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Abstract

RNA sequencing data have been abundantly generated in biomedical research for biomarker discovery and other

studies. Such data at the exon level are usually heavily tailed and correlated. Conventional statistical tests based on

the mean or median difference for differential expression likely suffer from low power when the between-group

difference occurs mostly in the upper or lower tail of the distribution of gene expression. We propose a tail-based

test to make comparisons between groups in terms of a specific distribution area rather than a single location.

The proposed test, which is derived from quantile regression, adjusts for covariates and accounts for within-sample

dependence among the exons through a specified correlation structure. Through Monte Carlo simulation studies, we

show that the proposed test is generally more powerful and robust in detecting differential expression than commonly

used tests based on the mean or a single quantile. An application to TCGA lung adenocarcinoma data demonstrates the

promise of the proposed method in terms of biomarker discovery.
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1 Introduction

RNA sequencing (RNA-seq), also called whole transcriptome shotgun sequencing, has become a popular tech-

nology for measuring gene expression levels. RNA-seq is designed to perform genome-wide transcriptome pro-

filing. Specifically, this technology isolates and fragments RNA from cells and converts the RNA fragments into

cDNA. Then the fragments are amplified through polymerase chain reaction, the cDNAs are sequenced, and

the resulting reads are aligned to a reference genome for annotation. The number of sequencing reads mapped to

an exon or a gene in the reference genome can be the output from the pipeline. RNA-seq is widely used in

biomedical research because of its high efficiency and reproducibility.1 Utilizing such data, researchers are able to

extract rich genomic information from biological systems and advance our knowledge about various diseases,

including cancer.
An important objective in cancer research is to detect differential gene expression between cancer and normal

tissue samples, with a goal of discovering cancer biomarkers. The Cancer Genome Atlas (TCGA) Research

Network data, sponsored by the National Cancer Institute, have RNA-seq profiling data available for a large
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number of human tumor samples from various cancer types. This rich data resource provides an unprecedented
opportunity for researchers to test and validate analytical methods and make scientific discoveries to advance
cancer diagnosis and treatment. In our work, we focus on TCGA lung adenocarcinoma data as lung adenocar-
cinoma has become the most common form of lung cancer for both smokers and non-smokers, accounting for
nearly 40% of lung cancer cases diagnosed in the United States.2–9

Several methods have been developed to detect differential gene expression in RNA-seq experiments. Jiang and
Wong10 modeled the count data within a gene or transcript isoform as an independent random sampling process
and used a Poisson distribution to approximate the observations. Bloom et al.11 and McCarthy et al.12 used
Fisher’s exact test and the likelihood ratio test for differential expression analysis. Because the conventional
Poisson distribution cannot address the often-encountered large variation in the data, DESeq22 and edgeR26

adopted the negative binomial distribution to address the overdispersion problem. The two methods use different
approaches to normalize the data and filter out outliers prior to estimating dispersion. DESeq2 uses a Wald test to
make inference about differential gene expression, while edgeR uses an exact test adapted for overdispersed data.
Limmaþvoom13 is another method commonly used for differential expression (DE) analysis by normalizing the
raw count data into log2 counts per million (logCPM) and then applying a linear mixed effect model to analyze
differential gene expression. Laird and Ware14 detected the group difference while addressing the correlation
structure within each gene. However, the normality assumption is usually not satisfied, even with data transfor-
mation,15 for example, in data sets with excessive zeros or small counts. In fact, heavy tails are often the char-
acteristic of distributions of gene intensities in the reads per kilobase per million mapped reads (RPKM) data, as
we see in the lung adenocarcinoma data analyzed in this paper. These methods may have undesirable properties
such as low power and inflated type I error rates according to Bullard et al.15 and Chu et al.16

Alternative tests that are not sensitive to data distributions may be constructed based on quantile regression.
Corresponding rank score tests based on single quantiles, typically the median, have been widely used.17

Furthermore, Wang and He31 described a modified rank score test to account for correlations among smaller units
within a gene in microarray studies. However, such tests based on single quantiles are known to yield low detection
power, and it is difficult to know which specific quantiles should be chosen for testing in a given application.

Current DE analysis methods for RNA-seq data commonly use gene-level read counts by summarizing exon-
level sequenced reads to gene-level data. These methods lose potentially useful information about the exon-level
expression distribution.18 In this paper, we propose a new tail-based test at the level of exon-level expression data.
In the new test, we accumulate the information on all the quantiles of a tail region and account for the inter-exon
correlations. This is motivated by previous research on microarray expression data that show that statistical
testing on probe-level data can improve the detection of differential gene expression over that on gene-level data.19

The idea of using quantile aggregation was initially proposed by He et al.20 that focused on detecting treatment
effects on independent observations of a response variable in clinical studies. RNA degradation renders the read
counts unevenly across the different exon regions and often causes biases towards the 30 end.21 Hence, we focus on
the upper tails in the test since high gene expression intensities are particularly biologically meaningful in the
applications. Nevertheless, the test can be easily tailored to the lower tails. In addition, exons belonging to a
common gene tend to empirically correlate with each other. Figure 1 shows high correlations between exons in
gene FHIT. Besides, Figure 2 is the histogram of median correlations for all genes, revealing high inter-exon
correlations for the most genes. The proposed test is capable of adjusting for covariates and accounting for the
inter-exon correlations within a gene. In this paper, the choice of quantile s is a user-specified value (e.g. 0.5 or
0.75) as our empirical investigation shows these are effective starting points to accumulate upper quantile distri-
bution information.

This paper is organized as follows. In Section 2, we introduce the model and notations and present the tail-
based test and its limiting distribution under the null hypothesis. In Section 3, we perform Monte Carlo simu-
lations on correlated data and make comparisons with several popular methods including edgeR, DESeq2, and
Limma. In Section 4, we analyze TCGA lung adenocarcinoma data using the proposed test. We conclude with
some brief remarks in Section 5.

2 Method

In biomedical applications of microarray studies involving, for example, exon-level RNA-seq data, it is often of
interest to detect differential gene expression between disease groups. The proposed method is devised to meet this
objective. We first introduce the notations. Let Z denote the gene expression intensity, which is treated as the
response measure, wherein Zij indicates the intensity measurement of the jth exon location in a gene of interest for
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the ith sample. We use a dummy variable D¼ 0, 1 to denote the control and diseased patient groups, respectively,
wherein Di corresponds to the disease status of sample i. We use C to indicate K covariates and assume them to be
independent of D, and a K� 1 design vector Ci corresponding to the covariates with sample i. The integers n0 and
n1, respectively, indicate the number of patient samples for the groups of D¼ 0 and D¼ 1, and n ¼ n0 þ n1. We
use mi to denote the total number of exon locations belonging to the target gene for the ith sample and Nd to
denote the total number of exon locations belonging to the target group of D¼ 0 and D¼ 1.

We express the sth quantile of Z, given D and C, as

QZðsjD;CÞ ¼ aðsÞ þ DdðsÞ þ CcðsÞ ¼ XbðsÞ (1)

where X ¼ ð1n�1;Dn�1;Cn�KÞ and bðsÞ ¼ ðaðsÞ; dðsÞ; cðsÞTK�1ÞT. Correspondingly, the model for the individual
gene intensity measure Zij can be written as

Zij ¼ aðsÞ þDidðsÞ þ Ci
TcðsÞ þ eijðsÞ (2)
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Figure 2. Histogram of median correlation among exons within each gene.

Figure 1. Heatmap of correlation on exon-level expression for gene FHIT from TCGA lung adenocarcinoma data.
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where the residuals eijðsÞ have the value of 0 as the sth conditional quantile. We assume that the inter-exon
correlation satisfies covðeij; eij0 Þ 6¼ 0 and covðeij; ei0j0 Þ ¼ 0. Given ðZij;Di;CiÞ. In this paper, we assume compound
symmetry correlation structure among exons within a gene, which has been empirically shown to be sensible for
RNA-seq data. We obtain the estimate âðsÞ; d̂ðsÞ; ĉðsÞ at the sth quantile via quantile regression.22 We denote the
corresponding empirical residuals as êijðsÞ ¼ Zij � âðsÞ �Did̂ðsÞ � Ci

TĉðsÞ.
To detect the between-group difference in the gene expression intensity, we define a new tail-based test statistic

(TTS) as follows

TTTS
s ðn1; n0Þ ¼ TTSsð1Þ � TTSsð0Þ (3)

where TTSsðdÞ ¼
X

Di¼d

Xmi

j¼1
wd;i;jðZij � Ci

TĉðsÞÞ; d ¼ 0; 1: Let eþij ¼ Iðeij > 0Þ and e�ij ¼ Iðeij < 0Þ: Herein,

wd;i;j ¼ S�1
d eþij ðsÞ; Sd ¼

X
Di¼d

Xmi

j¼1
eþij ðsÞ, and wd;i;j serves as a weight for the ith sample at the jth exon location

within group d¼ 0 or 1.
Note that TTSsðdÞ carries the information of covariate-adjusted residuals and represents the average expres-

sion intensity above the sth quantile in group d after adjusting for the covariates. As an example, TTS0:5ð:Þ
incorporates the information of the whole region above the 50th quantile for a group at s ¼ 0:5. This summary
statistic represents a weighted average of the upper quantile region, rather than a single quantile value that is
typically used in the traditional rank score tests. As a result, the test statistic leverages the power to detect the
difference between two groups in terms of the distributions above the s-th quantile.

Let �DsðdÞ; �CsðdÞ, and �esðdÞ be the averages of all the Di, Ci, and eij, respectively, in group d that are

above the s-th conditional quantile. Specifically, �CsðdÞ ¼ S�1
d

X
Di¼d

Xmi

j
Ciê

þ
ij ðsÞ; and �esðdÞ ¼ S�1

d

X
Di¼d

Xmi

j

ðZij � aðsÞ �DidðsÞ � Ci
TcðsÞÞêþij ðsÞ. Replacing Zij with eijðsÞ þ aðsÞ þDidðsÞ þ Ci

TcðsÞ in TTTS
s ðn1; n0Þ, we can

express the test statistic as

TTTS
s ðn1; n0Þ ¼ dðsÞ � ð�CT

s ð1Þ � �C
T
s ð0ÞÞðĉðsÞ � cðsÞÞ þ ð�esð1Þ � �esð0ÞÞ (4)

To perform the test, we establish the asymptotic distribution of TTTS
s ðn1; n0Þ as n0; n1 ! 1 under the null

hypothesis of no difference between the two groups. We first estimate the conditional density function fij of eij

given (Di, Ci) evaluated at eij¼ 0, denoted as f̂nð0Þ. Then, we let ðUfÞK�K ¼
X

i
f̂nð0ÞC

�
i C

�
i
T, in which Uf is a com-

bination of the fij and can be estimated consistently even when the conditional densities vary with Ci.
20 We also

denote the transformed D and C via Gram–Schmidt orthogonalization as follows

D�
i ¼ Di � n�1

d

X
i

DiIðDi ¼ dÞ (5)

C�
i ¼ Ci � n�1

d

X
i

CiIðDi ¼ dÞ (6)

In addition, let

Vd ¼
X
Di¼d

Xmi

j¼1

varðeijeþij Þ þ
X
Di¼d

X
j 6¼j0

covðeijeþij ; eij0eþij0Þ

and f ¼ Pðeij < 0; eij0 < 0Þ
(7)

Theorem 1. If limn1;n0!1 n0
n0þn1

! q 2 ð0; 1Þ and limn1;n0!1 ðn1 þ n0Þ�1Uf exists, EjjCijj31 < 1, and fij are uni-
formly bounded away from 0 and infinity, then under the null hypothesis, in which the distribution of the two
groups FZjC;D¼1¼FZjC;D¼0, we have

TTTS
s ðn1; n0Þ=sn0;n1 ! Nð0; 1Þ as n1; n0 ! 1 (8)
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The proof and notation of sn0;n1 are in the Section B of the Supplement.

Remark (a): A consistent estimate of Uf can be obtained using the kernel density estimate of fij based on

empirical residuals êijðsÞ.23,24 We use a Gaussian kernel function to carry out the kernel density estimation in our

analysis and select a rule of thumb bandwidth as h ¼ 0:9Aðn1 þ n0Þð�1=5Þ, as provided by Silverman,25 where A is

the minimum of the standard deviation and interquartile range/1.34 of the empirical residuals.
Remark (b): The term f is intended to account for the dependence of exons within a common gene. If the

residuals are independent, f becomes s2 and the rightmost term in the expression of s2n0;n1 becomes 0. Empirically,

we can estimate f and Vd based on êij, as follows,
Remark (c): The choices of s depend on real applications, but as a guideline, we focus on the upper tails in the

test since high gene expression intensities are particularly biologically meaningful in the applications. Multiple ss
in a range of 50%� 75% are desirable to be looked at to obtain the list of top promising biomarker candidates

for further biological validation. The optimal choice of s is not the goal here, but any reasonable choice tends to

improve on the use of one quantile level which will be demonstrated in the next section.

f̂ ¼
X
i

miðmi � 1Þ=2� K
� ��1X

i

X
j6¼j0

ê�ij ê
�
ij0 (9)

V̂d ¼
X
Di¼d

Xmi

j¼1

ê2ijê
þ
ij

� �
�N�1

d

X
Di¼d

Xmi

j¼1

êijê
þ
ij

 !2

þ
X
Di¼d

X
j6¼j0

X
Di¼d

miðmi � 1Þ
� ��1X

Di¼d

X
j6¼j0

êijê
þ
ij êij0 ê

þ
ij0 � nd

�1
X
Di¼d

X
j

êijê
þ
ij

� �2
" # (10)

where K is the dimension of Ci. We can plug in the estimate of fij to obtain the variance estimate of TTTS
s ðn1; n0Þ.

3 Simulation studies

3.1 Comparison with quantile rank score test and linear mixed effect model

We conducted simulation studies to investigate the statistical validity and power of the proposed test, TTS. In the

first set of simulation studies, we compared TTS to conventional statistical tests, including the quantile rank score

test, assuming independent errors (called QRS), the quantile rank score test, assuming correlated errors (called

QRSc), and the Wald test for coefficient estimates of the linear mixed effect model (called LME). We generated

exon-level gene expression data from the following model

Zij ¼ 5þ cCi þ d1IðDi ¼ 1Þ þ d2Iðeij > 0ÞIðDi ¼ 1Þeij þ eij (11)

where Zij is the intensity value of exon j of a gene for subject sample i. We investigated the following four

scenarios. Scenario 1: Ci�Nð2:5; 0:52Þ; d2 ¼ 0; d1 ¼ 0 under H0 or d1 ¼ 0:5 under H1. Scenario 2:

Ci�Nð2:5; 0:52Þ; d1 ¼ 0; d2 ¼ 0 under H0 or d2 ¼ 1:35 under H1. Scenario 3: Ci�Nð2:5; 0:52Þ for Di¼ 0; and

Ci�Nð2:5; 1Þ for Di¼ 1, d1 ¼ 0; d2 ¼ 0 under H0 or d2 ¼ 1:35 under H1.Scenario 4: Ci�Nð2:5; 0:52Þ for Di¼ 0;

and Ci�Nð3; 0:52Þ for Di¼ 1, d1 ¼ 0; d2 ¼ 0 under H0 or d2 ¼ 1:35 under H1.
In all the scenarios, c¼ 1 and the error terms are normally distributed with unit variance and an exchangeable

correlation structure corðeij; eij0 Þ ¼ 0:8 and corðeij; ei0j0 Þ ¼ 0. To study the impact of sample size and gene length on

the test, we considered the sample sizes of 40, 50, 75, 100, and 150 subjects per group and gene lengths of 5, 10 and

30 exon locations within a gene, respectively. In each scenario, we ran 5000 Monte Carlo samples. For the quantile

related test, we used s ¼ 0:5 for testing H0 at nominal levels of 1% and 5%, and s ¼ 0:5 and 0.75 for testing H1 at

the nominal level of 5%.
Scenario 1. In this scenario, the difference between the cancer and normal tissue samples is constant across all

the quantiles. The type I error rates are shown in the upper panel of Table 1. We observe that QRS fails to

maintain appropriate type I error rates due to high correlation among the exons. In contrast, TTS, QRSc, and

LME are able to preserve the type I error rates in various cases.
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The power results are shown for TTS, QRSc, and LME in the top panel of Table 2. We did not investigate QRS
further due to its statistical invalidity. With a constant group difference across the quantiles, it appears that the
tests conducted at a single quantile had satisfactory performance. In fact, TTS displayed lower power than LME
and QRSc, which could be caused by the inclusion of additional noise in the upper tails.

Scenario 2. In this scenario, the cancer group ðDi ¼ 1Þ has a heavier right tail and larger variance than the
normal group ðDi ¼ 0Þ. The difference between the two groups is relatively small at the median and becomes
larger in the upper quantiles. For example, the difference is 0.02 at the median versus 0.89 at the 75th quantile.
The ratio of the two groups’ variances under H1 is 2.58. The type I error rates are the same as those in Scenario 1.
The power results are shown in Table 3. In this case, QRSc shows extremely poor performance at s ¼ 0:5 since the
median group difference is small. TTS, with its capability of utilizing the information in the upper quantile region,
shows superior performance at different values of s compared to both LME and QRS, which only utilize the
information of a single, prespecified quantity. The advantage of TTS is more prominent when analyzing smaller
sample sizes (e.g. 50), which are often encountered in practice. For example, TTS achieves improvements in power
of 40% and 77%, respectively, compared to that achieved by QRSc and LME in the case of 50 subjects and 5
exons in a gene at s ¼ 0:75. It is also noteworthy that TTS reaches close to 100% power with larger sample sizes.

Scenarios 3 and 4. These two cases are similar to Scenario 2, except that the covariate Ci is generated with either
different variances between the two groups in Scenario 3 or different means in Scenario 4. The type I error rates
are shown in the lower panel of Tables 4 and 5. The type I error rates of the proposed test, TTS, as well as QRSc

and LME, are well maintained at the corresponding nominal level in the various setups. The power results
displayed in Tables 6 and 7 support the superior performance of TTS over that of the other two tests in both
scenarios.

Remark: Without prior knowledge of which quantiles show the true difference between groups, TTS shows
satisfactory detection power overall as it utilizes information across multiple quantiles in a tail region.

3.2 Comparison with edgeR, DESeq2, and Limma part 1

In the second set of simulation studies, we compared TTS to state-of-the-art DE analysis methods, including
edgeR (called edgeR), DESeq2 (called DESeq2), and Limmaþvoom (called Limma). We generated exon-level
intensity data in Log2-RPKM format from the following model to fit our model, and converted the measurement
to the initial gene-level counts to implement other DE analysis methods.

Zij ¼ aþ cCi þ dIðeij > 0ÞIðDi ¼ 1Þeij þ eij (12)

We investigated the following two scenarios.

Table 1. Type I error rates at the nominal levels of 1% and 5% for Scenarios 1 and 2.

Scenario 1, 2 Nominal level 1% 5%

Gene Length Sample Size TTS QRSc QRS LME TTS QRSc QRS LME

40 1.26 1.10 16.84 0.80 5.66 4.58 29.70 4.94

5 50 1.26 0.96 16.46 0.78 5.60 5.46 30.78 4.94

75 0.98 0.70 16.12 0.96 4.86 4.74 28.26 4.74

100 0.86 0.96 16.22 0.74 5.16 5.18 29.00 4.90

150 0.98 1.06 16.30 1.00 5.10 4.90 29.32 4.88

40 1.34 1.06 30.20 1.00 5.50 5.38 43.98 5.02

10 50 1.44 1.08 30.44 1.02 5.98 4.94 43.34 4.44

75 1.22 0.98 30.56 0.78 5.72 5.04 44.40 5.12

100 1.10 1.12 29.98 1.04 5.18 5.20 43.16 4.76

150 1.06 1.04 30.26 1.02 5.16 5.06 43.80 5.34

40 1.44 0.90 55.56 0.98 5.96 5.04 65.58 4.68

30 50 1.52 1.20 53.96 1.16 6.14 5.34 64.04 4.68

75 1.36 1.24 54.96 1.16 5.62 5.20 64.86 5.02

100 1.32 1.26 53.72 1.10 5.64 5.26 63.92 5.38

150 1.30 1.06 55.54 1.06 4.98 4.78 65.14 4.78

Note: Scenarios 1 and 2 have identical type-I error rates. The values in the table are percentages.
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Scenario DE-1 (null hypothesis): d¼ 0.
Scenario DE-2 (alternative hypothesis): d¼ 0 for 90% of the expression data to simulate non-DE genes and

d�uniformð1; 2Þ for 10% of the expression data to simulate DE genes.
In both scenarios, we used a�uniformð2; 10Þ to denote the baseline gene expression. We used Ci�Nð2:5; 0:52Þ to

denote the covariates and let c¼ 1. The error terms are normally distributed with the unit variance and an

exchangeable correlation structure with corðeij; eij0 Þ ¼ 0:8 and corðeij; ei0j0 Þ ¼ 0. To study the impact of sample

size and gene length (the number of exon locations) on the test, we considered the sample sizes of 40, 60, 80, and

100 subjects per group and gene lengths of 5, 10, and 30, respectively. In each scenario, we ran 5000 Monte Carlo

samples. For quantile-related tests, we used s ¼ 0:5 for testing scenario DE-1 at the nominal levels of 1% and 5%,

and s ¼ 0:5 for testing scenario DE-2 at the nominal level of 5%.

Table 2. Power for scenarios 1 at quantiles s ¼ 0:5 and 0.75 at the significance level of 0.05.

Scenario 1 s ¼ 0:5 s ¼ 0:75

Gene Length Sample Size TTS QRSc LME TTS QRSc LME

40 58.04 59.28 67.46 47.42 52.42 67.46

5 50 65.62 65.90 75.10 53.84 59.00 75.10

75 83.48 83.78 90.82 70.30 78.32 90.82

100 91.80 92.14 96.66 81.58 88.28 96.66

150 98.54 98.76 99.62 93.44 97.36 99.62

40 60.28 61.74 68.22 49.38 55.38 68.22

10 50 68.70 71.14 78.36 56.52 64.04 78.36

75 83.88 86.24 91.40 72.00 80.48 91.40

100 92.10 93.56 96.68 82.34 89.52 96.68

150 98.82 99.06 99.86 94.70 98.34 99.86

40 61.80 63.68 69.88 51.42 57.36 69.88

30 50 69.32 71.92 77.62 57.58 65.16 77.62

75 85.42 87.40 92.00 73.92 83.22 92.00

100 92.82 94.04 96.46 83.76 91.30 96.46

150 99.10 99.42 99.74 95.36 98.64 99.74

Note: The values in the table are percentages.

Table 3. Power for scenarios 2 at quantiles s ¼ 0:5 and 0.75 at the significance level of 0.05.

Scenario 2 s ¼ 0:5 s ¼ 0:75

Gene Length Sample Size TTS QRSc LME TTS QRSc LME

40 76.18 5.98 44.82 95.10 59.14 44.82

5 50 85.60 6.92 55.00 97.92 69.62 55.00

75 96.06 6.42 72.44 99.72 84.22 72.44

100 99.04 6.68 83.80 100.00 92.56 83.80

150 99.96 5.86 96.10 100.00 98.84 96.10

40 77.60 6.68 44.50 95.52 62.02 44.50

10 50 86.12 6.74 54.88 98.32 71.40 54.88

75 96.14 6.16 73.64 99.88 86.12 73.64

100 99.28 6.14 85.00 100.00 93.44 85.00

150 99.98 6.64 96.14 100.00 98.94 96.14

40 78.24 6.26 45.28 96.26 64.30 45.28

30 50 87.96 6.74 57.20 98.78 75.24 57.20

75 96.80 6.12 74.22 99.92 87.52 74.22

100 99.34 6.60 86.24 100.00 94.96 86.24

150 99.98 6.12 96.60 100.00 99.18 96.60

Note: The values in the table are percentages.
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We calculated the average false positive rates (FPRs) and true positive rates (TPRs) to assess the performance
of the aforementioned four methods.

Scenario DE-1. The FPRs are shown in Table 8. We observe that edgeR and DESeq2 are sensitive to
noises and exhibit inflated FPRs. In contrast, TTS and Limma can appropriately maintain the FPRs close to
the nominal value.

Scenario DE-2. In this scenario, the cancer group has a heavier right tail and larger variance than that of the
normal group ðDi ¼ 0Þ for DE genes. The difference between the two groups is relatively small at the median and
enlarges in the upper quantiles as shown in Figure 3. The result in Table 9 indicates that edgeR and DESeq2 are
again noise-susceptible and result in inflated FPRs, while TTS is capable of preserving FPRs at the appropriate
levels. In terms of TPRs, TTS has the similar performance compared to both edgeR and DESeq2, while Limma is
inferior to the others. Overall, TTS performs better than edgeR, DESeq2, and Limma.

Table 4. Type I error rates at the nominal levels of 1% and 5% for Scenarios 3.

Scenario 3 Nominal Level 1% 5%

Gene Length Sample Size TTS QRSc QRS LME TTS QRSc QRS LME

40 1.26 1.00 16.54 0.82 5.66 4.76 29.84 4.88

5 50 1.48 1.02 16.18 0.78 5.82 5.24 30.66 4.80

75 1.06 0.86 15.76 0.90 5.06 5.12 28.78 4.84

100 0.94 1.00 17.32 0.84 5.24 5.24 29.00 4.60

150 0.92 1.06 16.10 0.98 5.26 4.84 29.36 5.02

40 1.34 1.00 29.40 0.98 5.66 5.42 43.78 4.88

10 50 1.42 1.10 30.34 0.98 5.98 5.34 43.62 4.76

75 1.24 0.92 31.36 0.70 5.68 5.30 44.46 5.14

100 1.02 1.06 30.18 1.02 5.22 4.86 44.20 4.78

150 1.06 1.04 30.20 0.94 5.10 5.10 43.56 5.36

40 1.40 0.92 55.86 1.00 6.04 5.18 65.60 4.66

30 50 1.56 1.26 54.46 1.20 6.14 5.48 65.06 4.68

75 1.32 1.32 55.04 1.10 5.58 5.56 64.62 4.98

100 1.36 1.46 53.80 1.32 5.88 5.26 63.54 5.00

150 1.24 1.00 55.38 0.94 5.12 4.92 65.00 4.88

Note: The values in the table are percentages.

Table 5. Type I error rates at the nominal levels of 1% and 5% for Scenarios 4.

Scenario 4 Nominal Level 1% 5%

Gene Length Sample Size TTS QRSc QRS LME TTS QRSc QRS LME

40 1.48 0.96 16.02 0.94 5.92 5.18 29.44 5.64

5 50 1.36 0.84 16.40 0.74 5.94 5.44 29.16 4.94

75 1.10 0.88 16.42 0.88 4.84 5.20 29.22 4.56

100 0.84 0.76 16.46 0.96 5.16 5.10 29.30 4.64

150 1.26 1.18 15.72 1.28 5.18 4.94 28.34 5.06

40 1.40 1.34 30.30 1.14 5.42 5.02 43.92 4.96

10 50 1.58 1.12 30.50 1.06 6.18 5.40 42.84 5.02

75 1.08 1.04 31.00 1.04 5.64 5.40 43.10 5.18

100 1.06 0.98 30.18 1.04 5.28 5.28 44.56 5.34

150 0.94 1.04 30.30 1.16 5.56 5.24 43.30 5.16

40 1.46 1.08 55.00 0.90 5.92 5.06 64.96 4.30

30 50 1.52 1.38 55.30 1.14 5.88 5.32 64.66 5.00

75 1.30 0.86 54.44 0.98 5.12 5.56 64.66 4.82

100 1.28 1.18 53.42 1.00 5.36 5.08 63.48 4.80

150 1.04 0.98 55.32 1.06 5.08 4.86 65.04 5.02

Note: The values in the table are percentages.

268 Statistical Methods in Medical Research 30(1)



Remark: In scenarios DE-1 and DE-2, TTS is able to control FPRs appropriately, while edgeR and DESeq2

have inflated results. TTS is also more powerful than Limma.

3.3 Comparison with edgeR, DESeq2, and Limma part 2

In the third set of simulations, we generated the initial gene-level count data, on which we fitted edgeR, DESeq2,

and Limmaþvoom. We also converted the gene-level counts to exon-level Log2-RPKM measurements to imple-

ment our methods. The complete analysis results are reported in the section A of the Supplement. The purpose of

this investigation is to demonstrate that the proposed test is robust and comparable with edgeR, DESeq2, and

Limma, even when the data are not generated from our assumed model.

Table 6. Power for scenarios 3 at quantiles s ¼ 0:5 and 0.75 at the significance level of 0.05.

Scenario 3 s ¼ 0:5 s ¼ 0:75

Gene Length Sample Size TTS QRSc LME TTS QRSc LME

40 76.74 5.92 44.58 95.84 60.08 44.58

5 50 86.08 6.58 55.10 98.06 70.32 55.10

75 96.26 6.18 72.86 99.80 85.08 72.86

100 99.00 6.26 83.22 100.00 92.76 83.22

150 99.96 5.82 96.14 100.00 99.00 96.14

40 77.94 6.64 44.32 96.00 63.04 44.32

10 50 86.54 6.42 54.76 98.44 71.86 54.76

75 96.18 6.12 73.68 99.92 86.48 73.68

100 99.28 5.88 84.86 100.00 93.68 84.86

150 99.98 6.42 96.12 100.00 99.08 96.12

40 78.70 6.22 45.00 96.48 64.90 45.00

30 50 88.14 6.62 57.20 98.82 75.72 57.20

75 96.88 6.12 74.58 99.94 87.92 74.58

100 99.26 6.04 86.14 100.00 95.18 86.14

150 99.98 5.90 96.56 100.00 99.08 96.56

Note: The values in the table are percentages.

Table 7. Power for scenarios 4 at quantiles s ¼ 0:5 and 0.75 at the significance level of 0.05.

Scenario 4 s ¼ 0:5 s ¼ 0:75

Gene Length Sample Size TTS QRSc LME TTS QRSc LME

40 68.80 5.84 34.66 90.66 48.12 34.66

5 50 78.66 6.30 42.00 94.66 57.58 42.00

75 93.20 6.44 58.80 99.32 74.82 58.80

100 97.06 6.10 65.56 99.72 81.22 65.56

150 99.88 5.88 90.06 100.00 96.48 90.06

40 70.30 6.18 34.00 91.36 50.18 34.00

10 50 79.52 6.00 41.26 95.92 59.06 41.26

75 93.58 6.56 59.96 99.64 76.66 59.96

100 97.68 5.84 67.94 99.92 83.44 67.94

150 99.92 6.52 90.48 100.00 97.32 90.48

40 71.34 5.84 33.84 92.78 52.84 33.84

30 50 82.06 6.34 43.08 96.84 62.12 43.08

75 94.86 6.20 61.12 99.58 79.62 61.12

100 98.12 5.74 67.30 99.94 85.42 67.30

150 99.94 5.82 91.30 100.00 97.78 91.30

Note: The values in the table are percentages.
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Table 8. FPRs at the nominal levels of 1% and 5% for scenario DE-1.

Scenario DE-1 Nominal Level 1% 5%

Gene Length Sample Size TTS edgeR DESeq2 Limma TTS edgeR DESeq Limma

5 40 1.20 1.68 1.84 0.92 5.56 7.32 7.48 4.92

60 1.38 1.82 2.02 0.96 5.56 7.66 8.02 5.24

80 1.46 2.16 2.30 1.20 5.34 7.76 8.16 5.30

100 0.98 2.04 2.02 0.92 4.96 7.64 7.80 4.94

10 40 1.38 2.26 2.38 0.88 5.72 7.62 8.50 5.12

60 1.34 2.06 2.30 1.02 6.04 7.68 7.88 4.68

80 1.34 2.26 2.40 0.96 5.64 8.30 8.82 4.98

100 1.28 2.42 2.12 1.22 5.54 7.98 9.10 5.42

30 40 1.56 2.02 2.36 0.98 6.04 7.72 8.68 5.30

60 1.20 1.74 2.16 1.08 5.60 7.58 8.26 4.68

80 1.28 1.86 2.04 0.86 5.74 7.72 8.62 4.84

100 1.52 2.36 2.70 1.22 6.28 8.72 9.70 5.32

Note: The values in the table are percentages.

Figure 3. Quantile intensity plots of normal tissue and cancer samples for scenario DE-2.

Table 9. FPRs and TPRs at the nominal level of 5% for scenarios DE-2.

Scenario DE-2 FPR TPR

Gene Length Sample Size TTS edgeR DESeq2 Limma TTS edgeR DESeq Limma

5 40 6.18 8.11 9.68 5.53 96.40 98.40 98.00 82.60

60 5.42 8.96 10.84 6.82 99.60 99.60 99.60 95.60

80 5.89 10.27 11.72 7.89 100.00 100.00 100.00 96.00

100 5.67 10.69 10.56 8.84 100.00 100.00 100.00 98.40

10 40 5.96 7.98 10.32 5.62 97.20 98.00 98.00 84.60

60 5.53 9.47 10.96 6.71 99.40 99.40 99.40 93.40

80 5.91 10.18 11.40 7.71 99.80 99.60 99.60 96.60

100 5.29 10.40 11.68 8.84 100.00 100.00 99.80 98.80

30 40 6.33 8.49 11.36 6.60 95.20 96.80 97.40 84.40

60 5.62 9.44 12.04 6.93 99.80 99.60 99.80 96.00

80 5.58 9.24 12.12 6.78 99.80 99.80 99.80 98.40

100 5.22 10.18 11.92 7.69 100.00 100.00 100.00 99.00

Note: The values in the table are percentages.
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Remark: In scenarios DE-3 and DE-4, TTS again correctly controls FPRs and achieves the similar power as
above-described state-of-the-art DE methods.

4 A lung cancer study

We analyzed the lung adenocarcinoma (LUAD) data accessible at the TCGA public data portal, with the RNA-
seq data profiled from 50 cancer and 50 normal tissue samples from cancer patients at the exon level. The gene
expression data were normalized into Log2-RPKM following standard protocols, then the non-expressed genes in
both groups were eliminated26 prior to our downstream analysis. As ancillary clinical information, we also con-
sidered gender and smoking status in our study. The objective was to detect genes differentially expressed between
cancer and normal tissue samples. In particular, our focus was chromosome 3, which has been shown to harbor
genes that have potentially important associations with LUAD.27 We applied the proposed test, TTS, the quantile
rank score test, QRSc of literature

31 at single quantile levels, and the Wald test from the linear mixed model, LME,
to each gene, and used a 5% false discovery rate (FDR) adjustment to control for multiple testing.28 We also
applied standard gene-level differential expression analysis methods including likelihood ratio test from edgeR,29

Wald test from DESeq2,30 and the ordinary linear model associated t-test from Limmaþvoom.13

We included gender and smoking status, defined as current smoker, reformed smoker, and nonsmoker, as the
covariates in the analysis. TTS detected 535 and 526 genes at s ¼ 0:5 and 0.75, respectively; and QRSc detected
484 and 519 genes at s ¼ 0:5 and 0.75, respectively, while LME detected 501 genes. The top Venn diagrams in
Figure 4 show the number of the overlapping genes among the three tests. We observed that 76% and 85% of the
genes detected by TTS were also detected by QRSc at and 0.75, respectively. Moreover, 84% and 78% of the
genes selected by TTS at s ¼ 0:5 and 0.75, respectively, also appear in the list of genes selected by LME. Limma
detected 684 genes, edgeR detected 700 genes, and DESeq2 detected 70 genes. The bottom Venn diagrams in
Figure 4 show the number of the overlapping genes among the four tests. We observed that 93% and 88% of the
genes detected by TTS were also detected by Limma at s ¼ 0:5 and 0.75, respectively; 94% and 93% of the genes

Figure 4. Venn diagram of number of overlapping genes among TTS, QRSc, LME at top and TTS, edgeR, DESeq2, Limma at bottom, for
s ¼ 0:5 at left and 0.75 at right.

Chen et al. 271



selected by TTS were also detected by edgeR at s ¼ 0:5 and 0.75 respectively; and 5% and 5% of the genes selected
by TTS were also detected by DESeq2 at s ¼ 0:5 and 0.75, respectively.

Some of the genes detected by TTS were not detected by the other tests. To evaluate the performance of the
proposed test, we used prior knowledge from the literature regarding the important genes associated with lung
adenocarcinoma. Specifically, six tumor suppressor genes on chromosome 3 have been reported to have strong
associations with lung adenocarcinoma, namely, FHIT, RASSF1, TUSC2, SEMA3B; SEMA3F, and MLH1.27

For example, FHIT is an identified tumor-suppressor gene that has abnormal expression in lung cancer. In
Table 10, we report the p-value of these six genes obtained by TTS and QRSc at s ¼ 0:5 and by LME with
and without the covariates of gender and smoking status.

TTS, LME, Limma, and edgeR were able to detect SEMA3B, RASSF1. TTS and edgeR also detected FHIT,
while LME detected SEMA3F with a modest FDR of 0.03. In contrast, QRSc detected only SEMA3B and SEMA3F,
where SEMA3F was discovered with a FDR of 0.02. DESeq2 detected only TUSC2 with the FDR of 0.04.

To understand the discrepancy in the results between the methods, we first compared the results obtained from
our methods with those from those conventional test methods, including QRSc and LME. We plot the exon-level
group differences at various covariate-adjusted quantiles for the genes RASSF1 and SEMA3B in Figure 5.

It is not surprising that SEMA3B could be detected by TTS, QRSc, and LME due to its large group differences
at most quantiles, including the median. QRSc failed to detect RASSF1, which is understandable because of the
trivial differences between the normal tissue and cancer samples at the single point of the median. In contrast,
TTS’s ability to leverage the information across quantiles in the tail region substantially increased the detection
power, since the upper quantiles show much larger group differences than the median. For example, the group
differences at the median versus the 75% quantile were, respectively, 0.50 versus 0.72 for RASSF1.

Moreover, 31 genes detected by TTS at s ¼ 0:5 but not by QRSc are likely associated with lung cancer
according to the medical literature. The complete list of genes and their associated citations are presented in
Table 3 in the section C of the Supplement. Here are some examples. Expression of FOXP1 improves the survival
rate of non-small cell lung cancer patients. SIAH2 suppresses lung carcinoma cells by antagonizing TYK2� STAT3
signaling. CTNNB1 is involved in tumorigenesis of a subset of lung cancer. GSK3B has been validated as a
prognostic factor for lung carcinomas. Knockdown of VHL has been shown to promote epithelial-
mesenchymal transition in lung cancer cells, and EAF2 knockout has been found to cause lung adenocarcinoma.

We also looked into the genes that were detected by QRSc but not by TTS, which account for 16% and 14% of
genes detected by QRSc at s ¼ 0:5 and 0.75, respectively. For example, with the FDR of 9:03� 10�7, QRSc

identified FAM3D as being associated with lung adenocarcinoma. In Figure 5, we plot the group difference at
various quantiles for FAM3D. We observe that the quantiles from cancer and normal tissue samples cross each
other and the group differences are overturned in the upper tail region. As a result, QRSc claims the group
difference at the median. In contrast, TTS measures all the information across the quantiles in the upper tail
region and concludes that the two groups are insignificantly different due to the offset of the opposite effects in the
upper tail region.

Seventeen genes that were detected by TTS but not by LME have been shown to be associated with lung cancer
in the literature. They are listed in Table 4 in the section C of the Supplement. Among these genes, IQCB1 displays
patterns of alternative splicing in primary non-small cell lung tumors that are different from those of normal
tissues. RPL14 has a lower heterozygous rate in non-small cell lung cancer cell lines compared to normal cells and
has been shown to be a useful marker for lung cancer. Examination of human non-small cell lung cancer tissue
shows positive correlation with VPRBP expression.

Table 10. P-values of the six genes are reported.

Gene TTS QRSc LME Limma edgeR DESeq2

FHIT 3.17e-03 3.81e-01 5.11e-02 1.16e-01 3.17e-03 3.18e-01

RASSF1 4.23e-22 7.61e-01 3.39e-06 9.10e-15 8.38e-15 8.40e-01

TUSC2 4.09e-01 3.38e-01 9.19e-01 9.93e-01 5.63e-01 4.33e-02

SEMA3B 2.40e-13 2.60e-14 3.10e-18 1.05e-17 4.50e-09 9.97e-01

SEMA3F 1.21e-01 2.00e-02 3.23e-02 5.82e-02 1.57e-01 7.85e-01

MLH1 9.90e-01 5.33e-01 2.92e-01 9.31e-01 4.75e-01 7.55e-01

Note: The detected genes with false discovery rates � 0:05 are highlighted in bold.
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We noticed that LME missed these genes mainly because of the violation of the required normal distribution

assumption. As an example, we show the QQ-plot of the standardized residuals, obtained from linear mixed

models, for IGF2BP2 in the bottom row of Figure 5. It is clear that normality does not hold for this gene.
We also looked into the genes that were detected by LME but not by TTS at s ¼ 0:5 and 0.75, which respec-

tively account for 10% and 18% of genes detected by LME. For example, with the respective FDR of 0.0076,

LME identified CMTM8 as being associated with lung adenocarcinoma. In the second row of Figure 5, we plot

the group differences at various quantiles for CMTM8. We observe that the group difference is overall relatively

small, especially the difference is gradually diminishing in the upper tail region. Therefore, TTS concludes that the

two groups are insignificantly different due to the modest difference in the upper tail region.
The next, we compared the results of our method with those of the popular DE analysis methods,

including Limma, edgeR, and DESeq2. Likely associated with lung cancer according to the medical literature

are 11 genes detected by TTS at s ¼ 0:5 but not by Limma, 7 genes detected by TTS at s ¼ 0:5 but not by edgeR,

and 138 genes detected by TTS at s ¼ 0:5 but not by DESeq2. The complete list of genes and their literature

citations are presented in Tables 5 to 9 in the section C of the Supplement. For example, GSK3B is involved in the

histogenesis of lung carcinomas, and its overexpression indicates worse prognosis in lung carcinoma. SETD2 is a

potential tumor suppressor in lung adenocarcinoma and its inactivation has led to accelerated tumor progression.
TRIM59 upregulates cell-cycle-related proteins to promote the proliferation and migration of non-small cell lung

cancer cells.
We plot the group differences at various exon-level covariate-adjusted quantiles and gene-level read counts for

the gene GSK3B in Figure 6. GSK3B was detected by TTS but missed by edgeR, Limma, and DESeq2. GSK3B
show trivial differences between the normal tissue and cancer samples below the median, which also show little

Figure 5. Top two rows are exon-level covariate-adjusted quantile intensity plots of normal tissue and cancer samples for genes
RASSF1, SEMA3B; FAM3D, and CMTM8; bottom row is QQ-plot of the standardized residuals obtained from linear mixed model for
gene IGF2BP2.
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mean difference. Hence, the standard mean-based DE analysis methods are unable to detect these genes. In

contrast, TTS’s focus on the tail region substantially increased the detection power, since the upper quantile

regions show much larger group differences than the mean.
We also looked into the genes that were detected by standard DE analysis methods but not by TTS. Genes that

were detected by Limma but not by TTS account for 27% and 32% of genes detected by edgeR at s ¼ 0:5 and

0.75, respectively. Genes that were detected by edgeR but not by TTS account for 28% and 30% of genes detected

by edgeR at s ¼ 0:5 and 0.75, respectively. Genes that were detected by DESeq2 but not by TTS account for 61%

and 60% of genes detected by DESeq2 at s ¼ 0:5 and 0.75, respectively. For example, Limma, edgeR, and DESeq2

identified CCDC14 with the respective FDRs of 0.018, 0.033, and 0.008. In Figure 6, we plot the group difference

at various quantiles for CCDC14 regarding the exon-level covariate-adjusted intensity and gene-level read counts.

We observe that the quantiles from cancer and normal tissue samples cross each other, and exon-level group

differences are only modest across all quantiles, and the difference is larger at the gene level. As a result, Limma,

edgeR, and DESeq2 claim a group difference. However, TTS concludes that the two groups are insignificantly

different due to the modest difference in the upper tail region.
In summary, TTS shows better performance than QRSc and LME due to its ability to utilize all the informa-

tion in the upper quantile region and its robustness to model distributions and individual outliers. TTS is also a

good supplement method to use along with several standard DE methods, as it is able to identify potential

biomarkers that are missed by Limma, edgeR, and DESeq2. Our proposed method can detect many exclusive

genes when there are consistent and considerable differences between two groups across the upper quantile region.

TTS loses its power advantage when the group difference is overturned or is very modest in the upper tail region,

but those are cases in which caution must be exercised when inferring statistical significance from other tests.

Overall, our proposed method offers a powerful and robust supplement for biomarker discovery by utilizing the

information in the whole region of interest.
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Figure 6. Left column: exon-level covariate-adjusted quantile intensity plots of normal tissue and cancer samples for genes GSK3B,
and CCDC14; right column: gene-level read count quantile plot for the corresponding genes.
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5 Conclusion

We have proposed a new test based on quantile regression that can detect differential gene expression in RNA-seq

data. This covariate-adjusted test utilizes the information of quantiles in a tail region of the distribution instead of

a single quantile level to make substantial improvement in power. The intrinsic correlation among exons within a

gene can be directly accounted for in the proposed method. The quantile-based test is also robust to a heavy tailed

distribution in RNA-seq data. Simulation results and real data analysis of TCGA lung adenocarcinoma data

demonstrate the merit of the proposed method. We believe the proposed method can be useful in other applica-

tions when we are interested to compare the upper or lower quantile region difference between the two groups.
In this paper, we focus on the compound symmetry correlation structure among exons within a gene, which has

been empirically shown to be sensible for RNA-seq data. In further investigations, we plan to broaden the study

to account for more flexible correlation structures for other applications. We can also perform simultaneous tests

of multiple genes by utilizing information across genes in biological pathways and networks to improve test

efficiency. In the lung cancer study, we find that the outliers in the tail region sometimes cause the quantile

difference to overturn in the extreme tail region. In future investigations, we will explore how to handle outliers of

this type.
It is worth noting that the proposed method requires independence between D and C, which should be true for

randomized trials. Otherwise, the independence needs to be assumed and can possibly be achieved upon removal

of the dependence of C on D by a projection. Although the paper focuses on binary D, the central idea of the

proposed method applies to other types of D, including a continuous variable.
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