. Middle: Variation of slope with d for cliques

(top) and star (bottom) with p = 12 and ω = 0.4. Right: Variation of slope with ω for cliques (top)
and star (bottom) with p = 15 and d = 5. The slope is defined as ‖θ

(1)−θ(2)‖2,∞
dTV(P

θ(1)
,P
θ(2)

) .

satisfying |θ̂ij | ≥ λ/2. When ε = 0, i.e., no contamination, for Gp,d, we require the number of

samples n ≥ O
(
d log(p)
λ2

)
to recover the true edge set E(θ?). Even in the uncontaminated setting,

there is no known estimator which achieves the same optimal sample complexity as ours. In
particular, Santhanam and Wainwright [45] achieve similar rates when they assume that the structure
is known, while other approaches of [36, 42] have worse dependence on the degree d. Hence, our
proposed estimator has an optimal (asymptotic) bias and optimal high probability bounds. For Gp,k,
we obtain the same rate and sample complexity as Yatracos’ estimator (7), which we remarked is
optimal. The proof of Theorem 2 is presented in Section E.1 of the appendix.

5 Synthetic Experiments

Our theoretical results crucially hinge on bounds on the TV modulus of continuity derived in Theorem
1, and we devote this section to corroborating these bounds.

Setup. We consider two different ensembles. A graph G ∈ Gstar
p,d when one of the p nodes is

connected d other vertices, and no other edges are present in the graph, resembling a star. A graph
G ∈ Gclique

p,d contains b p
d+1c cliques of size d+1, and the remainder of the nodes p mod (d+1) fully

connected amongst themselves. We generate our plots in the following manner: first we construct
two graphs with the same structure - either from Gclique

p,d of Gstar
p,d . We instantiate parameters for

the first graph with θ(1) with model width ω and then vary the parameters for the second graph
as θ(2) = θ(1) · i

25 for i ranging from 1 to 50. We vary p ∈ {12, 15}, d ∈ {3 : 8 : 1} and
ω ∈ {0.2 : 1.0 : 0.2} ∪ {1.5 : 10 : 0.5} where {a : b : c} denotes values between a and b (both
inclusive) with consecutive values differing by c.

Results. Figures 1(a) and 1(d) exhibits a linear relationship between dTV(Pθ(1) ,Pθ(2)) and ‖θ(1) −
θ(2)‖2,∞, as suggested by our theoretical results from previous sections. Furthermore, we notice
that the slope is not drastically affected by ω, which also suggests that the constant C(α) appearing
in our results is O(1). We also note from Figures 1(b) and 1(e), that the slope is unaffected by a
change in degree. Finally, in Figures 1(c) and 1(f), we notice the variation in the slope with increasing
model width ω. While our current result study the case when ω < 1, it is also interesting to note an
increasing trend when ω ≥ 1 suggesting an explicit dependence on ω in the low-temperature regime.
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6 Discussion and Future Work
In this work we provided the first statistically optimal robust estimators for learning Ising models in
the high temperature regime. Our estimators achieved optimal asymptotic error in the ε-contamination
model, and also high-probability deviation bounds in the uncontaminated setting. There are several
avenues for future work, some of which we discuss below.
Beyond Dobrushin’s conditions. In the low-temperature setting, Lindgren et al. [35] showed the
existence of an estimator which gets anO(

√
ε) error. In Appendix A, we tighten this for edge-bounded

graphs by providing estimators which achieve O(min(
√
ε, ε
√
k)) error, where k is the maximum

number of edges in the graph. However, giving matching lower bounds in this setting is an open
problem. Our synthetic experiments surprisingly show that one may expect similar rates in the two
temperature regimes.
Computationally Efficient Estimators. While in this work, we designed statistically optimal
estimators that achieve anO(ε

√
log(1/ε)) parameter error, whereas, existing computationally efficient

approaches [30, 35] achieve a sub-optimal error of O(
√
ε). Developing computationally efficient

algorithms which close this gap is an interesting open problem.
Other Contamination Models. In this work, our focus was on designing estimators for the ε-
contaminated model, i.e., where a fraction of the data is arbitrarily corrupted. Another model of
corruption - motivated by sensor networks and distributed computation where node failures are
common - is when only a few features(nodes) get corrupted, and we still want to learn the appropriate
graph structure for the uncontaminated nodes.

Broader Impact

In this work, we provide statistically optimal estimators for learning Ising models under contamination.
Ising models are themselves used in a variety of domains to learning relationship between pairs of
binary random variables. One extremely interesting application is in the field of opinion analysis
and voting network analysis. For instance, the nodes of the graph represent the voting base and
the samples given to us are votes made of a series of topics as obtained via polls. Such estimators
will help capture associations between voters. However, in a day and age where voting patterns
are susceptible to adversarial corruptions, it is safe to assume that the vote samples are corrupted
too. Using standard methods such as `1-regularized logistic regression could have the unintended
consequence of amplifying the biases from corrupted data, leading to poor judgements, whereas our
methods are optimal resilient to such corruptions. However, if used without prior analysis of the
data presented, this could potentially reduce the effect of outlier samples, which in the case of voting
patterns, are representative of a minority groups.

Acknowledgements

AP, VS and PR acknowledge the support of NSF via IIS-1955532, OAC-1934584, DARPA via
HR00112020006, and ONR via N000141812861. SB and AP acknowledge the support of NSF via
DMS-17130003 and CCF-1763734. We would also like to thank an anonymous reviewer for pointing
out related work by Devroye et al. [14].

References
[1] Mehmet Eren Ahsen and Mathukumalli Vidyasagar. An approach to one-bit compressed sensing

based on probably approximately correct learning theory. The Journal of Machine Learning
Research, 20(1):408–430, 2019.

[2] DF Andrews, PJ Bickel, FR Hampel, PJ Huber, WH Rogers, and JW Tukey. Robust estimates
of location: Survey and advances, 1972.

[3] Sivaraman Balakrishnan, Simon S Du, Jerry Li, and Aarti Singh. Computationally efficient
robust sparse estimation in high dimensions. In Conference on Learning Theory, pages 169–212,
2017.

[4] Julian Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the
Royal Statistical Society: Series B (Methodological), 36(2):192–225, 1974.

9



[5] Guy Bresler. Efficiently learning ising models on arbitrary graphs. In Proceedings of the
forty-seventh annual ACM symposium on Theory of computing, pages 771–782, 2015.

[6] Guy Bresler, Elchanan Mossel, and Allan Sly. Reconstruction of markov random fields from
samples: Some observations and algorithms. In Approximation, Randomization and Combina-
torial Optimization. Algorithms and Techniques, pages 343–356. Springer, 2008.

[7] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
47–60. ACM, 2017.

[8] C Chow and Cong Liu. Approximating discrete probability distributions with dependence trees.
IEEE transactions on Information Theory, 14(3):462–467, 1968.

[9] George R Cross and Anil K Jain. Markov random field texture models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, (1):25–39, 1983.

[10] Imre Csiszár and Zsolt Talata. Consistent estimation of the basic neighborhood of markov
random fields. The Annals of Statistics, pages 123–145, 2006.

[11] Yuval Dagan, Constantinos Daskalakis, Nishanth Dikkala, and Anthimos Vardis Kandiros.
Estimating ising models from one sample. arXiv preprint arXiv:2004.09370, 2020.

[12] Constantinos Daskalakis, Nishanth Dikkala, and Gautam Kamath. Testing ising models. IEEE
Transactions on Information Theory, 65(11):6829–6852, 2019.

[13] Christopher De Sa, Kunle Olukotun, and Christopher Ré. Ensuring rapid mixing and low bias
for asynchronous gibbs sampling. In JMLR workshop and conference proceedings, volume 48,
page 1567. NIH Public Access, 2016.

[14] Luc Devroye, Abbas Mehrabian, Tommy Reddad, et al. The minimax learning rates of normal
and ising undirected graphical models. Electronic Journal of Statistics, 14(1):2338–2361, 2020.

[15] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair
Stewart. Robust estimators in high dimensions without the computational intractability. In
Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages
655–664. IEEE, 2016.

[16] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair
Stewart. Being robust (in high dimensions) can be practical. In Proceeds of the 34th International
Conference on Machine Learning, pages 999–1008, 2017.

[17] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, and Alistair Stewart.
Robust estimators in high-dimensions without the computational intractability. SIAM Journal
on Computing, 48(2):742–864, 2019.

[18] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt, and Alistair
Stewart. Sever: A robust meta-algorithm for stochastic optimization. In Proceedings of the 36th
International Conference on Machine Learning, Proceedings of Machine Learning Research,
pages 1596–1606, 2019.

[19] PL Dobruschin. The description of a random field by means of conditional probabilities and
conditions of its regularity. Theory of Probability & Its Applications, 13(2):197–224, 1968.

[20] Roland L Dobrushin and Senya B Shlosman. Completely analytical interactions: constructive
description. Journal of Statistical Physics, 46(5-6):983–1014, 1987.

[21] David L Donoho and Richard C Liu. The" automatic" robustness of minimum distance func-
tionals. The Annals of Statistics, pages 552–586, 1988.

[22] David L Donoho and Richard C Liu. Geometrizing rates of convergence, iii. The Annals of
Statistics, pages 668–701, 1991.

[23] Nir Friedman. Inferring cellular networks using probabilistic graphical models. Science, 303
(5659):799–805, 2004.

[24] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on pattern analysis and machine intelligence, (6):
721–741, 1984.

[25] Friedrich Götze, Holger Sambale, and Arthur Sinulis. Higher order concentration for functions
of weakly dependent random variables. Electron. J. Probab., 24:19 pp., 2019.

10



[26] Martin Hassner and Jack Sklansky. The use of markov random fields as models of texture. In
Image Modeling, pages 185–198. Elsevier, 1981.

[27] Peter J Huber. Robust estimation of a location parameter. The Annals of Mathematical Statistics,
35(1):73–101, 1964.

[28] Peter J Huber. Robust statistics. In International Encyclopedia of Statistical Science, pages
1248–1251. Springer, 2011.

[29] Ernst Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik, 31(1):253–258,
1925.

[30] Adam Klivans and Raghu Meka. Learning graphical models using multiplicative weights.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages
343–354. IEEE, 2017.

[31] Pravesh K Kothari, Jacob Steinhardt, and David Steurer. Robust moment estimation and
improved clustering via sum of squares. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 1035–1046. ACM, 2018.

[32] Christof Külske. Concentration inequalities for functions of gibbs fields with application to
diffraction and random gibbs measures. Communications in mathematical physics, 239(1-2):
29–51, 2003.

[33] H Künsch. Decay of correlations under dobrushin’s uniqueness condition and its applications.
Communications in Mathematical Physics, 84(2):207–222, 1982.

[34] Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation of mean and covariance.
In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages
665–674. IEEE, 2016.

[35] Erik M Lindgren, Vatsal Shah, Yanyao Shen, Alexandros G Dimakis, and Adam Klivans. On
robust learning of ising models. NeurIPS Workshop on Relational Representation Learning,
2019.

[36] Andrey Y Lokhov, Marc Vuffray, Sidhant Misra, and Michael Chertkov. Optimal structure and
parameter learning of ising models. Science advances, 4(3):e1700791, 2018.

[37] Christopher D Manning, Christopher D Manning, and Hinrich Schütze. Foundations of statistical
natural language processing. 1999.

[38] Pascal Massart. Concentration inequalities and model selection, volume 6. Springer, 2007.

[39] Nicolai Meinshausen, Peter Bühlmann, et al. High-dimensional graphs and variable selection
with the lasso. The Annals of Statistics, 34(3):1436–1462, 2006.

[40] Adarsh Prasad, Sivaraman Balakrishnan, and Pradeep Ravikumar. A unified approach to robust
mean estimation. arXiv preprint arXiv:1907.00927, 2019.

[41] Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, Pradeep Ravikumar, et al. Robust
estimation via robust gradient estimation. Journal of the Royal Statistical Society Series B, 82
(3):601–627, 2020.

[42] Pradeep Ravikumar, Martin J Wainwright, John D Lafferty, et al. High-dimensional ising model
selection using `1-regularized logistic regression. The Annals of Statistics, 38(3):1287–1319,
2010.

[43] Brian D Ripley. Spatial statistics, volume 575. John Wiley & Sons, 2005.

[44] Adam J Rothman, Peter J Bickel, Elizaveta Levina, Ji Zhu, et al. Sparse permutation invariant
covariance estimation. Electronic Journal of Statistics, 2:494–515, 2008.

[45] Narayana P Santhanam and Martin J Wainwright. Information-theoretic limits of selecting
binary graphical models in high dimensions. IEEE Transactions on Information Theory, 58(7):
4117–4134, 2012.

[46] Daniel W Stroock and Boguslaw Zegarlinski. The logarithmic sobolev inequality for discrete
spin systems on a lattice. Communications in Mathematical Physics, 149(1):175–193, 1992.

[47] Marc Vuffray, Sidhant Misra, Andrey Lokhov, and Michael Chertkov. Interaction screening:
Efficient and sample-optimal learning of ising models. In Advances in Neural Information
Processing Systems, pages 2595–2603, 2016.

11



[48] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge University Press, 2019.

[49] Shanshan Wu, Sujay Sanghavi, and Alexandros G Dimakis. Sparse logistic regression learns all
discrete pairwise graphical models. In Advances in Neural Information Processing Systems,
pages 8069–8079, 2019.

[50] Yannis G Yatracos. Rates of convergence of minimum distance estimators and kolmogorov’s
entropy. The Annals of Statistics, pages 768–774, 1985.

12



A Beyond Dobrushin’s Conditions.

All of our previous results are under the high temperature condition (3), where we rely of special
properties of Ising models namely sub-Gaussianity of Ising models random variables. Following this
effort, we attempt to analyze classes of Ising models where this condition doesn’t hold to present an
even more general analysis. Towards this end, we present moduli of continuity bounds as presented
in Theorem 1. Here, we look out for dependence in the model width parameter in addition to the
effective dimensionality of the problem (d in the case of Gp,d and k in the case of Gp,k, and the
tolerance parameter ε.

Theorem 3. Consider two Ising models defined over two graphs G(1) and G(2) over p vertices with
parameters θ(1) and θ(2) respectively, satisfying ω(θ(1)), ω(θ(2)) ≤ ω. If dTV(Pθ(1) ,Pθ(2)) ≤ ε, then
we have the following results for all i ∈ [p]:

(a) If G(1), G(2) ∈ Gp,d, then

‖θ(2)(i)− θ(1)(i)‖2 . min{
√
ε, ε
√
d} ω exp(O(ω)). (11a)

(b) If G1, G2 ∈ Gp,k, then

‖θ(2)(i)− θ(1)(i)‖2 . min{
√
ε, ε
√
k} ω exp(O(ω)). (11b)

Similar to Theorem 3, we get a modulus of continuity bound for the loss function defined by the
(2,∞)-norm. Note that as ε tends to 0, the bounds also tend to 0. However, it is worth noting that
our primitive analysis contains an additional factor in d/k based on the graph class considered. The
sub-optimality is clear when we set ω = O(1), and the bounds while retaining a optimal dependence
on ε have an additional dependence with d/k when compared to the result in Theorem 1. Our analysis
of the Yatracos estimator (7) does not depend of any specific bounds on the model width, and hence
with the derived modulus of continuity bound, we arrive at the following corollary for the estimation
error of the Yatracos estimate:
Corollary 4. Given n samples from the distribution Pε = (1− ε)Pθ? + εQ, where Pθ? ∈ Gp,k(λ, ω)
and Q is an arbitrary distribution supported over {−1,+1}p, the parameter of Yatracos estimate (7)
satisfies:

‖θ̂(i)− θ?(i)‖2 .
√
kωeO(ω)ε+O

(
kωeO(ω)

√
log(p

2e/k)

n
+

√
log(1/δ)

n

)
for all i ∈ [p].

Note that as n → ∞, the bias of the estimator has optimal dependence on ε, but incurs an addi-
tional dependence of

√
k. For ε = 0 i.e. no contamination, the rate we achieve is approximately

ωeO(ω)k
√

log(p)
n , which leads to the number of samples n ≥ O

(
k2ω2eO(ω) log(p)

λ2

)
required to re-

cover the true edge set E(θ?), and this is comparable to existing sample complexity results for
learning Ising models belonging to Gp,k(λ, ω) [45]. We present the proof of Theorem 3 in Section F.
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B Useful Properties of Ising models

In this section, we summarize some useful properties of Ising models which we use judiciously in our
proofs. These results have appeared in previous work, but we state them for the sake of completeness.

B.1 Sub-Gaussianity of Ising model distributions in the high temperature regime

First, we present a result from [25], which states that a random variable distributed according to an
Ising model in the high temperature regime is sub-Gaussian.
Proposition 3 ([25, Theorem 1.4]). Let z ∼ P be a random variable whose distribution P is an Ising
model over p nodes in the high temperature regime (3) with constant α. Then for v ∼ Rp:

Pr
z∼P

(|〈v, z〉| > t) ≤ 2 exp

(
− t2

C(α)||v||22

)
, (12)

where C(α) is a constant depending on α.

B.2 Strong convexity of the negative conditional log-likelihood

Here we present a proposition that states that the population negative conditional log-likelihood is
strongly convex. This proposition is obtained using a result by Dagan et al. [11]. We first state the
result by Dagan et al. [11] below, and then use it to show that the population negative condition
log-likelihood is strongly convex.
Proposition 4 ([11, Lemma 10]). Let z be a random variable distributed w.r.t. an Ising model
over p nodes whose parameter θ satisfies maxi∈[p] ‖θ(i)‖∞ ≤ ω and mini∈[p] Pθ(Xi = 1|X−i =
x−i)(1− Pθ(Xi = 1|X−i = x−i)) ≥ γ. Then for any v ∈ Rp, we have that:

Var[〈v, z〉] ≥ C1γ
2||v||22
ω

,

where C1 is a universal constant.

Now, let Lθ,i(w) be the population negative conditional log-likelihood for node Xi, where X is
sampled from the Ising model distribution Pθ. Formally, Lθ,i(w) = −Ez∼Pθ [`i(w; z)], where
`i(w; z) is the conditional log-likelihood of z under Pθ with respect to the ith node. As stated earlier,
by the maximum likelihood principle,∇Lθ,i(2θ(i)) = 0. With this definition, we have the Hessian
of the population negative conditional log-likelihood as ∇2Lθ,i(w) = Ez∼Pθ [∇2`i(w; z)]. Then, we
have the following result.
Proposition 5. Let Pθ be an Ising model over p nodes whose parameter satisfies maxi∈[p] ‖θ(i)‖∞ ≤
ω, and letw ∈ Rp−1 be such that ‖w‖1 ≤ 2ω. Then, for any vector v ∈ Rp−1, there exists a universal
constant C > 0 such that:

vT∇2Lθ,i(w)v ≥ C
exp(−O(ω))

ω
‖v‖22.

Proof. First, observe that

∇2Lθ,i(w) = Ez∼Pθ
[
σ(zi〈w, z−i〉)(1− σ(zi〈w, z−i〉))z−izT−i

]
⇒ vT∇2Lθ,i(w)v = Ez∼Pθ

[
σ(zi〈w, z−i〉)(1− σ(zi〈w, z−i〉))〈z−i, v〉2

]
.

In Lemma 6, we show that for any ‖w‖1 ≤ 2ω, we have that

σ(zi〈w, z−i〉)(1− σ(zi〈w, z−i〉)) ≥
exp(−2ω)

4
. (13)

We now lower bound E[〈z−i, v〉2]. Since Ising model has zero mean field, we have that E[〈z−i, v〉2] =
Var[〈z−i, v〉]. Furthermore, due the assumptions placed on the parameter of the Ising model, we
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obtain that for any x ∈ {−1,+1}p−1, Pθ(Xi = 1|X−i = x)(1 − Pθ(Xi = 1|X−i = x)) ≥
1
4 exp(−4ω). This can be shown as follows. For any z ∈ {−1,+1} and x ∈ {−1,+1}p−1, we have
that:

Pθ(Xi = z|X−i = x) =
1

1 + exp(−z 〈2θ(i,−i), x〉)
(i)

≥ 1

1 + exp(2ω)

≥ 1

2 exp(2ω)
=

exp(−2ω)
2

⇒ Pθ(Xi = 1|X−i = x)Pθ(Xi = 0|X−i = x) ≥ exp(−2ω)
2

exp(−2ω)
2

=
exp(−4ω)

4

where Step (i) uses Hölder’s inequality as: | 〈2θ(i,−i), x〉 | ≤ 2ω ⇒ −z 〈2θ(i,−i), x〉 ≤ 2ω.

Using this in Proposition 4, we have that:

Var[〈v, z−i〉] ≥ C
exp(−8ω)‖v‖22

ω
(14)

where C is a universal constant.

Combining (13) and (14), we obtain the statement of the lemma.

B.2.1 Auxiliary Lemmata

Lemma 6. If w ∈ Rp−1 such that ||w||1 ≤ 2ω, then for x, y ∈ {−1,+1}p−1 × {−1,+1}:

σ(y〈w, x〉)(1− σ(y〈w, x〉)) = exp(−y〈w, x〉)
(1 + exp(−y〈w, x〉))2

≥ exp(−|y〈w, x〉|)
4

≥ exp(−2ω)
4

(15)

Proof. Consider f(a) = σ(a)(1− σ(a)) = exp(−a)
(1+exp(−a))2 = exp(a)

(1+exp(a))2 . Now for a > 0:

e−a < 1⇔ e−a + 1 < 2⇔ (e−a + 1)2 < 4⇔ exp(−a)
(1 + exp(−a))2

≥ exp(−a)
4

For a < 0:

ea < 1⇔ ea + 1 < 2⇔ (ea + 1)2 < 4⇔ exp(a)

(1 + exp(a))2
≥ exp(a)

4

Therefore:

f(a) ≥ exp(−|a|)
4

By Hölder’s inequality, |y〈w, x〉| ≤ ||w||1||x||∞ ≤ 2ω. This implies that

σ(y〈w, x〉)(1− σ(y〈w, x〉)) = f(y〈w, x〉) ≥ exp(−|y〈w, x〉|)
4

≥ exp(−2ω)
4
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C Proofs of Propositions in Section 2

In this section, we present the proofs for Theorem 1 and Lemma 1.

C.1 Proof of Theorem 1

Here, we derive bounds on the modulus of continuity defined in (4) with the loss function given by
the `2,∞ norm of the parameters.

Proof Sketch. We begin by giving a brief proof outline. Pθ(1) and Pθ(2) are two Ising models in the
high temperature regime (3) with constant α, and additionally satisfy dTV(Pθ(1) ,Pθ(2)) ≤ ε. Consider
Lθ(1),i to be the population negative conditional log-likelihood for the ith node with respect to Pθ(1)
defined earlier. We earlier noted that∇Lθ(1),i(2θ(1)(i)) = 0 by the maximum likelihood principle.

In Lemma 7, we show that under these conditions, the gradient ∇Lθ(1),i(2θ(2)(i)) satisfies
‖∇Lθ(1),i(2θ(2)(i))‖2 ≤

√
C(α)ε

√
log(1/ε), where C(α) is a universal constant only depending on

α. With this intermediate result, we complete the proof of the theorem as follows. Considering the
Taylor series expansion of Lθ(1),i around 2θ(2)(i), we get

Lθ(1),i(2θ(1)(i)) = Lθ(1),i(2θ(2)(i)) +
〈
∇Lθ(1)(i)(2θ(2)(i)), ∆i

〉
+

1

2
∆T
i ∇2Lθ(1),i(w̃)∆i

(i)

≥ Lθ(1),i(2θ(2)(i)) +
〈
∇Lθ(1)(i)(2θ(2)(i)), ∆i

〉
+
C

2

exp(−O(ω))

ω
‖∆i‖22

(ii)

≥ Lθ(1),i(2θ(2)(i)) +
〈
∇Lθ(1)(i)(2θ(2)(i)), ∆i

〉
+ C ′

exp(−c(1− α))
1− α

‖∆i‖22,

where w̃ lies between 2θ(2)(i) and 2θ(1)(i), and ∆i = 2θ(1)(i)− 2θ(2)(i). In step (i), we have used
the result in Proposition 5 and in step (ii) we use the fact that ω ≤ 1− α.

We also know by the maximum likelihood principle that Lθ(1),i(2θ(1)(i)) ≤ Lθ(1),i(2θ(2)(i)), and
substituting this in the inequality above yields

C ′
exp(−c(1− α))

1− α
‖∆i‖22 ≤ −

〈
∇Lθ(1)(i)(2θ(2)(i)), ∆i

〉
≤
∣∣∣〈∇Lθ(1)(i)(2θ(2)(i)), ∆i

〉∣∣∣ .
Finally, we bound the right hand side using the Cauchy-Schwarz inequality and the result from
Lemma 7 to get∣∣∣〈∇Lθ(1)(i)(2θ(2)(i)), ∆i

〉∣∣∣ ≤ ‖∇Lθ(1),i(2θ(2)(i))‖2‖∆i‖2 ≤
√
C(α)ε

√
log(1/ε)‖∆i‖2,

and substituting this in the quadratic bound above gives

‖∆i‖2 ≤ C1(α)ε
√

log(1/ε), C1(α) =
1

C ′
(1− α) exp(c(1− α))

√
C(α).

We now state Lemma 7 and prove it below.
Lemma 7. Let Pθ(1) and Pθ(2) be two Ising models in the high temperature regime (3) with constant
α that satisfies dTV(Pθ(1) ,Pθ(2)) ≤ ε. Then, there exists a universal constant C(α) that only depends
on α such that

‖∇Lθ(1),i(2θ(2)(i))‖2 ≤
√
C(α)ε

√
log (1/ε) for all i ∈ [p]

Proof. Recall that Lθ(1),i(w) = Ez∼P
θ(1)

[`i(w; z)]. By the maximum likelihood principle, we know
that

∇Lθ(1),i(2θ(1)(i)) = 0 ∇Lθ(2),i(2θ(2)(i)) = 0
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Since dTV(Pθ(1) ,Pθ(2)) ≤ ε, there exists an ε-coupling C between Pθ(1) and Pθ(2) . In particular, C is
a joint distribution over z1, z2 such that the respective marginals are z1 ∼ Pθ(1) and z2 ∼ Pθ(2) , and
Ez1,z2∼C [I {z1 6= z2}] ≤ ε.

The rest of the proof begins by making the observation that ∇Lθ(1),i(2θ(2)(i)) =

Ez1,z2∼C [∇`i(2θ(2)(i); z1)]. By introducing indicator random variables for the cases when z1 and z2

are equal or not, we have

∇Lθ(1),i(2θ(2)(i)) = Ez1,z2∼C [∇`i(2θ(2)(i); z1)I {z1 6= z2}] + Ez1,z2∼C [∇`i(2θ(2)(i); z1)I {z1 = z2}]
= Ez1,z2∼C [∇`i(2θ(2)(i); z1)I {z1 6= z2}] + Ez1,z2∼C [∇`i(2θ(2)(i); z2)I {z1 = z2}]
(a)
= Ez1,z2∼C [∇`i(2θ(2)(i); z1)I {z1 6= z2}]− Ez1,z2∼C [∇`i(2θ(2)(i); z2)I {z1 6= z2}],

where step (a) follows from the stationarity of 2θ(2)(i) under Pθ(2) like so.

0 = ∇Lθ(2),i(2θ(2)(i))

= Ez1,z2∼C [∇`i(2θ(2)(i); z2)]

= Ez1,z2∼C [∇`i(2θ(2)(i); z2)I {z1 = z2}] + Ez1,z2∼C [∇`i(2θ(2)(i); z2)I {z1 6= z2}].

Therefore, for any vector v ∈ Sp−2, we have that∣∣∣〈v,∇Lθ(1),i(2θ(2)(i))
〉∣∣∣ = ∣∣∣Ez1,z2∼C [〈v,∇`i(2θ(2)(i); z1)

〉
I {z1 6= z2}]

−Ez1,z2∼C [
〈
v,∇`i(2θ(2)(i); z2)

〉
I {z1 6= z2}]

∣∣∣
≤
∣∣∣Ez1,z2∼C [〈v,∇`i(2θ(2)(i); z1)

〉
I {z1 6= z2}]

∣∣∣︸ ︷︷ ︸
T1

+
∣∣∣Ez1,z2∼C [〈v,∇`i(2θ(2)(i); z2)

〉
I {z1 6= z2}]

∣∣∣︸ ︷︷ ︸
T2

.

Bounding T2: Note that ∇`i(w; z1) = (σ(〈w, z1(−i)〉z1(i)) − 1)z1(−i)z1(i). Since z1 ∼
{−1,+1}p, we have that |(σ(〈w, z1(−i)〉z1(i))−1)z1(i)| < 1, and hence we get |〈v,∇`i(w; z1)| <
|〈v, z1(−i)|.
This in turn implies

Pr(|〈v,∇`i(w; z1)〉| > t) ≤ Pr(|〈v, z1(−i)〉| > t)
(b)

≤ 2 exp

(
− t2

C(α)

)
where step (b) follows from the sub-Gaussianity of random variables distributed with respect to an
Ising model in the high temperature regime (Proposition 3). Using standard tail bounds (see [48,
Chapter 2]), we obtain that E[exp(λ(〈v,∇`i(w; z1)〉))] ≤ exp

(
Cλ2C(α)

2

)
. To finally bound T2, we

use the following result from [38].

Proposition 8 ([38, Lemma 2.3]). Let Z be a random variable such that E[exp(λZ)] ≤ eλ
2σ2

2 . For
any measurable event A, we have

|E[Z · I {A}]| ≤ σP (A)
√
log(1/P (A)).

In T2, the event A is z1 6= z2 and this occurs with probability less than ε. Hence, we get T2 ≤
C
√
C(α)ε

√
log(1/ε).
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Bounding T1: This can be bounded in an analogous manner as T2, thus yielding T1 ≤
C
√
C(α)ε

√
log(2/ε).

Plugging these bounds above, we get

‖∇Lθ(1),i(2θ(2)(i))‖2 ≤ C
√
C(α)ε

√
log(1/ε,

which proves the statement of the lemma.

C.2 Proof of Lemma 1

Proof. Consider two Ising models with p vertices. For the first Ising model, consider one edge with
parameter 2ε. The second Ising model has no edges.

Via a simple calculation, the TV distance between these Ising models can be computed to be
1
2 tanh(2ε) ≤ ε. Consequently, the `2,∞ norm of the difference in parameters is ε, and this proves
the lower bound.
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D Proofs of Propositions in Section 3

D.1 A general result for estimators based on Yatracos classes

Here, we present a result for estimators of the form

Pest = argmin
P∈P

sup
A∈A

∣∣∣P(A)− P̂n,ε(A)
∣∣∣ , (16)

where P̂n,ε the empirical distribution of n samples from the mixture model Pε defined in (1) and P is
the class of all distributions. Recall that A is defined as

A = {A(P1,P2) : P1,P2 ∈ P}, and A(P1,P2) = {x : P1(x) > P2(x)}

The result in formally stated in Proposition 2.

Proposition 9. Given n samples from the mixture model Pε = (1 − ε)P? + εQ, the estimator Pest
defined in (16) satisfies

dTV(Pest,P?) ≤ 2ε+ 2 sup
A∈A

∣∣∣∣∣∑
x∈A

P̂n,ε(x)−
∑
x∈A

Pε(x)

∣∣∣∣∣
Proof. We begin by using 2dTV(Pest,P?) =

∑
x∈X
|Pest(x)− P?(x)|. Consider the sets B = {x :

Pest(x) > P?(x)} and C = {x : Pest(x) ≤ P?(x)}.
This gives us:

∑
x∈X
|Pest(x)− P?(x)| = 2 max

A∈{B,C}

∣∣∣∣∣∑
x∈A

Pest(x)− P?(x)

∣∣∣∣∣
≤ 2 sup

A∈A

∣∣∣∣∣∑
x∈A

Pest(x)−
∑
x∈A

P?(x)

∣∣∣∣∣
= 2 sup

A∈A

∣∣∣∣∣∑
x∈A

Pest(x)−
∑
x∈A

P̂n,ε(x) +
∑
x∈A

P̂n,ε(x)−
∑
x∈A

P?(x)

∣∣∣∣∣
≤ 2 sup

A∈A

∣∣∣∣∣∑
x∈A

Pest(x)−
∑
x∈A

P̂n,ε(x)

∣∣∣∣∣+ 2 sup
A∈A

∣∣∣∣∣∑
x∈A

P̂n,ε(x)−
∑
x∈A

P?(x)

∣∣∣∣∣
(i)

≤ 4 sup
A∈A

∣∣∣∣∣∑
x∈A

P̂n,ε(x)−
∑
x∈A

P?(x)

∣∣∣∣∣
= 4 sup

A∈A

∣∣∣∣∣∑
x∈A

P̂n,ε(x)−
∑
x∈A

Pε(x) +
∑
x∈A

Pε(x)−
∑
x∈A

P?(x)

∣∣∣∣∣
≤ 4 sup

A∈A

∣∣∣∣∣∑
x∈A

P̂n,ε(x)−
∑
x∈A

Pε(x)

∣∣∣∣∣+ 4 sup
A∈A

∣∣∣∣∣∑
x∈A

Pε(x)−
∑
x∈A

P?(x)

∣∣∣∣∣
= 4 sup

A∈A

∣∣∣∣∣∑
x∈A

P̂n,ε(x)−
∑
x∈A

Pε(x)

∣∣∣∣∣+ 4dTV(Pε,P?)

(ii)

≤ 4 sup
A∈A

∣∣∣∣∣∑
x∈A

P̂n,ε(x)−
∑
x∈A

Pε(x)

∣∣∣∣∣+ 4ε,

where in step (i) we have used the optimality of Pest and in step (ii) we have used the fact that
dTV(Pε,P?) ≤ ε and this completes the proof.
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D.2 Proof of Lemma 2

With the general result for estimators based on Yatracos classes, we state the proof of Lemma 2.

Proof. For the estimator in (7), the class of distributions is Gp,k. Via Proposition 9, we have that:

dTV(Pθ̂,Pθ?) ≤ 2ε+ 2 sup
A∈A

∣∣∣∣∣∑
x∈A

P̂n,ε(x)−
∑
x∈A

Pε(x)

∣∣∣∣∣︸ ︷︷ ︸
T1

Note that distributions in Gp,k are Ising model distributions and are parameterized. Thus, we
can alternatively identify the sets A(P1,P2) via the parameters of Ising model distributions as
A(θ(1), θ(2)).

Bounding T1: The set A(θ(1), θ(2)) is equivalent to

A(θ(1), θ(2)) = {x : logPθ(1)(x) > logPθ(2)(x)}

Recalling the definitions of Pθ(1) and Pθ(2) , and flattening the parameters to R(
p
2), we have:

A(θ(1), θ(2)) =
{
y :
〈
θ

(1)
flat − θ

(2)
flat, y

〉
+ log(Z(θ(2)))− log(Z(θ(1))) > 0

}
= {y : 〈w, ỹ〉 > 0}

where w = [θ
(1)
flat − θ

(2)
flat, log(Z(θ

(2))) − log(Z(θ(1)))] and ỹ = [y, 1]. Z(θ) is the normalization

constant of the probability mass function of an Ising model Pθ and y ∈ R(
p
2) is a vector of sufficient

statistics. Since θ(1), θ(2) ∈ Gp,k, both θ(1)
flat and θ(2)

flat can have at most k entries. Consequently, the
vector w can have at most 2k + 1 non-zero entries. Hence, A can be viewed as a collection of sets:

A = {I {〈w, y〉 > 0} : w ∈ R(
p
2), ||w||0 ≤ 2k + 1}

The following proposition bounds the VC-dimension of sparse linear classifiers:

Proposition 10 ([1, Corollary 1]). Consider the class of linear predictors, defined by the set Ss =
{v : ||v||0 ≤ s, v ∈ Rm} i.e. the set of s-sparse vectors. The VC-dimension of this class is upper
bounded as: O(s log(em/s)).

Therefore, from the above proposition, we have that the VC-dimension ofA is bounded from above by
O
(
2k + 1) log(ep

2
/4k+2

)
which is O(k log(ep/k)). Hence, by a concentration of measure argument,

we have that with probability at least 1− δ:

T1 .

√
k log(ep/k)

n
+

√
log(1/δ)

n
.

Finally, we obtain

dTV(Pθ̂,Pθ?) ≤ 2ε+O

(√
k log(ep/k)

n
+

√
log(1/δ)

n

)
,

and this recovers the statement of the lemma.
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E Proof of Propositions in Section 4

E.1 Proof of Theorem 2

Proof Sketch. We give an outline of the proof of the theorem. Pθ? is an Ising model in the high
temperature regime with constant α. Recall the proposed estimator:

θ̂(i) = argmin
w∈Nγd (Sp−2)

sup
u∈N

1/2
2d (Sp−2)

∣∣∣1DMean
(
{uT∇`i(w;x(j))}nj=1

)∣∣∣ . (17)

Proposition 5 states that the negative conditional log-likelihood Lθ?,i is C2(α)-strongly convex,
where C2(α) is a universal constant only depending on α. Therefore, by the monotonicity of the
gradient of strongly-convex function, we bound the parameter error ‖θ̂(i)− θ?(i)‖2 as

‖θ̂(i)− θ?(i)‖22 ≤
1

C2(α)

〈
∇Lθ?,i(θ̂(i))−∇Lθ?,i(θ?(i)), θ̂(i)− θ?(i)

〉
.

Next, note that

‖θ̂(i)− θ?(i)‖2 ≤
1

C2(α)

〈
∇Lθ?,i(θ̂(i))−∇Lθ?,i(θ?(i)), θ̂(i)− θ?(i)

〉
‖θ̂(i)− θ?(i)‖2

(i)

≤ 1

C2(α)
sup

u∈N2d(Sp−2)

∣∣∣〈u,∇Lθ?,i(θ̂(i))〉∣∣∣
(ii)

≤ 2

C2(α)
sup

u∈N
1/2
2d (Sp−2)

∣∣∣〈u,∇Lθ?,i(θ̂(i))〉∣∣∣ ,
where in step (i) we have used the facts that 1) θ̂(i)−θ?(i)

‖θ̂(i)−θ?(i)‖2
is a unit vector with at most 2d non-zero

elements, and 2) ∇Lθ?,i(θ?(i)) = 0 by the maximum likelihood principle, and in step (ii) we have
constructed a 1/2-cover of the set N 1/2

2d (Sp−2).

We further analyze the right hand side by splitting it into two different terms as follows.

sup
u∈N

1/2
2d (Sp−2)

∣∣∣〈u,Lθ?,i(θ̂(i))〉∣∣∣ ≤
sup

u∈N
1/2
2d (Sp−2)

∣∣∣〈u,Lθ?,i(θ̂(i))〉− 1DMean
(
{uT∇`i(θ̂(i), x(j))}nj=1

)∣∣∣
︸ ︷︷ ︸

T1

+ sup
u∈N

1/2
2d (Sp−2)

∣∣∣1DMean
(
{uT∇`i(θ̂(i), x(j))}nj=1

)∣∣∣
︸ ︷︷ ︸

T2

.

In Lemmas 11 and 12, considering γ = max
{
ε
p ,

log(1/δ)
np

}
, and for sufficiently large n (10), we

bound T1 and T2 as T1 ≤
√
C(α)

{
ε
√
log
(

1
ε

)
+
√

d log(p)
n +

√
d
n log

(
3ep
dγ

)}
, and in Lemma

12, we bound T2 as T2 ≤
√
C(α)

{
ε
√
log
(

1
ε

)
+
√

d log(p)
n +

√
d
n log

(
3ep
dγ

)}
+max

(
ε, log(1/δ)

n

)
respectively.
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Plugging these bound into the previous right hand side, we obtain

‖θ̂(i)−θ?(i)‖2 .
√
C(α)

{
ε

√
log

(
1

ε

)
+

√
d log(p)

n
+

√
d

n
log

(
3ep

dγ

)}
+max

(
ε,
log(1/δ)

n

)
,

and this recovers the statement of the theorem.

We state Lemmas 11 and 12 and prove them below.

Lemma 11. Consider samples {x(j)}nj=1 from the mixture model Pε = (1− ε)Pθ? + εQ, where Pθ?
is an Ising model over p nodes in the high temperature regime (3) with constant α and with maximum
vertex degree d. Suppose n, confidence δ and contamination level ε satisfy (10). Then, 1DMean
satisfies

sup
w∈Nγd (Sp−2)

sup
u∈N

1/2
d (Sp−2)

∣∣∣〈u,∇Lθ?,i(w)〉 − 1DMean
(
{uT∇`i(w;x(j))}nj=1

)∣∣∣
≤
√
C(α)

{
ε

√
log

(
1

ε

)
+

√
d log(p)

n
+

√
d

n
log

(
3ep

dγ

)}
.

Proof. Let z ∼ Pθ? . In the proof of Lemma 7, we showed that

Pr(|〈u,∇`i(w; z)〉|) ≤ 2 exp

(
− t2

C(α)

)
holds due to the form of the gradient and the sub-Gaussianity of the Ising model distribution. This
implies that the gradients of `i due to non-outlier samples are sub-Gaussian. This allows us to leverage
techniques from [40] to produce a guarantee for the 1DMean algorithm when the true distribution is
sub-Gaussian in Lemma 13. This states that

∣∣∣〈u,∇Lθ?,i(w)〉 − 1DMean
(
{uT∇`i(w;x(j))}nj=1

)∣∣∣ . ε

√
C(α) log

(
1

ε

)
+

√
C(α)

n
log

(
1

δ

)
,

where w ∈ N γ
d (Sp−2) and u ∈ N 1/2

d (Sp−2).

Finally, to convert the point-wise bound to a uniform bound, we perform a union bound over all the
elements in N γ

d (Sp−2) and N 1/2
d (Sp−2), and use the fact that the number of elements in the cover

can be bounded as |N γ
k (Sp−2)| ≤

(
3ep
kγ

)k
to recover the statement of the result.

Lemma 12. Given samples {x(j)}nj=1 from the mixture model Pε = (1 − ε)Pθ? + εQ, where Pθ?
is an Ising model over p nodes in the high temperature regime (3) with constant α, there exists a
constant C(α) that only depends on α such that:

sup
u∈N

1/2
2d (Sp−2)

∣∣∣1DMean
(
{uT∇`i(θ̂(i);x(j)}nj=1

)∣∣∣
≤
√
C(α)

{
ε

√
log

(
1

ε

)
+

√
d log(p)

n
+

√
d

n
log

(
3ep

dγ

)}
+max

(
ε,
log(1/δ)

n

)

where θ̂(i) is as defined in (9) with γ = max
{
ε
p ,

log(1/δ)
p

}
.

Proof. First, define Cγ(θ?(i)) as the element closest to θ?(i) in the set N γ
d (Sp−2).
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We begin the proof by recognizing that

sup
u∈N

1/2
2d (Sp−2)

∣∣∣1DMean
(
{uT∇`i(θ̂(i);x(j))}nj=1

)∣∣∣
(i)

≤ sup
u∈N

1/2
2d (Sp−2)

∣∣∣1DMean
(
{uT∇`i(Cγ(θ?(i));x(j))}nj=1

)∣∣∣
(ii)

≤ sup
u∈N

1/2
2d (Sp−2)

∣∣∣1DMean
(
{uT∇`i(Cγ(θ?(i));x(j))}nj=1

)
− 〈u,∇Lθ?,i(Cγ(θ?(i)))〉

∣∣∣
︸ ︷︷ ︸

T2,1

+ sup
u∈N

1/2
2d (Sp−2)

|〈u,∇Lθ?,i(Cγ(θ?(i)))〉|︸ ︷︷ ︸
T2,2

where Step (i) uses the optimality of θ̂(i) and Step (ii) performs splitting by addition and subtraction
as mentioned earlier.

Bounding T2,1: T2,1 can be bounded using Lemma 11, since it holds for any w ∈ N γ
d (Sp−2) and

Cγ(θ
?(i)) ∈ N γ

d (Sp−2 by definition. Therefore, we get

sup
u∈N

1/2
2d (Sp−2)

∣∣∣1DMean
(
{uT∇`i(Cγ(θ?(i));x(j))}nj=1

)
− 〈u,∇Lθ?,i(Cγ(θ?(i)))〉

∣∣∣
≤
√
C(α)

{
ε

√
log

(
1

ε

)
+

√
d log(p)

n
+

√
d

n
log

(
3ep

dγ

)}
.

Bounding T2,2: T2,2 can be bounded as follows:

sup
u∈N

1/2
2d (Sp−2)

|〈u,∇Lθ?,i(Cγ(θ?(i)))〉| ≤ ‖∇Lθ?,i(Cγ(θ?(i)))‖2

= ‖∇Lθ?,i(Cγ(θ?(i)))−∇Lθ?,i(θ?(i))‖2
≤ L‖Cγ(θ?(i))− θ?(i)‖2 ≤ Lγ,

where L is the Lipschitz constant of Lθ?,i. A simple calculation reveals that:

∇2Lθ?,i(w) = Ex∼Pθ? [σ(〈w, x(−i)〉xi)(1− σ(〈w, x(−i)〉xi))x(−i)x(−i)
T ]

⇒ vT∇2Lθ?,i(w)v = Ex∼Pθ∗ [σ(〈w, x(−i)〉xi)(1− σ(〈w, x(−i)〉xi))(〈v, x(−i)〉)
2]

(i)

≤ 1

4
Ex∼Pθ∗ [(v

Txi)
2]

(ii)

≤ p

4
‖v‖22

where in Step (i) we have used the fact that σ(z)(1− σ(z)) ≤ 1
4 and in Step (ii) we have used the

Cauchy-Schwarz inequality, leading to L = p.

With the choice of γ = max
{
ε
p ,

log(1/δ)
n

}
, we have the final result

sup
u∈N

1/2
2d (Sp−2)

∣∣∣1DMean
(
{uT∇`i(θ̂(i);x(j))}nj=1

)∣∣∣
≤
√
C(α)

{
ε

√
log

(
1

ε

)
+

√
d log(p)

n
+

√
d

n
log

(
3ep

dγ

)}
+max

(
ε,
log(1/δ)

n

)
and this completes the proof.
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E.1.1 Auxiliary Results

Here we state and prove Lemma 13, which we use in the proof of Lemma 11.

Lemma 13 ([40, Lemma 3]). Suppose P? is a sub-Gaussian distribution with variance proxy σ2 and
mean µ = Ex∼P? [x]. Given n samples from the mixture distribution Pε = (1− ε)P?+ εQ, Algorithm
1 returns an estimate θ̂δ that satisfies

|θ̂δ − µ| . ε

√
σ2 log

(
1

ε

)
+

√
σ2 log

(
1/δ

n

)
with probability at least 1− δ.

Proof. The proof mostly follows the proof in [40].

Let I? be the interval µ ±
√
σ2 log

(
1
δ1

)
. For notational convenience, let fn(u, v) =√

u(1− u)
√

log(1/v)
n + 2

3
log(1/v)

n . Let Î = [a, b] be the interval obtained using the first split of
the sample set Z1 i.e. the shortest interval containing n(1− (δ1 + ε+ fn(ε+ δ1, δ3))) points of Z1.
In Algorithm 1, we have δ1 = ε and δ3 = δ/4.

From [40, Claim 5], we have that

length(Î) ≤ length(I?) ≤ 2

√
σ2 log

(
1

δ1

)
.

To bound the error of the estimator, we analyze the quantity∣∣∣∣∣ 1|Î| ∑zi∈Z2

ziI
{
zi ∈ Î

}
− µ

∣∣∣∣∣ ,
where |Î| =

∑
zi∈Z2

I
{
zi ∈ Î

}
.

We do so by casing on whether a sample zi was sampled from P? or from Q, like so.

∣∣∣∣∣ 1|Î| ∑zi∈Z2

ziI
{
zi ∈ Î

}
− µ

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1

|Î|

 ∑
zi∈Z2

zi∼P?

ziI
{
zi ∈ Î

}
+
∑
zi∈Z2
zi∼Q

ziI
{
zi ∈ Î

}− µ
∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
1

|Î|

∑
zi∈Z2

zi∼P?

ziI
{
zi ∈ Î

}
− µ

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
T1

+

∣∣∣∣∣∣∣∣
1

|Î|

∑
zi∈Z2
zi∼Q

ziI
{
zi ∈ Î

}
− µ

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
T2

.

Bounding T1: From [40, Claim 6], we bound T1 with probability at least 1− δ3 − δ5 as

T1 ≤
ε+ fn(ε, δ5)

1− δ4
· 4

√
σ2 log

(
1

δ1

)
,

where δ4 = (δ1 + ε) + fn(δ1 + ε, δ3).
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Bounding T2: To bound T2, we split the terms further.

T2 =

∣∣∣∣∣∣∣∣∣∣
1

|Î|

∑
zi∈Z2

zi∈Î
zi∼Q

(zi − µ)

∣∣∣∣∣∣∣∣∣∣
=
|ÎP? |
|Î|

∣∣∣∣∣∣∣∣∣∣
1

|ÎP? |

∑
zi∈Z2

zi∈Î
zi∼Q

(zi − µ)

∣∣∣∣∣∣∣∣∣∣
≤ |ÎP

? |
|Î|

∣∣∣∣∣∣∣∣∣∣

 1

|ÎP? |

∑
zi∈Z2

zi∈Î
zi∼Q

zi

− E[x|x ∈ Î , x ∼ P?]

∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
T2,1

+
|ÎP? |
|Î|

∣∣∣E[x|x ∈ Î , x ∼ P?]− µ
∣∣∣︸ ︷︷ ︸

T2,2

,

where |ÎP? | =
∑

zi∈Z2

zi∼P?

I
{
zi ∈ Î

}
is the number of elements in Z2 that were originally sampled from

P?.

T2,1 is the deviation of the mean of the samples originally sampled from Q and remain in Î from the
mean of P? conditioned on the event that they belong to Î as well. T2,2 measures the deviation of the
mean of P? from the mean of the same distribution conditioned on Î .

Bounding T2,1: We bound T2,1 using [40, Lemma 15]. With this result, we get that with probability
at least 1− δ7,

T2,1 ≤

√
2σ2 log(3/δ7)

P?(Î)
+ 2

√
σ2 log

(
1

δ1

)
log(3/δ7)

|ÎP? |
.

Bounding T2,2: To control T2,2 we make use of Proposition 8 in conjuction with [40, Lemma 14]
to get

T2,2 ≤ 2P?(Îc)

√√√√σ2 log

(
1

P?(Îc)

)
,

where P?(A) is the probability that z ∼ P? lies in A. Finally, we bound P?(Îc using [40, Claim 7] to
obtain with probability at least 1− δ6 that

P?(Îc) ≤ C1ε+ C2δ1 + C3
log(n)

n
+ C4

log(1/δ6)

n
+ C5

log(1/δ3)

n
,

where {Ci}6i=1 are universal constants.

Therefore, combining the bounds for T1, T2,1 and T2,2, and setting δ1 = ε, δ3 = δ5 = δ6 = δ7 = δ/4

and noting that for the choice of n |ÎP? | ≥ n
2 , we get the final deviation bound:

T1 + T2,1 + T2,2 . ε

√
σ2 log

(
1

ε

)
+

√
σ2 log

(
1/δ

n

)
,

and this completes the proof of the lemma.
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F Proof of Theorem 3

In this section, we present the proof of Theorem F. The proof mostly follows the analysis in the proofs
of Lemma 7 and Theorem 1. The only difference is that we will not be able to use the sub-Gaussianity
of Ising model distributions anymore, as it is no longer applicable.

Proof. Following the proof of Lemma 7, we have for any v such that ‖v‖1 = 1 that∣∣∣〈v,∇Lθ(1),i(2θ(2)(i))
〉∣∣∣ ≤ ∣∣∣Ez1,z2∼C [〈v,∇`i(2θ(2)(i); z1)

〉
I {z1 6= z2}

]∣∣∣
+
∣∣∣Ez1,z2∼C [〈v,∇`i(2θ(2)(i); z2)

〉
I {z1 6= z2}

]∣∣∣
(i)

≤ Ez1,z2∼C
[∣∣∣〈v,∇`i(2θ(2)(i); z1)

〉∣∣∣ I {z1 6= z2}
]

︸ ︷︷ ︸
T1

+ Ez1,z2∼C
[∣∣∣〈v,∇`i(2θ(2)(i); z2)

〉∣∣∣ I {z1 6= z2}
]

︸ ︷︷ ︸
T2

,

where in step (i), we have used Jensen’s inequality for f(x) = |x|.

Bounding T1: By Hölder’s inequality
∣∣〈v,∇Lθ(1),i(2θ(2)(i))

〉∣∣ ≤ ‖v‖1 ∥∥∇Lθ(1),i(2θ(2)(i))
∥∥
∞.

Again by Jensen’s inequality, and the explicit form of ∇`i, we have
∥∥∇Lθ(1),i(2θ(2)(i))

∥∥
∞ =∥∥E [∇`i(2θ(2)(i), z1)

]∥∥
∞ ≤ E

[
‖∇`i(2θ(2)(i), z1)‖∞

]
≤ 1. Therefore,

Ez1,z2∼C
[∣∣∣〈v,∇`i(2θ(2)(i); z1)

〉∣∣∣ I {z1 6= z2}
]
≤ Ez1,z2∼C [I {z1 6= z2}] ≤ ε.

Bounding T2: T2 can be bounded in the exact same way as T1.

Plugging these bounds, we get that∣∣∣〈v,∇Lθ(1),i(2θ(2)(i))
〉∣∣∣ ≤ 2ε.

Now, following the first part of the proof of Theorem 1, we have using Hölder’s inequality and the
bound above that

C

2

exp(−O(ω))

ω
‖∆i‖22 ≤

∣∣∣〈∆i,∇Lθ(1),i(2θ(2)(i))
〉∣∣∣ ≤ ‖∆i‖1

∥∥∥∇Lθ(1),i(2θ(2)(i))
∥∥∥
∞
≤ 2ε‖∆i‖1

where ∆i = 2θ(1)(i) − 2θ(2)(i). Now, since θ(1) and θ(2) are parameters of Ising models with
maximum vertex degree d, ∆i = 2θ(1)(i)− 2θ(2)(i) has atmost 2d non-zero elements. Consequently,
we get ‖∆i‖1 ≤

√
d‖∆i‖2.

Finally, plugging the above norm inequality in the previous bound, we have:

‖∆i‖2 . ε
√
dω exp(O(ω)).

Analogously, since d ≤ k when G(1), G(2) ∈ Gp,k, we have

‖∆i‖2 . ε
√
kω exp(O(ω)),

Alternatively, note that by the triangle inequality: ‖∆i‖1 ≤ ‖2θ(1)(i)‖1 + ‖2θ(2)(i)‖1 ≤ 4ω. This
gives us:

‖∆i‖2 .
√
εω exp(O(ω))

Since both types of inequalities holds simultaneously, we recover the statements of the theorem for
Gp,d and Gp,k.

26


