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Reachable Dynamics of Networked Microgrids

With Large Disturbances
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Abstract—An ordinary-differential-equation (ODE) enabled
reachable dynamics analysis approach is devised to provably en-
close all possible dynamic trajectories of networked microgrids
(NMs) under both uncertain renewable power injections and in-
termittent large disturbance events. As a formal verification tool
for the NM dynamics, its new contributions are threefold: 1) An
ODE-enabled NMs model is established with a thorough formu-
lation of the hierarchical control of DERs as well as the network
transients; 2) A hybrid automaton method is established to em-
power the reachability analysis of dynamic transitions in NMs
caused by arbitrary large disturbances; 3) A zonotope bundle
technique is introduced in the reachable set calculation to capture
the fast transients and strong nonlinearity upon the occurrence
of disturbances, which allows for the reliable formal verification
with superior precision and convergence performance. Extensive
case studies are performed to demonstrate the effectiveness of the
new approach in formally verifying the dynamical performance of
disturbed NMs equipped with hierarchical inverter control.

Index Terms—Networked microgrids, reachability analysis,
large disturbance, hierarchical control, zonotope bundle.

I. INTRODUCTION

N
ETWORKED microgrids (NMs) are envisioned to be

potent solutions to enhance electricity resiliency for com-

munities and utilities and to host distributed energy resources

(DERs) [1]–[3]. Today’s low-inertia NM system [4], however,

is highly susceptible to transient processes [5] initiated by the

highly uncertain DERs, plug-and-play operations and unforesee-

able faults [6], [7]. Hence, verifying the dynamic performance

becomes a prominent issue in NMs study [8].

NMs are prone to both large disturbances such as

faults/contingencies (in brief, ‘disturbance’) and small but long-

lasting perturbations caused by DER uncertainties (in brief,

‘perturbation’). Unfortunately, neither the existing direct meth-

ods nor time-domain simulation methods [9] can effectively

address the impact of those uncertainties on NMs [10]. Even
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though various approximated Lyapunov functions are intro-

duced [11]–[13], it is still intractable to construct Lyapunov

functions [14] for complex NMs and to perform guaranteed con-

servative stability assessment under various uncertainties. Prob-

abilistic time-domain simulations such as Monte Carlo sampling

are prohibitively expensive in considering uncertainties from

DERs and random contingencies [15]–[17]. Furthermore, all

those methods fail to verify the virtually infinite scenarios and

inevitably lead to overly optimistic evaluations.

Recently, reachability analysis is introduced to verify the NMs

dynamics [18], [19], where reachable sets are computed to bound

all dynamic trajectories under uncertainty perturbations. The

prior studies in [18], [19] only consider small-signal pertur-

bations and rely on a quasi-static assumption which neglects

network dynamics. Consequently, those methods cannot handle

large disturbance events which are of critical importance for ver-

ifying the NMs performance. Moreover, the DAE- and zonotope-

based algorithms in [18], [19] suffer from the accumulated errors

due to the interactions between the algebraic and differential

equations and the overly conservative set computations, which

plagues their capabilities in handling fast dynamics under large

disturbances.

Motivated by the existing challenges, this paper devises

an ODE-enabled NMs transient verification methodology en-

hanced by hybrid automaton to provably enclose all possible dy-

namic trajectories triggered by arbitrary perturbations and large

disturbances. To improve the numerical stability of reachability

analysis for the fast dynamics, a zonotope bundle technique is

further introduced in the NMs formal verification. The novelties

of this work are threefold:
� An ODE-enabled formulation incorporating droop and

secondary controls for DERs and the network transients is

established for numerically accurate and stable reachability

analysis of NMs.
� A generalized NM dynamics verification method is devised

by integrating the hybrid automaton and transition func-

tions with reachability analysis. The hybrid reachability

approach is able to cope with arbitrary large disturbances

overlaid with uncertainties.
� A zonotope bundle technique is implemented to enable ac-

curate and robust NM dynamics verification in the presence

of large disturbances and fast dynamics.

The remainder of the paper is organized as follows. Section II

establishes the ODE-enabled NMs model with hierarchical con-

trol of DERs. Section III devises the NMs dynamic verification.

Section IV offers case studies on a typical NM system to validate
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Fig. 1. Schematic NMs with hierarchical control.

the new method, followed by Section V which concludes the

paper.

II. ODE-ENABLED NMS DYNAMICS MODEL

This Section establishes an ODE-enabled dynamic formula-

tion for the NMs with hierarchical Control. Fig. 1 illustrates the

schematic of a typical NM system.

A. Formulation of NMs With Hierarchical Control

Without loss of generality, a two-layer hierarchical control

is considered in NMs. Locally, the droop control enables the

DER’s inverter to mimic the frequency and voltage regulation

mechanisms of a traditional synchronous generator. Globally,

the leader DER in each microgrid communicates with the

neighboring microgrids to perform the secondary control which

achieves power sharing and restores voltages and frequency in

NMs, while the follower DERs in each microgrid assist their

leader DER to achieve the global control objectives (see Fig. 1).

The droop control of each DER is formulated as:

ω = ω∗ −mp(P − (P ∗ + u)) +Ω (1a)

E = E∗ − nq(Q−Q∗) + e (1b)

where ω denotes the vector of the DERs’ angular speeds; E

denotes the vector of output voltage magnitudes; P and Q

respectively denote the active/reactive power output of DERs;

ω∗, E∗, P ∗ and Q∗ respectively denote the nominal values

of each control signal; mp and np respectively denotes the

active/reactive power droop gains of DERs; u represents the

uncertainty impact of the DER’s active power generation;Ω and

e denote the secondary control signals following the distributed-

averaging proportional-integral logic [20].

Within each microgrid, the follower DERs perform power

sharing as follows:

dΩf

dt
= −αf (ωf − ω∗)−AfΩ (2a)

def

dt
= −βf (Ef −E∗

f )−Bf (Q�Qn) (2b)

Here, Ωf and ef denote the control signals of the follower

DERs; αf , βf , Af and Bf are control parameters, where Af

and Bf are block diagonal matrices so that each follower DER

only communicates within its local microgrid; Qn denotes the

reactive power rating of DERs; � denotes the element-wise

division.

Further, leader DER share information with the entire NMs:

dΩl

dt
= −αl(ωl − ω∗)−AlΩ−ClΩl (3a)

del

dt
= −βl(El−E∗

l )−Bl(Q�Qn)−Dl(Ql �Qn,l) (3b)

Here, Ωl and el denote the control signals of the leader DERs;

Al and Bl are block diagonal so that each leader DER does not

communicate with the follower DERs in other microgrids; the

control parameters Cl and Dl formulate the communications

between different microgrids. The formulation of inner and outer

control loops in Fig. 1 is further presented in Appendix A-A.

B. Formulation of Network Transients

Recently, the dynamics of line branches and loads is found

playing an unexpectedly important role in the dynamic perfor-

mance of microgrids [21]. Because the DER-dominated micro-

grids and NMs are usually featured by the fast inverter dynamics

and the small values of network impedance, the network tran-

sients tend to have significant influence on the slower system

modes [22]. Although simplifying the network dynamics into

algebraic equations is acceptable for bulk power systems with

large inertia, this would lead to overly optimistic assessment

of the inverter-interfaced microgrids [23]. Those new findings

thus motivate us to model the dynamics of the entire NMs. For

instance, the dynamics of a constant impedance load can be

described as:

Ll
dil

dt
= −rlil + ωsIsLlil +M lv (4)

where il denotes the DQ-axis load currents; v denotes the DQ-

axis bus voltages; rl and Ll respectively denote the matrices

of load resistances and inductance; Is = [ 0 I

−I 0
] is a constant

matrix constructed by the identity matrix I; M l is the DQ-axis

incidence matrix between power loads and buses. Appendix A-B

additionally presents a detailed formulation for incorporating the

generic power load models.

The dynamics in the NM branches can be models as:

Lb
dib

dt
= −rbib + ωsIsLbib +M bv (5)

where ib denotes the DQ-axis branch current; rb and Lb respec-

tively denote the matrices of branch resistances and inductance;

M b is the DQ-axis incidence matrix between branches and

buses.

Each DER is connected to the backbone feeder through a

branch with the following dynamics:

Lo
dio

dt
= −roio + ωsIsLoio + vo −Mov (6)

where io and vo respectively denote the DQ-axis current outputs

and voltages of the DERs; ro and Lo respectively denote the

resistances and inductance of the interconnection branch; Mo

is the DQ-axis incidence matrix between DERs and buses.
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At each bus of the NMs, the Kirchhoff’s Current Law should

be satisfied:

0 = MT
o io −MT

l il −MT
b ib (7)

C. ODE-Enabled NMs Model

By assembling the differential equations of the DERs (i.e., (2),

(3) and the control loops in Appendix A-A), power loads (4) and

branches (5), as well as the algebraic equations of buses (7), the

NMs model can be integrated as a set of differential algebraic

equation (DAEs).

Denote i = [io; il; ib] and z as all the other differential state

variables in the NMs model. Accordingly, the NMs model is

abstracted as:

ż = g(i, z,u) (8a)

i̇ = Av + h(i, z) (8b)

0 = Bi (8c)

where (8a) is an abstraction of (2), (3) and (27); (8b) is an

abstraction of (4), (5) and (6); (8c) is an abstraction of (7). The

expression of A, B, g and h can be readily obtained from the

NMs model, and the details are presented in Appendix A-C.

In the following, a fully ODE-based NMs model is devised

by a rigorous DAE to ODE conversion. Denote the index set

of maximal linearly independent columns of B as s1, and that

of other columns as s0. Construct B1 with the columns of B

corresponding to s1, and B0 with the columns corresponding

to s0. Construct i1 with the elements of i corresponding to s1,

and i0 with the elements corresponding to s0. Obviously, B1 is

non-singular. Hence, (8c) yields the following:

i1 = −B−1
1 B0i0 (9)

Substituting (9) into (8) leads to the following:

ż = ĝ(i0, z,u) (10a)

i̇0 = A0v + ĥ0(i0, z) (10b)

i̇1 = A1v + ĥ1(i0, z) (10c)

where ĝ(i0, z) = g(i0, i1, z) by substituting (9); ĥ(i0, z) =

h(i0, i1, z); ĥ0 and ĥ1 respectively extract the elements of ĥ

corresponding to i0 and i1.

Left-multiplying (8b) with B and substituting (9) give:

0 = Bi̇ = Nv +Bĥ(i0, z) (11)

where N = BA.

If N is non-singular, the algebraic variables v can be ex-

pressed by the differential variables (i0, z) as v = −N−1Bĥ.

Substituting v into (10) yields a full ODE model rigorously

equivalent to the original DAE model in (8):

ż = ĝ(i0, z,u) (12a)

i̇0 = −A0N
−1Bĥ(i0, z) + ĥ0(i0, z) (12b)

If N is singular, it can be proved that (8) degenerates to

an equivalent DAE model of a lower order. Then the above

conversion can still be implemented.

No approximation or linearization is introduced in the above

derivation, which theoretically ensures the efficacy of the ODE-

enabled NMs model under large disturbances. Moreover, the

DAE-ODE conversion processes the network current flow equa-

tions without affecting the interior models of the DERs and

loads. Hence, the ODE-based model can readily accommodate

arbitrary sources (e.g., DERs, synchronous and asynchronous

machines), DER controls (e.g., PQ control, current control,

voltage control, secondary control, etc), and loads (e.g., ZIP

loads, electric motors).

The scale of the ODE-enabled NMs model mainly depends

on the number of the DERs and loads rather than the size

of the NM grid benefiting from the network sparsity feature,

which therefore renders the ODE model improved efficiency.

Moreover, solving the ODE-based models are numerically more

stable than solving the DAE counterparts [24].

III. REACHABLE DYNAMICS OF DISTURBED NMS

A. Reachable Set of NMs With Dynamic Transitions

This Subsection integrates the hybrid automaton model used

for the verification of a discrete-event system with the ODE

model used for the reachability analysis of the NM dynamics.

The flexibility afforded by this generalized reachability model

enables the accurate modeling of arbitrary disturbances in the

form of either parametric changes (e.g., frequent or sharp load

fluctuations) or structural changes (e.g., plug-and-play of DERs

or microgrids).

An extended state vectorx = [z; i0; t] is introduced to include

the time information t in the NMs dynamics. The ODE-enabled,

nonlinear dynamic model (12) is augmented as:

ẋ =

⎡

⎢

⎣

ĝ(i0, z,u)

−A0N
−1Bĥ(i0, z) + ĥ0(i0, z)

1

⎤

⎥

⎦
= f(x,u) (13)

where the NMs state vector x is defined in the state space X ⊆
R

n; the DER uncertainty vector u is defined in the input space

and governed by an unknown-but-bounded set U ⊆ R
m.

Given a set of disturbance events D = {D1, D2, . . . , DK},

the NMs dynamics is discretely divided into K modes Y =
{y1, y2, . . . , yK}. Upon the occurrence of a disturbance Dj , an

NMs system operating in its current mode yi would undergo a

transition yi → yj . Correspondingly, the NMs dynamics with

disturbance transients can be modelled as a hybrid automaton:

H = (X 0,U0,Y,D, E,f , T ) (14)

Here, X 0 ⊆ X denotes the set of the NMs initial states

corresponding to the initial mode y0; U0 ⊆ U denotes the

set of the DER uncertainties; D and Y respectively de-

notes the disturbance set and mode set as defined above;

E = {(t1, ye1), (t2, ye2), . . . , (tS , yeS )} denotes the time-series

events triggering the NMs’ transitions to yes at time ts; the

dynamic function f : X × U × Y → X formulates the ODE-

enabled NMs model under each mode, as detailed in (13); the

transition function T : X × U × Y × Y → X × U formulates

the transition process from one mode to another, whose outputs
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Fig. 2. Illustration of the reachable set transition with disturbances in NMs.

are the sets of NMs states and DER uncertainties in the succeed-

ing mode when the transition occurs:

(X 0
j ,U

0
j ) =: T (X end

i ,U0
i , yi, yj)

= (M (yi,yj)X
end
i +m(yi,yj),N (yi,yj)U

0
i + n(yi,yj)) (15)

where yi associating yj describes the NMs’ struc-

tural/parametric transition yi → yj ; X 0
j and U0

j respectively

denote the initial set of NMs’ states and DER uncertainties in

mode yj ; X end
i denotes the set of NMs states in mode yi at the

time point of transition; M (yi,yj), m(yi,yj), N (yi,yj), n(yi,yj)

are specific transition matrices for yi → yj .

By using the hybrid automaton defined in (14), the NMs’

structural/parametric transitions under large disturbances are

incorporated in the reachability analysis. The reachable set of

the NMs states at time t is defined as a set of all the possible

x(t) given the initial states X 0 and uncertain input U :

R̂(t) =
{

x(t)
∣

∣

∣ (x(t),u(t),y(t)) is a solution of H,

x(0) ∈ X 0,u([0, t]) ∈ U , y(0) = y0

}

(16)

Further, the NMs reachable set during time interval [t, t+∆t]
is defined as a union of the discrete-time reachable sets:

R̂([t, t+∆t]) = ∪τ∈[t,t+∆t]R̂(τ) (17)

Fig. 2 illustrates the transitions of the NMs reachable set. A

disturbance sequence including plugging-in of DER/microgrid,

short-circuit and load shedding is taken as an example. Upon

each disturbance, the NMs transitions from the current struc-

ture/parameters to another, which induces the reachable set’s

jump from the current state space to a new one. Further, during

the time intervals in which no transition occurs, with the initial

state set, the continuous reachable set is calculated to enclose

all the possible NMs trajectories in the specific mode (see

Section II-C). The hybrid automaton-empowered reachability

methodology therefore can handle the NMs dynamic transitions

between large disturbances superimposed on other uncertain-

ties and is applicable to single contingencies as well multiple

contingencies.

B. Set Representation Via Zonotope Bundles

Reachability analysis performs set computation to verify

the system dynamics. Recently, zonotope has been adopted in

microgrid reachability analysis for the quasi-static states [18].

Despite the high computational efficiency, zonotope has inherent

deficiencies such as: 1) it has a special and restricted structure

(i.e., centrally symmetric polytope) and 2) it is not closed under

several set computations (e.g., intersection). Those deficiencies

introduce escalated over-approximations in NMs set computa-

tions, causing low-precision and ill-convergence issues in the

reachability analysis of highly nonlinear dynamics. To tackle the

challenge, a new set representation, i.e., the zonotope bundle, is

employed to enable a highly precise and efficient reachability

analysis of NMs with large disturbances.

The zonotope bundle is defined as the intersection of a finite

number of zonotopes [25]:

Z∩ = ∩n
i=1Zi (18)

Here, Zi denotes a zonotope defined by its center c and K
generators (g(1), . . . , g(K)) such that Zi = {x ∈ R

n|x = c+
∑K

k=1 βkg
(k), |βk| ≤ 1}.

Zonotope bundle is able to represent arbitrary polytopes (con-

vex and bounded), and hence is far more flexible for uncertainty

formulations. Moreover, zonotope bundle is closed under inter-

section, which enables improved accuracy in set computations.

A comparative study has reported the efficacy of using zonotope

bundles in verifying nonlinear systems together with cases where

zonotopes fail to capture the dynamics [25].

C. Reachability Analysis Via Zonotope Bundles

Calculating the exact reachable set is computational in-

tractable. Instead, a rigorously over-approximated reachable

set R̂(t) satisfying R̂(t) ⊆ R(t) is sufficient for verifying the

system dynamics with a moderate computational cost.

At each time point, the NMs dynamic model (13) is over-

approximated by the Taylor series expansion:

ẋ ∈ f(x∗,u∗) + J(x− x∗) + Ju(u− u∗) +L(x,u) (19)

where x∗ and u∗ respectively denote the linearization point of

the NMs states and DER uncertainties; J = ∂f(x∗,u∗)x and

Ju = ∂f(x∗,u∗)/∂u respectively denote the Jacobian matri-

ces of the NMs; L denotes the Lagrange remainder:

L(x,u)=
1

2
[x− x∗;u− u∗]T

∂2f (ξx, ξu)

∂[x;u]2
[x− x∗;u− u∗]

(20)

where ξx ∈ {x∗ + α(x− x∗)|α ∈ [0, 1]}, ξu ∈ {u∗ + α(u−
u∗)|α ∈ [0, 1]}. The Taylor’s Theorem [26] ensures that for arbi-

traryx andu, there exist ξx and ξu so that the nonlinear function

f can be formulated by the first-order Taylor polynomial and

the error terms L(x,u). Therefore, calculating L by the set of

x and u can ensure that (20) rigorously encloses arbitrary ẋ. In

the following derivation, the center of U is assumed as the origin

point without loss of generality. Meanwhile, R(t) is shifted to

R(t)− x∗ to eliminate the impact of the linearization point and

is shifted back at the end of set calculations.

Accordingly, the reachable set of the linearized NMs model

can be obtained:

R(t+∆t) =
(

eJ∆tR(t)
)

⊕Ru(∆t)⊕Rerr (21)
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Fig. 3. Illustration of reachable set computation.

Here, ∆t denotes the time step; ⊕ denotes the Minkowski

addition of two zonotope bundles, which is performed as:

Z∩
1 ⊕Z∩

2 =: (∩n
i=1Z

(1)
i )⊕ (∩m

j=1Z
(2)
j )

⊆ {Z
(1)
1 ⊕Z

(2)
1 , . . . ,Z(1)

n ⊕Z
(2)
1 , . . . ,Z(1)

n ⊕Z(2)
m }∩ (22)

Fig. 3(a) illustrates the computing step of (21). In (21), the first

term refers to the response to J(x− x∗), i.e., the NMs states.

The second term refers to the response to the inputs [27], which

is the impact of DER uncertainties U as well as the linearization

point:

Ru(∆t) =

η
∑

i=0

(

J i(∆t)i+1

(i+ 1)!
Uf

)

⊕ E(∆t)Uf∆t (23)

where Uf = Ju(U − u∗) + f(x∗,u∗); η is the number of Tay-

lor terms; E(∆t) = [−1,1] (J∞∆t)η+1

(η+1)!
1

1−ε denotes the Taylor

expansion remainder after η terms [28]. And the third term

in (21) refers to the linearization error due to the Lagrange

remainder [29].

Further, the reachable set of NMs state during each time-

interval can be obtained from the discrete-time sets:

R([t, t+∆t]) = Conv(R(t), eJ∆tR(t))⊕FR(t)

⊕Ru(∆t)⊕Rerr (24)

Here, the operator Conv(·, ·) denotes the convex hull enclosure

of a zonotope bundle and its linear mapping, which is performed

as:

Conv(Z∩,MZ∩) =: Conv(∩n
i=1Zi,M ∩n

i=1 Zi)

⊆ {Conv(Z1,MZ1), . . . ,Conv(Zn,MZn)}
∩ (25)

Fig. 3(b) illustrates the computing process of (24). In (24), the

first two terms together approximate the set at each time point

during the interval through an interpolation below:

x(t+τ)∈x(t)+
τ

∆t
(eJ∆t−I)x(t)+Fx(t), τ∈[0,∆t] (26)

where the interval matrix F =
∑η

i=2[(i
−i
i−1−i

−1
i−1 )∆ti, 0]J

i

i!
⊕E(∆t) enlarges the reachable set to ensure the necessary

conservativeness. The third term in (24) refers to the reachable

set in response to the DER uncertainties as calculated in (23)

and the forth term is the Lagrange remainder.

D. Overall Procedure

Algorithm 1 establishes the complete procedures for reach-

able dynamics analysis of NMs under disturbances.
� Initialization: After loading in the NMs parameters, uncer-

tainty parameters and disturbance information, the routine

starts at tstart with the initialized zonotope bundles of the

NMs states and DER uncertainties, i.e.,X 0 and U0, as well

as the initial NMs structure y0.
� NMs structure transition: If a transition from the current

mode yi to the new mode yj is triggered, the initial set

of NMs states for mode yj is computed by the transition

function T in (15).
� NMs state set calculation: After the reachable set is

transitioned, the continuous reachable set of NMs in

the current mode is computed by the algorithm in Sec-

tion III-C, with the linearization point x∗ = c(R(t)) +
1
2f(c(R(t)), c(U))∆t, u∗ = c(U) (operator c(·) retrieves

the center of the zonotope bundle).

IV. CASE STUDY

This section demonstrates the technical merit and efficacy

of the reachable dynamics analysis for NMs. The new method

is tested under typical large disturbances (i.e., load shedding,

fault, DER plug-and-play) taking into consideration of droop

and secondary control strategies of DERs. The algorithm is

implemented in MATLAB R2019b.

A. Technical Merit

The technical merit of the ODE-based, zonotope bundle-

empowered reachability analysis is demonstrated through dy-

namic verification of a typical microgrid detailed in [30].
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Fig. 4. Comparison of the reachable sets obtained from the DAE-enabled and
ODE-enabled reachability algorithms.

Fig. 5. Comparison of the reachable dynamics results using zonotopes and
zonotope-bundles.

1) Necessity of Adopting ODE-Enabled Reachability Anal-

ysis: Case 1 is a quasi-static ‘flat-start’ scenario where the

microgrid remains stable and the time-domain trajectories reach

the steady states shortly. Fig. 4(a) compares the performance of

the DAE model with the ODE model under 20% uncertainties

from DERs, where both models produce similar results during

the first 5 seconds. However, the DAE-enabled reachability

calculation diverges after 5 s, failing to capture the true dynamic

behavior of the microgrid. In contrast, the ODE-enabled algo-

rithm reaches a steady reachable set and accurately encloses the

uncertain microgrid states. The reason behind the divergence of

the DAE-based reachability computing is that the uncertainty

effect is over-approximated during the interactions between the

sets of differential states and algebraic states to ensure conser-

vativeness, which inevitably causes error accumulations during

iterations.

Case 2 is to compare both methods with 30% of the loads

tripped at 0.5 s. Fig. 4(b) shows that the reachable set obtained

from the DAE-based reachability analysis begins to diverge

after 1 s, indicating that the numerical instability of the DAE-

based algorithm is even worse under a large disturbance. The

ODE-enabled reachable dynamics analysis enhanced by using

zonotope bundles again exhibits excellent numerical stability

under a large disturbance. Correctness of the ODE-enabled

algorithm will be further demonstrated in the following.

2) Necessity of Using Zonotope Bundles: Fig. 5 compares the

performances of using zonotopes and zonotope bundles in the

ODE-enabled formal analysis. Simulation shows that zonotope-

based calculation does not survive the 30% load-shedding dis-

turbance, while zonotope-bundle still catches the fast nonlinear

dynamics after the large disturbance.

B. NMs Dynamic Verification Via Reachable Dynamics

This Subsection studies the NMs dynamics with both

large disturbances and uncertain perturbations via reachability

Fig. 6. Reachable dynamics vs Monte Carlo time-domain trajectories.

analysis. Tests are conducted on a 4-microgrid NMs with the

topology presented in Fig. 1. Detailed parameters of the test

system are presented in Appendix B. The test system is a

medium-sized networked microgrid with 5 DERs, 28 power

loads and 32 branches, which leads to a 98-dimensional ODE

model. The default uncertainty level of each DER is set as 20%.

1) Validity of Reachability Analysis: Fig. 6 compares the

NMs reachable sets with the time-domain trajectories obtained

by the trapezoidal rule of integration [31]. Four typical cases are

considered: i) Case 1: No fault but only the DER uncertainty

applies; ii) Case 2: 30% load shedding occurs at 0.5 s and the

NMs load remains unrecovered; iii) Case 3: A three-phase-to-

ground fault occurs at 0.1 s and is cleared at 0.2 s; and iv) Case

4: DER1 is tripped at 0.1 s and reconnected at 0.6 s.

It should be noted that this paper considers the balanced three-

phase faults and does not include the relay protection operations.

Future work will be extended to include the formal verification

of unbalanced systems and protection behaviors.

In all the cases, the reachable sets well replicate both the

quasi-static states (i.e., the NMs dynamics only impacted by the

DER uncertainties) and the fast dynamics during disturbances.

In particular, the reachable sets securely enclose all the time-

domain trajectories with tight reachability bounds. Specifically,

Fig. 6(c) and Fig. 6(d) magnify the reachable set during the short

periods from the fault occurrence through the fault clearance,

which illustrate the excellent performance of the new method in

capturing the NMs transients initiated by large disturbances.
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Fig. 7. Reachable dynamics for an unstable case under three-phase short
circuit.

Further, Fig. 7 demonstrates the reachable dynamics for

an unstable case (i.e., DERs are set with destabilizing droop

coefficients) under three-phase short circuit fault occurring at

0.1 s and cleared at 0.2 s. Time-domain simulation shows that

the improper droop settings induces severe oscillation after the

fault occurs. Meanwhile, the reachable sets perfectly capture the

NMs dynamics and tightly enclose the rapidly oscillating time-

domain trajectories, exhibiting the capability of the reachable

dynamics approach in handling unstable scenarios.

In sum, simulation results in Fig. 6 and Fig. 7 verify the

capability of the reachable dynamics method in rigorously

enclosing the uncertain time-domain trajectories under small

perturbations, large disturbances as well as unstable scenarios.

Compared with the randomized time-domain simulation (the

most commonly-used approach for analyzing the system dynam-

ics under uncertainties), an outstanding feature of the reach-

ability analysis is that it calculates a conservative set of an

infinite number of possible trajectories in one simulation run. Yet

another interesting finding is the unexpected high robustness of

the reachable dynamics analysis. Usually, a very small time step

is required for a step-by-step time-domain simulation to capture

fast dynamics precisely. As presented in Fig. 8(b), a time step less

than 0.05 ms is required for a reasonably accurate time-domain

simulation of a three-phase fault in the test NMs. Otherwise,

the frequency excursions would be inaccurate, which can be

hazardous in system operations or planning. As for the reacha-

bility analysis, a large time step only leads to overly conservative

result (see Fig. 8(a)). Although the impact of disturbance is

overestimated, it would not bring in catastrophic effect due to

negligence of potentially dangerous cases because the result is

still rigorously credible and can enclose all possible hazards. As

Fig. 8(a) indicated, a 2 ms time-step already leads to satisfactory

result with respect to tightness, and a 5 ms time-step is sufficient

for the slow dynamics scenario. Table. I further presents the time

consumption for calculating reachable dynamics during [0 s,1s].

Two test systems are studied: a single microgrid [30] (i.e., a

microgrid with 3 DERs and 2 power loads), and the networked

microgrid in Fig. 1 (i.e., an NMs with 4 microgrids, 5 DERs and

28 power loads). For comparison purpose, the computing times

Fig. 8. Reachable set result with different time step and its comparison with
time-domain simulation with trapezoidal rule.

TABLE I
COMPUTING TIME OF REACHABLE DYNAMICS

of time-domain simulations are also presented. Fig. 8(a) shows

that, to obtain a precise enough time-domain simulation, a time

step no more than 0.5 ms is required. Meanwhile, to address the

uncertain dynamics behaviors, it needs to perform numerous

Monte Carlo runs of time-domain simulations. Table. I shows

that the computing time for reachable dynamics is acceptable for

off-line analysis and is more efficient than a very light Monte

Carlo simulation of 30 runs. Denote n as the system dimen-

sion and nu as the dimension of uncertainties. Theoretically,

traversing the uncertainty space while performing step-by-step

time-domains simulation leads to a computational complexity

of at least o(pnu)× o(poly(n)) at each time point (here, p
is the sampling number of each dimension of the uncertainty

vector u; o(poly(n)) is the complexity of a nonlinear/linear

equation solver [32]). In spite of the numerical difficulties, this

traversing can still fail to ensure an reliable estimation of the

transient risks under uncertainties because the infinite possible

scenarios can never be enumerated. In contrast, the reachable

dynamics method has a worst complexity of o(n5) according to

the reachability analysis theory [29] as well as well as ensures

a provable conservative result.

2) Observations From Reachable Dynamics Analysis

of NMs:

i) Case 1: No fault but the DER uncertainty disturbs the NMs.

Fig. 9 illustrates frequency deviations and DER outputs under
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Fig. 9. Reachable set under different uncertainty level.

Fig. 10. Reachability verification for load shedding dynamic under different
uncertainty level.

Fig. 11. Control efficacy verification under load shedding disturbance.

three levels of uncertainties, where the two reachable sets expand

with the increase of uncertainty level.

Ii) Case 2: Disturbance caused by permanent load shedding.

Fig. 10 presents the reachtubes of frequency and voltage ex-

cursions after the load shedding. Further, Fig. 11 compares the

efficacy of droop control and secondary control. Compared with

the case with the droop control only, the secondary control ex-

hibits outstanding performance in rapidly stabilizing the system

frequency and voltage fluctuation after load shedding through a

speedy power sharing among DERs.

Iii) Case 3: Disturbance from a temporary three-phase fault.

Fig. 12 shows that secondary control performs well for restrain-

ing the frequency/voltage overshoot and recovering the system

state after large disturbance.

Fig. 13 further investigates the uncertainty impact on the the

faulted NMs from a state-space perspective. Comparing between

the system states at different uncertainty levels, the propagation

of uncertainty in the NMs dynamics is distinctly revealed, which

Fig. 12. Control efficacy verification under three-phase short-circuit.

Fig. 13. State-space reachable set under three-phase short circuit.

Fig. 14. Control efficacy verification under DER’s plug-and-play.

makes the randomized time-domain simulation unnecessary.

Comparing the reachable sets with the droop and secondary

controls, it is obvious that the NMs undergoes much smaller

voltage dip with the secondary control.

Iv) Case 4: For the DER plug-and-play, both the NMs fre-

quency and voltages should be carefully monitored due to the

instantaneous deficiency/surplus of active and reactive power

generation. Fig. 14 illustrates the reachable set evolution during

[0 s, 2 s]. Besides the damped overshoot, the secondary control

can also assist the NMs to reach a new steady-state faster.

In contrast, when there is only droop control, DERs can not

coordinate effectively to participate in the power regulation and

to restore the system frequency and voltages. The state-space
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Fig. 15. State-space reachable set under DER’s plug-and-play.

Fig. 16. Impact of active droop coefficient mp on NMs reachable dynamics.

Fig. 17. Impact of reactive droop coefficient nq on NMs reachable dynamics.

reachable sets in Fig. 15 further demonstrate the performance of

droop/secondary control under different uncertainty levels.

C. Controller Performance Analysis Via Reachable Dynamics

This Subsection investigates the impact of controller settings

on the uncertain NMs dynamics via reachability analysis.

1) Impact of Droop Control Parameters: Fig. 16 and Fig. 17

investigate the impact of droop control coefficients on the

NMs reachable dynamics. In this test system, the active power

droop gain mp mainly influences the NMs’ frequency response,

while the reactive power droop gain nq mainly influences the

NMs’ voltage response. Simulation results show that with the

Fig. 18. Communication structure for the test NMs.

Fig. 19. Impact of communication structure on NMs reachable dynamics.

decrease of droop coefficients: i) the reachable sets of NMs

frequency/voltage shrink under both no-fault scenario and large

disturbance scenario, which indicates an enhanced robustness

against the uncertainties; ii) the frequency/voltage dips are re-

strained and the NMs system reaches a new steady state more

rapidly, which indicates an improved control efficacy of the

droop controllers. Compared with the traditional time-domain

simulation methods, the reachable dynamics approach not only

reflects the NMs dynamic response under different controller

parameters, but also reveals the capability of the controllers in

handling the uncertainties during the transient process.

2) Impact of Communication Structure: The NMs secondary

control, as formulated by (2) and (3), requires the communica-

tion between microgrids to perform a global control. Three typi-

cal communication structures [33] between the 4 microgrids are

studied, as presented in Fig. 18: i) Structure 1-fully connected

(the default structure): microgrids 1–4 fully communicate with

each other; ii) Structure 2-Ring structure: each microgrid only

communicates with the neighboring microgrids; iii) Structure

3-Star structure: microgrid 1 serves as the central point and

microgrids 2–4 separately get control signals from microgrid 1.

Reachable dynamics with different communication structures

under a three-phase fault are presented in Fig. 19. For the

frequency reachable sets, the Star structure leads to a larger

frequency dip and the Ring structure leads to a larger frequency

overshoot, but the difference of the NM performance between

the structures is very slight. As for the voltage reachable sets,

the fully connected structure causes the largest voltage dip

while the Star structure causes the largest voltage overshoot.

From the uncertainty perspective, the reachable set is narrowest

under the fully connected structure and widest under the Star

structure (i.e., the least connected structure), indicating that a

more strongly connected communication network might help

restrain the impact of uncertainties in the NMs. However, the

simulation results above show that the impact of communication

structures on the NMs dynamics is not as explicit as that of
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droop coefficients. It is hard to distinguish which communication

topology is better in terms of the overall effect when considering

the frequency/voltage dynamics, uncertainty suppression, etc.

V. CONCLUSION

The paper devises a reachability analysis method to formally

verify the fast and strongly-nonlinear dynamics of the inverter-

dominated NMs. The key innovation lies in the integration of

the ODE-enabled NMs model, the hybrid automaton theory

for incorporating discrete large disturbances and the zonotope

bundle-based set representation to provide a conservative, tight

and convergent enclosure of all possible NMs dynamic trajecto-

ries under both uncertainty perturbation and large disturbances.

Case studies of a typical NMs system verify the effectiveness of

the established method. The reachable dynamics method, which

formally assesses the impact of the heterogeneous uncertainties

on the NMs transients, can assist the NMs operators to test the

contingency dynamics (i.e., N-1 or N-x) and verify the controller

efficacy under both disturbances and uncertainties. Therefore, it

can serve as a tool to effectively promote the reliability, stability

and robustness of today’s low-inertia and highly variable NMs.

In the future, the protective relay behaviors against large distur-

bances will be incorporated in the reachability analysis scheme.

APPENDIX A

REMARKS ON ODE-ENABLED NMS MODEL

A. Detailed DER Controller Model

This paper adopts the average model of the switch mode

converters. The formulation of the DER controllers dynamics

is below:

dδ

dt
= ω − ωs (27a)

dP

dt
= ωc(−P + voDioD + voQioQ) (27b)

dQ

dt
= ωc(−Q+ voQioD − voDioQ) (27c)

dφ

dt
= v∗

o − vo − (ω − ωs)Isφ (27d)

dγ

dt
= i∗L − iL − (ω − ωs)Isγ (27e)

Lf
diL

dt
= − rf iL + ωsIsLf iL + (v∗

i − vo) (27f)

Cf
dvo

dt
= ωsIsCfvo + (iL − io) (27g)

Here, the state variables include δ (DER angle),P (active power

generation), Q (reactive power generation), φ (output signal of

the voltage controller in DQ-axis),γ (output signal of the current

controller in DQ-axis), iL (DQ-axis current after the output LC

filter) and vo (DQ-axis voltage of DER). The whole controller

is modelled in the DQ-axis (see [30] for detailed structures)

and ωc, rf , Lf , Cf are controller parameters. Specifically, the

angular speed ω is governed by the droop control in (1) and/or

the secondary control in (3).

B. Power Load Model

An arbitrary static power load is formulated as:

Pl = Pl(v, i, ωs), Ql = Ql(v, i, ωs) (28)

Here, Pl and Ql respectively denote the active/reactive power

load characteristics, which are functions of load voltage v, load

current i and system frequency ωs. The load is connected to the

NMs via a brach with the coupling impedance of rlc + jωsLlc.

This topology is realistic because the coupling impedance, large

or small, always exist between a load and the grid.

Denote the DQ-axis voltage and current of the power load as

vlD, vlQ, ilD and ilQ. Denote the DQ-axis bus voltage at the

connection bus as vbD, vbQ. The active/reactive load power can

be computed as follows:

Pl = vlDilD + vlQilQ, Ql = vlQilD − vlDilQ (29)

which leads to:

[

vlD

vlQ

]

=

[

ilD ilQ

−ilQ ilD

]−1 [

Pl

Ql

]

�

[

v̂D(vlD, vlQ, ilD, ilQ, ωs)

v̂Q(vlD, vlQ, ilD, ilQ, ωs)

]

Consequently, the dynamic of the coupling impedance is

formulated as:

dilD
dt

= −
rlc
Llc

ilD + ωsilQ +
1

Llc
(vbD − v̂D)

dilQ
dt

= −
rlc
Llc

ilQ − ωsilD +
1

Llc
(vbQ − v̂Q) (30)

Equation (30) describes the final power load model with an

implicit formulation of the load characteristics. It should be

taken into the NMs model in replacement of (4) to incorporate a

generic power load model. Since (30) is still in the identical form

of (8b), the DAE-ODE conversion devised in Section II-C can

be readily performed to construct the ODE-enabled NMs model.

Further, for the dynamic power loads (such as electromotor),

the coupling impedance as well as the internal dynamics of

the power loads will together formulate the power load model,

which is still coincident with the standard form in (8b) so that

the ODE-enabled NMs model readily works.

C. Detailed Expressions of Equation (8)

This Appendix presents the detailed expressions of vec-

tors/matrices/functions in (8).

The state variable vectors of (8) are as follows:

z = [δ;P ;Q;φ;γ; iL;vo;Ω; e], i = [io; il; ib] (31)

where i gathers the DQ-axis current outflow of DERs, power

loads and power branches; z gathers the other state variables.

Based on the outflow current formulation of each component in

(4)-(7), the matrices A and B, and the nonlinear function h in

(8) are formulated as follows:

A =

⎡

⎢

⎣

−L−1
o Mo

L−1
l M l

L−1
b M b

⎤

⎥

⎦
,B =

[

MT
o −MT

l −MT
b

]
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Fig. 20. Illustration of power load model connected to the NMs.

TABLE II
PARAMETERS OF DERS

1 mp: active power droop gain; nq : reactive power droop gain; ro: coupling

resistance; Lo: coupling inductance; F : current feed-forward gain; kpv : voltage

proportional gain; kiv : voltage integral gain; kpc: current proportional gain; kic:

current integral gain;

TABLE III
PARAMETERS OF POWER LOADS

h(i, z) = diag

⎛

⎜

⎝

⎡

⎢

⎣

L−1
o (−ro + ωsIsLo)

L−1
l (−rl + ωsIsLl)

L−1
b (−rb + ωsIsLb)

⎤

⎥

⎦

⎞

⎟

⎠
i+

⎡

⎢

⎣

L−1
o vo

0

0

⎤

⎥

⎦

where diag(·) denotes the diagonalization function. Then, based

on the detailed component models of DERs in (27) and (2)-(3),

the nonlinear function g in (8) is formulated in the vector form

as:

g =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ω − ωs

ωc(−P + voDioD + voQioQ)

ωc(−Q+ voQioD − voDioQ)

v∗
o − vo − (ω − ωs)Isφ

i∗L − iL − (ω − ωs)Isγ

L−1
f (−rf iL + ωsIsLf iL + v∗

i − vo)

C−1
f (ωsIsCfvo + iL − io)

−αl/f (ω − ω∗)−Al/fΩ−Cl/fΩl

−βl/f (E−E∗)−Bl/f (Q�Qn)−Dl/f (Ql�Qn,l)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

TABLE IV
PARAMETERS OF BRANCHES

1 Without loss of generality, impedance of each branch are assumed homogeneous

with rb = 7.79× 10−4p.u.,Lb = 6.24× 10−3p.u..

where Al/f refers to Al or Af according to whether the DER

is a leader or a follower in the secondary control; αl/f , βl/f ,

Bl/f , Cl/f and Dl/f are similarly defined.

APPENDIX B

TEST SYSTEM PARAMETERS

This appendix provides the parameters of the test system in

Section IV. The test system is composed of 4 microgrids, as

illustrated in Fig. 1.
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He is an individual member of CIGRÉ. He is an Editor for the IEEE TRANSAC-
TIONS ON POWER SYSTEMS, the IEEE TRANSACTIONS ON SUSTAINABLE ENERGY

and the IEEE POWER AND ENERGY SOCIETY LETTERS, and an Associate Editor
for the IEEE JOURNAL OF OCEANIC ENGINEERING.

Meng Yue (Member, IEEE) received the B.S. degree in electrical engineering
from Xi’an Technological University, Xi’an, China, in 1990, the M.S. degree
in electrical engineering from Tianjin University, Tianjin, China, in 1995, and
the Ph.D. degree in electrical engineering from Michigan State University, East
Lansing, MI, USA, in 2002.

He is currently with the Department of Sustainable Energy Technologies,
Brookhaven National Laboratory, Upton, NY, USA. His research interests
include power system stability and dynamic performance analysis, preventive,
corrective, and stabilizing control, renewable energy modeling and integration,
and high performance computing and probabilistic risk assessment applications
in power systems.

Authorized licensed use limited to: Brookhaven National Laboratory. Downloaded on April 21,2021 at 01:27:33 UTC from IEEE Xplore.  Restrictions apply. 


