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Reachable Power Flow: Theory to Practice
Yifan Zhou , Member, IEEE, and Peng Zhang , Senior Member, IEEE

Abstract—Reachable power flow (ReachFlow) is a newly devel-
oped formal method for enclosing the complete set of uncertain
power flow states. To enable ReachFlow’s transition from theory
to practice, the paper makes three major contributions: (1) both
small- and large- signal stability proofs for the ordinary differen-
tial equation (ODE)-based power flow are devised to theoretically
ensure the robustness of ReachFlow; (2) a model-order-reduction-
empowered ReachFlow(ReachFlow

R) algorithm is created for
analyzing interested regions in large power systems; and (3) a par-
allel ReachFlow(ReachFlow

P ) algorithm is established to scale up
ReachFlow for the accurate analysis of very large power systems.
Extensive case studies are performed on a series of test systems,
ranging from a 33-bus microgrid to a 2,000-bus power system,
to thoroughly verify the correctness, efficacy and practicality of
ReachFlow in formally verifying microgrid and macrogrid power
flows as well as power flow control strategies.

Index Terms—Reachable power flow, reachability, uncertainty,
reduced-order ReachFlow, parallel ReachFlow.

I. INTRODUCTION

M
ODERN power system is evolving with ever-increasing

penetration of renewable energy (RE) sources [1]. Re-

cently, Europe, the USA and China have envisioned respectively

their 100% [2], 80% [3] and 60% [4] RE-supported power grids

by 2050. Dependable power flow analysis under unprecedented

uncertainties has thus been a fundamental need for the design,

planning and operations of power systems.

There exist two main types of approaches to analyzing power

flows under uncertainties. Monte Carlo simulations [5]–[8]

suffer from prohibitively high computational burden for high-

dimensional uncertainties [9] and from overly optimistic assess-

ments because they are unable to sample the infinitely many

scenarios. Analytical approaches such as certain probabilis-

tic power flow tools calculate discrete distributions of power

flows [10], [11]. However, mainly due to the inability to capture

tail events, the probabilistic analysis results can not include

all the possible power flow solutions, which therefore fail to

provide conservative assessment. Alternatively, set-based static

power flow methods formulate uncertainties using intervals [12],

[13], ellipsoids [14], [15] or zonotopes [16], [17], yet their
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convergence issues inherited from iterative nonlinear solvers and

the non-conservativeness risks prohibit their adoption in power

system operations.

Recently, a novel reachable power flow (ReachFlow) theory

has been emerging [18] to rigorously enclose the uncertain

power flow states via a single reachability calculation, rendering

repetitious Monte Carlo sampling unnecessary. Although the

proof-of-concept of ReachFlow on a small microgrid is suc-

cessful [18], its applicability to real power systems is a major

difficulty due to the computational expense of high-dimensional

reachability analysis [19]. Further, the robustness of ReachFlow

is yet to be formally proved. To tackle the barriers to practical use

of ReachFlow for large systems, this paper thoroughly enhances

ReachFlow in three aspects:
� The stability of the ordinary differential equation -based

power flow (ODE-PF) model is formally proved.

The key innovation of ReachFlow is obtaining reachable

power flow results by performing reachability analysis on

the virtual dynamics of ODE-PF. The proofs of small-

and large-signal stability of the ODE-PF dynamics offer

strong theoretical guarantees for successful applications

of ReachFlow to arbitrary power flow cases.
� A reduced-order ReachFlow(ReachFlowR) is devised

to allow for ultra-efficient reachability analysis on the

reduced-order ODE-PF dynamics.

By projecting the high-dimensional reachable set evolution

to a subspace expanded by the vital power flow states,

ReachFlow
R enables large-scale ReachFlow analysis.

� A parallel ReachFlow(ReachFlowP ) algorithm is further

established to empower scalable and accurate reachability

analysis with the parallel computing architecture.

The original high-dimensional ReachFlow for solving very

large scale power flow problem is decomposed to a set of

sub-ReachFlow tasks suitable for concurrent processing.

The remainder of this paper is organized as follows. Sec-

tion II introduces ODE-PF and theoretically proves its stability.

Section III recapitulates the basic ReachFlow, while Section IV

and V respectively devise ReachFlow
R and ReachFlow

P . Fi-

nally, case studies are discussed in Section VI.

II. ODE-BASED POWER FLOW MODEL

A provably stable ODE-PF model is devised to quantify the

propagation of uncertainties in the power flow solution.

A. Power Flow Formulation With Frequency/Voltage Control

1) Macrogrid Power Flow Model: We extend the traditional

power flow formulation for bulk power system by adding the
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primary frequency control for specific generators, as follows:

Pi = P ∗
i + ki(f

∗ − f) + ui (1)

wherePi denotes the active power generation of generator i; f is

the system frequency;P ∗
i and f ∗ respectively denote the nominal

values of Pi and f ; ki is the frequency regulation coefficient; ui

formulates the uncertainty input due to the RE resources. For

the fully-controllable generators, ui = 0.

2) Microgrid Power Flow Model: A complete microgrid

power flow is an augmentation of traditional power flow model

with hierarchical control models [20]. The hierarchical control

for active power-frequency regulation of distributed energy re-

source (DER) is formulated as:

ωi = ω∗
i −mp,i(Pi − (P ∗

i + ui)) + Ωi (2a)

ωi − ω∗
i +

∑

j∈SDER

aij(Ωi − Ωj) = 0 (2b)

where ωi denotes the angular frequency of DER i; Ωi is the

secondary control signal of DER i which can be achieved by

distributed consensus [20]; ω∗
i and P ∗

i respectively denote the

nominal angular frequency and active power; ui represents the

RE uncertainty; mp,i is the droop gain; SDER denotes the set of

DERs; aij denotes the active power sharing coefficient between

DER i and DER j.

Further, the reactive power-voltage control is expressed as:

Ei = E∗
i − nq,iQi + ei (3a)

βi(Ei − E∗
i ) +

∑

j∈SDER

bij(Qi/Q
∗
i −Qj/Q

∗
j) = 0 (3b)

where Ei is the output voltage of DER i; ei is the secondary

control signal; E∗
i and Q∗

i respectively denote the nominal

voltage amplitude and reactive power output; nq,i is the droop

gain; βi and bij are the reactive power sharing coefficients.

A complete steady-state model for DER controls with power,

current and voltage controls can be found in [21].

B. ODE-Based Power Flow (ODE-PF) Formulation

The power flow models above can be abstracted into:

h(x,u) = 0 (4)

where x denotes state variables, e.g., power generation, voltage,

current, system frequency; u denotes the uncertainties.

The Newton-Raphson (NR) iteration can then be derived as:

xk+1 = xk − (Jh(xk,u))
−1h(xk,u) (5)

where xk denotes the value of x at the kth iteration; Jh =
∂h/∂x|x=xk

denotes the Jacobian matrix of h at point xk.

The discrete dynamics in (5) can be viewed as an abstraction

of a continuous dynamics as follows:

ẋ(t) = −(Jh(x(t),u))
−1h(x(t),u) =: fx(x(t),u) (6)

where t refers to time by viewing the number of iterations as

continuous.

The virtual dynamics in (6) is a mathematical equivalent to

the NR iterations rather than an actual dynamic process, which is

called an ODE-based power flow (ODE-PF) model. It inherently

reflects the propagation of uncertainties.

C. Stability Proof of the ODE-PF Dynamics

Because ODE-PF is a basis of ReachFlow (see Section III),

stable ODE-PF dynamics can ensure the convergence of numer-

ical integral in ReachFlow. To this end, the small- and large-

signal stability of ODE-PF is proved as follows.

1) Small-Signal Stability: An arbitrary û and the corre-

sponding power flow solution x̂ contribute to an equilibrium

point of the ODE-PF model, i.e. fx(x̂, û) = 0. Eigenvalues

of the state matrix at x̂ can be used to verify the small-signal

stability.

Based on (6), we have Jhfx = −h. Taking partial derivative

with respect to x yields the following:

Jh

∂fx

∂x
+

∂Jh

∂x
fx = −

∂h

∂x
=⇒

∂fx

∂x
|(x̂,û) = −J−1

h

(
∂h

∂x
+

∂Jh

∂x
fx

)

= −J−1
h Jh = −I

(7)

Hence, all the eigenvalues of ODE-PF at any equilibrium point

definitely have negative real parts, which verifies the asymptot-

ically stability of ODE-PF in small neighbourhoods.

2) Large-Signal Stability: The large-signal stability of the

ODE-PF dynamics is proved as: a) ODE-PF is Lyapunov stable

at any x̂; b) ODE-PF is asymptotically stable at x̂, if û leads to

a unique power flow solution x̂.

Define the difference between the current states and the equi-

librium point x̂ as ∆x = x− x̂. The dynamics of ∆x can be

readily constructed:

d∆x

dt
= −(Jh(∆x+ x̂,u))−1h(∆x) (8)

where h(∆x) = h(∆x+ x̂,u).
Considering the following Lyapunov function:

V (∆x) =
1

2
h(∆x)Th(∆x) + ε (9)

where ε is a small positive constant ensuring V (∆x) to be

positive definite. The time derivative of V (x) is computed as:

V̇ =
∂V

∂∆x

d∆x

dt
=

∂V

∂h

∂h

∂∆x

d∆x

dt
=

∂V

∂h

∂h

∂x

d∆x

dt

= h(∆x)TJh(−J−1
h h(∆x))

= −h(∆x)Th(∆x) ≤ 0

(10)

Hence, V̇ is negative semi-definite, which proves the Lyapunov

stability of ODE-PF dynamics around an arbitrary equilibrium

point x̂.

Further, if û leads to a unique power flow solution x̂, we have

h(x, û) �= 0 if x �= x̂, which yields the following:

V̇ < 0, ∀x ∈ X\{x̂} (11)

where X is the domain of x. Hence, x̂ is asymptotically stable

in X . This indicates that the crisp power flow solution without

uncertainty is in the stability region of x̂. Consequently, the
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ODE-PF integrating from the crisp power flow solution (see

(14)) definitely converges to x̂ for an arbitrary uncertainty û.

The two proofs theoretically guarantee that ReachFlow is a

non-divergent power flow under small and large uncertainties.

III. REACHABLE POWER FLOW

This section recapitulate the ReachFlow methodology [18]

which was devised by the authors to establish a provably enclo-

sure of all the uncertain power flow solutions.

A. ReachFlow Formulation

Incorporating the DER uncertainties u in the ODE-PF model

formulates the augmented ODE-PF model:
{
ẋ(t) = −(Jh(x(t),u(t)))

−1h(x(t),u(t)) (12a)

u̇(t) = 0 (12b)

Equation (12b) means that the uncertainty input u remains

constant during a single run of power flow. The rationale behind

(12b) is that during the NR iteration, the uncertainty input should

not be changed because (12a) corresponds to the solution process

of a single power flow under a specific uncertain scenario.

Functionally, (12) is abstracted as:

ż(t) = f(z(t)) (13)

Here, z = [x;u] denotes the augmented power flow states;

f(z) = [fx(x,u);fu(x,u)] formulates the augmented ODE-

PF dynamics; fu = 0.

With arbitrary u, the steady state of (13) exactly refers to the

power flow solution with a specific u. Hence, finding the set

of all possible power flows is equivalent to finding the possible

steady states of the dynamics in (13).

The recognition above leads to the reachable power flow

(ReachFlow) set defined as:

RPF =
{

z =

∫ ∞

0

f(z(t))dt
∣
∣
∣ x(0) ∈ X 0,u ∈ U0

}

(14)

wherez andf(z) are defined in (13);X 0 andU0 are the set of the

initial states and uncertainty inputs. RPF exactly characterizes

the set of all possible power flows regarding the uncertain input

U0.

B. ReachFlow Algorithm

Through the definition of RPF , the reachable set [22] of

continuous time t is defined as:

R(t) =
{

z(t) =

∫ t

0

f(z(τ))dτ
∣
∣
∣ z(0) ∈ Z0

}

(15)

where Z0 = X 0 ⊗ U0; ⊗ denotes the Cartesian product. In this

paper, the uncertainty inputs are governed by an unknown-but-

bounded set U0, and zonotope is adopted for set modeling for its

efficiency in linear transformation and Minkowski addition [23].

The nonlinear dynamics in (13) can be over-approximated by

the first-order Taylor term and the Lagrange remainder:

ż ∈ f(z∗) +A(z − z∗)
︸ ︷︷ ︸

linear abstraction

+ L(z − z∗)
︸ ︷︷ ︸

linearization remainder

(16)

where z∗ is the linearization point; A = ∂f/∂z|z=z∗ is the

Jacobian matrix; L is the linearization error due to the Lagrange

remainder.

Hence, the reachable set during time interval [kτ, (k + 1)τ ]
(k ∈ N) can be over-approximated by:

R([kτ, (k + 1)τ ]) � Rk ⊆ Rlin
k ⊕Rerr

k (17)

where⊕ denotes the Minkowski addition between two sets.Rlin
k

and Rerr
k respectively denote the over-approximated reachable

sets of the linear abstraction and the linearization error, which are

computed by function ‘LinearReach’ and function ‘ErrorReach’

as detailed in Appendix VII.

The reachability analysis leads to Algorithm 1. ReachFlow is

initialized by the conventional power flow calculation without

uncertainty. Then, the reachable set of the ODE-PF model is

calculated step by step, which reflects the propagation of the un-

certainty set U0 during power flow calculation. The ReachFlow

algorithm converges when the reachable set becomes stable. The

reachable set at the last time step will be the final ReachFlow

which is the rigorous enclosure of all possible power flow

solutions under U0.

IV. REDUCED-ORDER REACHABLE POWER FLOW

Even though ReachFlow is more efficient than other uncertain

power flow approaches, its utility application is hindered by the

high computational cost in calculating large power systems. In

practice, utility or ISO engineers usually only need a few pivotal

power flow states in regions of interest for operations and plan-

ning purposes. Motivated by this observation, a reduced-order

ReachFlow (ReachFlowR) algorithm is devised. Rather than

involving all the power flow variables, ReachFlowR performs

the reachability analysis in the subspace spanned by a reduced

number of power flow features.

A. Order Reduction of ReachFlow Formulation

Denote xr as the reduced-order power flow states selected

for ReachFlow analysis. Denote zr = [xr;u] as the augmented

reduced-order power flow states. Define the projection matrix

Ψr satisfying zr = Ψrz, which maps the reduced-order states

zr to the complete states z. ReachFlowR is then defined as:

RPF,r =
{

zr =

∫ ∞

0

Ψrf(z(t))dt
∣
∣
∣ z(0) ∈ Z0

}

(18)
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Fig. 1. Schematic diagram of reduced-order ReachFlow.

Denote ze as the eliminated states in z and define the pro-

jection matrix Ψe satisfying ze = Ψez. It can be readily proved

that z = ΨT
r zr +ΨT

e ze.

ReachFlow
R is illustrated in Fig. 1. By dividing the overall

augmented power flow states z into zr and ze, ReachFlowR

only computes the reachable set of zr, i.e., RPF,r illustrated by

the yellow zonotopes. However, the dynamics of zr inherently

involves ze. Hence, the bounds of ze is also estimated, as

depicted by the green intervals, and serves as an uncertainty input

for the reachability analysis of zr. By analogy with (16), the

linearization of ODE-PF model is perform on the reduced-order

power flow states:

żr ∈ fr(z
∗) +Arr(zr − z∗

r)
︸ ︷︷ ︸

linear abstraction

+Are(ze − z∗
e) + ΨrL

︸ ︷︷ ︸

order reduction remainder

(19)

where fr(z
∗) = Ψrf(z

∗); Arr = ΨrAΨT
r ; Are = ΨrAΨT

e .

Equation (19) indicates that the over-approximated dynamics

of zr also consists of a linearized part as well as a remainder

part, with exactly the same form as (16). Hence, the reachable

set algorithm in Section III also applies:

Rr([kτ, (k + 1)τ ]) � Rk,r ⊆ Rlin
k,r ⊕Rerr

k,r (20)

HereRlin
k,r is the reachable set of the linear abstraction in (19) and

Rlin
k,r = LinearReach(Rr(kτ), z

∗
r,fr,Arr, τ) (see (33)). Since

the zonotope evolution is performed in a reduced-order space,

the computing efficiency is significantly enhanced.

Set Rerr
k,r refers to the reachable set of the remainder term in

(19) comprising both the Lagrange remainder (i.e., ΨrL(z −
z∗)) and the impact of the eliminated power flow states (i.e.,

Are(ze − z∗
e)). Letting Lr1 = Are(ze − z∗

e) and Lr2 = ΨrL,

one can yield the following over-approximation:

|Lr1| ≤ |Are| sup(ze − z∗
e) � Lr1,Lr2 ≤ ΨrL � Lr2 (21)

where sup denotes the supremum operator. Hence, Rerr
k,r =

ErrorReach(Lr1,Arr, τ)⊕ ErrorReach(Lr2,Arr, τ).

B. Reduced-Order ReachFlow Algorithm

Algorithm 2 summarizes the ReachFlow
R algorithm.

ReachFlow
R performs the same initialization as ReachFlow, to

establish the set of initial power flow states X 0 and uncertainty

inputs U0 by algebraic calculation. Then the reduced-order

power flow states xr is selected by the power engineer for

specific reachability analysis, and the corresponding projection

matrices are prepared. Next, the reduced-order reachable set in

(18) is calculated step by step until convergence to quantify the

impact of U0 on xr.

V. PARALLEL REACHABLE POWER FLOW

Another potent approach to accelerating ReachFlow is to

exploit the parallel computing capability of the ubiquitous

multi-core processors. This section devises a parallel Reach-

Flow (ReachFlowP ) to over-approximate the high-dimensional

reachable set by the Cartesian product of a set of lower-

dimensional reachable sets. Therefore, the serial computation

of ReachFlow is broken into ‘independent’ sub-ReachFlow s

with the dependencies serving as the uncertainty inputs that can

be processed concurrently.

A. Partition of ReachFlow Formulation

Suppose that the power flow vector x is partitioned into P
disjoint subsets, i.e., x1,x2, . . . ,xP . This subsection devises a

ReachFlow
P formulation, which decomposes the ReachFlow

set in Section III into discrete sub-sets for each xp.

For arbitrary xp, define zp = [xp;u] as the pth subset of

augmented power flow states. Define the projection matrix Ψp

satisfying zp = Ψpz, which maps the pth subset of augmented

power flow states to the complete augmented power flow states.

From (13), the ODE-PF for zp can be formulated as:

żp = Ψpf(z), ∀p (22)

Correspondingly, the ReachFlow set for zp, i.e., the pth sub-

ReachFlow, is formulated as:

RPF,p =
{

zp =

∫ ∞

0

Ψpf(z(t))dt
∣
∣
∣ z(0) ∈ Z0

}

, ∀p (23)

Define projection matrices ψp satisfying zp = ψp[x;0], and

ψu satisfying u = ψuz. It can be readily proved that z =
∑P

p=1 ψ
T
p zp +ψT

uu. Hence, based on each sub-ReachFlow,

the complete ReachFlow can be conservatively reconstructed

as:

RPF =
∑P

p=1
ψT

p RPF,p ⊕ψT
uU

0 (24)

ReachFlow
P is illustrated in Fig. 2. By dividing the overall

power flow states into P subsets, ReachFlowP computes the

reachable sets of each zp in parallel on different cores, i.e.,

RPF,p as illustrated by the zonotopes of different colors. The de-

pendency between each subset of power flow states is modelled

as the uncertainty inputs. After obtaining each sub-ReachFlow,
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Fig. 2. Schematic diagram of parallel ReachFlow.

the overall ReachFlow will be constructed by the Cartesian

product of the reachable set on each zp.

To compute each sub-ReachFlow, the ODE-PF of zp is lin-

earized by analogy with (16):

żp ∈ Ψp(f(z
∗) +A(z − z∗) + L(z − z∗))

= Ψpf(z
∗) + ΨpAΨT

p (zp − z∗
p)

+ ΨpA
∑

j �=p

ψT
j (zj − z∗

j) + ΨpL(z − z∗)

= fp +Ap(zp − z∗
p)

︸ ︷︷ ︸

linear abstraction

+ Lp(z − z∗)
︸ ︷︷ ︸

parallel remainder

(25)

Here, the relationship z = ΨT
p zp +

∑

j �=p ψ
T
j zj is applied

in above derivation; z∗, A and L are respectively the lin-

earization point, Jacobian matrix and Lagrange reminder as

defined in (16); fp = Ψpf(z
∗), Ap = ΨpAΨT

p and Lp =

ΨpA
∑

j �=p ψ
T
p (zj − z∗

j) + ΨpL(z − z∗).
Equation (25) is in the identical form with (16). Hence, the

reachability analysis in Section III-A can be readily performed.

More specifically, the reachset for zp during time interval

[kτ, (k + 1)τ ] is formulated by:

Rp([kτ, (k + 1)τ ]) � Rk,p ⊆ Rlin
k,p ⊕Rerr

k,p , ∀p (26)

Set Rlin
k,p refers to the reachable set of the linear abstraction

in (25). According to (33), Rlin
k,p is computed as:

Rlin
k,p = LinearReach(Rp(kτ), z

∗
p,fp,Ap, τ) (27)

Obviously, (27) is independent for each zp and hence parallel-

enabled. Further, the reachable set evolution of (33) occupies the

most computational resources due to the complicated zonotope

calculation. Hence, the parallelization from (33) to (27) will

substantially enhance the ReachFlow efficiency.

Set Rerr
k,p refers to the reachable set of the remainder term,

which includes both the Lagrange remainderLp1 and the parallel

computing remainder Lp2 (i.e., the impact of zj on zp). The

following over-approximation applies for Lp:

|Lp1| ≤ Ψp|L| � Lp1

|Lp2| ≤ Ψp|A|
∑

j �=p

ψT
p sup(zj − z∗

j) � Lp2
(28)

Note that Lp1 and Lp2 involve all the power flow states

(i.e., zj) as well as the overall Lagrange remainder; so it

can not be parallelized. Fortunately, (28) performs the inter-

val calculation, which is far more effortless compared with

the zonotope calculation. Hence, Rerr
k,p is enclosed by Rerr

k,p =

ErrorReach(Lp1,Ap, τ)⊕ ErrorReach(Lp2,Ap, τ).

B. Parallel ReachFlow Algorithm

Algorithm 3 presents the ReachFlow
P algorithm. Different

from ReachFlow or ReachFlowR, the reachability analysis in

ReachFlow
P is divided into a coordination module and parallel

tasks. The coordination calculation prepares the overall Jacobian

matrix and Lagrange remainder around the linearization point.

Then, the parallel calculation updates the reachable set of each

zp independently with the linearization information released by

the centralized calculation. The algorithm terminates until each

sub-ReachFlow converges.

VI. CASE STUDY

ReachFlow, ReachFlowR and ReachFlow
P are developed

in MATLAB R2019b on the basis of CORA [24] and run on a

3.70 GHz PC with 32 GB RAM and 8 cores. ReachFlowP is

implemented via the MATLAB Parallel Computing Toolbox.

A. Validity of ReachFlow Methodology

ReachFlow is verified on multiple microgrid and macrogrids

to exhibit its validity, efficacy and universality.

1) Microgrid ReachFlow: ReachFlow is first validated on a

33-bus microgrid [25] including 5 droop-controlled DERs. A

20% of uncertainty is set for each DER by default.

Fig. 3 illustrates the calculation process of ReachFlow. Start-

ing from the crisp power flow solution x0 without uncertainty,

the reachable set successively expands as uncertainty impact

propagates in the ODE-PF dynamics. The final ReachFlow is

obtained once the zonotope stabilizes at the8th step. Fig. 4 shows
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Fig. 3. Reachable set evolution during the ‘iteration dynamic’ (PDER5: active
power output of DER5).

Fig. 4. ReachFlow result in the modified 33-bus microgrid (PDERi: active
power output of the ith DER; Vi: output-voltage magnitudes of the ith DER).

Fig. 5. Macrogrid ReachFlow results (li: active power flow of the ith branch.).

the microgrid ReachFlow, where the green area is a projection

of the high-dimensional ReachFlow zonotope and the yellow

dots represents the massive NR power flow results obtained by

sampling U0 exhaustively. The zonotope rigorously encloses all

the power flow results, which verifies ReachFlow’s correctness

and tight overapproximation feature.

2) Macrogrid ReachFlow: Fig. 5 shows the ReachFlow re-

sults of two macrogrids which are modified from MATPOWER’s

repository [26] by adding primary frequency controls and incor-

porating frequency-dependent impedance loads and lines. The

RE penetration is set up as 10% with 20% uncertainty.

Static power flow results are found entirely and tightly con-

tained by the ReachFlow results, which verifies the applicability

of ReachFlow to macrogrids. Interestingly, Fig. 5(a) show weak

correlations of the power flows through three branches whereas

Fig. 5(b) shows rather strong couplings. This is because the

former branches are connected directly to three RE generators

with independent uncertainties while the latter are tied to three

TABLE I
COMPUTING TIME OF REACHFLOW

TABLE II
ACCURACY COMPARISON BETWEEN REACHFLOW AND MONTE CARLO

Fig. 6. ReachFlow vs. Monte Carlo (the precision index for Monte Carlo is
also applied to ReachFlow).

dispatchable power plants. Hence the power flow fluctuations

in the latter case are significantly less impacted by the RE

uncertainties. Table I gives the computational costs for a mi-

crogrid with complicated DER controllers and two macrogrids.

ReachFlow exhibits excellent computational efficiency and is

more efficient than a very light Monte Carlo of 3,000 runs.

3) ReachFlow Vs. Existing Methods (Monte Carlo, Interval-

and Ellipsoid- Based Methods): ReachFlow is compared with

Monte Carlo by using the 33-bus microgrid. An index η is

adopted to quantify the precision of Monte Carlo results:

η = mean

(

maxj(x
MC
j )−minj(x

MC
j )

supx− inf x

)

(29)

where xMC
j denotes the power flow solution of the j-th Monte

Carlo trial; supx and inf x denote the supremum and infimum

of x obtained by traversing the uncertainty space U0. Upon

this definition, η > 1 means a conservative estimation of the

power flow bounds while η < 1 an under estimation. A tight

estimation can be achieved when η is close to 1. Table II presents

the quantitative comparison between ReachFlow and Monte

Carlo based on the precision index η. ReachFlow successfully

achieves conservative but tight estimation of the power flow

states (i.e., η is larger than but very close to 1). Whereas, Monte

Carlo induces underestimated results, which indicates that some

extreme power flow conditions are missed. Using such overly

optimistic assessments in system operations or planning would

likely lead to catastrophe hazards in the utility grids. Further,

Fig. 6 takes the 33-bus microgrid to investigate the impact of

the uncertainty dimension. Simulation results indicate that with
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Fig. 7. ReachFlow vs. existing set-based methods.

TABLE III
ACCURACY COMPARISON BETWEEN REACHFLOW AND SET-BASED METHODS

an increased number of uncertain factors (i.e., the number of

DERs), the precision of Monte Carlo results declines sharply.

Even worse, increasing the sample size fails to improve the

precision. ReachFlow, conversely, always provides rigorous es-

timations with restricted conservativeness as shown in Fig. 6. In

summary, ReachFlow outperforms Monte Carlo simulation from

two aspects: i) it is capable of obtaining the set of power flow

results in a single run, whereas Monte Carlo requires running

power flow repeatedly under different uncertain scenarios; ii)

it is efficacious in handling the high-dimensional uncertainties,

whereas Monte Carlo suffers from the curse of dimensionality

when sampling the entire uncertainty space.

ReachFlow is further compared with two other set presenta-

tions, i.e., multi-dimensional intervals [12] and ellipsoids [14].

As shown in Fig. 7, both interval and ellipsoid power flow

solutions suffers from overly conservative estimations due to

the dependencies among power system variables. The ellipsoid

method performs better than interval analysis method for certain

scenarios, as shown in Fig. 7(a), where the ellipsoid calculated

is rather tight. For other scenarios, e.g. when the selected power

flow states are coupled, the ellipsoid results can be excessively

conservative, as shown in Fig. 7(b). In contrast, our zonotope-

based ReachFlow always provides tight over-approximations,

making it a much more dependable tool as compared to interval

or ellipsoid methods.

Table III further presents the quantitative comparison. An

index ξ is adopted to quantify the precision of ReachFlow and

the set-based methods:

ξ = meani,j

√

Area(proj(S, i, j))
√

Area(proj(SPF , i, j))
(30)

where Area(·) denotes the area computation function;

proj(S, i, j) projects the set S to the i− j plane; S denotes

the power flow set described by zonotope (i.e., by ReachFlow),

ellipsoid or multi-dimensional intervals; SPF denotes the real

region of uncertain power flow states, which is estimated by

Fig. 8. ReachFlow
R results with different reduction ratios (PGi: active

power output of the ith generator).

TABLE IV
COMPUTING TIME OF ReachFlow

R

1PC runs out of memory.

traversing the uncertainty space. ξ reflects the averaged area of

each 2-dimensional projection of the power flow set. Obviously,

if S encloses SPF , each projection of S encloses the projection

of SPF . Further, a perfect estimation of SPF ensures that each

projection of S matches the projection of SPF . Therefore, a

tighter estimation is achieved when ξ is closer to 1. Results in

Table III show that among all these methods, the zonotope-based

ReachFlow provides the tightest estimation, which is coincident

with the observations in Fig. 7. This again verifies the accuracy

and flexibility of ReachFlow in quantifying the uncertain power

flow states.

B. Validity of ReachFlowR and ReachFlow
P

ReachFlow calculation is of high computational complexity

as indicated by Table I. This Subsection verifies two practical

ReachFlow variants,ReachFlowR andReachFlowP , to demon-

strate their applicability for large-scale power systems.

1) Reduced-Order ReachFlow: For the 200-bus, 500-bus

and 2,000-bus macrogrids, the ReachFlow
R results always en-

close the ReachFlow results or the Monte Carlo results, offering

guaranteed over-approximations. Note that higher reduction ra-

tio leads to larger over-approximation (see Fig. 8). As a rule

of thumb, a 70% reduction ratio or so can give satisfactory

ReachFlow
R results with restricted conservativeness.

Table IV shows that ReachFlowR’s computational efficiency

improves with increased reduction ratio. A daunting fact is that

ReachFlow can no longer solve reachable power flow for the

2,000-bus power system on a PC, while ReachFlow
R success-

fully produces an satisfactory enclosure of the reduced-order

power flows within acceptable computing time.

2) Parallel ReachFlow: The correctness of ReachFlowP is

verified as it ensures an enclosure of the ReachFlow results,

as shown in Fig. 9. ReachFlowP on more cores yields higher

efficiency (see Table. V) at a cost of reduced tightness. This

is understandable because the parallelized sub-ReachFlow s,
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Fig. 9. ReachFlow
P results with different number of cores.

TABLE V
COMPUTING TIME OF ReachFlow

P

1PC runs out of memory.

Fig. 10. Impact of the uncertainty level on ReachFlow.

as presented in (23), cannot fully incorporate their inherent

couplings, which leads to over-approximation.

Compared with Fig. 8, it is observed that ReachFlowP is

tighter than ReachFlow
R. The reason is that ReachFlowP for-

mulates the range of each subset of power flow states by a zono-

tope, and hence reduces the over-approximation compared with

ReachFlow
R which formulates the eliminated power flow states

roughly by intervals. Both ReachFlow
R and ReachFlow

P en-

hance the scalability of ReachFlow for large-scale power sys-

tems. Compared with ReachFlow
R, ReachFlowP is capable

of obtaining the overall ReachFlow via each sub-ReachFlow,

whileReachFlowR only outputs the reachable set of the selected

power flow states.

C. ReachFlow-Based Power Flow Control Strategy Analysis

ReachFlow serves as a formal tool to verify the efficacy

of power flow control strategies against uncertainties. This

Subsection exemplifies the use of ReachFlow to analyze the

impact of renewable energy (RE) integration and verify droop

and secondary control in the 33-bus microgrid. By default, the

microgrid is fully supported by the renewable energy with 20%

uncertainty.

1) Impact of Renewable Energy (RE) Integration: Fig. 10

investigates ReachFlow under different uncertainty levels with

Fig. 11. Impact of the renewable energy penetration on ReachFlow.

Fig. 12. Impact of active power droop coefficient mp on ReachFlow.

Fig. 13. Impact of reactive power droop coefficient nq on ReachFlow.

droop control only. With the increase of uncertainties, Reach-

Flow expands accordingly, indicating large deviations of the

power flow states driven by DER fluctuations.

Fig. 11 further studies the impact of RE penetration. The

growing penetration of RE leads to expanded ReachFlow be-

cause of both the increased uncertainties from the DERs and the

decreased regulating ability of the fully controllable generators.

Specifically, in the scenario with no RE sources, ReachFlow

degenerates to a single point (see the red dot), which indicates

that the uncertain power flow degenerates to the static power

flow with only conventional generators.

2) Performance of Droop Control: Fig. 12 and Fig. 13 re-

spectively study the ReachFlow with different droop gains mp

or nq . The droop control logic is presented in (2a) and (3a).

Simulation indicates that mp strongly impacts the zonotope

of system frequency and that nq is closely correlated to the

zonotope of bus voltages, which follows the droop control logic.

In addition, it can be observed that the system frequency/voltages

can not be maintained at their nominal values, which indicates

that droop control results in steady-state deviations.
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Fig. 14. Efficacy of secondary control verified via ReachFlow.

By examining different levels of uncertainties, one can find

that the increase in mp or nq leads to expanded ReachFlow,

meaning increased droop gains exacerbate uncertainties in

power flow states and thus drastically affect microgrid security.

3) Performance of Secondary Control: Fig. 14 shows a sur-

prise finding that, with secondary control, the reachable set

of P−f (i.e., active power generation of DER vs. microgrid

frequency) degenerates to a line, while the reachable set of

V1−V2−V3 (i.e., output-voltage magnitudes of DERs) degen-

erates to a plane. This reflects that the secondary control suc-

cessfully maintain the system frequency and the output voltage

of DER1 at 1 p.u., despite any uncertainty level. By comparing

Fig. 14 with Fig. 10, it can be seen that the secondary control

realizes disturbance rejections and error-free as long as there

exist sufficient reserves in DERs.

ReachFlow and its variants therefore offers powerful tools to

formally verify power flow control strategies under structural

and parametric uncertainties.

VII. CONCLUSION

This paper offers three innovations imperative to make

ReachFlow practical: formal proofs of ODE-PF stability, a

ReachFlow
R and a ReachFlow

P that jointly scale up Reach-

Flow for ultra-scale power flow problems. The stable ODE-PF

model enables ReachFlow to be a non-divergent power flow

solver. ReachFlow
R generates the reachable set of selected

power flow states and is flexible enough to be implemented on

any computers. ReachFlowP decomposes the time-consuming

reachability analysis into parallel-enabled lower-dimensional

reachable set calculations well-suited for implementation on

multi-core computers or computer clusters. Next, a privacy-

reserving and more accurate ReachFlow is to be developed.

APPENDIX

ALGORITHM FOR REACHABLE SET EVOLUTION

A. Over-Approximation of Linear Abstraction in ReachFlow

The time-point solution of linear dynamics can be separated

into the homogeneous part zh and the inhomogeneous part zp:

{
zh((k + 1)τ) = eAτzh(kτ)

zp((k + 1)τ) = eAτzp(kτ) +A−1(eAτ − I)f(z∗)
(31)

Hence, the reachable set for the linear abstraction of (16) at

time point (k + 1)τ is computed based on the reachable set at

the previous time-point R(kτ) [27]:

Rlin((k + 1)τ) = {zh(t) + zp(t)|t = (k + 1)τ}

= eAτ (R(kτ)− z∗)⊕A−1(eAτ − I)f(z∗)⊕ z∗
(32)

Further, the time-interval reachable set during [kτ, (k + 1)τ ]
can be enclosed by [27]:

Rlin
k = {z(kτ +∆t)|∆t ∈ [0, τ ]}

⊆ {z(kτ) +
∆t

τ
(z((k + 1)τ)− z(kτ)) + Fz(kτ)}

⊆ conv(R(kτ),Rlin((k + 1)τ))⊕F(R(kτ)− z∗)

� LinearReach(R(kτ), z∗,f(z∗),A, τ)

(33)

where conv denotes the convex hull of two sets; F =
∑η

i=2[(i
−i

i−1 − i
−1
i−1 )τ i, 0]A

i

i! ⊕ E(τ) is an interval matrix to en-

sure the necessary conservativeness [27].

B. Over-Approximation of Linearization Error in ReachFlow

Given the maximum value ofL, i.e.,L, the set of linearization

error can be over-approximated as [22]:

Rerr
k = F2[−L,L] � ErrorReach(L,A, τ) (34)

where F2 =
∑η

i=0
A

iτ i+1

(i+1)! ⊕ E(τ)τ encloses A−1(eAτ − I) in

analogy with the inhomogeneous solution in (31).
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