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Abstract

Antimicrobial photodynamic therapy (APDT) has gained increased attention due to its
broad spectrum activity and lower likelihood to elicit bacterial resistance. Although many
photosensitizers excel at eradicating gram-positive bacterial infections, they are generally less
potent when utilized against gram-negative bacteria. We hypothesized that conjugating the DNA
targeting, antimicrobial peptide, buforin II to a metal-based photosensitizer would result in a potent
APDT agent. Herein, we present the synthesis and characterization of a buforin II-[Ru(bpy);]** (1)
bioconjugate. The submicromolar activity of 1 against the multidrug resistant strains Escherichia
coli AR 0114 and Acinetobacter baumannii Naval-17 indicates strong synergy between the
ruthenium complex and buforin II. Our mechanistic studies point to an increased rate of DNA
damage by 1, compared to [Ru(bpy)s]*". These results suggest that conjugating metal complexes

to antimicrobial peptides can lead to potent antimicrobial agents.



Introduction

Antibiotic resistance is a quickly growing worldwide threat. Each year in the United States
alone, 2.8 million people are infected with antibiotic resistant pathogens and 38,000 deaths result.'
Although the long-term impact of antibiotic resistance remains uncertain,” there is agreement in
that new antibiotics have to be brought into treatment.! Single target antibiotics such as p-lactams
and quinolones have quickly elicited resistance in bacteria. These traditional antibiotics often
target a single biological molecule or enzyme within a pathogen. Resistance can be easily achieved
through mutations to target binding sites, production of enzymes to degrade the antibiotic, or
upregulation of efflux pumps. However antibiotics and treatments that have less stringent targets
such as daptomycin and antimicrobial photodynamic therapies (APDT), have demonstrated a

lower occurrence of antimicrobial resistance development.®~

Photodynamic therapy typically requires three components, a photosensitizer, light, and
molecular oxygen.®® Irradiation of the photosensitizer leads to the formation of reactive oxygen
species (ROS) and the subsequent damage to cellular components leads to cell death. APDT have
distinct advantages over traditional antibiotics as it is site specific, only when activated by light do
photosensitizers elicit damage.’ This allows for targeted activity by only irradiating the infected
region and minimizes off target effects which are commonly seen in traditional antibiotics.'%!!
This targeted activity along with its low propensity to develop bacterial resistance has made APDT
a promising avenue in medicine and approved therapies are being utilized in dentistry and
dermatology.!>!3 Many metal complexes are being investigated as photosensitizers for therapies

other than APDT,'*'® although modifications would be necessary to produce ideal compounds for

antimicrobial therapies. A common challenge is that many metal complexes possess poor ability



to cross cellular membranes, particularly those of gram-negative bacteria, due to their double

membrane.!”1°

Antimicrobial peptides (AMPs) are one of the most promising molecular scaffolds being
explored for the generation of much needed novel anti-infective agents.?> 2> AMPs possess several
advantages as antimicrobial agents, such as broad spectrum activity and multiple-hit strategies.?*
27 But AMPs are not devoid of drawbacks as they often have low in vivo stability and low
efficacy.”® The latter is hypothesized to originate from the fact that AMPs evolved to defend a
microenvironment after deployment of a relatively high concentration of a cocktail of peptides by
the immune system.”” Buforin II (TRSSRAGLQFPVGRVHRLLRK-NH,) is a well-studied AMP
that is notable for its broad spectrum antimicrobial activity, internal DNA target, and ability to
facilitate the translocation of covalently linked molecules across the bacterial cell
membrane.’%*1¥2734 Unfortunately, the peptide has not progressed to clinical trials, as it is not as
potent as antibiotics used in the clinic. A truncated version of buforin II missing the N terminal
TRSS amino acids has been shown to retain broad spectrum antimicrobial activity. Since previous
studies have shown that the N terminus is not needed for antimicrobial activity, and that cargo
covalently linked to the N terminus can be transported across membranes it presents an attractive

location for modification.>®

As a proof-of-concept, we proceeded to couple [Ru(bpy)s]** to buforin II to overcome
the difficulty of the former to cross bacterial cell membranes, and to capitalize on the oxidizing
ability of singlet oxygen generated from photoactivated [Ru(bpy)s]**. The N terminus of the
peptide was chosen for conjugation since, as mentioned above, conjugation to the N terminus does

not affect its membrane crossing activity.>> We hypothesize that the antimicrobial activity of the



covalently linked [Ru(bpy)s]**—buforin II conjugate (1) would increase upon exposure to visible

light in a synergistic fashion.

Scheme 1. Synthetic route for the [Ru(bpy)s;]**—buforin II conjugate (1).
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The monocarboxylic acid derivative of [Ru(bpy)s]*" (RuBP-COOH) used to synthesize 1
was prepared using previously reported methods.*®*” Synthesis of the C terminal amidated buforin
IT was completed on rink amide resin using standard Fmoc solid phase peptide synthesis
protocols.*® RuBP-COOH was then converted to an acyl chloride and allowed to react with the
side chain protected buforin II on resin for 48 h (Scheme 1). 1 was then cleaved and purified to
>95% via reversed phase HPLC and characterized using high resolution ESI TOF mass

spectrometry.

To determine the effectiveness of 1 in comparison to unmodified buforin II we used a
standard 96 well broth microdilution assay to determine minimum inhibitory concentration (MIC)
against Escherichia coli and Bacillus subtilis, gram-negative and gram-positive bacteria,
respectively.®® Polypropylene 96-well plates were used to avoid binding of the peptide to the
plate.?** Without irradiation, both buforin II and 1 showed the same MIC against E. coli, whereas
the conjugate was 4-fold more active than the peptide when tested against B. subtilis. This result
indicates that the addition of the metal complex to the N terminus of the peptide has only a minor

effect on the antimicrobial efficacy of buforin II. Without irradiation, [Ru(bpy)3]Cl> shows no



antimicrobial activity up to 64 uM. When the same assay was repeated with 470 nm light
irradiation (average intensity 12 mW/cm?), 1 showed a 32-fold and 16-fold decrease in its MIC
against the gram-negative and gram-positive bacteria, respectively. Under irradiation, buforin II
showed no increase in activity against E. coli, and just a two-fold change when tested against B.
subtilis. The 1:1 mixture of [Ru(bpy);]Cl> and buforin II showed only a two-fold increase in
activity under irradiation demonstrating that a covalent linkage is necessary for the synergistic

interaction. 2-fold differences in MIC values can also be part of the error expected in this assay.*’

Table 1. Minimum inhibitory concentration (MIC) values determined for 1 and control
compounds. Values are the mode of triplicate determinations and MICs are reported in uM.

Irradiation conditions: 470 nm light over 12 h (12mW/cm?)

E. coli (MG 1655) B. subtilis (1A1)
Compound Dark Irradiated Dark Irradiated
Buforin II 32 32 16 8
1 32 1 4 0.5
Ru(bpy);Cl >64 >64 >64 >64
Ru(bpy);Cla:1 32 16 16 8




Previous studies have shown that buforin I binds to DNA after it enters the cytoplasmic
space®*, thus, we hypothesized that the conjugate 1 is also able to internalize into the cytoplasmic
space of the bacteria. To test this hypothesis, we incubated E. coli MG1655 with 1 and examined
the cells using confocal fluorescence microscopy. The intrinsic fluorescence of the conjugate was
monitored at an excitation of 457 nm and emission at 595 nm. 1 can be seen to enter the cells
within 30 minutes (Figure 1, and z stack video available in SI). Ru polypyridyl complexes can
cross membranes depending on their lipophilicity.*® However, [Ru(bpy);]Cla, at 8 pM, cannot
cross the E. coli cell membrane within 30 minutes. Importantly, the microscopy results hint at the

possibility of an internal target for 1.

Excitation/Emission
DIC 457 nm/595 nm Merged

Buforin 11

Ru(bpy);Cl,

Figure 1. Laser confocal microscopy images of E. coli (MG 1655) exposed to 1 (8 uM) for 30
minutes. Scale bars represent 5 um.



The internalization of 1 combined with the high DNA affinity of buforin II lead us to
hypothesize that the increased activity of the ruthenium peptide conjugate was related to its ability
to damage DNA.* To probe this idea, 1 was incubated with the plasmid pUC19 and irradiated (A
= 470 nm, 12mW/cm?) for up to 2 hours. Nicked DNA, which runs slower on an agarose gel, was

detected, quantified, and compared to the supercoiled form (Figures 2A and S9).
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Figure 2. (A) Percentage supercoiled (=) and nicked plasmid (m) when pUC19 was incubated

with 1 for 2 h. (B) Amount of supercoiled remaining when 20 uM pUC19 was incubated with
1 (m) and 1 and 10mM NaNj3 (=) for 2 h.



As the irradiation time increased, the percentage of supercoiled DNA decreased and a
subsequent rise in the nicked form was observed. The DNA damage seen is consistent with the
increased antimicrobial activity of 1 when compared to buforin II under light irradiation. No DNA
damage occurs without irradiation (Figure S9), consistent with the similar MICs determined for
buforin IT and 1 without light (Table 1). Nicked form is indicative of a single phosphodiester bond
cleavage occurring and is consistent with results seen with other ruthenium complexes.*' When
comparing the DNA photocleavage activity of 1 to that of unmodified [Ru(bpy);]** (Figure S12)
it is evident that the degradation of the plasmid is approximately twice as great for 1. We attribute
this increased rate of DNA damage by 1 to the large DNA binding affinity of buforin I1.° Binding
of 1 to DNA via buforin II would allow for the photosensitizer to be in close proximity to the DNA
and explains the increased rate of DNA degradation. Previous studies have shown that buforin II
binds DNA, although it does not cleave DNA on its own.** Our data suggests that the increased

photo-induced antimicrobial activity of 1 is a consequence of bacterial DNA damage.

Two types of ROS are frequently cited for the activity observed for metal complex
photosensitizers.***> Type 1 photosensitizers generate superoxide (O"), hydroperoxyl (HO>"),
and/or hydroxyl radicals (HO"), whereas Type 2 produce singlet oxygen ('02). [Ru(bpy)s;]**
derivatives are known to generate 'O, when irradiated in their metal to ligand charge transfer
(MLCT) absorption band, placing them in the Type 2 group.** Diminished photocleavage would
be expected when azide is added to the reaction mixture if 'O> were involved in the reaction of 1.
Samples subjected to 10 mM NaNj resulted in less photocleavage than those performed in its
absence (Figure 2B). Repeating the experiment with scavengers for O™, HO>", and HO" showed
minimal or no change when compared to those performed in their absence (Figures S13-S15).

These results indicate that the formation of 'O, primarily drives the DNA cleavage. Stability



experiments show that under ambient light 1, roughly 35% of the conjugate is degraded. Faster
degradation is observed when the sample is irradiated (470 nm, 12mW/cm?, Figure S16). Since
the conjugate is internalized within 30 minutes (vide supra), we believe 1 is the primary driver of

cell death.

The mechanism of action demonstrated by 1 is suitable for broad spectrum activity, we
determined its antimicrobial activity against the multidrug resistant (MDR) clinical isolates
Pseudomonas aeruginosa AR 0229 (resistance; cephalosporin, and quinolones) E. coli AR 0114
(resistance; carbapenems and quinolones), Acinetobacter baumannii  Naval-17 (multidrug
resistant), and Klebsiella pneumoniae AR 0113 (resistance; B-lactams and aminoglycosides). The
results clearly indicate that this approach is effective against pathogens that are clinically relevant
(Table 2). Two interesting observations that deserve further studies are 1) the large increase in
activity that occurs against P. aeruginosa AR 0229 (=32-fold) and K. pneumoniae AR 0113 (16-
fold); 2) without irradiation, 1 is more active than buforin II against E. coli AR 0114 and A.
baumannii Naval-17. Studying antimicrobial mechanism of action and uncovering reasons behind
the differences in activities against the different pathogens will provide important information on

the structural aspects of peptide-metal complex conjugates that control their antimicrobial activity.

Table 2. MIC values determined for 1 and buforin II against antibiotic resistant clinical isolates,

all MICs are reported in pM. Irradiation conditions: 470 nm light over 12 h (12mW/cm?)

Compound  P. aeruginosa E. coli A. baumannii K. pneumoniae
(AR 0229) (AR 0114) (Naval-17) (AR 0113)
Dark Irradiated Dark Irradiated Dark Irradiated Dark Irradiated

1 >64 2 4 0.5 4 0.5 64 4
Buforin IT  >64 >64 16 16 16 16 64 64

10



In sum, our studies indicate strong synergy between the ruthenium complex and buforin II.
The peptide acts as a delivery agent to DNA allowing for localized production of 'Oz by the
ruthenium species, resulting in a more active bactericidal agent. This demonstrates that AMPs can
be made more efficient by conjugating them to metal complexes such as Ru(bpy)s>*, increasing
the versatility of these chemical entities, and possibly leading to an increase of AMP drug
candidates. In particular, the submicromolar activity of 1 against the MDR strains E. coli AR 0114

and A. Baumannii Naval-17 suggests that conjugates of this type have significant potential.
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Synopsis

The conjugate Ru(bpy)s-buforin II penetrates multidrug resistant gram-negative bacteria and
causes cell death upon irradiation. This conjugate linearizes plasmid DNA and provides a new

approach to combat antibiotic resistance.
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