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Reachable Dynamics of Networked Microgrids
With Large Disturbances

Yifan Zhou"”, Member, IEEE, Peng Zhang

Abstract—An ordinary-differential-equation (ODE) enabled
reachable dynamics analysis approach is devised to provably en-
close all possible dynamic trajectories of networked microgrids
(NMs) under both uncertain renewable power injections and in-
termittent large disturbance events. As a formal verification tool
for the NM dynamics, its new contributions are threefold: 1) An
ODE-enabled NMs model is established with a thorough formu-
lation of the hierarchical control of DERs as well as the network
transients; 2) A hybrid automaton method is established to em-
power the reachability analysis of dynamic transitions in NMs
caused by arbitrary large disturbances; 3) A zonotope bundle
technique is introduced in the reachable set calculation to capture
the fast transients and strong nonlinearity upon the occurrence
of disturbances, which allows for the reliable formal verification
with superior precision and convergence performance. Extensive
case studies are performed to demonstrate the effectiveness of the
new approach in formally verifying the dynamical performance of
disturbed NMs equipped with hierarchical inverter control.

Index Terms—Networked microgrids, reachability analysis,
large disturbance, hierarchical control, zonotope bundle.

I. INTRODUCTION

ETWORKED microgrids (NMs) are envisioned to be
N potent solutions to enhance electricity resiliency for com-
munities and utilities and to host distributed energy resources
(DERs) [1]-[3]. Today’s low-inertia NM system [4], however,
is highly susceptible to transient processes [5] initiated by the
highly uncertain DERSs, plug-and-play operations and unforesee-
able faults [6], [7]. Hence, verifying the dynamic performance
becomes a prominent issue in NMs study [8].

NMs are prone to both large disturbances such as
faults/contingencies (in brief, ‘disturbance’) and small but long-
lasting perturbations caused by DER uncertainties (in brief,
‘perturbation’). Unfortunately, neither the existing direct meth-
ods nor time-domain simulation methods [9] can effectively
address the impact of those uncertainties on NMs [10]. Even
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though various approximated Lyapunov functions are intro-
duced [11]-[13], it is still intractable to construct Lyapunov
functions [14] for complex NMs and to perform guaranteed con-
servative stability assessment under various uncertainties. Prob-
abilistic time-domain simulations such as Monte Carlo sampling
are prohibitively expensive in considering uncertainties from
DERs and random contingencies [15]-[17]. Furthermore, all
those methods fail to verify the virtually infinite scenarios and
inevitably lead to overly optimistic evaluations.

Recently, reachability analysis is introduced to verify the NMs
dynamics [18], [19], where reachable sets are computed to bound
all dynamic trajectories under uncertainty perturbations. The
prior studies in [18], [19] only consider small-signal pertur-
bations and rely on a quasi-static assumption which neglects
network dynamics. Consequently, those methods cannot handle
large disturbance events which are of critical importance for ver-
ifying the NMs performance. Moreover, the DAE- and zonotope-
based algorithms in [18], [19] suffer from the accumulated errors
due to the interactions between the algebraic and differential
equations and the overly conservative set computations, which
plagues their capabilities in handling fast dynamics under large
disturbances.

Motivated by the existing challenges, this paper devises
an ODE-enabled NMs transient verification methodology en-
hanced by hybrid automaton to provably enclose all possible dy-
namic trajectories triggered by arbitrary perturbations and large
disturbances. To improve the numerical stability of reachability
analysis for the fast dynamics, a zonotope bundle technique is
further introduced in the NMs formal verification. The novelties
of this work are threefold:

® An ODE-enabled formulation incorporating droop and
secondary controls for DERs and the network transients is
established for numerically accurate and stable reachability
analysis of NMs.

o A generalized NM dynamics verification method is devised
by integrating the hybrid automaton and transition func-
tions with reachability analysis. The hybrid reachability
approach is able to cope with arbitrary large disturbances
overlaid with uncertainties.

® A zonotope bundle technique is implemented to enable ac-
curate and robust NM dynamics verification in the presence
of large disturbances and fast dynamics.

The remainder of the paper is organized as follows. Section II
establishes the ODE-enabled NMs model with hierarchical con-
trol of DERSs. Section III devises the NMs dynamic verification.
Section IV offers case studies on a typical NM system to validate
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Fig. 1. Schematic NMs with hierarchical control.

the new method, followed by Section V which concludes the
paper.

II. ODE-ENABLED NMS DYNAMICS MODEL

This Section establishes an ODE-enabled dynamic formula-
tion for the NMs with hierarchical Control. Fig. 1 illustrates the
schematic of a typical NM system.

A. Formulation of NMs With Hierarchical Control

Without loss of generality, a two-layer hierarchical control
is considered in NMs. Locally, the droop control enables the
DER'’s inverter to mimic the frequency and voltage regulation
mechanisms of a traditional synchronous generator. Globally,
the leader DER in each microgrid communicates with the
neighboring microgrids to perform the secondary control which
achieves power sharing and restores voltages and frequency in
NMs, while the follower DERs in each microgrid assist their
leader DER to achieve the global control objectives (see Fig. 1).

The droop control of each DER is formulated as:

w=w"—m,(P— (P 4+u))+Q
E=E -n(Q-Q)+te

(1a)
(1b)

where w denotes the vector of the DERs’ angular speeds; E
denotes the vector of output voltage magnitudes; P and Q
respectively denote the active/reactive power output of DERs;
w*, E*, P* and Q" respectively denote the nominal values
of each control signal; m, and n, respectively denotes the
active/reactive power droop gains of DERs; u represents the
uncertainty impact of the DER’s active power generation; €2 and
e denote the secondary control signals following the distributed-
averaging proportional-integral logic [20].

Within each microgrid, the follower DERs perform power
sharing as follows:

dQ

Tf = —aj(wy —w') — AsQ (2a)
d

% =-B,(E; —E})-B;(QuQ,)  (2b)

Here, Q2 and ey denote the control signals of the follower
DERs; oy, 3 Iz Ay and By are control parameters, where A s
and By are block diagonal matrices so that each follower DER
only communicates within its local microgrid; @Q,, denotes the
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reactive power rating of DERs; @ denotes the element-wise
division.
Further, leader DER share information with the entire NMs:

d€y;

W = —al(wl —w*) —AZQ_CZQZ (33)
d
% = -BI(E~E})-Bi(Q2 Q,)-Di(Q,2Q,,;) (3b)

Here, (2; and e; denote the control signals of the leader DERSs;
A; and B; are block diagonal so that each leader DER does not
communicate with the follower DERSs in other microgrids; the
control parameters C; and D; formulate the communications
between different microgrids. The formulation of inner and outer
control loops in Fig. 1 is further presented in Appendix A-A.

B. Formulation of Network Transients

Recently, the dynamics of line branches and loads is found
playing an unexpectedly important role in the dynamic perfor-
mance of microgrids [21]. Because the DER-dominated micro-
grids and NMs are usually featured by the fast inverter dynamics
and the small values of network impedance, the network tran-
sients tend to have significant influence on the slower system
modes [22]. Although simplifying the network dynamics into
algebraic equations is acceptable for bulk power systems with
large inertia, this would lead to overly optimistic assessment
of the inverter-interfaced microgrids [23]. Those new findings
thus motivate us to model the dynamics of the entire NMs. For
instance, the dynamics of a constant impedance load can be
described as:

de;
Ligy =
where %; denotes the DQ-axis load currents; v denotes the DQ-
axis bus voltages; r; and L; respectively denote the matrices

-1t +wsI gLyt + M v 4)

of load resistances and inductance; I3 = [PI é] is a constant
matrix constructed by the identity matrix I; M is the DQ-axis
incidence matrix between power loads and buses. Appendix A-B
additionally presents a detailed formulation for incorporating the
generic power load models.

The dynamics in the NM branches can be models as:

dzy,

dt
where ¢, denotes the DQ-axis branch current; r, and L;, respec-
tively denote the matrices of branch resistances and inductance;
M, is the DQ-axis incidence matrix between branches and
buses.

Each DER is connected to the backbone feeder through a
branch with the following dynamics:

dz,

o dt

where 1, and v, respectively denote the DQ-axis current outputs
and voltages of the DERs; r, and L, respectively denote the

resistances and inductance of the interconnection branch; M,
is the DQ-axis incidence matrix between DERs and buses.

L, = —1rptp + wsI s Lyty, + Myv %)

= —Tolo +wels Loty + v, — M,v (6)
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At each bus of the NMs, the Kirchhoft’s Current Law should
be satisfied:

0=Mli,— M — M, (7

C. ODE-Enabled NMs Model

By assembling the differential equations of the DERs (i.e., (2),
(3) and the control loops in Appendix A-A), power loads (4) and
branches (5), as well as the algebraic equations of buses (7), the
NMs model can be integrated as a set of differential algebraic
equation (DAEs).

Denote i = [i,; %;; 4] and z as all the other differential state
variables in the NMs model. Accordingly, the NMs model is
abstracted as:

z=g9(i,z,u) (8a)
i = Av + h(i, 2) (8b)
0=Bi (8¢)

where (8a) is an abstraction of (2), (3) and (27); (8b) is an
abstraction of (4), (5) and (6); (8c) is an abstraction of (7). The
expression of A, B, g and h can be readily obtained from the
NMs model, and the details are presented in Appendix A-C.

In the following, a fully ODE-based NMs model is devised
by a rigorous DAE to ODE conversion. Denote the index set
of maximal linearly independent columns of B as si, and that
of other columns as sg. Construct B, with the columns of B
corresponding to s1, and By with the columns corresponding
to sg. Construct ¢; with the elements of ¢ corresponding to s,
and ¢ with the elements corresponding to so. Obviously, B is
non-singular. Hence, (8c) yields the following:

i, = —B; ' Byiy )
Substituting (9) into (8) leads to the following:
z = g(io, z,u) (10a)
io = Agv + ho(io, 2) (10b)
’21 = Alv—i—le(io,z) (lOC)

where §(io, z) = g(io, 41, 2) by substituting (9); h(ig, z) =
h(ig,1,2); flo and h respectively extract the elements of h
corresponding to ¢ and 2;.

Left-multiplying (8b) with B and substituting (9) give:

0 = Bi = Nv + Bh(ig, z)

where N = BA.

If N is non-singular, the algebraic variables v can be ex-
pressed by the differential variables (49, z) as v = —~N"'Bh.
Substituting v into (10) yields a full ODE model rigorously
equivalent to the original DAE model in (8):

an

2 =g(io, z,u) (12a)

io = —AgN"'Bh(io, z) + ho(io, 2) (12b)

If N is singular, it can be proved that (8) degenerates to
an equivalent DAE model of a lower order. Then the above
conversion can still be implemented.
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No approximation or linearization is introduced in the above
derivation, which theoretically ensures the efficacy of the ODE-
enabled NMs model under large disturbances. Moreover, the
DAE-ODE conversion processes the network current flow equa-
tions without affecting the interior models of the DERs and
loads. Hence, the ODE-based model can readily accommodate
arbitrary sources (e.g., DERs, synchronous and asynchronous
machines), DER controls (e.g., PQ control, current control,
voltage control, secondary control, etc), and loads (e.g., ZIP
loads, electric motors).

The scale of the ODE-enabled NMs model mainly depends
on the number of the DERs and loads rather than the size
of the NM grid benefiting from the network sparsity feature,
which therefore renders the ODE model improved efficiency.
Moreover, solving the ODE-based models are numerically more
stable than solving the DAE counterparts [24].

III. REACHABLE DYNAMICS OF DISTURBED NMS
A. Reachable Set of NMs With Dynamic Transitions

This Subsection integrates the hybrid automaton model used
for the verification of a discrete-event system with the ODE
model used for the reachability analysis of the NM dynamics.
The flexibility afforded by this generalized reachability model
enables the accurate modeling of arbitrary disturbances in the
form of either parametric changes (e.g., frequent or sharp load
fluctuations) or structural changes (e.g., plug-and-play of DERs
or microgrids).

Anextended state vector & = [z;4g; t] is introduced to include
the time information ¢ in the NMs dynamics. The ODE-enabled,
nonlinear dynamic model (12) is augmented as:

Q(Ai07z7u) R
&= |—AgN 'Bh(ig, z) + ho(ig, 2)| = f(z,u)
1

13)

where the NMs state vector « is defined in the state space X' C
R™; the DER uncertainty vector u is defined in the input space
and governed by an unknown-but-bounded set &/ C R™.
Given a set of disturbance events D = {D1, Ds,..., Dk},
the NMs dynamics is discretely divided into K modes YV =
{y1,¥2,...,yx }. Upon the occurrence of a disturbance D;, an
NMs system operating in its current mode y; would undergo a
transition y; — ;. Correspondingly, the NMs dynamics with
disturbance transients can be modelled as a hybrid automaton:

H= (XU’ Y,D,E, fT) (14)

Here, X0 C X denotes the set of the NMs initial states
corresponding to the initial mode yo; U° C U denotes the
set of the DER uncertainties; D and ) respectively de-
notes the disturbance set and mode set as defined above;
E ={(t1,Ye,)s (t2,Yer ), - - -, (ts, Yes ) } denotes the time-series
events triggering the NMs’ transitions to y., at time ¢g; the
dynamic function f : X x U x Y — X formulates the ODE-
enabled NMs model under each mode, as detailed in (13); the
transition function 7 : X x U x Y x Y — X x U formulates
the transition process from one mode to another, whose outputs
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are the sets of NMs states and DER uncertainties in the succeed-
ing mode when the transition occurs:

(on7ujo) = T(Xiendauio7 Yi, yj)
= (M, y ) X7 My, ) Ny U+ 1y, ,) (15)

where y; associating y; describes the NMs’ struc-
tural/parametric transition ; — y;; XJQ and UJQ respectively
denote the initial set of NMs’ states and DER uncertainties in
mode y;; Xf”d denotes the set of NMs states in mode y; at the
time point of transition; M (. .y, M(y, 4y N (4 y,)> P(yiy;)
are specific transition matrices for y; — y;.

By using the hybrid automaton defined in (14), the NMs’
structural/parametric transitions under large disturbances are
incorporated in the reachability analysis. The reachable set of
the NMs states at time ¢ is defined as a set of all the possible
x(t) given the initial states X° and uncertain input U/:

R(t) = {m(t) ) (z(t),u(t),y(t)) is a solution of H,

2(0) € X, u((0,4) € Uyy(0) = o} (16)

Further, the NMs reachable set during time interval [¢, ¢ + At]
is defined as a union of the discrete-time reachable sets:

ﬁ([t, t + AtD = UTE[t,t+At]7é(T) (17)

Fig. 2 illustrates the transitions of the NMs reachable set. A
disturbance sequence including plugging-in of DER/microgrid,
short-circuit and load shedding is taken as an example. Upon
each disturbance, the NMs transitions from the current struc-
ture/parameters to another, which induces the reachable set’s
jump from the current state space to a new one. Further, during
the time intervals in which no transition occurs, with the initial
state set, the continuous reachable set is calculated to enclose
all the possible NMs trajectories in the specific mode (see
Section II-C). The hybrid automaton-empowered reachability
methodology therefore can handle the NMs dynamic transitions
between large disturbances superimposed on other uncertain-
ties and is applicable to single contingencies as well multiple
contingencies.

B. Set Representation Via Zonotope Bundles

Reachability analysis performs set computation to verify
the system dynamics. Recently, zonotope has been adopted in
microgrid reachability analysis for the quasi-static states [18].
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Despite the high computational efficiency, zonotope has inherent
deficiencies such as: 1) it has a special and restricted structure
(i.e., centrally symmetric polytope) and 2) it is not closed under
several set computations (e.g., intersection). Those deficiencies
introduce escalated over-approximations in NMs set computa-
tions, causing low-precision and ill-convergence issues in the
reachability analysis of highly nonlinear dynamics. To tackle the
challenge, a new set representation, i.e., the zonotope bundle, is
employed to enable a highly precise and efficient reachability
analysis of NMs with large disturbances.

The zonotope bundle is defined as the intersection of a finite
number of zonotopes [25]:

Z0 =", 2 (18)

Here, Z; denotes a zonotope defined by its center ¢ and K
generators (g1, ..., g%)) such that Z; = {x € R"|z = ¢ +
S Brg®, 1B < 1}

Zonotope bundle is able to represent arbitrary polytopes (con-
vex and bounded), and hence is far more flexible for uncertainty
formulations. Moreover, zonotope bundle is closed under inter-
section, which enables improved accuracy in set computations.
A comparative study has reported the efficacy of using zonotope
bundles in verifying nonlinear systems together with cases where
zonotopes fail to capture the dynamics [25].

C. Reachability Analysis Via Zonotope Bundles

Calculating the exact reachable set is computational in-
tractable. Instead, a rigorously over-approximated reachable
set R(t) satisfying R(t) C R(t) is sufficient for verifying the
system dynamics with a moderate computational cost.

At each time point, the NMs dynamic model (13) is over-
approximated by the Taylor series expansion:

ze flz,u)+J(x—a")+ Jy(u—u")+ L(x,u) (19)

where * and u* respectively denote the linearization point of
the NMs states and DER uncertainties; J = 0 f (z*, u*)x and
J. = 0f(x*,u")/Ou respectively denote the Jacobian matri-
ces of the NMs; L denotes the Lagrange remainder:

T82.f (gma £u)

O ¢

(20)

1
L(ac,u):§[ac —z"u—u']

where &, € {z* + a(x —x")|a € [0,1]}, & € {u* + a(u —
u*)|a € [0, 1]}. The Taylor’s Theorem [26] ensures that for arbi-
trary « and u, there exist &, and &, so that the nonlinear function
f can be formulated by the first-order Taylor polynomial and
the error terms L(x, u). Therefore, calculating L by the set of
2 and w can ensure that (20) rigorously encloses arbitrary . In
the following derivation, the center of I/ is assumed as the origin
point without loss of generality. Meanwhile, R (¢) is shifted to
R(t) — «* to eliminate the impact of the linearization point and
is shifted back at the end of set calculations.

Accordingly, the reachable set of the linearized NMs model
can be obtained:

R(t+ At) = (e72R(t)) @ RY(At) @ R (21)
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Fig. 3. Illustration of reachable set computation.

Here, At denotes the time step; @ denotes the Minkowski
addition of two zonotope bundles, which is performed as:

n 1
z:lZi( )) D

m 2
Z0 e 20 = ( (N, 28

c{zPez? .. z20ez® . . z0ez®)" (22)

Fig. 3(a) illustrates the computing step of (21). In (21), the first
term refers to the response to J(x — ), i.e., the NMs states.
The second term refers to the response to the inputs [27], which
is the impact of DER uncertainties I/ as well as the linearization

point:
i Jz At z+1
z + 1

1=0

> & E(ANUAL  (23)

where Uy = J (U — u*) + f(x*, u*); n is the number of Tay-

lor terms; E(At) = [-1 1]% = denotes the Taylor
expansion remainder after 7 terms [28]. And the third term
in (21) refers to the linearization error due to the Lagrange
remainder [29].

Further, the reachable set of NMs state during each time-

interval can be obtained from the discrete-time sets:
R([t,t + At]) = Conv(R(t), e’ 2R (1)) ® FR(t)
& RY(At) & RO 24)

Here, the operator Conv (-, -) denotes the convex hull enclosure
of a zonotope bundle and its linear mapping, which is performed
as:

Conv(Z", MZ") =: Conv (N, Z;, M NI'_;
C {Conv(Z1,MZ,),...,Conv(Z,,MZ,)}"

Z;)
(25)

Fig. 3(b) illustrates the computing process of (24). In (24), the
first two terms together approximate the set at each time point
during the interval through an interpolation below:

x(t+7)ex(t)+ T (eTAt

(7 — D)+ Fa(t) m€l0, At

(26)
where the interval matrix F =7, (7T —iT1) AL, 0% I
@E(At) enlarges the reachable set to ensure the necessary
conservativeness. The third term in (24) refers to the reachable
set in response to the DER uncertainties as calculated in (23)
and the forth term is the Lagrange remainder.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 3, MAY 2021

Algorithm 1: Reachable dynamics algorithm of NMs

with disturbance transients

1 o> Initialization: set of initial NMs states R(t) = A°
DER uncertainties U = U°, y = 3o, t = tan ;

2 while ¢t < t.nq do

, set of

3 > NMs Structure Transition:

4 iftE{t1,t2,~",ts} then

5 transition from y;(¢ € {i|ly; = y}) to
y;(J € {jlts =t,5 = es}):

6 R(t) = My, \Yj yR(2 )er(yi,yj);
7 U= Nyny])u"'n(yuyj)’

8 y=vy;; fF=15;

9 end

11 > NMs State Set Calculation:

12 linearization at * = ¢(R(t)) + 1 f(c(R(¢)), c(U))At,

u* =cld) ;

13 computation of R(t + At) and R([¢,t + At]) by (21)

and (24) ;

14 result evolution R iy = {R(1p), R(t+ A1)} , Ry =
{Reeiys R([t, ¢ + At}

15 time evolution ¢t = ¢t + At ;

17 end
18 > Qutput: time-point reachable sets R (yp); time-interval
reachable sets Ry ;

D. Overall Procedure

Algorithm 1 establishes the complete procedures for reach-

able dynamics analysis of NMs under disturbances.

o [nitialization: After loading in the NMs parameters, uncer-
tainty parameters and disturbance information, the routine
starts at ¢444,-+ With the initialized zonotope bundles of the
NMs states and DER uncertainties, i.e., X9 and /2, as well
as the initial NMs structure .

® NMs structure transition: If a transition from the current
mode y; to the new mode y; is triggered, the initial set
of NMs states for mode y; is computed by the transition
function 7" in (15).

® NMs state set calculation: After the reachable set is
transitioned, the continuous reachable set of NMs in
the current mode is computed by the algorithm in Sec-
tion III-C, with the linearization point «* = c¢(R(t)) +
LF(c(R(t)),c(U))At, u* = c(U) (operator c(-) retrieves
the center of the zonotope bundle).

IV. CASE STUDY

This section demonstrates the technical merit and efficacy
of the reachable dynamics analysis for NMs. The new method
is tested under typical large disturbances (i.e., load shedding,
fault, DER plug-and-play) taking into consideration of droop
and secondary control strategies of DERs. The algorithm is
implemented in MATLAB R2019b.

A. Technical Merit

The technical merit of the ODE-based, zonotope bundle-
empowered reachability analysis is demonstrated through dy-
namic verification of a typical microgrid detailed in [30].
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1) Necessity of Adopting ODE-Enabled Reachability Anal-
ysis: Case 1 is a quasi-static ‘flat-start’ scenario where the
microgrid remains stable and the time-domain trajectories reach
the steady states shortly. Fig. 4(a) compares the performance of
the DAE model with the ODE model under 20% uncertainties
from DERs, where both models produce similar results during
the first 5 seconds. However, the DAE-enabled reachability
calculation diverges after 5 s, failing to capture the true dynamic
behavior of the microgrid. In contrast, the ODE-enabled algo-
rithm reaches a steady reachable set and accurately encloses the
uncertain microgrid states. The reason behind the divergence of
the DAE-based reachability computing is that the uncertainty
effect is over-approximated during the interactions between the
sets of differential states and algebraic states to ensure conser-
vativeness, which inevitably causes error accumulations during
iterations.

Case 2 is to compare both methods with 30% of the loads
tripped at 0.5 s. Fig. 4(b) shows that the reachable set obtained
from the DAE-based reachability analysis begins to diverge
after 1 s, indicating that the numerical instability of the DAE-
based algorithm is even worse under a large disturbance. The
ODE-enabled reachable dynamics analysis enhanced by using
zonotope bundles again exhibits excellent numerical stability
under a large disturbance. Correctness of the ODE-enabled
algorithm will be further demonstrated in the following.

2) Necessity of Using Zonotope Bundles: Fig.5 compares the
performances of using zonotopes and zonotope bundles in the
ODE-enabled formal analysis. Simulation shows that zonotope-
based calculation does not survive the 30% load-shedding dis-
turbance, while zonotope-bundle still catches the fast nonlinear
dynamics after the large disturbance.

B. NMs Dynamic Verification Via Reachable Dynamics

This Subsection studies the NMs dynamics with both
large disturbances and uncertain perturbations via reachability

REACHABLE DYNAMICS OF NETWORKED MICROGRIDS WITH LARGE DISTURBANCES
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Fig. 6. Reachable dynamics vs Monte Carlo time-domain trajectories.

analysis. Tests are conducted on a 4-microgrid NMs with the
topology presented in Fig. 1. Detailed parameters of the test
system are presented in Appendix B. The test system is a
medium-sized networked microgrid with 5 DERs, 28 power
loads and 32 branches, which leads to a 98-dimensional ODE
model. The default uncertainty level of each DER is set as 20%.

1) Validity of Reachability Analysis: Fig. 6 compares the
NDMs reachable sets with the time-domain trajectories obtained
by the trapezoidal rule of integration [31]. Four typical cases are
considered: i) Case 1: No fault but only the DER uncertainty
applies; ii) Case 2: 30% load shedding occurs at 0.5 s and the
NDMs load remains unrecovered; iii) Case 3: A three-phase-to-
ground fault occurs at 0.1 s and is cleared at 0.2 s; and iv) Case
4: DERI is tripped at 0.1 s and reconnected at 0.6 s.

It should be noted that this paper considers the balanced three-
phase faults and does not include the relay protection operations.
Future work will be extended to include the formal verification
of unbalanced systems and protection behaviors.

In all the cases, the reachable sets well replicate both the
quasi-static states (i.e., the NMs dynamics only impacted by the
DER uncertainties) and the fast dynamics during disturbances.
In particular, the reachable sets securely enclose all the time-
domain trajectories with tight reachability bounds. Specifically,
Fig. 6(c) and Fig. 6(d) magnify the reachable set during the short
periods from the fault occurrence through the fault clearance,
which illustrate the excellent performance of the new method in
capturing the NMs transients initiated by large disturbances.
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Reachable dynamics for an unstable case under three-phase short

Further, Fig. 7 demonstrates the reachable dynamics for
an unstable case (i.e., DERs are set with destabilizing droop
coefficients) under three-phase short circuit fault occurring at
0.1 s and cleared at 0.2 s. Time-domain simulation shows that
the improper droop settings induces severe oscillation after the
fault occurs. Meanwhile, the reachable sets perfectly capture the
NMs dynamics and tightly enclose the rapidly oscillating time-
domain trajectories, exhibiting the capability of the reachable
dynamics approach in handling unstable scenarios.

In sum, simulation results in Fig. 6 and Fig. 7 verify the
capability of the reachable dynamics method in rigorously
enclosing the uncertain time-domain trajectories under small
perturbations, large disturbances as well as unstable scenarios.

Compared with the randomized time-domain simulation (the
most commonly-used approach for analyzing the system dynam-
ics under uncertainties), an outstanding feature of the reach-
ability analysis is that it calculates a conservative set of an
infinite number of possible trajectories in one simulation run. Yet
another interesting finding is the unexpected high robustness of
the reachable dynamics analysis. Usually, a very small time step
is required for a step-by-step time-domain simulation to capture
fast dynamics precisely. As presented in Fig. 8(b), a time step less
than 0.05 ms is required for a reasonably accurate time-domain
simulation of a three-phase fault in the test NMs. Otherwise,
the frequency excursions would be inaccurate, which can be
hazardous in system operations or planning. As for the reacha-
bility analysis, a large time step only leads to overly conservative
result (see Fig. 8(a)). Although the impact of disturbance is
overestimated, it would not bring in catastrophic effect due to
negligence of potentially dangerous cases because the result is
still rigorously credible and can enclose all possible hazards. As
Fig. 8(a) indicated, a 2 ms time-step already leads to satisfactory
result with respect to tightness, and a 5 ms time-step is sufficient
for the slow dynamics scenario. Table. I further presents the time
consumption for calculating reachable dynamics during [0 s, 1s].
Two test systems are studied: a single microgrid [30] (i.e., a
microgrid with 3 DERs and 2 power loads), and the networked
microgrid in Fig. 1 (i.e., an NMs with 4 microgrids, 5 DERs and
28 power loads). For comparison purpose, the computing times
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Fig. 8. Reachable set result with different time step and its comparison with

time-domain simulation with trapezoidal rule.

TABLE I
COMPUTING TIME OF REACHABLE DYNAMICS

Test Time Reachable Time Time-domain
system step dynamics run step simulation
time (30 runs)
A single Sms 6.63s Sms 12.29s
microgrid 2ms 16.51s 0.5ms 62.92s
Ims 33.45s 0.05ms 540.52s
Sms 61.13s Sms 38.53s
E‘iﬁ‘gﬁg‘: 2ms 142.64s 0.5ms 308 34s
Ims 270.08s 0.05ms 2961.32s

of time-domain simulations are also presented. Fig. 8(a) shows
that, to obtain a precise enough time-domain simulation, a time
step no more than 0.5 ms is required. Meanwhile, to address the
uncertain dynamics behaviors, it needs to perform numerous
Monte Carlo runs of time-domain simulations. Table. I shows
that the computing time for reachable dynamics is acceptable for
off-line analysis and is more efficient than a very light Monte
Carlo simulation of 30 runs. Denote n as the system dimen-
sion and n,, as the dimension of uncertainties. Theoretically,
traversing the uncertainty space while performing step-by-step
time-domains simulation leads to a computational complexity
of at least o(p™+) x o(poly(n)) at each time point (here, p
is the sampling number of each dimension of the uncertainty
vector u; o(poly(n)) is the complexity of a nonlinear/linear
equation solver [32]). In spite of the numerical difficulties, this
traversing can still fail to ensure an reliable estimation of the
transient risks under uncertainties because the infinite possible
scenarios can never be enumerated. In contrast, the reachable
dynamics method has a worst complexity of o(n®) according to
the reachability analysis theory [29] as well as well as ensures
a provable conservative result.

2) Observations From Reachable
of NMs:

i) Case 1: No fault but the DER uncertainty disturbs the NMs.
Fig. 9 illustrates frequency deviations and DER outputs under

Dynamics Analysis

Authorized licensed use limited to: Brookhaven National Laboratory. Downloaded on April 21,2021 at 01:27:33 UTC from IEEE Xplore. Restrictions apply.



ZHOU et al.: REACHABLE DYNAMICS OF NETWORKED MICROGRIDS WITH LARGE DISTURBANCES

30% uncertainty [l 20% uncertainty [Jll 10% uncertainty

ol
s
§ 0.05 3 5
k=, i
5z 0 215
> & 1
g -0.05r lf
% -0.1 0 I 1 )
& 0.5 1 )
t (s) t (s) 1 Ppem (p.u.)

(a) System frequency (b) Active power of DERs

Fig. 9. Reachable set under different uncertainty level.

30% uncertainty [l 20% uncertainty [Jll 10% uncertainty

_ < 1.0015
§ 0.1 Z
£ 005 = Loot
E &
5 0 = 1.0005
=l <
o
Y -o.osr 2
o =
= =}
E 2
£ 0 0.5 1 2 0 0.5 1
ia)

t (s)
(a) System frequency

t(s)
(b) Bus voltage at DER1

Fig. 10. Reachability verification for load shedding dynamic under different
uncertainty level.

I Droop control I Sccondary control

0.1

S Z 1Lo01

g 005 =

g & 1.0005

o O =

= =

> [

g 005 s

& 0 05 1 g 0 0.5 1

t(s) t(s)

(a) System frequency (b) Bus voltage at DER1

Fig. 11.  Control efficacy verification under load shedding disturbance.

three levels of uncertainties, where the two reachable sets expand
with the increase of uncertainty level.

Ii) Case 2: Disturbance caused by permanent load shedding.
Fig. 10 presents the reachtubes of frequency and voltage ex-
cursions after the load shedding. Further, Fig. 11 compares the
efficacy of droop control and secondary control. Compared with
the case with the droop control only, the secondary control ex-
hibits outstanding performance in rapidly stabilizing the system
frequency and voltage fluctuation after load shedding through a
speedy power sharing among DERs.

lii) Case 3: Disturbance from a temporary three-phase fault.
Fig. 12 shows that secondary control performs well for restrain-
ing the frequency/voltage overshoot and recovering the system
state after large disturbance.

Fig. 13 further investigates the uncertainty impact on the the
faulted NMs from a state-space perspective. Comparing between
the system states at different uncertainty levels, the propagation
of uncertainty in the NMs dynamics is distinctly revealed, which
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Fig. 14.  Control efficacy verification under DER’s plug-and-play.

makes the randomized time-domain simulation unnecessary.
Comparing the reachable sets with the droop and secondary
controls, it is obvious that the NMs undergoes much smaller
voltage dip with the secondary control.

Iv) Case 4: For the DER plug-and-play, both the NMs fre-
quency and voltages should be carefully monitored due to the
instantaneous deficiency/surplus of active and reactive power
generation. Fig. 14 illustrates the reachable set evolution during
[0's, 2 s]. Besides the damped overshoot, the secondary control
can also assist the NMs to reach a new steady-state faster.
In contrast, when there is only droop control, DERs can not
coordinate effectively to participate in the power regulation and
to restore the system frequency and voltages. The state-space
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reachable sets in Fig. 15 further demonstrate the performance of
droop/secondary control under different uncertainty levels.

C. Controller Performance Analysis Via Reachable Dynamics

This Subsection investigates the impact of controller settings
on the uncertain NMs dynamics via reachability analysis.

1) Impact of Droop Control Parameters: Fig. 16 and Fig. 17
investigate the impact of droop control coefficients on the
NMs reachable dynamics. In this test system, the active power
droop gain m,, mainly influences the NMs’ frequency response,
while the reactive power droop gain n, mainly influences the
NMs’ voltage response. Simulation results show that with the
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Fig. 18.  Communication structure for the test NMs.
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Fig. 19. Impact of communication structure on NMs reachable dynamics.

decrease of droop coefficients: i) the reachable sets of NMs
frequency/voltage shrink under both no-fault scenario and large
disturbance scenario, which indicates an enhanced robustness
against the uncertainties; ii) the frequency/voltage dips are re-
strained and the NMs system reaches a new steady state more
rapidly, which indicates an improved control efficacy of the
droop controllers. Compared with the traditional time-domain
simulation methods, the reachable dynamics approach not only
reflects the NMs dynamic response under different controller
parameters, but also reveals the capability of the controllers in
handling the uncertainties during the transient process.

2) Impact of Communication Structure: The NMs secondary
control, as formulated by (2) and (3), requires the communica-
tion between microgrids to perform a global control. Three typi-
cal communication structures [33] between the 4 microgrids are
studied, as presented in Fig. 18: i) Structure 1-fully connected
(the default structure): microgrids 1—4 fully communicate with
each other; ii) Structure 2-Ring structure: each microgrid only
communicates with the neighboring microgrids; iii) Structure
3-Star structure: microgrid 1 serves as the central point and
microgrids 2—4 separately get control signals from microgrid 1.

Reachable dynamics with different communication structures
under a three-phase fault are presented in Fig. 19. For the
frequency reachable sets, the Star structure leads to a larger
frequency dip and the Ring structure leads to a larger frequency
overshoot, but the difference of the NM performance between
the structures is very slight. As for the voltage reachable sets,
the fully connected structure causes the largest voltage dip
while the Star structure causes the largest voltage overshoot.
From the uncertainty perspective, the reachable set is narrowest
under the fully connected structure and widest under the Star
structure (i.e., the least connected structure), indicating that a
more strongly connected communication network might help
restrain the impact of uncertainties in the NMs. However, the
simulation results above show that the impact of communication
structures on the NMs dynamics is not as explicit as that of
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droop coefficients. Itis hard to distinguish which communication
topology is better in terms of the overall effect when considering
the frequency/voltage dynamics, uncertainty suppression, etc.

V. CONCLUSION

The paper devises a reachability analysis method to formally
verify the fast and strongly-nonlinear dynamics of the inverter-
dominated NMs. The key innovation lies in the integration of
the ODE-enabled NMs model, the hybrid automaton theory
for incorporating discrete large disturbances and the zonotope
bundle-based set representation to provide a conservative, tight
and convergent enclosure of all possible NMs dynamic trajecto-
ries under both uncertainty perturbation and large disturbances.
Case studies of a typical NMs system verify the effectiveness of
the established method. The reachable dynamics method, which
formally assesses the impact of the heterogeneous uncertainties
on the NMs transients, can assist the NMs operators to test the
contingency dynamics (i.e., N-1 or N-x) and verify the controller
efficacy under both disturbances and uncertainties. Therefore, it
can serve as a tool to effectively promote the reliability, stability
and robustness of today’s low-inertia and highly variable NMs.
In the future, the protective relay behaviors against large distur-
bances will be incorporated in the reachability analysis scheme.

APPENDIX A
REMARKS ON ODE-ENABLED NMS MODEL

A. Detailed DER Controller Model

This paper adopts the average model of the switch mode
converters. The formulation of the DER controllers dynamics
is below:

dé
E =W — Wy (27a)
dP
E = wc(—P + voDioD + onioQ) (27b)
d
T(t? = wc(_Q + UOQiOD - 'UoDioQ) (270)
d
T(tb = Uz — Vo — (w - WS)IS¢ (27d)
d
ST i i — (w—we) ey (27¢)
dt
di
f%: —rsip +wsIl Lyt + (v —v,) (271)
d o . .
C'f% =wsI,C v, + (i —10) (272)

Here, the state variables include § (DER angle), P (active power
generation), @ (reactive power generation), ¢ (output signal of
the voltage controller in DQ-axis), -y (output signal of the current
controller in DQ-axis), ¢7, (DQ-axis current after the output LC
filter) and v, (DQ-axis voltage of DER). The whole controller
is modelled in the DQ-axis (see [30] for detailed structures)
and we, 7y, Ly, Cy are controller parameters. Specifically, the
angular speed w is governed by the droop control in (1) and/or
the secondary control in (3).

2425
B. Power Load Model
An arbitrary static power load is formulated as:
-Pl — Pl(U,i,ws),Ql - Ql(vai)ws) (28)

Here, P, and (); respectively denote the active/reactive power
load characteristics, which are functions of load voltage v, load
current ¢ and system frequency ws. The load is connected to the
NMs via a brach with the coupling impedance of r;. + jwsLjc.
This topology is realistic because the coupling impedance, large
or small, always exist between a load and the grid.

Denote the DQ-axis voltage and current of the power load as
Ui, V1@, up and 7;q. Denote the DQ-axis bus voltage at the
connection bus as v, p, vyq. The active/reactive load power can
be computed as follows:

Py = vipiip +viqiig, Qr = vigiip — ViphiQ (29)

which leads to:
-1
P

up| _ | up

v1Q —i1Q Q

Consequently, the dynamic of the coupling impedance is
formulated as:

(175)

[

[ﬁD (uip, v1Q, D, l1Q, Ws)

0o (vip,vQ, D, g, ws)

dilD o Tle . . ~
a - L. Up + wsti + 7 (vup — D)
di;g Tl . . 1 .
- _ — Wy — 30
m LZCZZQ wslp + Llc('UbQ 0g) (30)

Equation (30) describes the final power load model with an
implicit formulation of the load characteristics. It should be
taken into the NMs model in replacement of (4) to incorporate a
generic power load model. Since (30) is still in the identical form
of (8b), the DAE-ODE conversion devised in Section II-C can
be readily performed to construct the ODE-enabled NMs model.
Further, for the dynamic power loads (such as electromotor),
the coupling impedance as well as the internal dynamics of
the power loads will together formulate the power load model,
which is still coincident with the standard form in (8b) so that
the ODE-enabled NMs model readily works.

C. Detailed Expressions of Equation (8)

This Appendix presents the detailed expressions of vec-
tors/matrices/functions in (8).
The state variable vectors of (8) are as follows:

z2=[0;P;Q;h;v;ir;v0: Q3 €], = [0 15 %)

where 2 gathers the DQ-axis current outflow of DERs, power
loads and power branches; z gathers the other state variables.
Based on the outflow current formulation of each component in
(4)-(7), the matrices A and B, and the nonlinear function h in
(8) are formulated as follows:

€1y

-L,'M,
A= | 'M | ,B=|MI —m —M]]
L,'M,
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Fig. 20. Illustration of power load model connected to the NMs.
TABLE II
PARAMETERS OF DERS
DER No. 1 2 3 4 5
Loc. node 1 6 13 25 33
mp ng ro (p.u.) Ly (p.u.) F
Controller 1.5% 6% 0 6.24x10~3  0.75
parameters | [ Kpo kiy kpe Kic
I 1 0.2 2

1

mp: active power droop gain; ng: reactive power droop gain; r,: coupling

resistance; L,: coupling inductance; F': current feed-forward gain; k., : voltage
proportional gain; k;,,: voltage integral gain; k,,: current proportional gain; k;.:
current integral gain;

TABLE III
PARAMETERS OF POWER LOADS

Load | Loc. T Ly Load | Loc. Ty L;
No. node (p.u.) (p.u.) No. node (p.u.) (p.u.)
1 2 3.32 2.33 15 18 3.68 2.57
2 3 3.67 2.57 16 19 3.69 2.58
3 4 2.75 1.92 17 20 3.66 2.56
4 5 5.49 3.84 18 21 3.66 2.56
5 7 1.64 1.15 19 22 3.65 2.55
6 8 1.64 1.15 20 23 3.66 2.56
7 9 5.50 3.85 21 24 0.78 0.54
8 10 5.52 3.86 22 26 5.48 3.83
9 11 7.38 5.16 23 27 5.47 3.82
10 12 5.54 3.88 24 28 5.42 3.79
11 14 2.74 1.91 25 29 2.70 1.89
12 15 4.89 4.08 26 30 0.24 0.72
13 16 5.55 3.89 27 31 2.17 1.51
14 17 5.53 3.87 28 32 1.55 1.08

L' (—r,+w,I,L,) L, 'v,
h(i,z) = diag L;l(—rl + wsI L) i+ 0
Lljl(_'rb +wsIsLb) 0

where diag(-) denotes the diagonalization function. Then, based
on the detailed component models of DERs in (27) and (2)-(3),
the nonlinear function g in (8) is formulated in the vector form

as:

W — Wy
We(—P 4+ v,ptoD + V0@t0Q)
wWe(—Q + VoD — VoDT00)
v — v, — (w—ws) ¢
iy, — i — (w —wg) Iy
Ly (=rpip 4w Lyig + v} — v,)
CH (wodCrvp +ir —i,)
—al/f(w — w*) — Al/fﬂ — Cl/fnl

| =B1);(E—E")=By;(Q0Q,,)—Dy/;(Q,0Q,,).
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TABLE IV
PARAMETERS OF BRANCHES

Branch From To Branch From To
No. node node No. node node
1 1 2 17 17 18
2 2 3 18 2 19
3 3 4 19 19 20
4 4 5 20 20 21
5 5 6 21 21 22
6 6 7 22 3 23
7 7 8 23 23 24
8 8 9 24 24 25
9 9 10 25 6 26
10 10 11 26 26 27
11 11 12 27 27 28
12 12 13 28 28 29
13 13 14 29 29 30
14 14 15 30 30 31
15 15 16 31 31 32
16 16 17 32 32 33

1 Without loss of generality, impedance of each branch are assumed homogeneous

with 7, = 7.79 x 10 4p.u., L, = 6.24 x 10~ 3p.u..

where A;, refers to A; or Ay according to whether the DER
is a leader or a follower in the secondary control; ¢ /f B, /f>
By,s, Cy/5 and Dy are similarly defined.

APPENDIX B
TEST SYSTEM PARAMETERS

This appendix provides the parameters of the test system in
Section IV. The test system is composed of 4 microgrids, as
illustrated in Fig. 1.
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