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Reachable Power Flow: Theory to Practice

Yifan Zhou

Abstract—Reachable power flow (ReachFlow) is a newly devel-
oped formal method for enclosing the complete set of uncertain
power flow states. To enable ReachFlow’s transition from theory
to practice, the paper makes three major contributions: (1) both
small- and large- signal stability proofs for the ordinary differen-
tial equation (ODE)-based power flow are devised to theoretically
ensure the robustness of ReachFlow; (2) a model-order-reduction-
empowered ReachFlow(ReachFlow™) algorithm is created for
analyzing interested regions in large power systems; and (3) a par-
allel ReachFlow(ReachFlowT ) algorithm is established to scale up
ReachFlow for the accurate analysis of very large power systems.
Extensive case studies are performed on a series of test systems,
ranging from a 33-bus microgrid to a 2,000-bus power system,
to thoroughly verify the correctness, efficacy and practicality of
ReachFlow in formally verifying microgrid and macrogrid power
flows as well as power flow control strategies.

Index Terms—Reachable power flow, reachability, uncertainty,
reduced-order ReachFlow, parallel ReachFlow.

I. INTRODUCTION

ODERN power system is evolving with ever-increasing
M penetration of renewable energy (RE) sources [1]. Re-
cently, Europe, the USA and China have envisioned respectively
their 100% [2], 80% [3] and 60% [4] RE-supported power grids
by 2050. Dependable power flow analysis under unprecedented
uncertainties has thus been a fundamental need for the design,
planning and operations of power systems.

There exist two main types of approaches to analyzing power
flows under uncertainties. Monte Carlo simulations [5]-[8]
suffer from prohibitively high computational burden for high-
dimensional uncertainties [9] and from overly optimistic assess-
ments because they are unable to sample the infinitely many
scenarios. Analytical approaches such as certain probabilis-
tic power flow tools calculate discrete distributions of power
flows [10], [11]. However, mainly due to the inability to capture
tail events, the probabilistic analysis results can not include
all the possible power flow solutions, which therefore fail to
provide conservative assessment. Alternatively, set-based static
power flow methods formulate uncertainties using intervals [12],
[13], ellipsoids [14], [15] or zonotopes [16], [17], yet their
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convergence issues inherited from iterative nonlinear solvers and
the non-conservativeness risks prohibit their adoption in power
system operations.

Recently, a novel reachable power flow (ReachFlow) theory
has been emerging [18] to rigorously enclose the uncertain
power flow states via a single reachability calculation, rendering
repetitious Monte Carlo sampling unnecessary. Although the
proof-of-concept of ReachFlow on a small microgrid is suc-
cessful [18], its applicability to real power systems is a major
difficulty due to the computational expense of high-dimensional
reachability analysis [19]. Further, the robustness of ReachFlow
is yet to be formally proved. To tackle the barriers to practical use
of ReachFlow for large systems, this paper thoroughly enhances
ReachFlow in three aspects:

® The stability of the ordinary differential equation -based

power flow (ODE-PF) model is formally proved.
The key innovation of ReachFlow is obtaining reachable
power flow results by performing reachability analysis on
the virtual dynamics of ODE-PF. The proofs of small-
and large-signal stability of the ODE-PF dynamics offer
strong theoretical guarantees for successful applications
of ReachFlow to arbitrary power flow cases.

® A reduced-order ReachFlow(ReachFlow®) is devised
to allow for ultra-efficient reachability analysis on the
reduced-order ODE-PF dynamics.

By projecting the high-dimensional reachable set evolution
to a subspace expanded by the vital power flow states,
ReachFlow™ enables large-scale ReachFlow analysis.

e A parallel ReachFlow(ReachFlow® ) algorithm is further
established to empower scalable and accurate reachability
analysis with the parallel computing architecture.

The original high-dimensional ReachFlow for solving very
large scale power flow problem is decomposed to a set of
sub-ReachFlow tasks suitable for concurrent processing.

The remainder of this paper is organized as follows. Sec-
tion II introduces ODE-PF and theoretically proves its stability.
Section III recapitulates the basic ReachFlow, while Section IV
and V respectively devise ReachFlow™ and ReachFlow” . Fi-
nally, case studies are discussed in Section VI.

II. ODE-BASED POWER FLOW MODEL

A provably stable ODE-PF model is devised to quantify the
propagation of uncertainties in the power flow solution.

A. Power Flow Formulation With Frequency/Voltage Control

1) Macrogrid Power Flow Model: We extend the traditional
power flow formulation for bulk power system by adding the
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primary frequency control for specific generators, as follows:
Pi= P ki(f* = 1)+ (M

where P; denotes the active power generation of generator ; f is
the system frequency; P and f* respectively denote the nominal
values of P; and f; k; is the frequency regulation coefficient; u;
formulates the uncertainty input due to the RE resources. For
the fully-controllable generators, u; = 0.

2) Microgrid Power Flow Model: A complete microgrid
power flow is an augmentation of traditional power flow model
with hierarchical control models [20]. The hierarchical control
for active power-frequency regulation of distributed energy re-
source (DER) is formulated as:

wi = wi —myp (P — (P +uy)) + (2a)

wifwf+ Z aU(QZ*Q]):O

jESDER

(2b)

where w; denotes the angular frequency of DER 4; ; is the
secondary control signal of DER ¢ which can be achieved by
distributed consensus [20]; w; and P;" respectively denote the
nominal angular frequency and active power; u; represents the
RE uncertainty; m,, ; is the droop gain; SP % denotes the set of
DERs; a;; denotes the active power sharing coefficient between
DER i and DER j.
Further, the reactive power-voltage control is expressed as:

E; =Ef —ng;Q; +e; (3a)

BilE:—E)) + Y bi(Qi/Q; —Q;/Q;) =0

jeSDER

(3b)

where F; is the output voltage of DER i; e; is the secondary
control signal; E and ()] respectively denote the nominal
voltage amplitude and reactive power output; n, ; is the droop
gain; 3; and b;; are the reactive power sharing coefficients.

A complete steady-state model for DER controls with power,
current and voltage controls can be found in [21].

B. ODE-Based Power Flow (ODE-PF) Formulation

The power flow models above can be abstracted into:
h(z,u) =0 4)

where x denotes state variables, e.g., power generation, voltage,
current, system frequency; u denotes the uncertainties.
The Newton-Raphson (NR) iteration can then be derived as:

Tpr1 =k — (Jp(zp,uw))  h(zg, u) )

where x;, denotes the value of x at the k'" iteration; J}, =
Oh/0x|y—q, denotes the Jacobian matrix of h at point xy,.

The discrete dynamics in (5) can be viewed as an abstraction
of a continuous dynamics as follows:

(t) = —(Jn(@(t),w) " h(z(t),u) = fo(x(t),u) (©)

where ¢ refers to time by viewing the number of iterations as
continuous.

The virtual dynamics in (6) is a mathematical equivalent to
the NR iterations rather than an actual dynamic process, which is
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called an ODE-based power flow (ODE-PF) model. It inherently
reflects the propagation of uncertainties.

C. Stability Proof of the ODE-PF Dynamics

Because ODE-PF is a basis of ReachFlow (see Section III),
stable ODE-PF dynamics can ensure the convergence of numer-
ical integral in ReachFlow. To this end, the small- and large-
signal stability of ODE-PF is proved as follows.

1) Small-Signal Stability: An arbitrary @ and the corre-
sponding power flow solution & contribute to an equilibrium
point of the ODE-PF model, i.e. f.(&,4) = 0. Eigenvalues
of the state matrix at & can be used to verify the small-signal
stability.

Based on (6), we have J, f, = —h. Taking partial derivative
with respect to & yields the following:

8.fz aJh o 87h
In ox + oz Fa Oz
of » ., (Oh OJy _

(N
Hence, all the eigenvalues of ODE-PF at any equilibrium point
definitely have negative real parts, which verifies the asymptot-
ically stability of ODE-PF in small neighbourhoods.

2) Large-Signal Stability: The large-signal stability of the
ODE-PF dynamics is proved as: a) ODE-PF is Lyapunov stable
at any ; b) ODE-PF is asymptotically stable at &, if & leads to
a unique power flow solution .

Define the difference between the current states and the equi-
librium point & as Ax = x — &. The dynamics of Ax can be
readily constructed:

dAx
dt
where h(Az) = h(Ax + &, u).
Considering the following Lyapunov function:

= —(Ju(Az + 2, u)) *h(Ax) ®)

1
V(Ax) = 5h(Aaz)Th(Aas) + € )
where ¢ is a small positive constant ensuring V(Az) to be
positive definite. The time derivative of V' () is computed as:

0V dAz _87V oh dAx _(r“)iVaihdAw
T 9Ax At OhOAx dt  Oh dx dt
= h(Az) T, (=T, ' h(Az))

= —h(Az)Th(Az) <0

(10)

Hence, V is negative semi-definite, which proves the Lyapunov
stability of ODE-PF dynamics around an arbitrary equilibrium
point .

Further, if @ leads to a unique power flow solution &, we have
h(x,u) # 0if  # &, which yields the following:

V <0, Ve e X\{z} (11)

where A is the domain of x. Hence, & is asymptotically stable
in X'. This indicates that the crisp power flow solution without
uncertainty is in the stability region of &. Consequently, the
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ODE-PF integrating from the crisp power flow solution (see

(14)) definitely converges to & for an arbitrary uncertainty .
The two proofs theoretically guarantee that ReachFlow is a

non-divergent power flow under small and large uncertainties.

III. REACHABLE POWER FLOW

This section recapitulate the ReachFlow methodology [18]
which was devised by the authors to establish a provably enclo-
sure of all the uncertain power flow solutions.

A. ReachFlow Formulation

Incorporating the DER uncertainties « in the ODE-PF model
formulates the augmented ODE-PF model:

{ib(t) = —(Jn(z(t), u(t)) "h(z(t), u(t))
a(t) =0

(12a)
(12b)

Equation (12b) means that the uncertainty input w remains
constant during a single run of power flow. The rationale behind
(12b) is that during the NR iteration, the uncertainty input should
not be changed because (12a) corresponds to the solution process
of a single power flow under a specific uncertain scenario.

Functionally, (12) is abstracted as:

Z(t) = f(z(1)) (13)

Here, z = [x;u] denotes the augmented power flow states;
f(z) = [fz(x,u); fu(x,u)] formulates the augmented ODE-
PF dynamics; f, = 0.

With arbitrary u, the steady state of (13) exactly refers to the
power flow solution with a specific u. Hence, finding the set
of all possible power flows is equivalent to finding the possible
steady states of the dynamics in (13).

The recognition above leads to the reachable power flow
(ReachFlow) set defined as:

Rpr = {z - /Ox Flz(t)dt ‘ 2(0) € X%, u € uo} (14)

where z and f(z) are definedin (13); X° and/° are the set of the
initial states and uncertainty inputs. R pr exactly characterizes
the set of all possible power flows regarding the uncertain input
Uuo.

B. ReachFlow Algorithm

Through the definition of Rpp, the reachable set [22] of
continuous time ¢ is defined as:

R(t) = {z(t) - /Otf(z(T))dT ‘ 2(0) € 30}

where 20 = X° ® U°; ® denotes the Cartesian product. In this
paper, the uncertainty inputs are governed by an unknown-but-
bounded set 2/, and zonotope is adopted for set modeling for its
efficiency in linear transformation and Minkowski addition [23].

The nonlinear dynamics in (13) can be over-approximated by
the first-order Taylor term and the Lagrange remainder:

zef(z)+A(z—2")+ L(z—-2")
———

linear abstraction

s)

(16)

linearization remainder
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Algorithm 1: ReachFlow Algorithm.

1 Initialization: X° = {0} by solving Eq. (4) without
uncertainty, U, r, k= 0;

2 while / do

3 k=k+1;

4 Update R by Eq. (17) ;
5 if isequal(Ry, Ri—1) then
6 Rpr =Rk ;

7 break ;

8 end

9 end
10 Output: Rpr ;

where z* is the linearization point; A = 0f/0z|,—.+ is the
Jacobian matrix; £ is the linearization error due to the Lagrange
remainder.

Hence, the reachable set during time interval [kT, (k + 1)7]
(k € N) can be over-approximated by:

R([kr, (k+1)7]) £ Ry, C R DRy (17)

where @ denotes the Minkowski addition between two sets. R4"™
and R respectively denote the over-approximated reachable
sets of the linear abstraction and the linearization error, which are
computed by function ‘LinearReach’ and function ‘ErrorReach’
as detailed in Appendix VIIL.

The reachability analysis leads to Algorithm 1. ReachFlow is
initialized by the conventional power flow calculation without
uncertainty. Then, the reachable set of the ODE-PF model is
calculated step by step, which reflects the propagation of the un-
certainty set /° during power flow calculation. The ReachFlow
algorithm converges when the reachable set becomes stable. The
reachable set at the last time step will be the final ReachFlow
which is the rigorous enclosure of all possible power flow
solutions under 2°.

IV. REDUCED-ORDER REACHABLE POWER FLOW

Even though ReachFlow is more efficient than other uncertain
power flow approaches, its utility application is hindered by the
high computational cost in calculating large power systems. In
practice, utility or ISO engineers usually only need a few pivotal
power flow states in regions of interest for operations and plan-
ning purposes. Motivated by this observation, a reduced-order
ReachFlow (ReachFlow™) algorithm is devised. Rather than
involving all the power flow variables, ReachFlow® performs
the reachability analysis in the subspace spanned by a reduced
number of power flow features.

A. Order Reduction of ReachFlow Formulation

Denote x, as the reduced-order power flow states selected
for ReachFlow analysis. Denote z, = [x,; u] as the augmented
reduced-order power flow states. Define the projection matrix
W, satisfying z,, = U, z, which maps the reduced-order states
z, to the complete states z. ReachFlow™ is then defined as:

Rpr, = {2, = /0 w200 € 2°) ag)
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Schematic diagram of reduced-order ReachFlow.

Denote z. as the eliminated states in z and define the pro-
jection matrix ¥, satisfying z. = V. z. It can be readily proved
that z = U7Xz, + 0Tz

ReachFlow™ is illustrated in Fig. 1. By dividing the overall
augmented power flow states z into z, and z., ReachF low™
only computes the reachable set of 2., i.e., R pr, illustrated by
the yellow zonotopes. However, the dynamics of z, inherently
involves z.. Hence, the bounds of z. is also estimated, as
depicted by the green intervals, and serves as an uncertainty input
for the reachability analysis of z,. By analogy with (16), the
linearization of ODE-PF model is perform on the reduced-order
power flow states:

zr € fr(2") + Apr(zr — 27) + Ape(ze —20) + UL (19)

linear abstraction order reduction remainder

where f,.(2*) = U, f(2"); A, = U, AV, A, = U, AVT,

Equation (19) indicates that the over-approximated dynamics
of z, also consists of a linearized part as well as a remainder
part, with exactly the same form as (16). Hence, the reachable
set algorithm in Section III also applies:

Ro([kr, (k+ 1)7]) £ Ry SR B RYY

(20)

Here R“” is the reachable set of the linear abstraction in (19) and
Rfc”; = L1nearReach( r(kT), 25, fry Arr, T) (see (33)). Since
the zonotope evolution is performed in a reduced-order space,
the computing efficiency is significantly enhanced.

Set Ry} refers to the reachable set of the remainder term in
(19) comprlsmg both the Lagrange remainder (i.e., ¥,.L(z —

z*)) and the impact of the eliminated power flow states (i.e.,
Am(z6 —z%)). Letting £,1 = A;e(ze — 25) and L0 = U, L,
one can yield the following over-approximation:

“crl‘ S ‘Are| SuP(ze - ZZ) é Z’r‘la£’r‘2 S \I/TE é Zr? (21)

where sup denotes the supremum operator. Hence, R;'} =
ErrorReach(L,1, A, 7) ® ErrorReach(L,2, A,., T).

B. Reduced-Order ReachFlow Algorithm

Algorithm 2 summarizes the ReachFlow™ algorithm.
ReachFlow™ performs the same initialization as ReachFlow, to
establish the set of initial power flow states X' and uncertainty
inputs 2" by algebraic calculation. Then the reduced-order
power flow states x, is selected by the power engineer for
specific reachability analysis, and the corresponding projection
matrices are prepared. Next, the reduced-order reachable set in
(18) is calculated step by step until convergence to quantify the
impact of 4" on x,.
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Algorithm 2: ReachFlow™ Aalgorithm.

1 Initialization: X° = {z0}, U°, 7, k=0 ;

2 Select the reduced-order power flow states x,;
3 Prepare projection matrices V,., U;

4 while / do

5 k=k+1;

6 Calculate f,, A, by Eq. (19) and L,1, L2 by (21);
7 Update R, by Eq. (20) ;

8 if isequal(Ry,r,Ri—1,-) then

9 RPF,T‘ - Rk,r;

10 break ;

11 end

12 end
13 Output : Rpr, ;

V. PARALLEL REACHABLE POWER FLOW

Another potent approach to accelerating ReachFlow is to
exploit the parallel computing capability of the ubiquitous
multi-core processors. This section devises a parallel Reach-
Flow (ReachFlow™ ) to over-approximate the high-dimensional
reachable set by the Cartesian product of a set of lower-
dimensional reachable sets. Therefore, the serial computation
of ReachFlow is broken into ‘independent’ sub-ReachFlow s
with the dependencies serving as the uncertainty inputs that can
be processed concurrently.

A. Partition of ReachFlow Formulation

Suppose that the power flow vector x is partitioned into P
disjoint subsets, i.e., 1, X2, ..., xp. This subsection devises a
ReachFlow” formulation, which decomposes the ReachFlow
set in Section III into discrete sub-sets for each x),.

For arbitrary x,, define z, = [z,;u] as the p'" subset of
augmented power flow states. Define the projection matrix ¥,
satisfying z, = ¥, z, which maps the p*" subset of augmented
power flow states to the complete augmented power flow states.
From (13), the ODE-PF for z,, can be formulated as:

p = \I’pf(z)7 Vp

Correspondingly, the ReachFlow set for z,, i.e., the pth
ReachFlow, is formulated as:

Reep = {z= [0 f(:0)dt] =

Define projection matrices v, satisfying z, = 1, [x; 0], and
1, satisfying u = 1, z. It can be readily proved that z =
25:1 Tz, 4 1l u. Hence, based on each sub-ReachFlow,
the complete ReachFlow can be conservatively reconstructed

as:
P
Rpr = E
p=1

ReachFlow” is illustrated in Fig. 2. By dividing the overall
power flow states into P subsets, ReachFlow? computes the
reachable sets of each z, in parallel on different cores, i.e.,
R pr,p asillustrated by the zonotopes of different colors. The de-
pendency between each subset of power flow states is modelled
as the uncertainty inputs. After obtaining each sub-ReachFlow,

(22)

sub-

0) eZO}, Vp (23)

Y Rpppy ® LU (24)
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Fig. 2. Schematic diagram of parallel ReachFlow.

the overall ReachFlow will be constructed by the Cartesian
product of the reachable set on each z,,.

To compute each sub-ReachFlow, the ODE-PF of z,, is lin-
earized by analogy with (16):

2, €U (f(2)+A(z—2")+ L(z— 2"))
=V, f(z") + V,AV] (2, — z})
+U,AY YT (25— 25) + UL(z - 27)
J#p
= fp+ Ap(zp — z;) + Lp(z — 27)

(25)

linear abstraction parallel remainder

Here, the relationship z = W[z, + 5., 47z, is applied
in above derivation; z*, A and L are respectively the lin-
earization point, Jacobian matrix and Lagrange reminder as
defined in (16); f, =V, f(z*), A, = \I/pA\Ilg and L, =
UpAY sy 11’3;(%' —25) + ¥, L(z - 27).

Equation (25) is in the identical form with (16). Hence, the
reachability analysis in Section III-A can be readily performed.
More specifically, the reachset for z, during time interval
[kT, (k + 1)7] is formulated by:

RP([kT7 (k + 1)7]) é Rk’,p g Rlzn S5 Rerr Vp

kp O R (26)

Set Rﬁg';) refers to the reachable set of the linear abstraction
in (25). According to (33), Rﬁc“;, is computed as:

R}" = LinearReach(R,,(k7), 25, fp, Ap, 7)

27
Obviously, (27) is independent for each z, and hence parallel-
enabled. Further, the reachable set evolution of (33) occupies the
most computational resources due to the complicated zonotope
calculation. Hence, the parallelization from (33) to (27) will
substantially enhance the ReachFlow efficiency.

Set R;T; refers to the reachable set of the remainder term,
which includes both the Lagrange remainder £,,; and the parallel
computing remainder Lo (i.e., the impact of z; on z,). The
following over-approximation applies for L,,:

|['p1| < \Pp|'c| £ Zpl

|Lp2| < UplA| Z¢g sup(z; — z;) 2 Lo
J#p

(28)

Note that Zpl and sz involve all the power flow states
(i.e., z;) as well as the overall Lagrange remainder; so it

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 3, MAY 2021

Algorithm 3: ReachFlow” Algorithm.

1 Initialization: X° = {0}, U°, 7, k = 0, flag, = 0(Vp);
2 Partition power flow states to 1, x2,...,Zp ;
3 Prepare projection matrices ¥, (Vp), ¥, (Vp), ¥ ;

+ while (~flag:)||(~flagz)|| .. |(~flage) do
5 > Coordination Tasks:

6 k=k+1;

7 Calculate f(2*), A= 0f/0z]|,_,. by Eq. (16) ;
8 Calculate Zpl, Zpg (Vp) by Eq. (28) ;

9

10 > Parallel Tasks:
11 parfor p=1:P

12 Update Ry, by Eq. (26) ;

13 if isequal(Ri,p, Rr—1,p) then

14 | Rpp,p = ka, flagp =l g
15 else

16 | flag, =0;

17 end

18 end

19

20 end

21 Output : Rpr by Eq.(24);

can not be parallelized. Fortunately, (28) performs the inter-
val calculation, which is far more effortless compared with

the zonotope calculation. Hence, R} is enclosed by R} =

ErrorReach(L,1, Ay, 7) @ ErrorReach(L,2, A, 7).

B. Parallel ReachFlow Algorithm

Algorithm 3 presents the ReachFlow” algorithm. Different
from ReachFlow or ReachFlow™, the reachability analysis in
ReachFlow” is divided into a coordination module and parallel
tasks. The coordination calculation prepares the overall Jacobian
matrix and Lagrange remainder around the linearization point.
Then, the parallel calculation updates the reachable set of each
zp independently with the linearization information released by
the centralized calculation. The algorithm terminates until each
sub-ReachFlow converges.

VI. CASE STUDY

ReachFlow, ReachFlow™ and ReachFlow” are developed
in MATLAB R2019b on the basis of CORA [24] and run on a
3.70 GHz PC with 32 GB RAM and 8 cores. ReachFlow® is
implemented via the MATLAB Parallel Computing Toolbox.

A. Validity of ReachFlow Methodology

ReachFlow is verified on multiple microgrid and macrogrids
to exhibit its validity, efficacy and universality.

1) Microgrid ReachFlow: ReachFlow is first validated on a
33-bus microgrid [25] including 5 droop-controlled DERs. A
20% of uncertainty is set for each DER by default.

Fig. 3 illustrates the calculation process of ReachFlow. Start-
ing from the crisp power flow solution xy without uncertainty,
the reachable set successively expands as uncertainty impact
propagates in the ODE-PF dynamics. The final ReachFlow is
obtained once the zonotope stabilizes at the 8" step. Fig. 4 shows

Authorized licensed use limited to: Brookhaven National Laboratory. Downloaded on April 20,2021 at 23:41:35 UTC from IEEE Xplore. Restrictions apply.
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Fig.5. Macrogrid ReachFlow results (I;: active power flow of the 7,5, branch.).

the microgrid ReachFlow, where the green area is a projection
of the high-dimensional ReachFlow zonotope and the yellow
dots represents the massive NR power flow results obtained by
sampling U exhaustively. The zonotope rigorously encloses all
the power flow results, which verifies ReachFlow’s correctness
and tight overapproximation feature.

2) Macrogrid ReachFlow: Fig. 5 shows the ReachFlow re-
sults of two macrogrids which are modified from MATPOWER’s
repository [26] by adding primary frequency controls and incor-
porating frequency-dependent impedance loads and lines. The
RE penetration is set up as 10% with 20% uncertainty.

Static power flow results are found entirely and tightly con-
tained by the ReachFlow results, which verifies the applicability
of ReachFlow to macrogrids. Interestingly, Fig. 5(a) show weak
correlations of the power flows through three branches whereas
Fig. 5(b) shows rather strong couplings. This is because the
former branches are connected directly to three RE generators
with independent uncertainties while the latter are tied to three
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TABLE I
COMPUTING TIME OF REACHFLOW

Test system ReachFlow Monte Carlo (3,000 runs)
33-bus microgrid 27.18s 22.46s
200-bus macrogrid 89.32s 124.89s
500-bus macrogrid 430.66s 749.46s
TABLE II

ACCURACY COMPARISON BETWEEN REACHFLOW AND MONTE CARLO

Test system ReachFlow Monte Carlo (3,000 runs)
33-bus microgrid 103.60% 87.75%
200-bus macrogrid 107.72% 86.12%
500-bus macrogrid 108.96% 90.27%

o ReachFlow | M Mento Carlo Method

300 1500 5000 10000

samples samples samples samples
[ ® ® ° ° [
= 100 —
%
i = =
s -
g
.2
o 70 1 I 1 1 I
£ 1 2 3 4 5
Number of DERs
Fig. 6.  ReachFlow vs. Monte Carlo (the precision index for Monte Carlo is

also applied to ReachFlow).

dispatchable power plants. Hence the power flow fluctuations
in the latter case are significantly less impacted by the RE
uncertainties. Table I gives the computational costs for a mi-
crogrid with complicated DER controllers and two macrogrids.
ReachFlow exhibits excellent computational efficiency and is
more efficient than a very light Monte Carlo of 3,000 runs.

3) ReachFlow Vs. Existing Methods (Monte Carlo, Interval-
and Ellipsoid- Based Methods): ReachFlow is compared with
Monte Carlo by using the 33-bus microgrid. An index 7 is
adopted to quantify the precision of Monte Carlo results:

maxj(w;\/lc) Maey

’ (29)

— min;(x

7 = mean -
supx — inf x

where 2}/ denotes the power flow solution of the j-th Monte
Carlo trial; sup « and inf « denote the supremum and infimum
of x obtained by traversing the uncertainty space °. Upon
this definition, 7 > 1 means a conservative estimation of the
power flow bounds while 17 < 1 an under estimation. A tight
estimation can be achieved when 7 is close to 1. Table Il presents
the quantitative comparison between ReachFlow and Monte
Carlo based on the precision index 7). ReachFlow successfully
achieves conservative but tight estimation of the power flow
states (i.e., ) is larger than but very close to 1). Whereas, Monte
Carlo induces underestimated results, which indicates that some
extreme power flow conditions are missed. Using such overly
optimistic assessments in system operations or planning would
likely lead to catastrophe hazards in the utility grids. Further,
Fig. 6 takes the 33-bus microgrid to investigate the impact of
the uncertainty dimension. Simulation results indicate that with
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Fig. 7. ReachFlow vs. existing set-based methods.

TABLE III
ACCURACY COMPARISON BETWEEN REACHFLOW AND SET-BASED METHODS

Test system ReachFlow Ellipsoid-based Interval-based
method method
33-bus microgrid 114.30% 139.49% 148.41%
200-bus macrogrid 122.90% 149.59% 161.95%
500-bus macrogrid 121.32% 146.46% 179.45%

an increased number of uncertain factors (i.e., the number of
DERs), the precision of Monte Carlo results declines sharply.
Even worse, increasing the sample size fails to improve the
precision. ReachFlow, conversely, always provides rigorous es-
timations with restricted conservativeness as shown in Fig. 6. In
summary, ReachFlow outperforms Monte Carlo simulation from
two aspects: 1) it is capable of obtaining the set of power flow
results in a single run, whereas Monte Carlo requires running
power flow repeatedly under different uncertain scenarios; ii)
it is efficacious in handling the high-dimensional uncertainties,
whereas Monte Carlo suffers from the curse of dimensionality
when sampling the entire uncertainty space.

ReachFlow is further compared with two other set presenta-
tions, i.e., multi-dimensional intervals [12] and ellipsoids [14].
As shown in Fig. 7, both interval and ellipsoid power flow
solutions suffers from overly conservative estimations due to
the dependencies among power system variables. The ellipsoid
method performs better than interval analysis method for certain
scenarios, as shown in Fig. 7(a), where the ellipsoid calculated
is rather tight. For other scenarios, e.g. when the selected power
flow states are coupled, the ellipsoid results can be excessively
conservative, as shown in Fig. 7(b). In contrast, our zonotope-
based ReachFlow always provides tight over-approximations,
making it a much more dependable tool as compared to interval
or ellipsoid methods.

Table III further presents the quantitative comparison. An
index ¢ is adopted to quantify the precision of ReachFlow and
the set-based methods:

\/Area(proj(S, i, j))
\/Area(proj(Spr, i, j))

where Area(-) denotes the area computation function;
proj(S,i,7) projects the set S to the ¢ — j plane; S denotes
the power flow set described by zonotope (i.e., by ReachFlow),
ellipsoid or multi-dimensional intervals; Spr denotes the real
region of uncertain power flow states, which is estimated by

f = mean; ; (30)
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Fig. 8. ReachFlow™ results with different reduction ratios (Pg;: active
power output of the 7,5, generator).

TABLE 1V
COMPUTING TIME OF ReachFlow™

Test reduction ratio
system [26] 0 (complete model) 50% 70% 85%
200-bus 89.32s 30.65s 17.98s 14.59s
500-bus 430.66s 132.44s 75.95s 48.35s
2,000-bus \! > 1 hour  1876.90s 846.19s

'PC runs out of memory.

traversing the uncertainty space. £ reflects the averaged area of
each 2-dimensional projection of the power flow set. Obviously,
if S encloses Spr, each projection of S encloses the projection
of Spr. Further, a perfect estimation of Spy ensures that each
projection of S matches the projection of Spp. Therefore, a
tighter estimation is achieved when ¢ is closer to 1. Results in
Table III show that among all these methods, the zonotope-based
ReachFlow provides the tightest estimation, which is coincident
with the observations in Fig. 7. This again verifies the accuracy
and flexibility of ReachFlow in quantifying the uncertain power
flow states.

B. Validity of ReachFlow™ and ReachFlow”

ReachFlow calculation is of high computational complexity
as indicated by Table I. This Subsection verifies two practical
ReachFlow variants, ReachF' low™ and ReachFlow” ,todemon-
strate their applicability for large-scale power systems.

1) Reduced-Order ReachFlow: For the 200-bus, 500-bus
and 2,000-bus macrogrids, the ReachFlow™ results always en-
close the ReachFlow results or the Monte Carlo results, offering
guaranteed over-approximations. Note that higher reduction ra-
tio leads to larger over-approximation (see Fig. 8). As a rule
of thumb, a 70% reduction ratio or so can give satisfactory
ReachFlow™ results with restricted conservativeness.

Table IV shows that ReachFlow™’s computational efficiency
improves with increased reduction ratio. A daunting fact is that
ReachFlow can no longer solve reachable power flow for the
2,000-bus power system on a PC, while ReachF low™ success-
fully produces an satisfactory enclosure of the reduced-order
power flows within acceptable computing time.

2) Parallel ReachFlow: The correctness of ReachFlow” is
verified as it ensures an enclosure of the ReachFlow results,
as shown in Fig. 9. ReachFlow® on more cores yields higher
efficiency (see Table. V) at a cost of reduced tightness. This
is understandable because the parallelized sub-ReachFlow s,
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Fig. 9. ReachFlow® results with different number of cores.
TABLE V
COMPUTING TIME OF ReachFlow®
Test Number of Cores
system 1 (serial computing) 2 5 8
200-bus 89.32s 33.56s 21.62s 16.14s
500-bus 430.66s 180.86s 70.93s 40.89s
2,000-bus \ ! > 1 hour  1495.34s 829.78s

'PC runs out of memory.
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Fig. 10.  Impact of the uncertainty level on ReachFlow.

as presented in (23), cannot fully incorporate their inherent
couplings, which leads to over-approximation.

Compared with Fig. 8, it is observed that ReachFlow”
tighter than ReachFlow™. The reason is that ReachFlow" for-
mulates the range of each subset of power flow states by a zono-
tope, and hence reduces the over-approximation compared with
ReachFlow™ which formulates the eliminated power flow states
roughly by intervals. Both ReachFlow™ and ReachFlow® en-
hance the scalability of ReachFlow for large-scale power sys-
tems. Compared with ReachFlow®, ReachFlow” is capable
of obtaining the overall ReachFlow via each sub-ReachFlow,
while ReachFlow™ only outputs the reachable set of the selected
power flow states.

C. ReachFlow-Based Power Flow Control Strategy Analysis

ReachFlow serves as a formal tool to verify the efficacy
of power flow control strategies against uncertainties. This
Subsection exemplifies the use of ReachFlow to analyze the
impact of renewable energy (RE) integration and verify droop
and secondary control in the 33-bus microgrid. By default, the
microgrid is fully supported by the renewable energy with 20%
uncertainty.

1) Impact of Renewable Energy (RE) Integration: Fig. 10
investigates ReachFlow under different uncertainty levels with
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Fig. 11.  Impact of the renewable energy penetration on ReachFlow.
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Fig. 12.  Impact of active power droop coefficient m, on ReachFlow.
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Fig. 13.  Impact of reactive power droop coefficient ny on ReachFlow.

droop control only. With the increase of uncertainties, Reach-
Flow expands accordingly, indicating large deviations of the
power flow states driven by DER fluctuations.

Fig. 11 further studies the impact of RE penetration. The
growing penetration of RE leads to expanded ReachFlow be-
cause of both the increased uncertainties from the DERs and the
decreased regulating ability of the fully controllable generators.
Specifically, in the scenario with no RE sources, ReachFlow
degenerates to a single point (see the red dot), which indicates
that the uncertain power flow degenerates to the static power
flow with only conventional generators.

2) Performance of Droop Control: Fig. 12 and Fig. 13 re-
spectively study the ReachFlow with different droop gains m,,
or n,. The droop control logic is presented in (2a) and (3a).
Simulation indicates that m,, strongly impacts the zonotope
of system frequency and that n, is closely correlated to the
zonotope of bus voltages, which follows the droop control logic.
In addition, it can be observed that the system frequency/voltages
can not be maintained at their nominal values, which indicates
that droop control results in steady-state deviations.
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Fig. 14.  Efficacy of secondary control verified via ReachFlow.

By examining different levels of uncertainties, one can find
that the increase in m,, or n, leads to expanded ReachFlow,
meaning increased droop gains exacerbate uncertainties in
power flow states and thus drastically affect microgrid security.

3) Performance of Secondary Control: Fig. 14 shows a sur-
prise finding that, with secondary control, the reachable set
of P—f (i.e., active power generation of DER vs. microgrid
frequency) degenerates to a line, while the reachable set of
V1 —V5—Vs (i.e., output-voltage magnitudes of DERs) degen-
erates to a plane. This reflects that the secondary control suc-
cessfully maintain the system frequency and the output voltage
of DERI1 at 1 p.u., despite any uncertainty level. By comparing
Fig. 14 with Fig. 10, it can be seen that the secondary control
realizes disturbance rejections and error-free as long as there
exist sufficient reserves in DERs.

ReachFlow and its variants therefore offers powerful tools to
formally verify power flow control strategies under structural
and parametric uncertainties.

VII. CONCLUSION

This paper offers three innovations imperative to make
ReachFlow practical: formal proofs of ODE-PF stability, a
ReachFlow™ and a ReachFlow” that jointly scale up Reach-
Flow for ultra-scale power flow problems. The stable ODE-PF
model enables ReachFlow to be a non-divergent power flow
solver. ReachFlow™ generates the reachable set of selected
power flow states and is flexible enough to be implemented on
any computers. ReachFlow? decomposes the time-consuming
reachability analysis into parallel-enabled lower-dimensional
reachable set calculations well-suited for implementation on
multi-core computers or computer clusters. Next, a privacy-
reserving and more accurate ReachFlow is to be developed.

APPENDIX
ALGORITHM FOR REACHABLE SET EVOLUTION

A. Over-Approximation of Linear Abstraction in ReachFlow
The time-point solution of linear dynamics can be separated
into the homogeneous part z" and the inhomogeneous part z?:
(k4 1)7) = eA7 2" (k1)

(€29
2P((k+1)7) = eA2P(kr) + A (eAT — T

)f(z%)
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Hence, the reachable set for the linear abstraction of (16) at
time point (k + 1)7 is computed based on the reachable set at
the previous time-point R (k1) [27]:

RM(k+1)7) = {2"(t) + 2P (W) |t = (k + 1)7}

(32)
= eAT(R(kT) — 2) D AT — D) f(z") @ 2*

Further, the time-interval reachable set during [k, (k + 1)7]
can be enclosed by [27]:

RYE™ = {z(kT + At)|At € [0, 7]}

At
C {z(kr)+ T(Z((k +1U)7) — z(k7)) + Fz(k7)} 33

C conv(R(k7), RM"™((k + 1)7)) ® F(R(kT) — 2%)
£ LinearReach(R(kT), 2%, f(2%), A, T)

where conv denotes the convex hull of two sets; F =

7L I(TT — i7T) 7, 0] f}, @ &(7) is an interval matrix to en-

sure the necessary conservativeness [27].

B. Over-Approximation of Linearization Error in ReachFlow

Given the maximum value of £, i.e., £, the set of linearization
error can be over-approximated as [22]:

R = Fa|~L, L] = ErrorReach(L, A, 7) (34)
where F» = Y7, "(‘;J:ll;,l @ E(7)T encloses A1 (eA” — I)in

analogy with the inhomogeneous solution in (31).
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