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Abstract: The control of dipteran pests is highly relevant to humans due to their involvement in
the transmission of serious diseases including malaria, dengue fever, Chikungunya, yellow fever,
zika, and filariasis; as well as their agronomic impact on numerous crops. Many bacteria are able to
produce proteins that are active against insect species. These bacteria include Bacillus thuringiensis,
the most widely-studied pesticidal bacterium, which synthesizes proteins that accumulate in crystals
with insecticidal properties and which has been widely used in the biological control of insects from
different orders, including Lepidoptera, Coleoptera, and Diptera. In this review, we summarize all the
bacterial proteins, from B. thuringiensis and other entomopathogenic bacteria, which have described
insecticidal activity against dipteran pests, including species of medical and agronomic importance.

Keywords: dipteran pests; Bacillus thuringiensis; insecticidal activity; mosquito control; disease vectors;
biological control; agronomic importance

Key Contribution: This review provides an update on the activity of Bacillus thuringiensis and other
bacterial toxins against dipteran pests of medical and agronomic importance.

1. Introduction

Bacillus thuringiensis (Bt) has been isolated from the most diverse habitats of our planet [1,2],
since its discovery, in 1901, and correct scientific description, in 1915. This has led to the characterization
of a large number of Bt strains that, as a whole, have revealed an enormous genetic diversity of this
bacterium. This genetic diversity corresponds in good measure to the multiple functions that this
bacterium plays in natural and transformed ecosystems (agricultural and forestry). Some of the most
relevant functions attributed to Bt from the applied point of view are: plant growth-promoting activities,
bioremediation of different heavy metals and other pollutants, biosynthesis of metal nanoparticles,
production of polyhydroxy alkanoate biopolymer, and anticancer activities [3]. In agriculture it is,
without a doubt, the most widely-used bacterium because of its usefulness as a biological pest control
agent and as the most important source of insecticidal genes for the construction of resistant transgenic
plants (also known as Bt plants) to some of the most important agricultural and forestry pests [4].
Bt is also an efficient biological control agent for insect vectors (mainly mosquitoes) of diseases of
importance in the fields of both human and veterinary health [5].
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In this review, we give an overview of dipteran-active pesticidal proteins from a range of bacteria
with notes on the major source bacteria, and the activity of individual proteins. The nomenclature of
these proteins has undergone a recent revision in order to rationalize the proteins into families based
on their structures [6]. In this review we will refer to the proteins by their revised names, with reference
to their previous designations also given (Table 1 and text).

2. The Entomopathogenic Bacterium Bacillus thuringiensis

Bt is a Gram-positive, rod-shaped bacterium with the capacity to form resistant spores, classified in
the family Bacillaceae [7]. Bt cells, while sporulating, characteristically form a parasporal crystal
composed of proteins which are active against a number of insect species from different orders such as
Lepidoptera, Diptera, Coleoptera, Hymenoptera, Hemiptera, Orthoptera, as well as other organisms
such as mites [7] and nematodes [8]. When a Bt crystal reaches the insect’s gut, it is solubilized to
release one or more protoxins. These protoxins are then proteolyzed and activated by midgut proteases
and the toxins can bind to and disrupt cell membranes. The binding and insertion of toxins in the
membrane triggers the formation of pores and, consequently, the death of the insect [9,10]. The crystal
or inclusion body, which is formed by a combination of delta-endotoxins (historically designated as
Cry and/or Cyt proteins, with Cry toxins now divided into structural groups in the new nomenclature),
can exhibit different forms (bipyramidal, spherical, etc.) and sizes (smaller, equal to, or greater than
the size of the spore), which are usually characteristic for each wild Bt strain [7]. The genes that
code for these proteins are usually located in native mega plasmids (>100 kb) [11]. The size and
number of plasmids harbouring these genes is highly variable for each strain and some of them
(the conjugative plasmids) can be transferred from one Bt strain to another [12]. The synthesis of the
crystal entails a huge metabolic investment from the cell [13]. Moreover, the high protein expression
levels that occur in the stationary growth phase are controlled at the transcriptional, post-transcriptional,
and post-translational levels [12].

Based on its molecular structure and its homology, the largest group of crystal proteins is formed
by the 3-domain Cry proteins. Domain I consists of a bundle of seven antiparallel x-helices and is
the pore-forming domain. Domain II consists of three antiparallel 3-sheets (a 3-prism structure) and
is involved in toxin-receptor interactions. Domain III consists of two twisted, antiparallel 3-sheets
forming a 3-sandwich and has roles in receptor binding and pore formation [14,15]. Three-domain Cry
toxins are divided into two main types, those with large protoxin forms of ~120-140 kDa and those
with smaller 65-70 kDa protoxins that lack the C-terminal region seen in the larger forms. The larval
midgut proteases convert these protoxins into an active fragment through proteolytic processing [16,17].
Although this group of Cry proteins share a remarkably similar and conserved three-domain structure,
they vary significantly in their amino acid sequences [9,14,18,19]. There are many other proteins
previously designated as Cry proteins that do not have the three-domain structure and these include:
Etx_Mtx2 proteins, Toxin_10 proteins, and alpha helical toxins [20].

In contrast to Cry proteins, Cyt proteins exhibit a general cytolytic (haemolytic) activity in vitro
and dipteran specificity in vivo [14,21]. Their three-dimensional structure shows that Cyt proteins are
formed by a single domain with a 3-sheet surrounded by two «-helical layers [22,23].

3. Importance of Dipteran Control

The larvae of dipteran flies can cause serious damage in agriculture. Adults need to feed on liquid
food since they do not have the ability to chew but have licking or sucking mouthparts. However,
their larvae do have jaws and are able to feed on solid materials. Today there are more than 150,000
species of dipterans described. Among them there are a number of species that have great economic
importance for agriculture by affecting numerous crops. Such insects include species of the Tephritidae,
Uidiidae, Agromyzidae, Anthomyiidae, and Drosophilidae. Damage to crops is produced by adults
when they feed or when they lay eggs because they produce holes in the leaves/fruits, but especially
by the larvae because, e.g., when feeding on the foliar parenchyma, they can make galleries that
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later necrotize. This damage reduces the photosynthetic capacity of the plant. In the Tephritidae
family, commonly known as fruit flies, the females lay eggs inside ripe fruits, flowers, leaves or stems,
where the larvae will develop. All the members of this family are phytophagous, varying their larval
feeding substrates according to the species, among flowers, fruits, seeds, buds, and other plant organs.
However, adults feed on sugars and proteins obtained from wild yeast, secretions from Homoptera,
and other environmental substances [24]. The Drosophilidae family includes over 3000 described
species that are distributed all over the world [25]. Drosophilids are usually abundant in all situations
where rotting fruits or vegetable matter is found. Direct damage occurs on fruits when females select
ripe fruits or fruits that change colour, to lay eggs. The insect produces a small hole in the fruit surface
that triggers a necrotic reaction around itself, manifesting in the form of a yellow stain in the case of
citrus fruits. The wound can then be infected by microorganisms (fungi, bacteria, etc.) that cause fruit
rots. The larvae feed on the pulp, forming galleries, causing softening and discolouration of the fruit,
indicating the start of putrefaction. Finally, these circumstances cause a series of reactions that promote
oxidation processes and premature ripening, leading to fruit fall [26].

Individuals of species within the dipteran order are usually controlled by their own natural
enemies, so that although they may appear in crops, they can exist at low levels that may not be of
economic importance. However, when they appear in high numbers in the larval stage and, in the
case of Agromyzidae (leaf miners), when this coincides with the seeding period of a crop, they can
become pests with very severe effects. In the case of Tephritids and Drosophilids, the greatest damage
to the crop occurs when the fruits are ripe, often precluding the spraying with phytosanitary products
due to the proximity of the harvest of the fruits. In addition, if there is any condition that reduces the
predators or natural parasitoids of the dipteran pest, there is an increase in its prevalence, and this can
result in population explosions that are repeated cyclically. For instance, in certain areas, due to the
indiscriminate use of pesticides that has interrupted the natural control by parasitoids, some species
of miner insects (such as Liriomyza sativae (Agromyzidae)) that were not previously considered as
pests, are now threatening crops [27,28]. Another example of a dipteran pest causing economically
relevant damage to agricultural production is Ceratitis capitata (Tephritidae), which is a polyphagous
fly affecting more than 250 species of fruits and vegetables [29]. C. capitata can survive across a wide
range of hosts and climatic conditions and has become established in the Mediterranean region, Africa,
the Middle East, Latin America, and Western Australia [30].

Besides the agricultural importance of dipteran pests, mosquitoes, and other biting flies transmit
deadly diseases that seriously threaten human health. Approximately 30 of the 400 known mosquito
species are able to transmit pathogens to humans. The three most important genera of mosquito
vectors are Anopheles spp. from the Anophelinae subfamily and Culex spp. and Aedes spp. from the
Culicidae subfamily. Maladies vectored by these mosquitoes include malaria, filariasis, dengue fever,
yellow fever, Chikungunya, Zika, and West Nile Virus. Malaria represents the most significant
transmissible health threat to humans with an estimated 214 million people worldwide infected in
2015, of whom 438,000 are estimated to have died [31] (http://www.who.int/malaria). From 1999 to
2013, the West Nile Virus was stated to infect 39,557 people in the United States with 1668 deaths
reported and many others becoming severely ill [32,33].

4. Dipteran-Active Insecticidal Bacterial Toxins

A range of Gram-positive and Gram-negative bacteria have reported activities against dipteran
insects. In many cases, the content of genes within these bacteria is known and, for some of these,
individual toxins have been expressed and assayed to allow us to evaluate their contributions to toxicity.
Data on these individual proteins are summarised in Figure 1 and Table 1, and will be discussed in
detail below.
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Brachycera

Figure 1. Schematic representation of dipteran active toxins coming from bacteria. Toxins active against
the Nematocera suborder are within the green circle. Toxins active against the Brachycera suborder
are within the purple circle. Toxins that share activity between suborders are in the overlap between

both circles.

4.1. Bt Toxins Active against Diptera

Within Bt, there are a number of serovars (including israelensis, jegathesan, darmstadiensis, kyushensis,
medellin, fukuokaensis, higo), each comprising a large number of individual Bt strains that contain
proteins with known insecticidal activity against an increasing number of dipteran species. An updated
list of Bt genes encoding proteins with demonstrated anti-dipteran activity encompasses cry1, cry2,
cry4, cryl10, cryll, cry19, cry20, cry24, cry27, cry30, cry39, cry44, cry47, cry50, cryb4, cryb6, mpp60, tpp80,
cytl, and cyt2 (Table 1), and the proteins are described below.

Table 1. Summary of LCs) values (ug mL™1) of pesticidal proteins from Bt and other bacteria against

larvae of dipteran species.

Family Name Insect Target Activity Range References
(Former Name) Family Species LCsp (ug/mL)

Cryl CrylAb7 Culicidae Aedes aegypti ND? [34]
CrylAc8 Glossinidae Glossina morsitans 0.42-0.742 [35]
CrylBal Muscidae Musca domestica 202 [36]

Calliphoridae Lucilia cuprina ND b [37,38]
Cry1Bcl Muscidae Musca domestica 79472 [37]
Calliphoridae Lucilia cuprina 308 [37]
Chrysomya albiceps 8072 [37]

Cryl1Cal Culicidae Aedes aegypti 39.3-1412 [39,40]
Anopheles gambiae 143-283 2 [39]
Culex quinquefasciatus 1262 [39]

Cry2 Cry2Aal Culicidae Aedes aegypti 37.06-79.46 2P [41-44]
Anopheles quadrimaculatus 0372 [44]
Aedes triseriatus (Ochlerotatus triseriatus) 2842 [44]
Culex quinquefasciatus 0.53° [45]
Cry2Aa2 Culicidae Culex quinquefasciatus 1.632 [46]
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Family Name Tnsect Target Activity Range References
(Former Name) Family Species LCs0 (ug/mL)
Cry2Aa4 Culicidae Aedes aegypti ND? [47]
Anopheles stephensi ND? [47]
Culex quinquefasciatus (Culex fatigans) ND? [47]
Cry2Aal4 Culicidae Culex quinquefasciatus 0.894 2 [48]
Cry2Aa Culicidae Anopheles gambiae 0.11° [49]
Cry2Ab1 Culicidae Aedes aegypti 23.42-35.80 P [6,43,50-52]
Cry2Ab2 Culicidae Anopheles gambiae 0.542 [49]
Cry2Ab25 Tephritidae Rhagoletis cerasi NDP [53]
Cry2Acll Culicidae Aedes aegypti [6]
Cry2Ag Culicidae Aedes aegypti 2.54° [51]
Cry2Am1 Culicidae Aedes aegypti [6]
Cry4 Cry4Aal Culicidae Aedes aegypti 0.03-13 b [54-63]
Anopheles gambiae 1.07-1.172 [55]
Anopheles stephensi 0.52-7.4 b [59-61,64]
Culex pipiens 0.25-0.97 2 [54,59-61,65]
Culex quinquefasciatus 0.05-5.04 20 [33,54,55,66]
Simuliidae Simulium spp. NDP [67]
Cry4Bal Chironomidae Chironomus tepperi 0.94° [68]
Culicidae Aedes aegypti 0.12-0.94 b [54,55,57-59,61,64,69]
Anopheles albimanus 1.3P [70]
Anopheles gambiae 0.792 [55]
Anopheles quadrimaculatus 0252 [54]
Anopheles stephensi 0.55-17 ab [59,61,64]
Culex quinquefasciatus 24.5° [55]
Culicidae Culex pipiens NDP [64]
Tipulidae Tipula oleracea ND? [71]
Simuliidae Simulium spp. NDP [67]
Cry4Ba2 Culicidae Aedes aegypti ND? [72]
Cry4Cb1 Culicidae Aedes aegypti 0.083° [73]
Cry10 Cry10Aa Culicidae Aedes aegypti 0.3-20.61 20 [62,74]
Cryll CryllAal Chironomidae Chironomus tepperi 0.56° [68]
Culicidae Aedes aegypti 0.01-1.35 ab [41,42,57,58,61,75-79]
Anopheles albimanus 09b [70]
Anopheles stephensi 0.13-0.45 &b [60,75,78,80,81]
Anopheles albimanus 6.759 2 [77]
Culex pipiens 0.009-0.27 2 [75,78]
Culex quinquefasciatus 0.01-0.13 b [45,66,76,77,82,83]
Tipulidae Tipula oleracea NDP [81]
Simuliidae Simulium spp. NDP [67]
Cryl1Bal Culicidae Aedes aegypti 0.02-0.03 >0 [75,77,84]
Anopheles albimanus 0102 [77]
Anopheles stephensi 0.042 [75]
Culex pipiens 0.01-0.112 [61,65]
Culex quinquefasciatus 0.006-0.02 > [77,83,84]
Cryl11Bb1 Culicidae Aedes aegypti 0.02-0.85 @ [76,77,85,86]
Anopheles albimanus 0.172 [77]
Anopheles stephensi 0.072 [85]
Culex pipiens 0.04° [85]
Culex quinquefasciatus 0.01-0.13 @b [76,77,86]
ComizAcomt72 Comi7comtzz  Culiidae s aypt ND® 7
Cry19 Cry19Aa Culicidae Anopheles stephensi 1.042 [88]
Culex pipiens 0.192 [88]
Cry19B Culicidae Culex pipiens molestus 5932 [89]
Cry20 Cry20Aal Culicidae Aedes aegypti 648° [90]
Culex quinquefasciatus 700 ® [90]
Cry24 Cry24Cal Culicidae Aedes aegypti 0.48"° [91]
Cry27 Cry27Aal Culicidae Anopheles stephensi 9432 [92]
Cry30 Cry30Fal Culicidae Aedes aegypti 15492 [93]
Cry30Gal Culicidae Aedes aegypti 7.10° [73]
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Family Name Tnsect Target Activity Range References
(Former Name) Family Species LCs0 (ug/mL)
Cry39 Cry39Aal Culicidae Anopheles stephensi 0.75° [94]
Culex pipiens 41.94° [95]
Cry44 Cry44Aal Culicidae Aedes aegypti 0.012 [60]
Anopheles stephensi 1267 [60]
Culex pipiens 0.006 ° [60]
Mpp46 Mpp46Ab (Cry46Ab) Culicidae Culex pipiens 1.022 [96]
Cry47 Cry47Aal Calliphoridae Lucilia cuprina ND? [97,98]
Cry50 Cry50Ba Culicidae Culex quinquefasciatus 0.07° [99]
Cry54 Cry54Aal Culicidae Aedes aegypti 9.022 [100]
Cry56 Cry56Aal Culicidae Aedes aegypti 0.152 [101]
Mpp60 Mpp60Aa (Cry60Aa) Culicidae Culex quinquefasciatus 79" [102]
Mpp60Ba (Cry60Ba) Culicidae Culex quinquefasciatus 55P [102]
%ﬁsggiz:g@ggg‘z; Culicidae Culex quinquefasciatus 290 [102]
Tpp80 Tpp80Aal (Cry80Aal) Culicidae Culex pipiens pallens 71.92 [103]
Cytl CytlAal Calliphoridae Calliphora stygia 3059 [104]
Lucilia cuprina 2962 [104]
Lucilia sericata 2362 [104]
Chironomidae Chironomus tepperi 31P [68]
Culicidae Aedes aegypti 0.15-1.86 @0 [74,105-109]
Anopheles stephensi 2.7-6.32 [105,108]
Culex pipiens 0.6-1.22 [105,108]
Culex quinquefasciatus 042 [108]
Tephritidae Ceratitis capitata ND? [26]
Tipulidae Tipula paludosa ND? [110]
CytlAa2 Culicidae Aedes aegypti 0.12-1.21 20 [58,63,111]
Anopheles gambiae 1-22b [111]
Culex pipiens 0.5-22b [111]
CytlAad Culicidae Aedes aegypti 0.06 2 [79]
Culex quinquefasciatus >10? [112]
CytlAbl Culicidae Aedes aegypti 32.6-59 2 [105,113]
Anopheles stephensi 20° [105]
Culex pipiens 572 [105]
Culex quinquefasciatus 329-114.5° [113]
CytlBal Agromyzidae Liriomyza trifolii ND? [114]
Cyt2 Cyt2Aal Culicidae Aedes aegypti 1-42b [111]
Anopheles gambiae 1-2ab [111]
Culex pipiens 0.5-4 2P [111]
Cyt2Aa2 Culicidae Aedes aegypti 0.35-0.52 [69,115]
Culex quinquefasciatus 0.25-0.5° [69,115]
Cyt2Aa3 Chironomidae Chironomus tepperi 362 [116]
Culicidae Culex quinquefasciatus 0.532 [116]
Cyt2Bal Culicidae Aedes aegypti 0.28-33 &b [62,108,113,117]
Anopheles stephensi 552 [108]
Culex pipiens 52 [108]
Culex quinquefasciatus 1.8-31.53b [108,113]
Cyt2Bb1 Culicidae Aedes aegypti 6.8° [106]
Cyt2Bcl Culicidae Aedes aegypti 72 [108]
Anopheles stephensi 12 [108]
Culex pipiens 732 [108]
Culex quinquefasciatus 182 [108]
Mix Mix1Aal Culicidae Culex quinquefasciatus 0.01° [118]
Aedes aegypti 0.052 [118]
Chironomidae Chironomus riparius 4.06° [119]
Mpp2 Mpp2Aal (Mtx2) Culicidae Culex quinquefasciatus 4.13-107° [66]
(Mtxgdgfiﬁggll-l) Culicidae Culex quinquefasciatus 0.93° [120]
Aedes aegypti 1452 [120]
Mpp2Aa2 Mtx2 (31-2) Culicidae Culex quinquefasciatus 3.90° [120]
Aedes aegypti 3912 [120]
Mpp3 Mpp3Aal (Mtx3) Culicidae Culex quinquefasciatus ND? [121]
Aedes aegypti ND? [121]
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Insect Target ivi
Family (Fornlj:rml\?ame) Family : Species Tg;lti:/:?f)e References
Monalysin Monalysin Drosophilidae Drosophila melanogaster ND? [122]
CpbA CpbA Muscidae Musca domestica ND? [123]
CpbB CpbB Muscidae Musca domestica ND? [123]
CHRD CHRD Muscidae Musca domestica ND? [123]
ExsC ExsC Muscidae Musca domestica ND? [123]
Pmpl Pmpl Culicidae Anopheles coluzzii ND? [124]
Two part toxins Cr}(/éf?:g/iz]):@ Culicidae Culex quinquefasciatus 0.02/0.006 * [125]
(1};}:511//};}:5]32) Culicidae Aedes aegypti 422 [126,127]
Aedes atropalpus ND? [126]
Anopheles gambiae 0362 [127]
Anopheles stephensi 0.392 [127]
Anopheles albimanus 12 [127]
Anopheles quadrimaculatus 462 [127]
Culex pipiens 012 [127]
Culicidae Culex quinquefasciatus 0.013-0.03 > [126,128]
Pra/Prb (PirA/PirB) Culicidae Aedes aegypti ND? [84,129]
Synergy Cryl1Ca/CytlAa Culicidae Aedes aegypti 0.61° [130]
Cry2Aa/Cry2Ab Culicidae Aedes aegypti 51.3° [43]
Cry2Aa/Cry50Ba Culicidae Culex quinquefasciatus 0.052 [99]
Cry4Aa/Cry4Ba Culicidae Aedes aegypti 0.052 [61]
Anopheles stephensi 0.02? [61]
Culex pipiens 0.04° [61]
Culex quinquefasciatus 1.49-315° [66]
Simuliidae Simulium spp. NDP [67]
Cry4Aa/CytlAa Culicidae Aedes aegypti 0.072 [58]
Chironomidae Chironomus tepperi 44° [68]
Tipulidae Tipula paludosa ND? [110]
Cry4Aa/Cyt2Ba Culicidae Aedes aegypti 0.013° [62,131]
Cry4Aa/Cry11Ba Culicidae Culex pipiens 0.04? [65]
Cry4Aa/Cry46Ab Culicidae Culex pipiens 0.182 [96]
Cry4A/Mix1Aal Culicidae Culex quinquefasciatus 1.06-2.37° [66]
Cry4/<\1\//ll\ilfz};ZAal Culicidae Culex quinquefasciatus 0.27-1.21° [66]
Cry4Ba/Cryl1Aa Culicidae Anopheles albimanus 0.567 b [70]
Simuliidae Simulium spp. NDP [67]
Cry4Ba/CytlAa Culicidae Aedes aegypti 0.62° [58]
Culicidae Anopheles albimanus 0.33-0.77° [70]
Cry4Ba/Cyt2Aa2 Culicidae Aedes aegypti 0.007 # [69]
Culex quinquefasciatus 0.02° [69]
Cry4B/Mtx1Aal Culicidae Culex quinquefasciatus 18.2-29.0° [66]
Cry4]<31{/11\/tlfz};2Aal Culicidae Culex quinquefasciatus 85.7° [66]
Cry10Aa/CytlAa Culicidae Aedes aegypti 0.03-0.08 > [74]
Cry10Aa/Cyt2Ba Culicidae Aedes aegypti 0.004 ® [62]
Cryl1Aa/CytlAa Culicidae Aedes aegypti 0.01-0.122 [58,79]
Culicidae Anopheles albimanus 0.28-0.37 b [70]
Cry11/Mtx1Aal Culicidae Culex quinquefasciatus 0.66-3.03 [66]
Crylz%fSZAal Culex quinquefasciatus 0.90® [66]
Cry11Bb/Cry29Aa Culicidae Aedes aegypti 3.942 [85]
Anopheles stephensi 2132 [85]
Culex pipiens 0.732 [85]
Cry11Bb/Cry30Aa Culicidae Aedes aegypti 16.96 2 [85]
Anopheles stephensi 1432 [85]
Culex pipiens 1132 [85]
Cry4A/Cry4B/Cry11A Culicidae Aedes aegypti 0.122 [58]
Culex quinquefasciatus 0.008-0.59 ® [66]
Cry4A/Cry4B/Cytl1A Culicidae Aedes aegypti 0.082 [58]
Cry4A/Cry4B/Mtx1Aal Culicidae Culex quinquefasciatus 0.18-0.77 [66]




Toxins 2020, 12, 773 8 of 28

Table 1. Cont.

Famil Name Insect Target Activity Range Ref
y (Former Name) Family Species LCsp (ug/mL) eferences
Cry#A/Cry4B/Mpp2Aal Culicidae Culex quinquefasciatus 0.11-0.32° [66]
(Mtx2)
Cry4A/Cry4B/ - . . a

Cryl1A/CytiA Culicidae Aedes aegypti 0.08 [58]
Culex quinquefasciatus 0.02-0.07° [66]

Cry4A/Cry4B/ L. . . b
Cryl1A/Mix1Aal Culicidae Culex quinquefasciatus 0.02-0.24 [66]

Cry4A/Cry4B/

Cryl1A/Mpp2Aal Culicidae Culex quinquefasciatus 0.03-0.06 © [66]
(Mtx2)

Cry4A/Cry4B/ . . . b
Cryl1A/CytIA/Mtx1Aal Culicidae Culex quinquefasciatus 0.02-0.06 [66]
Cry4A/Cry4B/Cry11A . N . . b
JCytLA/Mpp2Aal(Mbx2) Culicidae Culex quinquefasciatus 0.30-1.09 [66]

Cry4Ba/Cry11Aa/ . . b
CytlAa Culicidae Anopheles albimanus 0.7-8.33 [70]
Cry11Bb/Cry29Aa/ - . a
Cry30Aa Culicidae Aedes aegypti 5.43 [85]
Anopheles stephensi 1312 [85]
Culex pipiens 0.852 [85]

a. Purified proteins. b. Powders of recombinant Bt containing spore/crystal mixtures. ND, toxicity reported but
LCsp not determined.

4.1.1. Cry Toxins from Bt ser. israelensis

Bt ser. israelensis (Bti) was the first Bt serotype found to be toxic against dipteran larvae [132]. Btiis
a highly potent and environmentally friendly biological alternative component in integrated programs
to control disease vectors [133,134]. Bti was much more effective against many species of mosquito
and black fly larvae than any previously known bio-control agent [135]. The Bti crystal is potentially
composed of up to six crystal proteins (Cry4Aa, Cry4Ba, Cry10Aa, Cryl1Aa, and Mpp60A/Mpp60B
(formerly Cry60A/Cry60B)) although strains may lack mpp60 genes [136] and three Cyt proteins (Cyt1Aa,
Cyt2Ba, and CytlCa). Most of the genes encoding these toxins are present in the 128 kb plasmid
pBtoxis [136]; however, some Bti strains contain another plasmid named pBtic100, which carries two
additional pesticidal protein genes, encoding Mpp60Aa and Mpp60Ba toxins [137,138] (Figure 2a).
Bti has been the most studied serovar over the years and most of the Bt products marketed are
based on strains in this serovar. Pesticidal proteins from Bti (Cry4A, Cry4B, CryllA, and CytlA)
have also been extensively studied; however, the other proteins, which may have lower expression,
have been much less studied (Cry10Aa, Cyt2Ba, Mpp60Aa, and Mpp60Ba). Their activity, as well as
the possible interactions between them, opens new study possibilities in the search for alternatives for
dipteran control.

a b
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Figure 2. Pesticidal protein composition of Bti strains. (a), Scheme of all genes and operons that may
be present in Bti strains, which encode crystal proteins. (b), Relative molar composition of proteins in
the parasporal crystal of Bti-based Vectobac-12AS insecticide. The composition is expressed as a range
from two independent tryptic digestions with two technical replicates each (adapted from [139]).
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Cry4 Proteins

Bti strains may produce two members of the large protoxin 3-domain Cry family: Cry4Aa (135 kDa)
and Cry4Ba (128 kDa). These 3-domain protoxins form crystals spontaneously via inter- and
intra-molecular disulphide bonds by their conserved C-terminal halves [140,141].

The Cry4Aa target range covers the following mosquito species: Aedes aegypti, Anopheles stephensi,
Anopheles gambiae, Culex pipiens, and Culex quinquefasciatus. Several studies have provided evidence
that the Culex species are the most susceptible to these proteins while the species of the Anopheles and
Aedes genera are less susceptible [55,57,59,61,142,143].

Cry4Ba is another of the major crystal proteins produced by Bti. This protein showed high toxic
activity against A. aegypti and An. stephensi larvae but it was totally inactive against larvae in the genus
Culex [54,55,59,61,69]. The toxicity of Cry4Ba toxin toward A. aegypti and An. stephensi larvae is higher
than that of Cry4A [59]. The putative loops 1 and 2 of domain II of the protein are responsible for its
activity and mutations in putative loop 3 produce an increase in toxicity against Culex [54]. Cry4Ba also
has toxicity against Chironomus tepperi (Diptera; Chironomidae) [68] and is the most effective Bti toxin
against Simulium spp. (lower activity seen for Cry4Aa) [67].

Cryl0Aa Protein

The Cryl0Aa protein is a minor component of the crystal produced by the Bt strains of ser.
israelensis [144-146] and, unlike Cry4Aa and Cry4Ba, is a short protoxin 3-domain protein. However,
the 2025 bp cry10Aa gene (orf1) is followed (after a 66 nt gap) by a second gene (orf2) that encodes a
sequence that is similar to the carboxyl end of the Cry4Aa and Cry4Ba proteins [136]. The orf2 codes
for a 56 kDa protein and, therefore, when the complete operon is cloned, two proteins of 68 (orf1) and
56 (orf2) kDa are expressed [62,74]. Parasporal bodies formed by the complete Cryl0Aa (Orf1-Orf2) are
as active to A. aegypti as the Cry4 toxins [62,74].

Cry11 Proteins

The Cryl1 family also belongs to the large group of d-endotoxins comprising three structural
domains and is composed of proteins active against dipteran targets [61,76,147]. Cryl1Aa from Bti
is a 72 kDa protoxin that is located in an operon where the main gene (1941 bp) is flanked by two
other small genes known as p19 and p20 [148,149]. Among individual toxins from Bti, Cry11Aa,
together with Cry4Ba, are the second most abundantly produced toxins, after CytlAa (Figure 2b) [139].
CryllAa proteins have a high toxicity against both Aedes and Culex genera while their insecticidal
activity is lower against larvae of Anopheles species [41,61,80,82,150]. This protein is activated in the
insect midgut by proteolytic cleavage resulting in two fragments of 38 and 30 kDa with the capacity to
bind the midgut microvilli [57,78,151].

In the case of A. aegypti, Cryl1Aa may interact with different midgut brush border membrane
receptors; a GPI anchored alkaline phosphatase (GPI-ALP) [152], an aminopeptidase N [153] and
a cadherin [154]. The protein also binds to CytlAa as a membrane-bound receptor, increasing its
activity [155]. In Anopheles albimanus, an alpha-amylase has been described as a putative binding
receptor for Cryl1Aa [70]. There are other midgut proteins, such as ATP binding protein, that increase
the toxicity of this protein against C. quinquefasciatus third instar larvae [33]. Cryl1Aa is also toxic
against other dipterans such as Chironomus tepperi (Diptera; Chironomidae), Tipula oleracea and Simulium
species [67,68,81].

Two other Cryl1 proteins, Cry11Bb (94 kDa) produced by Bt ser. medellin and Cry11Ba (81 kDa)
produced by Bt ser. jegathesan, share similar insect specificity and their activity is higher than that
of CryllAa [75,77]. Three different A. aegypti midgut proteins, cadherin, AaeALP1, and AaeAPNI,
are involved in Cry11Ba binding to A. aegypti midgut brush border membranes [156].
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Mpp60A/Mpp60B Proteins (Formerly Cry60A/Cry60B)

In Bt ser. jegathesan, the mpp60A (960 bp) and mpp60B (912 bp) genes form an operon. These two
OREFs have also been detected in Bt ser. malayensis 4AV1 [102] and Bt ser. israelensis ATCC 35646 [157].
Interestingly, the operon that contains the mpp60A and mpp60B genes has exactly the same structure in
these three Bt strains, classified in three different serovars. Both proteins belong to the Etx/Mtx2 protein
family. Individual or joint expression of the mpp60A and mpp60B genes in a Bt strain (acrystalliferous)
produces crystal components (33 and 35 kDa, respectively) that show moderate insecticidal activity
against fourth instar C. quinquefasciatus larvae. Despite being part of the same operon, Mpp60Aa and
Mpp60Ba should not be considered binary toxins because neither of them depends on the other to be
expressed or to exert its insecticidal activity on the target insect [102].

4.1.2. Other Toxins Specific to Diptera

In addition to the Bt ser. israelensis toxins, there are a number of other 3-domain Cry proteins
from different Bt serovars with toxicity against several species of Diptera. For example, Cry19Aa,
identified in a Bt ser. jegathesan strain, together with ORF2 (encoded in a similar operon structure to
the cry10-orf2 format of Bti), exhibited toxic activity against C. pipiens and An. stephensi [88]. Cry19Ba,
a close member of this family derived from Bt ser. higo, showed activity against Culex molestus larvae,
but not against An. stephensi [89]. Cry20Aa is another mosquitocidal protein that has been shown to be
toxic to larvae of A. aegypti and C. quinquefasciatus and is produced by a strain of Bt ser. fukuokaensis.
Nevertheless, the toxicity was not high, perhaps due to the rapid degradation of the protein [90].
Cry24Ca protein also exhibited larvicidal activity against A. aegypti [91]. Within the Cry27 family, it has
been reported that the Cry27Aa protein produced by a strain of Bt ser. higo shows activity against
An. stephensi but is not toxic to species classified in the genera Culex or Aedes [92]. The Cry39Aa protein
has also been found to be highly toxic against An. stephensi larvae [60,95]. In contrast, Cry44Aa from Bt
ser. entomocidus, showed high toxic activity against Culex pipiens and A. aegypti, although the activity
against An. stephensi was lower [60]. The aerolysin-like Mpp46Ab (previously known as Cry46Ab and
also designated parasporin-2Ab) and Cry50Ba have been described as highly active against C. pipiens
and C. quinquefasciatus larvae, respectively [65,99]. Tpp80Aa (previously known as Cry80Aa) also
showed toxicity against C. pipiens [103]. Finally, Cry47Aa, has also been described as active against
dipteran species, such as the sheep blowfly Lucilia cuprina (Diptera; Calliphoridae) [97,98].

4.1.3. Anti-Dipteran Toxins with Cross-Order Activity

Cryl Protein

The Cry1 family is typically active against species of the lepidopteran order [158]. However,
several proteins belonging to this family also display insecticidal activity against species in the
Nematocera and Brachycera suborders of Diptera. For example, Cryl1Ab7 protein, was active against
A. aegypti larvae [34] and Cry1Ca showed toxic activity against larvae of different mosquito species
such as A. aegypti, C. quinquefasciatus and An. gambiae [39,40]. Other Cry1 proteins show activity against
different species of flies. CrylAc, for example, was active against Glossina morsitans adults (Diptera;
Glossinidae) [35] and Cry1Ba had toxicity against Musca domestica larvae (Diptera; Muscidae) [36] and
also Lucilia cuprina larvae (Diptera; Calliphoridae), when it was applied in high concentrations [38].

Cry2A Protein

Within the Cry2 family, it has been described that the Cry2A proteins have a wide activity that can
include species of the orders Lepidoptera and Diptera [50,159]. Some Cry2Aa variants are toxic against
the dipteran order, with activities demonstrated mostly using A. aegypti [42,44,47,52,160,161], but targets
include C. quinquefasciatus (Culex fatigans), An. stephensi and An gambiae [44,46,47,49]. Cry2Ab2,
was reported to have a much narrower target range with high-level activity against An. gambiae but no
activity against A. aegypti or C. pipiens [49]. Cry2Ag has also been reported as active against the larvae
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of A. aegypti [51], while Cry2Ab25 has shown high mortality against Rhagoletis cerasi larvae (Diptera;
Tephritidae) [53]. An assessment of a number of Cry2A variants and their activity against A. aegypti
has recently been published [161]. The role of a region at the N-terminus of Cry2 proteins in activity
against A. aegypti has also been described [162].

Other Cry Proteins

There are a number of proteins that are simultaneously active against larvae of several dipteran
and lepidopteran species. This is the case for two proteins from the Cry30 family. Both, Cry30Fa and
Cry30Gal, had remarkable insecticidal effects against A. aegypti and Plutella xylostella [73,93]. In addition,
Cry54Aa protein has shown activity against A. aegypti larvae, as well as against the Lepidoptera
Spodoptera exigua (Laphygma exigua) and Helicoverpa armigera [100]. Finally, Cry56Aa was toxic to both
dipteran (A. aegypti) and lepidopteran (P. xylostella and H. armigera) pests [101].

For all of the Cry proteins above, with cross-order activity, future work to elucidate the basis of
specificity will be of great interest (for instance, whether different regions of the toxins are involved
in receptor recognition for different targets) and exploration of their structures, in combination with
receptor structures, may yield an increased understanding of their molecular interactions and activity.
This, in turn, may allow future expansion of the battery of toxins available to combat dipteran pests.

4.1.4. Anti-Dipteran Cyt Toxins

Cytl Proteins

The proteins of the Cytl family do not bear any similarity with any of the Cry families currently
described (including those recently renamed into other structural classes) [6]. Of all the proteins
described in the Cytl family, the CytlAa protein has undoubtedly been the most widely studied.
CytlAa is the main component of Bti crystals (Figure 2b) and it adopts a typical cytolysin fold
containing a 3-sheet held by two surrounding alpha-helical layers [22]. The insecticidal activity of
CytlAa for the larvae of various dipteran species has been reported by several authors [71,79,143,163].
Efficient expression of the CytlAa (molecular mass of 27 kDa) protein requires the presence of a
20 kDa “helper” polypeptide [164]. Proteolytic digestion of CytlAa protein produces fragments of
22-25 kDa that are more effective than the native protoxin in vitro [165]. This toxin shows haemolytic
and cytolytic in vitro activity to cells of vertebrates and invertebrates [63,142,166], apparently due to
the interaction between its hydrophobic segment and membrane phospholipids from the midgut
epithelial cells [167-170]. However, differences in activity against insects and red blood cells have been
described [171]. Cyt1Aa has been tested as a full-length solubilised protein, mixed with diet, against a
number of species of the Brachycera suborder and has been found to be toxic against first-instar
Lucilia sericata (Diptera; Calliphoridae), Lucilia cuprina (Diptera; Calliphoridae) and Calliphora stygia
(Diptera; Calliphoridae) [104]. In these experiments, trypsin treatment of the solubilised toxin increased
activity 4-6-fold but non solubilised purified CytlAa crystals were not toxic. CytlAa has also shown
toxic activity against Tipula paludosa larvae [110].

To date, no highly toxic Bt toxins have been found against Ceratitis capitata (Diptera;
Tephritidae) in the field. However, some authors showed that, under controlled laboratory conditions,
solubilized Cyt1A protoxin showed moderate toxicity against C. capitata larvae [26]. Bti crystals do not
appear to be solubilized efficiently below pH 9 and the pH of C. capitata third instar larvae and adult
midgut has been calculated as 8 and 7.5, respectively [172]. The development of more accurate and
reproducible quantitative methods may help in the determination of toxic properties for insecticidal
pathogens that act by ingestion in adult Diptera [173].

Cyt1Ab, a protein that shares 86% identity with CytlAa, is also active, although to a lesser extent
than CytlAa, against Aedes, Anopheles, and Culex larvae [105]. The ability of Cyt1Ba to induce mortality
and reduce the damage caused by Liriomyza trifolii (Diptera; Agromyzidae) mining larvae has also
been described [114]. Cyt1Ca is approximately twice the size of the other Cyt proteins and, in addition
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to the Cyt-like region, it has an extra C-terminal lectin-like domain. No activity or haemolytic effect
has been observed for this protein encoded in the pBtoxis plasmid of Bti [131].

Cyt2 Proteins

Proteins of the Cyt2 family have been identified and characterized in several Bt serovars:
Cyt2Aa from Bt ser. kyushensis [111] and darmstadiensis [115], Cyt2Ba from Bti [174], Cyt2Bb from Bt
ser. jegathesan [106] and Cyt2Bc from Bt ser. medellin [108].

Cyt2Aal from Bt ser. kyushensis displays low identity (39%) with CytlAa from Bti, but the
similarity is 70% [174]. Moreover, both are processed in similar domains [111] probably because they
share a high degree of structural similarity [111,175]. Cyt2Aal is a 29.2 kDa protein and its crystal
structure has been solved [175]. It consists of a single «-f3 domain comprising two outer layers of
a-helix hairpins and a 3-sheet in between. The protein does not show haemolytic activity as a protoxin;
however, N- and C- terminal segments are cleaved by proteolysis leading to dimer dissociation and
toxin activation. Cyt2Aal showed LCsq values in a range of 0.5 and 4 pug/mL against Culex, Anopheles,
and Aedes larvae [111]. Cyt2Aa2 produced by Bt ser. darmstadiensis exhibited moderate activity against
Culex and Aedes larvae and haemolytic activity against sheep erythrocytes [115]. Cyt2Aa3, from Bt
strain MC28, exhibited toxic activity against Ch. tepperi (Diptera; Chironomidae) and C. quinquefasciatus
larvae [116].

The Cyt2Bal protein (30.1 kDa) from Bti shows a 41% identity with CytlAal and 67% with
Cyt2Aal [174]. It was less active than CytlAa against A. aegypti, C. pipiens, C. quinquefasciatus and
An. stephensi larvae [108,113]. Moreover, solubilisation or trypsin activation was essential for its
haemolytic activity [108]. The crystal structure of the proteolytically cleaved active form of Cyt2Ba has
been described [23] and resembles that of the protoxin form of Cyt2Aa and also the fungal volvatoxin
A2. Cyt2Bb, from Bt ser. jegathesan (30.1 kDa) displayed mosquitocidal activity against A. aegypti larvae.
The toxicity was lower than that of CytlAa; however, the two proteins shared similar haemolytic
activity [106]. Cyt2Bc from Bt ser. medellin (29.7 kDa) showed mosquitocidal activities against A. aegypti,
An. stephensi, C. pipiens and C. quinquefasciatus. However, the toxicity was lower than CytlAa and
Cyt2Ba and trypsin treatment was needed for its haemolytic activity [108].

Dickeya dadantii plant pathogenic bacteria contain Cyt-like proteins that are active against the pea
aphid Acyrthosiphon pisum (Hemiptera; Aphididae), but no anti-dipteran activity has been reported [176].

4.2. Anti-Dipteran Toxins from Other Microorganisms

4.2.1. Toxins from Lysinibacillus sphaericus

The bacterium L. sphaericus produces a range of proteins that display toxicity against C. quinquefasciatus
and other mosquitoes. The Mtx1Aa (formerly Mtx1) protein was first identified in strain SSII-1 [177]
and is highly active against C. quinquefasciatus and also displays activity against A. aegypti larvae
and its cells in culture [118]. This protein is a member of the ADP-ribosyl transferase class of toxin
and the Mtx1Aa protein (~100 kDa) is cleaved within the mosquito gut to produce an ~70 kDa
binding component and the ~27 kDa enzymatic portion of the toxin [118,178]. Mtx1Aa also shows
a lower level of activity against Chironomus riparius (Diptera; Chironomidae) larvae but no activity
against Drosophila melanogaster (Diptera; Drosophilidae), Simulium (Diptera; Simuliidae) species or the
predatory mosquito Toxorhynchites splendens (Diptera; Culicidae) [118,119].

The Mpp2 (formerly Mtx2) protein was also identified in L. sphaericus SSII-1 [179] and, as a member
of the Etx/Mtx2 structural class, is unrelated to the Mtx1Aa protein [179] and is somewhat less toxic to
C. quinquefasciatus larvae [66]. L. sphaericus strains also encode further members of this structural class:
Mpp3 (formerly Mtx3) [121] and Mpp4 (formerly Mtx4), in addition to the presence of a further related
pseudogene [180]. The activity of Mpp4 has not been tested but Mpp?3 is toxic to C. quinquefasciatus and
weakly active against A. aegypti [121]. The relative activity of Mpp2 proteins to these two target insects
is different for natural variants of the toxin, and the amino acid residue 224 has been shown to be
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critical in determining the optimal target; threonine favours activity against A. aegypti, whereas lysine
favours activity against C. quinquefasciatus [120].

Highly larvicidal strains of L. sphaericus also produce a binary toxin composed of two members of
the Toxin_10 structural class, TpplAa (formerly BinA, 42 kDa) and Tpp2Aa (formerly BinB, 51 kDa),
where the Tpp2Aa protein is the primary binding component of the toxin and mediates the regional
binding and internalization of the Tpp1Aa protein in the C. quinquefasciatus midgut [128]. This two
component toxin is highly active against C. quinquefasciatus, C. pipiens, Aedes atropalpus, An. gambiae,
An. stephensi, less active against An. albimanus, and Anopheles quadrimaculatus, and shows very low to
zero activity against A. aegypti [126,127].

Some strains of L. sphaericus also contain another two component toxin named Cry48/Tpp49
(formerly Cry49), [125]. Cry48Aa is a three-domain Cry toxin, and is closely related to the Cry4 toxins,
while Tpp49Aa is a member of the Toxin_10 family, like the Tpp1lAa and Tpp2Aa proteins described
above. Neither Cry48Aa nor Tpp49Aa were toxic when assayed individually to C. quinquefasciatus,
but when the proteins were co-administered at the optimum 1:1 ratio, high levels of toxicity against
this mosquito species were observed. No activity was detected against other Diptera (A. aegypti,
An. gambiae, Ch. riparius) or a range of other insects in the orders Coleoptera and Lepidoptera [181].

The toxicity of L. sphaericus strains to a wide range of mosquito species and to a Phlebotormus patatasi
(Diptera: Psychodidae) has been reported [182,183] but, since individual toxins were not assessed,
the contribution of particular proteins to this activity is unclear.

4.2.2. Toxins from Paraclostridium bifermentans

The toxicity of P. bifermentans ser. malaysia (formerly Clostridium bifermentans ser. malaysia)
strains to mosquito larvae has been demonstrated [184,185]; however, information on the activity of
individual toxins is conflicting. Barloy et al. reported the mosquitocidal activity of the 3-domain
protein Cryl6Aal against A. aegypti, C. pipiens and An. stephensi [186]. However, a later report tested
Cryl6Aal, a combination of Cryl6Aal co-expressed with another 3-domain protein (Cry17Aal) and
two haemolysin-like proteins (Cbm17.1 and Cbm17.2) from this bacterium and showed no toxicity,
alone or in combination, to C. pipiens, A. aegypti or An. gambiae [187]. A further study also indicated that
all four proteins were non-toxic to A. aegypti and An. gambiae but that when the operon co-expressing
all four proteins was used, a high level toxicity to A. aegypti was observed [87]. Even with the use
of this whole operon, no activity against An. gambiae was seen in this work despite the fact that the
parental P. bifermentans strain has a high toxicity to this mosquito, implying that other factors are
involved in this activity.

Recently, an unrelated protein from P. bifermentans, PMP1 (paraclostridial mosquitocidal protein 1)
has been described [124]. This clostridial BoNT-like neurotoxin acts through its metalloprotease
activity on a neuronal SNARE protein, syntaxinlA. Recombinant PMP1 showed injection toxicity
against both larvae and adults of Anopheles coluzzii and A. aegypti, and to adult D. melanogaster (Diptera;
Drosophilidae). However, oral toxicity was only observed against An. coluzzii and only when PMP1
was co-expressed with one other protein from its operon (NTNH -30% mortality) or with the whole
operon including ntnh and three orfX genes (70% mortality). NTNH may protect the PMP1 protein
while the role of the OrfX proteins is not clear [124].

4.2 3. Other Dipteran-Active Proteins

Monalysin from Pseudomonas entomophila is a pore forming toxin which contributes to the virulence
of the bacterium against Drosophila (and insects in a range of other orders) by inducing intestinal
cell damage [122]. This protein appears to share the fold of aerolysin-like toxins but lacks a putative
receptor binding domain.

Several proteins associated with the canoe-shaped parasporal body of Brevibacillus laterosporus are
toxins acting against Musca domestica (Diptera; Muscidae). Specifically, four highly conserved proteins
(ExsC, CHRD, CpbA and CpbB) function as fly virulence factors [123].
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The Pra and Prb (formerly PirA and PirB) proteins from Photorhabdus asymbiotica showed larvicidal
activity against both A. aegypti and A. albopictus. The activity of clones containing the pra/prb operon
(co-expressing the proteins) was the most toxic compared to Pra alone, Prb alone, or the mixture of Pra
plus Prb [129]. Structural analysis of homologs from Vibrio haemolyticus that is active against shrimps,
indicates that Prb proteins have structural homology to domains 1 and 2 of the 3-domain Cry toxins
while Pra proteins have structural homology to domain 3 of the 3-domain Cry toxins [188].

5. Toxins with Synergistic Activity against Diptera

For a number of insecticidal bacteria, including Bti, the high toxicity of the complete crystal
compared to what would be expected, in the event of an additive effect of the toxicity of each of the
proteins that compose it, has been attributed to the synergistic activity of its components. This has
been studied in more detail in Bti than in any other Bt serovar.

Combinations of Cry4Aa+Cry4Ba, Cryll1Aa+Cry4Aa, and CryllAa+Cry4Aa+Cry4Ba have
been shown to interact synergistically for a large number of species classified in the mosquito
genera Aedes, Anopheles, and Culex [43,55,58,59,61,189]. Moreover, Cry4Ba had synergistic effect with
Cry10Aa against C. pipiens [64] and with Cryl1Aa against A. aegypti and An. albimanus larvae [58,70].
Although CytlA is the least toxic, it is the strongest synergist among the 5-endotoxins against
A. aegypti [58,74,79,130]. CytlA interacts synergistically with Cry11A against C. quinquefasciatus [112]
and An. albimanus [70], and with Cry4Ba against An. albimanus [70]. In addition to significantly
reducing the lethal concentration, the synergistic effect of Cyt1A also plays an important role in
retarding the appearance of resistance to Cry proteins in the case of C. quinquefasciatus [190-192].
Furthermore, Cyt2Ba, which is present in very low quantities in Bti crystals, has some synergistic
effect with Cry4A [62,131] and shows one of the strongest synergistic interactions described so far with
Cry10Aa against A. aegypti [62]. Another Cyt protein from Bt ser. darmstadiensis, Cyt2Aa2, has highly
synergistic activity with Cry4Ba from Bti against A. aegypti and C. quinquefasciatus larvae [69].

The Cyt synergy mechanism has been proposed to be because the CytlA protein can function
as a membrane-bound receptor for Cry4Ba and Cryl11A [193,194]. In relation to Cryl1Aa protein,
it is suggested that CytlAa inserts its -sheet into the membrane and two of its components (loop
B6-E and part of 37) bind with high affinity to Cry11Aa, which subsequently is inserted into the
larval epithelial membranes [194] (Figure 3). CytlAa seems to facilitate the formation of a pre-pore
oligomeric structure that is able to form pores in synthetic lipid membrane vesicles [195,196]. However,
oligomerization and membrane insertion of CytlA are not essential for its synergistic activity [197].
In the same way, Cyt2Aa2 has been proposed to act as an alternative membrane receptor able to bind
specifically to Cry4Ba [198].

Synergies have also been described between Cyt proteins and L. sphaericus factors and CytlAa,
Cyt1Ab and Cyt2Ba combined with L. sphaericus binary toxins TpplAa and Tpp2Aa show an increase
in toxic activity against A. aegypti and C. quinquefasciatus [66,107,113,199]. Moreover, CytlAa is also
capable of suppressing resistance to L. sphaericus toxins in C. quinquefasciatus [107,113].

Bti Cry toxins can also synergize with proteins from other serovars. For example, Cryl1Ba from
Bt ser. jegathesan and Mpp46Ab (formerly Cry46Ab) from Bt TK-E6 present synergistic activity in
combination with Cry4Aa from Bti against C. pipiens larvae [65]. Mtx1 and Mpp2 (formerly Mtx2)
proteins from L. sphaericus were also found to interact synergistically with a variety of Cry-toxins from
Bti against C. quinquefasciatus [66]. As a result, exploitation of the synergy between different kinds of
toxins of Bt or L. sphaericus is an excellent strategy to increase the virulence of these microorganisms
against relevant dipteran species [84].
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Figure 3. Diagram of the CytlAa synergy mechanism after Bti ingestion by a mosquito larvae.
After ingestion of Bti spores and crystals, the crystal is first solubilized (1) and then proteolized and
activated by insect gut proteases (2). After traversing the peritrophic matrix, CytlAa protein functions
as a membrane-bound receptor for Cry4Ba and Cryl1Aa (3 and 4). Finally, Cyt and Cry toxins are able
to insert in the membrane to form pores (5 and 6) that lead to osmotic cell lysis. Sp: spore. C: crystal.

6. Bacterial Insecticides against Mosquitoes

Currently, the major biological control alternatives for mosquito and blackfly larvae are based on
bacterial toxins produced by Bti and L. sphaericus. Products based on Bti and L. sphaericus are marketed
and are widely used in the US and Europe, and several different formulations have been developed.
The main commercial products are suspension concentrates, followed by wettable powders and, to a
lesser extent, large-grained formulations. L. sphaericus, because of its better residual activity in polluted
waters, has been broadly used against Culex species in the US, Central America, Brazil, India, Thailand,
and China [200]. For control of mosquito larvae, formulated bacteria are sprayed or spread over the
surface of static or slow-moving water into which they sink at a rate determined by the design of the
formulation. Aninnovative formulation of Btiincorporated intoice granules has been used in a mosquito
control programme on the Rhine in Germany [201]. Different feeding habits of larvae of different species
influence the effectiveness of the bacteria against mosquitoes. Culex larvae filter-feed up and down the
column of water and they are often termed column feeders, while Aedes larvae tend to scavenge along
substrate surfaces, particularly on the bottom. Anopheles larvae feed on buoyant material trapped at
or just below the water surface. In comparable conditions, two Anopheles species filtered water at
the rate of 33-34 and 49-55 puL/larva/h, respectively, while C. quinquefasciatus filtered 490-590 and
A. aegypti 590-690 ul/larva/h [202]. Larval feeding habits partly explain why species of Anopheles have
consistently appeared less susceptible to Bt suspensions than the column- and bottom-feeding Culex
and Aedes larvae in laboratory assays and field tests [203]. Thus, differently formulated products are
required for mosquito larvae of different feeding types. Buoyant products are required for anophelines,
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but products should stay in suspension below the surface for column and bottom-feeders. In natural
waters, rapid sinking should be avoided because steady deposit of debris would soon cover the
particles [204]. Blackfly larvae live in fast-moving water courses and are controlled by pouring bacterial
suspensions into the water at consecutive points, from which they are carried downstream [204].

The effectiveness of many bacterial formulations against both mosquitoes and blackflies is
short-lived in the field, often only 1-2 days. This is due to rapid settling, adsorption to plants and
other substrates (which also filter particles out of the water), denaturing of the crystal by sunlight and
engulfment by filter feeding fauna [203,205]. A major goal of the formulation process is to extend
the effective period. However, UV radiation inside the water is not as important as particle settling,
which is the key factor in determining the effectiveness of a given formulation, since water filters out
much of the UV radiation. With Bt, only the effect of sunlight on the crystal reduces larval mortality
since the spore is unimportant in mosquito and blackfly larvae. L. sphaericus is more susceptible
to sunlight, being inactivated in clear water a few centimetres deep in full sun [206], while strong
sunlight reduces its effectiveness several-fold [207]. A sunscreen might be beneficial with L. sphaericus,
particularly in formulations designed to float.

To increase the effectiveness of active Cry proteins against Diptera, they have been transferred to
alternative hosts to increase their persistence in aquatic feeding areas. An improved biopesticide for
mosquitoes was developed by inserting cry genes from Bti, which is highly toxic to mosquitoes, into the
chromosome of L. sphaericus, which has longer environmental persistence [208]. The chromosomally
integrated cry genes were maintained through several generations in the absence of selective pressure.
The recombinant L. sphaericus producing high levels of cry11A gene product from Bti was toxic to Aedes,
Culex and Anopheles larvae [209]. A variety of other recombinants have also been produced and tested
as reviewed by Federici et al. [84].

7. Concluding Remarks and Future Perspectives

The control of dipteran pests is highly relevant as some species in this order are a source of
enormous damage in diverse crops, whereas others have potential to transmit serious human diseases.

As the preceding sections show, a number of bacterial species are capable of producing
bioinsecticidal proteins that are toxic against this insect order. These bacteria include Bt, the most
well-known entomopathogenic bacterium, but also others including B. laterosporus, L. sphaericus and
P. bifermentans. To date, the use of bacteria in the field has been limited to the control of Diptera
in the nematoceran suborder and the use of Bt and L. sphaericus strains. The use of these bacteria
in control programs has often seen great success [210,211]. Specific applications have included
control of malaria vectors [212], blackflies as a part of the highly successful onchocerciasis control
program [213] and against nuisance mosquitoes in developed countries, for instance in the Upper Rhine,
where innovative application techniques were developed [201,214]. Because L. sphaericus strains used
in the field tend to only produce one spore associated toxin (the binary toxin comprising Tpp1/Tpp2),
resistance can arise [215] through mutation of its receptor. Significant resistance to Bti has not been
reported in the field and this is likely to be due to its multiple toxins [216] and, particularly, to the
role of the Cyt proteins [190,191]. Attempts have been made to combine the activities of Bti and
L. sphaericus toxins in single strains [217,218] but no recombinant strains have yet been commercialized.
Alternative strategies for the deployment of dipteran-active toxins against Nematocera have been
explored, including the incorporation of the pesticidal protein genes into a range of other organisms
including cyanobacteria [72,219,220], Caulobacter [118], gas vacuolated Ancylobacter [221] and mosquito
gut colonizing B. cereus [222], or bioencapsulation in Tetrahymena [223] but, again, no product has
resulted and the use of naturally-occurring Bt and L. sphaericus strains remains the control method
of choice.

When considering the other dipteran suborder the Brachycera, as shown above, there are a
more limited number of active pesticidal proteins. To the best of the authors’ knowledge, no bacterial
pesticides are used specifically for their control and nor have genes encoding pesticidal proteins
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active against brachyceran insects been incorporated into transgenic plants, targeted at their control.
This remains a possibility for the future.

A better understanding of the mode of action for individual proteins against their targets, as well as
the molecular interactions occurring between them, including synergism, will help to develop a greater
range of tools in the fight against dipteran pests, and help us overcome the appearance of resistance in
the future.
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