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The PH-Pfaffian topological order has been proposed as a candidate order for the ν = 5/2 quantum Hall
effect. The PH-Pfaffian liquid is known to be the ground state in several coupled wire and coupled stripe
constructions. No translationally and rotationally invariant models with the PH-Pfaffian ground state have been
identified so far. By employing anyon condensation on top of a topological order, allowed in an isotropic system,
we argue that the PH-Pfaffian order is possible in the presence of rotational and translational symmetries.

I. INTRODUCTION

The topological order on half-integer quantum Hall
plateaus has been a subject of much debate1,2. There has
long been tension between experiment1,3 and numerics4–6.
It increasingly appears that multiple topological orders are
present in experimentally relevant systems. Indeed, numerical
evidence exists for different topological orders on half-integer
plateaus in GaAs5–7 and graphene8. Some experiments9,10

even hint at different topological orders at different magnetic
fields on the 5/2 plateau in GaAs. Such behavior differs
profoundly from the intuition that builds on the properties of
the simplest and best-understood quantum Hall state at ν =
1/3, where the same Laughlin topological order11 is believed
to be present in a broad range of materials and parameters.

The difficulties with half-integer filling factors reflect a
stronger role for composite-fermion (CF) interactions on
half-integer plateaus than at most odd-denominator filling
factors12. Indeed, a great majority of odd-denominator states
can be understood as integer quantum Hall states of CFs. Such
integer states are present even for non-interacting CFs, and
their interaction does not affect qualitative features, such as
possible topological orders. In contrast to this picture, non-
interacting CFs would not form an incompressible liquid at
a half-integer filling12. This agrees with the absence of the
1/2 and 3/2 plateaus in monolayer GaAs. At the same time,
experimental evidence exists for CFs on the quantized 5/2
plateau13,14. This suggests that the 5/2 plateau forms due
to CF interactions. The plateau can be explained by Cooper
pairing of CFs15. The details of the topological order depend
on the pairing channel: Different channels result in 8 possible
Abelian and 8 possible non-Abelian orders2.

Which one or ones are present in experimentally
relevant systems? Preponderance of numerical evidence1,5,6

points towards Pfaffian16 and anti-Pfaffian17,18 liquids
in translationally invariant systems. Preponderance of
experimental evidence1,3 suggests the PH-Pfaffian order18–22

on the 5/2 plateau in GaAs. A possible explanation of such
discrepancy comes from disorder20,23–25, inevitable in any
sample, but ignored in all numerical studies until a very recent
paper26. Weak disorder is not believed to affect topological
order at ν = 1/3. Strong disorder destroys the 1/3 plateau.
This behavior is the same as in the integer quantum Hall
effect. At the same time, disorder can change the pairing
channel in a superconductor27. This suggests that disorder

may change the qualitative physics of the CF superconductor
at ν = 5/2. Recent theoretical work23–25 does predict
a complicated phase diagram in the presence of disorder
with several topologically ordered phases and a gapless
thermal metal. Note that a random potential is not necessary
for the stabilization of the PH-Pfaffian liquid. Coupled
wire constructions and a coupled stripe construction produce
Hamiltonians with the PH-Pfaffian order in the ground state
without any randomness2,28,29. The common feature of the
disorder-based approach with those constructions consists in
the absence of translational and rotational symmetry.

A possible lesson might be that the PH-Pfaffian order
were impossible in uniform systems. Yet, it was suggested
that it might be stabilized by sufficiently strong Landau
level mixing (LLM) even in uniform systems30,31. If so, a
translationally and rotationally invariant model should exhibit
PH-Pfaffian order. In this paper we argue that the PH-Pfaffian
order does emerge in isotropic systems as a result of anyon
condensation32–34 on top of another topological order.

The model system is multi-component. We argue that for
appropriate microscopic interactions, the components may
originate from different Landau levels. This makes our
model different from constructions in which wave functions
of various topological orders are localized in a single Landau
level, and thus LLM is ignored. This difference is consistent
with recent numerical results35,36, which suggest that the PH-
Pfaffian state loses its gap after projection into the lowest
Landau level. It is also consistent with the symmetry-from-
no-symmetry principle20, which postulates that a particle-hole
symmetric topological order is only possible, if the particle-
hole symmetry is broken by LLM, disorder, or another
mechanism or combination of mechanisms.

In what follows, we start with a review of the PH-Pfaffian
topological order. We then observe that the edge structure of
a PH-Pfaffian liquid can be obtained from a two-component
system. One component is made of charged fermions and
the other is made of neutral bosons. In the fourth section
we argue that the two-component system possesses the PH-
Pfaffian order in the bulk. In the final section we propose a
scenario how such two-component model might be realized
in a purely electronic system.
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II. PH-PFAFFIAN ORDER

The anyons are labeled by their topological charge t =
1, σ, or ψ and the electric charge ne/4, where n is odd in the
σ-sector and even otherwise. We will use the notation (t, n).
The fusion rules are

ψ × ψ = 1; σ × ψ = σ; σ × σ = 1 + ψ, (1)

where 1 stays for vacuum and ψ is a Majorana fermion. The
statistical phase, accumulated by an anyon of type (t1, n1)
while making a full counterclockwise circle around an anyon
of type (t2, n2) is

φ = φnA(t1, t2, f) +
πn1n2

4
(2)

where the non-Abelian phase φnA depends on the topological
charges t1 and t2 and on the fusion channel f , Eq. (1). The
non-Abelian phase is trivial, φnA = 0, if t1 = 1, t2 = 1,
or t1 = t2 = ψ. For two σ-particles, the non-Abelian phase
depends on the fusion channel:

φnA(σ, σ, 1) = π/4, φnA(σ, σ, ψ) = −3π/4. (3)

Finally,

φnA(σ, ψ, σ) = φnA(ψ, σ, σ) = π. (4)

The bulk statistics determines the edge Lagrangian density20:

L =
2

4π
∂xφc(∂t − vc∂x)φc + iψ(∂t + u∂x)ψ, (5)

where ψ is a Majorana fermion and the charge mode φc
sets the charge density e∂xφc/2π on the edge. An edge
excitation from the sector (t, n) is created by the operator
t exp(inφc/2), where t = 1, σ, ψ acts in the neutral Majorana
sector with σ being the twist operator. The electron operator
is ψ exp(2iφc). Both the thermal and electrical conductances
are one half of a quantum19,20. We include more details
about the statistics in the PH-Pfaffian and related orders in
Supplemental Material37.

III. MODEL: VIEW FROM THE EDGE

Our starting point is a two-component system. One
component is a fractional quantum Hall (FQH) liquid in
the anti-Pfaffian state17,18. The other component is made
of neutral bosons in the Laughlin state at the filling factor
ν = 1/4. Rotationally and translationally invariant models
with those two orders in their ground states are known.

The anti-Pfaffian order is very similar to the PH-Pfaffian
order. The classification of the excitations and their fusion
rules are the same. Only a small difference exists in the

braiding rules: the Abelian phase has the opposite sign
compared to (2):

φ = φnA(t1, t2, f)− πn1n2
4

. (6)

The edge theory differs from (5) by the opposite propagation
direction of φc and an additional charge integer mode φ1 with
the charge density e∂xφ1/2π. The edge Lagrangian density

LaPf = − 2

4π
∂xφc(∂t + vc∂x)φc + iψ(∂t + u∂x)ψ

+
1

4π
∂xφ1(∂t − v1∂x)φ1 + w∂xφ1∂xφc. (7)

Edge excitations are created by the same operators as in
the PH-Pfaffian state. There are two electron operators:
ψ exp(−2iφc) and exp(iφ1). The operator exp(iφn) =
exp(i[φ1 + 2φc]) creates a neutral fermionic excitation in
the Majorana sector ψ. The electrical conductance is
half a quantum, as in the PH-Pfaffian state. The thermal
conductance is −1/2 of a quantum17,18.

It will be convenient to switch from the variables φc and
φ1 to the neutral mode φn and the overall charge mode φρ =
φ1 + φc. The Lagrangian density becomes

LaPf =
2

4π
∂xφρ(∂t − vρ∂x)φρ + iψ(∂t + u∂x)ψ

− 1

4π
∂xφn(∂t + vn∂x)φn + w̃∂xφρ∂xφn. (8)

The ν = 1/4 Laughlin state is Abelian38. The phase
accumulated by a fundamental anyon exp(ib) on a full
counterclockwise circle around an identical anyon is π/2. The
fusion of n fundamental anyons yields a composite anyon
exp(inb). Such anyon accumulates the phasemnπ/2 on a full
circle about an anyon of type exp(imb). As a consequence,
exp(2ib) are fermions. exp(4ib) is topologically trivial. The
edge theory of the Laughlin state assumes the form

LB =
4

4π
∂xb(∂t − vb∂x)b. (9)

The electrical conductance of the neutral bosons is 0. The
thermal conductance equals one quantum39.

We now observe that the sums of the electric and thermal
conductances of the bosonic liquid and the anti-Pfaffian liquid
equal the electric and thermal conductances of the PH-Pfaffian
liquid. This makes us expect that the PH-Pfaffian order
should be present in a two-component system made of the
anti-Pfaffian and bosonic Laughlin liquids. We start with
demonstrating that the edge structure of the PH-Pfaffian
liquid can be obtained from such two-component model as
illustrated in Fig. 1.

We consider a two-component model with the following
Lagrangian density on the edge:

L = LaPf + LB + u∂xφn∂xb+ U cos(2φn − 4b). (10)
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FIG. 1. Emergence of the PH-Pfaffian edge structure. Left panel:
edge modes of two noninteracting layers with the anti-Pfaffian and
Laughlin orders. Right panel: the counterpropagating modes φn

and b are gapped out, and the remaining two modes exhibit the edge
structure of a PH-Pfaffian liquid.

The cosine term is allowed in the action since it is
topologically trivial and conserves the electric charge. For
simplicity, we assume40 that w̃ = 0 in LaPf . The results do
not change for a finite small w̃. The two counter-propagating
modes b and φn are gapped out if the cosine term is relevant
in the renormalization group sense. After introducing a new
field φb = −2b, the contribution to the Lagrangian density
that depends on φn and φb becomes

Ln,b =
1

4π
[∂xφb (∂t − vb∂x)φb − ∂xφn (∂t + vn∂x)φn]

− u

2
∂xφn∂xφb + U cos [2 (φn + φb)]. (11)

The stability of the edge requires |πu| ≤ √vbvn.
The Lagrangian density Ln,b can be diagonalized by the

transformation38:

φb = cosh θ φ̃b + sinh θ φ̃n, (12)

φn = sinh θ φ̃b + cosh θ φ̃n, (13)

tanh 2θ = − 2πu

vb + vn
. (14)

In the new basis, the cosine term becomes

Ltun = U cos
[
2 (cosh θ + sinh θ)

(
φ̃n + φ̃b

)]
. (15)

Its scaling dimension can be deduced 41:

∆ = 4 (cosh 2θ + sinh 2θ) = 4

√
vb + vn − 2πu

vb + vn + 2πu
. (16)

When ∆ < 2, Ltun is relevant and gaps out φb and φn. This
happens for

3(vb + vn)

10π
< u <

√
vnvb
π

. (17)

The remaining two gapless modes φρ and ψ are described by
the action identical to the PH-Pfaffian action (5).

IV. MODEL: VIEW FROM THE BULK

The action (10) is the key to the bulk model. Indeed,
cos(2φn − 4b) can be represented in the form B̂B̂ + B̂†B̂†,

where B̂ creates an excitation B = (ψ, 0) × exp(2ib). Such
excitation is a product of two fermions and hence a boson.
The edge action thus suggests to consider the condensation
of bosons B. The condensation results in the confinement of
many anyon types32–34. As we will see, the statistics of the
remaining deconfined excitations is PH-Pfaffian. We argue
that B is condensable in two ways: using algebraic theory
of anyons42 in Supplemental Material37 and using the above
edge construction in the end of this section.

Deconfined excitations braid trivially with B. Hence, the
only non-trivial deconfined excitation of the Bose-liquid is
exp(2ib). The deconfined excitations of the anti-Pfaffian
liquid are (ψ, 2n) and (1, 2n). The attachment of any number
of bosons B does not change the superselection sector of an
excitation. Thus, exp(2ib) and ψ can be identified.

What about deconfined anyons that combine topological
excitations of the Bose and anti-Pfaffian subsystems? First,
we can combine any number of deconfined excitations in the
Bose and anti-Pfaffian sectors. This yields anyons of the
types (t, 2n) × exp(2mib), where t = 1, ψ. By attaching
(n − m) B-particles, any such anyon can be reduced to
the standard type (t′, 2n) × exp(2nib), where t′ = 1, ψ
is not necessarily the same as t. In addition to products
of deconfined excitations of the two subsystems, deconfined
excitations exist in the σ sector: (σ, 2n+1)×exp([2m+1]ib).
Without loss of generality we can set n = m since attaching
(n − m) bosons B changes (σ, 2n + 1) × exp([2m + 1]ib)
into (σ, 2n + 1) × exp([2n + 1]ib). Thus, all superselection
sectors can be labelled as (t, n)× exp(inb).

Neither of those sectors splits. Indeed, only non-Abelian
anyons can split and only if the fusion of such an anyon with
its antiparticle contains orthogonal copies of the vacuum of
the condensed phase32. One sees that this does not happen in
our problem.

We will now observe that all deconfined anyons can be
identified with excitations of a PH-Pfaffian liquid. We identify
(t, n) × exp(inb) with the (t, n) anyon of the PH-Pfaffian
order. All fusion rules are satisfied after such identification.
The non-Abelian part of the braiding phase (2) is also correct.
The Abelian part of the mutual braiding phase of the anyons
(t1, n1)× exp(in1b) and (t2, n2)× exp(in2b) is now the sum
of the anti-Pfaffian contribution −n1n2π/4 and the Laughlin
contribution n1n2π/2. This gives the correct PH-Pfaffian
value.

The above discussion assumes that B is condensable.
While this is plausible, can this be placed on a more rigorous
footing? In addition to the discussion in Supplemental
material37, we support this point with a coupled stripe
construction (Fig. 2) in the spirit of Ref. 2. The bulk anti-
Pfaffian and Laughlin orders can be obtained in a system of
narrow stripes with anti-Pfaffian and Laughlin edge modes,
in which counterpropagating modes of neighboring stripes
gap each other. The charge modes are gapped out by the
operators that tunnel charge 2e. Neutral modes are gapped out
by operators that tunnel electrons and trivial bosons exp(4ib).
We next add cosine terms −A cos(2bL − φn,R) cos(2bR −
φn,L) on each stripe, where the indices L and R show the
right- and left-moving modes on the edges of the stripe. Such
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contribution creates trivial topological charge in each stripe.
We also add interstripe tunneling between stripes i and i+1 of
the form−A′ cos(4bi+1,L−2φn,i+1,R−4bi,R+2φn,i,L). We
assume that the amplitudes A and A′ are much greater than
the amplitudes of any other tunneling terms. One sees that
the system remains gapped in the bulk and the boson operator
exp(2ib − iφn) acquires a nonzero expectation value. This
suggests that B can condense in an anisotropic system. Since
condensability is a topological property, the condensation of
B should also be possible in a rotationally and translationally
invariant system.

FIG. 2. A coupled-stripe construction of the PH-Pfaffian order.
The red lines with arrows represent interactions which gap out the
connected modes.

V. CONCLUSIONS

The above model demonstrates that the PH-Pfaffian
topological order can be obtained in a uniform system.
All other known models2,23–25,28,29 with that order break
the translational and rotational symmetry either because of
impurities or because the models consist of coupled wires or
stripes. Note that crystal structure implies that QHE systems
are never exactly isotropic even in the absence of disorder, but

this makes little difference at relevant electron densities.
Since our model combines fermions in the anti-Pfaffian

state with neutral bosons, its most natural realization would
come from cold atoms. The model may seem disconnected
from the physics of the 5/2 plateau in semiconductors, where
only fermions are present. We propose a scenario that makes
a connection with a purely fermionic system. We assume
that electrons are present in four spin-resolved Landau levels.
Electrons in one level exhibit the anti-Pfaffian order and
form one of the two subsystems we need. The electrical
conductance of the anti-Pfaffian subsystem is one half of a
quantum. The other three partially and fully filled Landau
levels contribute two quanta to the electrical conductance, as
necessary for the total conductance of 5/2. One Landau level
is fully filled. The sum of the filling factors of the other two is
1. Thus, the number of the holes in one of those Landau levels
equals the number of the electrons in the other. We assume
that all holes from one level combine with the electrons
from the other level to form neutral bosons. The bosons
form the Laughlin ν = 1/4 state, provided that their two-
body interaction favors the relative angular momentum +4,
where the plus emphasizes that only one sign of the angular
momentum along the z-axis is favored. An appropriate choice
of the interaction between the bosons and the fermions in the
anti-Pfaffian state yields the desired model system37.

The boson interaction breaks the time-reversal symmetry.
This property is not shared by the Coulomb interaction in
realistic samples. The time-reversal symmetry is broken
instead by the external magnetic field to which neutral bosons
do not minimally couple. Even if the interaction with the
magnetic field is the only contribution to the microscopic
Hamiltonian that breaks the time-reversal symmetry, it is
possible that additional symmetry-breaking interactions are
generated in the effective low-energy Hamiltonian. Of course,
it may well be that this does not happen for realistic Coulomb
interactions. The point of our model is to show that the PH-
Pfaffian order is possible without breaking the translational
symmetry. More research is needed to understand if the PH-
Pfaffian order could be stabilized in realistic semiconductor
heterostructures in the absence of random impurities.
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