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We continue our study, initiated in [34], of Riemann surfaces with constant curvature

and isolated conic singularities. Using the machinery developed in that earlier paper

of extended configuration families of simple divisors, we study the existence and

deformation theory for spherical conic metrics with some or all of the cone angles

greater than 2π . Deformations are obstructed precisely when the number 2 lies in the

spectrum of the Friedrichs extension of the Laplacian. Our main result is that, in this

case, it is possible to find a smooth local moduli space of solutions by allowing the cone

points to split. This analytic fact reflects geometric constructions in [37, 38].

1 Introduction

We shall study the following problem: given a compact Riemann surface M, a collection

of distinct points p = {p1, . . . , pk} ⊂ M, and a collection of positive real numbers

β1, . . . , βk, is it possible to find a metric g on M with constant curvature and with conic

singularities with prescribed cone angles 2πβj at the points pj? If there is a solution, the

sign of its curvature is the same as that of the conic Euler characteristic

χ(M, Eβ) = χ(M) +
k∑

j=1

(βj − 1), (1)
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2 R. Mazzeo and X. Zhu

by virtue of the “conic” Gauß–Bonnet formula

∫

M
K dA = 2πχ(M, Eβ).

We always normalize by assuming that K ∈ {−1, 0, 1}.
When χ(M, Eβ) ≤ 0, the existence and uniqueness of solutions for any Eβ ∈ R

k
+ is

easy to prove using barrier arguments [35]. The spherical case, K = 1, has proved more

challenging, and many questions remain open. For cone angles lying in (0, 2π), Troyanov

[42] discovered an auxiliary set of linear inequalities on the βj that are necessary and

sufficient for existence; later, Luo and Tian [28] proved the uniqueness of the solution

in this angle regime. When M 6= S
2, existence was recently proved by Mondello and

Panov [38] for any Eβ with χ(M, Eβ) > 0, at the expense of not being able to specify

the conformal class on M; see also [1]. When M = S
2, the same two authors [37] gave

necessary conditions on Eβ for existence, again in the form of a set of linear inequalities,

and proved existence in the interior of this region. In this case, one is unable to specify

the marked conformal class, that is, the location of the points p on S
2. In either of

these settings, uniqueness sometimes fails. We also wish to understand the deformation

theory, that is, how solutions depend on the “conic data”, that is, the conformal class,

the set p, and the cone angle parameters Eβ. This is understood when χ(M, Eβ) ≤ 0 and

also in the spherical case when all βj < 1 [33, 34]. However, for all of these questions, the

complete story in the spherical case with at least some of the cone angles greater than

2π still has many gaps. We review the history and further literature for this problem in

Section 2.

The main results in this paper provide new perspectives and insight into these

existence and moduli questions and indicate potential new intricacies. Our focus in this

paper is the local deformation theory for this problem, following the work of the Mazzeo

and Weiß [33], but relying heavily on the geometric tools developed in our earlier paper

[34]. More specifically, suppose that g is a spherical cone metric on M with “conic data

set” dr(g) = {c, p, Eβ}: c is the conformal class of g on M, p = {p1, . . . , pk} is an ordered k-

tuple of points on M, and g has a conic singularity with cone angle 2πβj at pj, j = 1, . . . , k.

We consider the question of whether all nearby data sets {c′, p′, Eβ ′} are attained by nearby

spherical cone metrics and whether these metrics depend smoothly on these conic data

sets.

In this paper, we consider these questions at the “premoduli” level, that is, before

taking the quotient by the relevant diffeomorphism group. Indeed, an important feature

of the work below involves analyzing families of solutions when the k-tuples of points
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Conical Metrics on Riemann Surfaces II 3

either merge or split, and there are subtleties in passing to the diffeomorphism quotient

in these circumstances. A careful discussion of this problem is deferred to elsewhere.

Thus, we associate to g its unreduced conic data set d(g); this consists of the triple

{s(g), p, Eβ} where s(g) is the smooth constant curvature metric (normalized to have area

|2πχ(M)| when χ(M) 6= 0 and area 1 when χ(M) = 0) in the (unmarked) conformal

class of g, and as before, p and Eβ indicate the locations of the conic singularities

and the cone angles. We denote by Metcc the Banach manifold of all smooth constant

curvature metrics; this is infinite-dimensional since we are not taking the quotient by

diffeomorphisms. Each k-tuple p lies in the k-fold product Mk away from any of the

partial diagonals. As we explain in Section 3, this open set in Mk is identified with the

interior of the “extended configuration space” Ek. Altogether then, unreduced conic data

sets lie in Metcc × int Ek ×R
k
+. In the following, we usually refer to unreduced conic data

sets simply as conic data sets.

Our 1st result is a consequence of the analysis in [33].

Theorem 1. Let g be a spherical cone metric as above with conic data set d(g). Let

1g denote the Friedrichs realization of the scalar Laplace–Beltrami operator associated

to g. If 2 6∈ spec (1g), then the premoduli space of spherical cone metrics is a smooth

Banach manifold near g that projects diffeomorphically to an open set in the space of

data sets Metcc × int Ek × R
k
+ containing d(g).

When all βj < 1, the premoduli space of spherical cone metrics is globally

diffeomorphic to the space of data sets where the βj satisfy the Troyanov condition

(6); see [33]. For larger cone angles, one might expect the moduli space of spherical cone

metrics to “fold”, for example, the projection from the space of solutions to the space

of data sets may no longer be one-to-one. If the moduli space is a smooth manifold,

one might even expect to use degree theory to take a signed count of solutions, thus

quantifying the lack of uniqueness. Our main result indicates that the (pre)moduli space

is not a smooth manifold, but only stratified, which means that any such enumeration of

solutions may be difficult. The key problem is that the deformation theory is obstructed

when 2 ∈ spec (1g). We show that this spectral condition is unavoidable. In fact, the

set of cone angle data Eβ for which there exists a solution metric with 2 in the spectrum

is unbounded in (R+)k. Furthermore, if this spectral condition holds, then there are

explicit examples that exhibit that the local deformation theory is obstructed; see [47].

Our main result is that even if 2 does lie in the spectrum, there is an unobstructed

deformation space if we allow for more drastic deformations that permit the individual
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4 R. Mazzeo and X. Zhu

points pj to “splinter” into a collection of conic points with smaller cone angles. This

splitting of cone points already appears in the purely geometric arguments in [37] but

enters our analytic arguments in an apparently different way.

An alternative perspective on our work here is that we determine the behavior

of families of spherical cone metrics as the underlying marked conformal structure

degenerates in the sense that various subcollections of points coalesce.

To state the following theorem, we introduce some notation. Fix a k-tuple

p0 ∈ Mk with pi 6= pj for all i, j. Choose positive integers Ni, i = 1, . . . , k, and set

K = N1 + . . . + Nk (see Theorem 2 below for their definition). Define a new K-tuple

q = {q1, . . . , qK} by repeating the point p1 N1 times, p2 N2 times, and so on. This point q

lies in some intersection of partial diagonals in MK . The extended configuration space

EK is a resolution of MK obtained by blowing up these partial diagonals (see Section 3 for

a precise definition) and there is a boundary face F0 of EK (it is a boundary hypersurface

if only one Ni > 1, and a corner otherwise) that lies above q. As we describe carefully in

Section 6, it turns out to be necessary to perform an additional set of blowups on EK ,

leading to a slightly larger space ẼK . We then consider points q̃ lying in the interior of

the front face F̃0 of this new space over the point q.

We also specify the choice of cone angle parameters for these extended sets of

points. Let Eβ be the angle parameter vector for p; we say that the K-tuple EB ∈ (R+)K is

admissible if the Gauß-Bonnet sum is preserved, that is,

βj − 1 =
N1+···+Nj∑

i=N1+···+Nj−1+1

(Bi − 1), (2)

and no subcluster merge to 2π (see Definition 7 for details.) We then fix any admissible

EB as the set of cone angle parameters for K-tuples q′ near q.

Our main result can now be stated, albeit slightly imprecisely.

Theorem 2. Let g be a spherical cone metric with conic data set d(g) = (s(g), p, Eβ) and

suppose that 2 ∈ spec (1g). Define K = ∑k
j=1 Nj where Nj = max{[βj], 1}, and consider all

points q̃′ ∈ ẼK that lie in a small neighborhood of the point q̃, that is, the (not necessarily

distinct) points q′
i, Nj +1 ≤ i ≤ Nj+1, lie in a small cluster around the point pj. Let s(g)′ be

a conformal structure close to s(g) and EB an admissible K-tuple of cone angle parameters

for the points q′. Then, there exists a p-submanifold X ⊂ ẼK containing q̃, the tangent

space of which at q̃ is determined by data drawn from the elements of the eigenspace of

1g with eigenvalue 2, and a diffeomorphism from X to the premoduli space of spherical
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Conical Metrics on Riemann Surfaces II 5

cone metrics with K cone points near g with cone angle parameters EB and background

conformal class s(g)′.

The more precise statement will require further definitions. The idea is simply

that, having fixed EB, there is a “good” space X of K-tuples of conic points q that arises

by splitting various of the individual cone points in p into small clusters. The locations

of these clustering families is encoded by the configuration space ẼK . To say that X

is a p-submanifold means simply that it intersects the boundaries and corners of ẼK

cleanly. We are thus asserting that for a given EB and s(g)′, there exist smooth families of

spherical cone metrics g′ near to g and with conic points at the K-tuples q′ near (in the

sense of merging) to p if and only if q̃′ ∈ X ⊂ ẼK .

Key tools here are the use of the extended configuration spaces EK (and later, ẼK ),

as well as the associated extended configuration families CK ; these were defined and

studied in great detail and play a central role in our earlier paper [34]. We review their

geometry carefully in Section 3 but refer to [34] for a more definitive treatment. For now,

however, we recall that each EK is a manifold with corners, which is a compactification

of the open set in MK consisting of all distinct ordered K-tuples {p1, . . . , pK}; CK is a

universal curve over this configuration space in the sense that it, too, is a manifold with

corners equipped with a singular fibration over EK . Over the interior of EK , the fiber of

any {p1, . . . , pK} is a copy of M blown up at these K points. The heart of our method is to

construct families of fiberwise metrics on CK solving the curvature equation to infinite

order at the faces of CK , which correspond to the collapse of a K-tuple {q1, . . . , qK}
to a k-tuple {p1, . . . , pk}. We also show that the infinitesimal deformations of these

approximate solutions fill out the cokernel of the linearization. This main result then

follows from the implicit function theorem (see Sections 7 and 8).

The geometry of these spaces is quite complicated, but they capture rather

complete information about families of constant curvature conic metrics. For example,

one of the main results of [34] states that when χ(M, Eβ) ≤ 0; hence, solutions exist

for all choices of data sets, then the solution families are polyhomogeneous, that is,

maximally smooth, as a family of fiber metrics on Ck. The analogous regularity holds

in this spherical setting too. Our methods for analyzing the family of conic Laplacians

on the fibers of CK should be useful in other problems involving families of elliptic

operators with merging regular singularities.

This paper is organized as follows. In Section 2, we give a review of existing

literatures on spherical conic metrics. In Section 3, we describe the two configuration

spaces Ek and Ck. In Section 4, we discuss the mapping and regularity properties of
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6 R. Mazzeo and X. Zhu

the linearized Liouville operator, and in particular, we prove the deformation theory

in the unobstructed case when 2 /∈ spec (1g). In Section 5, we describe the locus of

degenerate spherical conic metrics and show there are many spherical cone metrics

with 2 in the spectrum of 1g. In Section 6, we describe the local and global behaviors

of the families of metrics with cone points splitting into clusters that generate a

family of functions that will unobstruct the main deformation problem. We also

show the construction of spaces ẼK and CK , which is necessary to desingularize the

parametrization. In Section 7, we construct projected solutions that solve the Liouville

equation modulo the finite-dimensional space of 2-eigenfunctions and show that these

solutions are polyhomogeneous on the configuration spaces. In Section 8, we finally

identify those configurations of conic points on ẼK that remove the error from Section

7 determined asymptotically by a symplectic pairing formula using eigenfunctions and

functions generated by splitting of cone points from Section 6, therefore proving the

final deformation theorem.

2 Spherical Conic Metrics

We now review at least some of the rather extensive history of the study of spherical

conic metrics. These fundamental objects have the beguiling feature that they arise in

many places in mathematics and may be approached from many different points of view,

including synthetic geometry, complex analysis, theory of character varieties, calculus

of variations, and other methods of geometric analysis.

As noted earlier, it is quite easy to prove [35] that there exist hyperbolic or flat

conic metrics with any prescribed data sets {s, p, Eβ}, where the sign of χ(M, Eβ) ≤ 0

determines the curvature K ∈ {−1, 0}. Recall that, as in the introduction, s is a smooth

constant curvature metric uniformizing its conformal class, p = {p1, . . . , pk} is a k-tuple

of distinct points on M and Eβ ∈ R
k
+. Indeed, let h0 be a smooth uniformizing (nonconic)

metric representing any given conformal structure on M. Then, this problem reduces to

solving Liouville’s equation:

1h0
u + Kh0

− Ke2u = 0, (3)

where

1 = − div ∇
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Conical Metrics on Riemann Surfaces II 7

and Kh0
and K are the Gauss curvatures of g0 and g = e2uh0. The conic singularities

arise from the “boundary value”

u(z) = (βj − 1) log |z| + O(1) near pj, (4)

where z is a local holomorphic coordinate centered at pj. Nonpositive curvature of h0

makes the signs favorable so that one can find solutions by the method of barriers.

As already explained, first in [33] and then in [34], the deformation theory is

unobstructed in these two cases. (Actually, when K = 0, there is a minor issue related to

indeterminacy of scale that can be remedied by an area normalization.) This means that

if g is any hyperbolic or flat conic metric, and if we assign to g its conic data

d(g) = {s(g), p, Eβ}, (5)

then for any data set near to this given one (subject to the constraint that χ(M, Eβ) either

remains negative or remains equal to 0), there exists a unique solution of the problem

with the same curvature, and this solution depends smoothly on these data. The point

of view in [33] is that if we fix the area, then as the cone angles vary the solution may

change smoothly from hyperbolic to flat to spherical. This argument relies only on the

surjectivity of the scalar operator 1g−2K, which is obvious when K = −1, and true once

we factor out the constants when K = 0. In [33], it is shown that this operator is also

invertible when K = +1 provided the cone angles are all less than 2π , so that the moduli

space of solutions is smooth in this case too. As we show below, these arguments can be

extended to handle the case of spherical cone metrics for which some or all of the angles

are greater than 2π provided we assume that 1g − 2 is invertible, that is, provided that

2 6∈ spec (1g).

On the other hand, 2 often does lie in the spectrum. For example, if F : M → S
2

is a branched cover and g0 is the round metric on S
2, then F∗g0 is a spherical conic

metric on M, where the ramification points and ramification indices give the cone

points and cone angles (which are therefore all integer multiples of 2π ). If φ is an

eigenfunction of the Laplacian on S
2 with eigenvalue 2, then F∗φ is an eigenfunction

on M for the Friedrichs extension of 1g, also with eigenvalue 2. As another example,

the football, with any cone angle, has eigenvalue 2, as do certain connected sums along

short geodesics of footballs with one another (see Section 5), or with these ramified

covers. Thus, there are many spherical cone metrics for which 2 does lie in the spectrum.
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8 R. Mazzeo and X. Zhu

The recent work of Xu and Zhu [45] shows that coaxial metrics always have

eigenvalue 2 (see Section 5.1 for the definition of coaxial/reducible metrics). On the other

hand, the works of Mondello and Panov [38] and Eremenko et al. [21] indicate that there

also exist non-coaxial metrics with eigenvalue 2.

We now discuss other methods and results that have been used to study

spherical cone metrics.

We begin by clarifying the existence theory when the cone angles are less than

2π . By the conic Gauß–Bonnet formula (1), if all the βi are less than 1, then, assuming

M is orientable, a spherical metric with these cone angles exists only if M = S
2. A

straightforward fact, observed by Troyanov [43], is that when k = 2, a solution exists

if and only if β1 = β2, and in this case, (M, g) is a spherical football. A significantly

more substantial result of Troyanov [42] proves existence when k ≥ 3 by a variational

argument that involves a strengthening of the classical Moser–Trudinger inequality

adapted to this conic setting. A solution exists in this case if and only if either M 6= S
2,

or else M = S
2 and

βj − 1 >
∑

i6=j

(βi − 1) for each j. (6)

A later result by Luo and Tian [28] shows that Troyanov’s solution is unique. This

“Troyanov condition” has been interpreted [39] as a version of the famous K-stability

condition in complex geometry.

Troyanov’s argument relies heavily on the fact that under these angle conditions,

the associated Liouville energy (for which the PDE associated to this problem is the

Euler–Lagrange equation) is bounded below, so that one can look for solutions as

minima of this energy. This argument also works in a very limited range of R
k
+ where

some of the βi are greater than 1. However, for most Eβ, the energy is unbounded below.

An early breakthrough was a generalization of Troyanov’s variational method, due to

Bartolucci and Tarantello [3], later generalized by Bartolucci et al. [1], who prove the

existence of minimax solutions with an arbitrary angle combination except away from

a critical set of cone angles. The critical points found by this approach are not (local)

minima. They use a subtle mountain pass lemma and, along the way, assume crucially

that M 6= S
2. The paper [1] also shows that in certain cases, solution with a given

conic data set are not unique. This variational method has been pushed much further

by Malchiodi and his collaborators; see [2, 4–6, 31] and the citations therein. A quite
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Conical Metrics on Riemann Surfaces II 9

general result of this kind was announced recently by Carlotto and Malchiodi [29, 30],

but details have not appeared.

A related method involves the computation of the Leray–Schauder degree for the

curvature equation. We mention the work of Chen and Lin [8–10] and further papers with

their collaborators [7, 26, 27]; these give the existence and nonexistence of solutions to

the curvature equation when the angle parameters are away from a certain critical set.

There is a classical approach to this problem involving complex analysis.

Indeed, as already discussed, the special case when the cone angles are integer

multiples of 2π is closely related to the theory of ramified coverings of Riemann

surfaces. Even here, the full story is not known; see [16, 18, 24, 40, 46]. We also mention

the papers of Eremenko [13] and Umehara and Yamada [44], which give a complete

description when M = S
2 and k = 3, and [17, 19, 20] for some symmetric cases when

k = 4, [22] for the case of three noninteger angles and any number of integer angles.

Recently, Eremenko has also showed that the number of solutions is finite when k = 4

and none of the angles is a multiple of 2π [15]. For metrics with special monodromy, we

also mention the recent papers by Xu et al. [11, 41].

A breakthrough using purely geometric (completely non-analytic!) methods

was obtained recently by Mondello and Panov [37]. Their main result provides the

generalization of the Troyanov region (6), that is, they describe a region MPk ⊂ R
k
+

that characterizes the set of allowable cone angles of spherical cone metrics on S
2. This

region is described as

MPk := { Eβ ∈ R
k
+ : d1( Eβ − E1,Zk

odd) ≥ 1}, (7)

where Z
k
odd = {γ ∈ Z

k :
∑

γi ∈ 2Z + 1} and d1 is the ℓ1 norm on R
k.

Their main result, a tour-de-force in classical geometry, is that any point in the

interior of MPk is the vector of cone angles for at least one spherical cone metric on

S
2; they are not able, however, to specify the locations of the conic points pj and do not

address whether solutions exist when Eβ is on the boundary of this region. After partial

results of Dey [12] and Kapovich [25], a complete answer was obtained by Eremenko [14]

on which Eβ ∈ ∂MPk are possible.

A more recent paper by Mondello and Panov [38] extends the result in [37] to

surfaces with higher genus and shows that when M 6= S
2, there exists a spherical conic

metric for any Eβ with χ(M, Eβ) > 0. They also show that it is not always possible to

prescribe the underlying conformal class on M. They also show that the moduli space

of solutions when M = S
2 and k is large has many connected components. They identify
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10 R. Mazzeo and X. Zhu

a set of cone angle vectors Eβ, called the “bubbling set”, near which families of solutions

are expected to diverge. They prove that away from this set, the moduli space is smooth

and the forgetful map that carries a spherical cone metric to its underlying marked

conformal structure is proper. This bubbling set is in fact the same as the set of critical

angles appearing in the variational approach in [30]. Furthermore, when M = S
2, this

bubbling set strictly contains the set of cone angle vectors associated to spherical cone

metrics with coaxial monodromy; see [14].

As explained earlier, we approach this problem via deformation theory and focus

on whether it is possible to freely deform the unreduced conic data near given set

corresponding to an initial spherical cone metric g. The answer to this depends on

the spectral behavior of the Friedrichs extension of the Laplacian 1g. Following [33]

and [34], we prove that if 2 does not lie in the spectrum of this operator, then the

answer to this question is affirmative. This relatively easy result motivates our key

problem, which is to understand the local deformation theory when 2 does lie in the

spectrum. Our main result states that if we allow the cone points pj to break apart into

clusters, then even near these degenerate metrics there is a submanifold in the space

of all conic data whose elements correspond to a branch in the space of spherical cone

metrics.

We have already noted our central use of the extended configuration space EK

and extended configuration family CK , both of which are defined and studied in our

earlier paper [34]. The former is a compactification of the space of K-tuples of distinct

points on M, while the latter is the bundle with fiber at q̂ ∈ EK the surface M blown up at

the points of q. Actually, the natural map CK → EK is a singular fibration (technically, it

is an example of a b-fibration), and the fibers over the boundary faces of EK are unions

of surfaces with boundary. We describe this more carefully in the next section. One of

the main results in [34] is that the families of hyperbolic and flat cone metrics with k

singular points extends to a polyhomogeneous family of fiberwise metrics on Ck. This

is a sharp regularity statement: polyhomogeneity is a slight extension of the notion of

smoothness that allows for series expansions with noninteger exponents. In the cases

studied in [34], existence was already known, but in the spherical setting, that is no

longer the case. Here, it is not always possible to find a smooth family of spherical

conic metrics near those with any given set of conic points p. Considering p as point

on a corresponding face of ẼK (which is a space constructed from an extra blow up EK ,

see Section 6), we show that there exists a smooth submanifold X ⊂ ẼK containing the

initial k-tuple p as a coalescing limit such that spherical cone metrics exist for K-tuples

q̂ ∈ X.
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Conical Metrics on Riemann Surfaces II 11

3 Configuration Spaces

There are two configuration spaces, Ek and Ck, at the center of our construction. These

are obtained by resolving the spaces Mk and Mk ×M, respectively. These resolutions are

obtained by the process of real blowup, that is, where a p-submanifold S of a manifold

with corners Z is replaced by its (inward pointing) spherical normal bundle. (The

p-submanifolds are the natural submanifolds in manifolds with corners for which

tubular neighborhoods around them are represented by their normal bundles.) We refer

to [34] for a review of these notions and for many further details about these spaces

than we can recall here.

The key points we review here concern how the boundary faces of Ek and Ck

encode information about the various ways in which subclusters of points can collide.

3.1 The extended configuration space Ek

We start with Mk, the space of ordered k-tuples of not necessarily distinct points

p1, . . . , pk ∈ M. The extended configuration space Ek is a canonically defined space

defined by iteratively blowing up all the partial diagonals

1I = {p = (p1, . . . , pk) ∈ Mk : pi = pj, ∀ i, j ∈ I},

where I is any subset of {1, . . . , k} with |I| ≥ 2. Thus, using the notation that [X; S]

denotes the blowup of a manifold X around a submanifold S and compressing the fact

that there is a chain of blowups, we write

Ek =
[
Mk; ∪I1I

]
. (8)

The order of blowup is important, and we perform these in order of reverse inclusion,

that is, first blowing up the smaller partial diagonals, with larger |I|; see [34].

The space Ek is a manifold with corners; its boundary hypersurfaces FI are the

“front faces” created by blowing up each 1I . The interior of Ek is naturally identified

with the open subset U ⊂ Mk of k-tuples of distinct points. This identification extends

smoothly to the blowdown map

βk : Ek → Mk.

Points of Ek are sometimes denoted q, so βk(q) = p is the underlying k-tuple of points that

may lie along one or more of the partial diagonals. Finally, each face FI has a boundary
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12 R. Mazzeo and X. Zhu

defining function, which we write as ρI . Thus, ρI(q) measures the “clustering radius” of

the subcluster of points in p with indices in I.

3.2 The extended configuration family Ck

We next describe the universal curve over Ek. Consider the product Ek ×M; points in this

space are (q, z), with z lying in the fiber. The space Ck is obtained by resolving the graph

of the canonical multi-valued section σ of this bundle defined as

⋃

I

{(q, z) ∈ Ek × M : z ∈ σI(p)}.

If q ∈ FI , I = (i1, . . . , ir) (so pi1 = . . . = pir ), then σI(p) denotes the (k − r + 1)-tuple

obtained by adjoining this single “r-fold” point with the remaining k − r points. Now,

define the coincidence set:

Fσ
I = {ρI = 0, z ∈ σI(p)}. (9)

Abusing notation slightly, we write Fσ
i for the nonsingular parts of the graph of σ , that

is, the sets {z = pi}, i = 1, . . . , k where p does not lie in any partial diagonal.

The extended configuration family Ck is defined as the iterated blowup

Ck =
[
Ek × M; ∪IFσ

I

]
, (10)

where, once again, we blow up in order of reverse inclusion of the subsets I. This

canonical space is again a manifold with corners.

3.3 The map Ck → Ek

The trivial fibration Ek × M → Ek lifts to a b-fibration:

πk : Ck −→ Ek, (11)

whose geometry we now recall.

If q lies in int Ek, then π−1
k (q) := Mp is the surface M blown up at the k points

of βk(q) = p = {p1, . . . , pk}. This fiber is a surface with k boundary components, each a

copy of S1. However, if q ∈ FI , |I| = r, then the fiber π−1
k (q) is a “tied manifold”, that is, a

union of surfaces with boundary identified in a certain pattern along their boundaries.
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Conical Metrics on Riemann Surfaces II 13

Fig. 1. The singular fibration of C2 → E2. Here, we removed the center of mass for p = (p1, p2).

The boundary face in the base, F12, is a circle encoding the colliding direction of p1 and p2.

One of these surfaces is Mβk(q), while the others are a certain number of copies of the

hemisphere S
2
+ blown up at a collection of points. We usually write p = βk(q) below. The

combinatorial structure of how these surfaces fit together encode the various regimes

by which r points can cluster.

Let CI denote the collection of new boundary faces generated by blowing up Fσ
I

;

cf. Figure 1 for the simplest case k = 2.

In this picture, C12 is the preimage of the central face F12 of E2; this fibers over

S
1 (the “direction of approach” of the pair p1, p2) and each fiber is a copy of Mp and S

2
+

blown up at two points.

For larger k, if q lies on a boundary face of Ek, then the preimage π−1
k (q) is a

tower of hemispheres, each one attached to a previous (or lower) hemisphere at the

circle boundary created by blowing up a point in that previous hemisphere. The lowest

hemisphere in the chain is attached to Mp at the circle created by blowing up the

point where the corresponding points have collided. Altogether, this tower encodes how

subclusters of p collide. The images of the nonsingular graphs {z = pi} are completely

separated, each one intersecting one of these hemispheres (or else Mp if that point is not

part of a cluster).

We illustrate this further by considering the case k = 3; see Figure 2. Above a

generic point q ∈ F123, the fiber π−1
k (q) is a hemisphere blown up at three points attached
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14 R. Mazzeo and X. Zhu

Fig. 2. One of the singular fibers in C3, where two of the points collide faster than the 3rd one.

to Mp at its outer boundary, much as in Figure 1. However, when q lies on F123 ∩ F12, for

example, then the fiber is a tower of two hemispheres; cf. Figure 2 below.

Here, the lower hemisphere, C123, is attached as before to Mp, while the

upper one, C12, is attached to the blowup of the point in C123 where {z = p1} and

{z = p2} intersect; note that the submanifold {z = p3} intersects C123 but not C12. This

corresponds to the three points coalescing, but with points 1 and 2 closer than either is

to point 3. When k is even larger, the fibers over points lying in the various edges and

corners of F1...k are more complicated towers of hemispheres that encode the way the k

points coalesce with certain subclusters coalescing faster.

The (somewhat intricate) combinatorics of the boundary faces and corners of Ek

and Ck are described carefully in [34, Chapter 2].

3.4 Fiber metrics restricting to the boundary faces

It is proved in [34] that the space Ck fully captures the asymptotic behavior of families

of flat or hyperbolic conic metrics on M as the cone points coalesce. More precisely, fix

Eβ = (β1, . . . , βk) and parametrize the family of flat or hyperbolic metrics by elements q of

the extended configuration space Ek. When q lies in the interior of Ek, so the cone points

are all distinct, then the corresponding metric is a metric on the fiber π−1
k (q) = Mp.
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Conical Metrics on Riemann Surfaces II 15

The main result is that this family of fiber metrics over the interior of Ek extends to a

polyhomogeneous family of fiber metrics on Ck. Over int Ek, this simply asserts that the

constant curvature metric depends smoothly on q, as already proved in [33]. However,

when q lies in some boundary component of Ek, then π−1
k (q) is the union of Mp (where

now p = βk(q) contains only k′ < k distinct points) and a tower of hemispheres over that

k′-fold point. The family of fiber metrics restricts to a flat or hyperbolic (depending on

the initial family) metric on Mp. On each hemisphere CI in this fiber, the restriction is

a flat metric with a certain number of interior conic singularities (at the points where

“higher” hemispheres are attached) and with a complete conic singularity at its outer

boundary. (Note that each of these metrics is flat regardless of whether the initial family

is flat or hyperbolic.) At the conic point (or rather, its S
1 blowup) in Mp where the points

{pi, i ∈ J } are all equal, the angle parameter equals

βJ := 1 +
∑

i∈J
(βi − 1).

At any of the other circular boundary components, either on Mp or on one of these inner

hemispheres, where Ci intersects that face, the cone angle parameter is just βi. Finally,

at the outer boundary of each hemisphere in CI , the metric is asymptotic to the large

end of a flat cone with cone angle parameter βI .

The same description holds for spherical cone metrics on the fibers of Ck so long

as all the cone angles are less than 2π and Eβ lies in the Troyanov region. (There is a

minor exception when the metric above the central fiber is a spherical football.) The

restriction of this spherical metric family to each of the hemisphere faces in CI is still

a flat metric, exactly as above.

We shall extend this regularity result in Section 7.4 to include families of

spherical cone metrics with at least some of the cone angles bigger than 2π .

4 The Linearized Liouville Operator

Our main analysis involves the Liouville operator

Ng0
(u) := 1g0

u + Kg0
− e2u
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16 R. Mazzeo and X. Zhu

(recall that 1 = −div ∇); solutions to Ng0
(u) = 0 correspond to spherical metrics e2ug0.

In this section, we recall the basic mapping and regularity properties of its linearization

Lg0
:= 1g0

− 2.

4.1 Function spaces

Given a k-tuple of distinct points p ∈ U ⊂ Mk, the blowup Mp is a surface with k

boundaries, each a copy of S1. Choose a local holomorphic coordinate z near each conic

point pj, with corresponding polar coordinates (r, θ). A conic differential operator of

order m on Mp is an operator of the form

A = r−m
∑

j+ℓ≤m

ajℓ(r, θ)(r∂r)
j∂ℓ

θ ,

where each ajℓ ∈ C∞(Mp). It is called elliptic (in this conic category) if
∑

j+ℓ=m ajℓρ
jηℓ 6= 0

for (ρ, η) 6= (0, 0). In suitable coordinates, g0 = dr2 + β2 sin2 r dθ2 and

1g0
= ∂2

r + cos r

sin r
∂r + 1

β2 sin2 r
∂2
θ ,

or equivalently,

1g0
= r−2

(
(r∂r)

2 + β−2∂2
θ + . . .

)
,

where the remainder terms are smooth multiples of r2∂r and r∂θ , hence lower order.

Thus, 1g0
is a conic elliptic operator.

The detailed theory of conic elliptic operators is discussed in [33]and [34] and

described in complete detail in [36], [32], and [23]. We review here the mapping and

regularity properties of 1g0
on weighted b-Hölder spaces, and the closely related

definition of the Hölder–Friedrichs domain.

The most convenient scale of function spaces for conic operators are those with

certain dilation invariance properties.
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Conical Metrics on Riemann Surfaces II 17

Definition 1 (b-Hölder spaces). The space C
0,α
b (Mp) consists of all bounded functions

on Mp that are in C0,α in the interior of Mp and such that near each pj,

[u]b;0,α := sup
0<R<R0

sup
R≤r,r′≤2R
(r,θ) 6=(r′,θ ′)

|u(r, θ) − u(r′, θ ′)|Rα

|(r, θ) − (r′, θ ′)|α ≤ C,

with associated norm

||u||b;0,α = ||u||L∞ + [u]b;0,α.

The space C
m,α
b (Mp) consists of all functions u such that near each pj, (r∂r)

j∂ℓ
θ u ∈ C

0,α
b

when j + ℓ ≤ m. Finally, rµC
m,α
b (Mp) = {u = rµv : v ∈ C

m,α
b (Mp)}.

Directly from the definition,

1g0
: rµC

m+2,α
b −→ rµ−2C

m,α
b (12)

is bounded for every m ∈ N and µ ∈ R.

There are two possible choices for the space of “smooth” functions in this

setting.

Definition 2 (Conormality). The space of conormal functions (of order µ) is the

intersection

Aµ(Mp) =
⋂

m≥0

rµC
m,α
b (Mp) = {u : |(r∂r)

j∂ℓ
θ u| ≤ Cj,ℓr

µ, ∀ j, ℓ ≥ 0}.

Definition 3 (Polyhomogeneity). An index set I is a countable discrete set {γi, Ni} ⊂ C×
N with ℜγi → ∞. A function u is called polyhomogeneous with index set I if u ∈ Aµ(Mp)

for some µ and

u ∼
∑

i

Ni∑

ℓ=0

ui,ℓ(θ)rγi(log r)ℓ.

This is an asymptotic expansion in the classical sense, in that the difference between u

and any finite partial sum of the terms on the right lies in Aµ+N where N → ∞ depends

on the largest index in the partial sum.
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18 R. Mazzeo and X. Zhu

We may also define the b-Hölder spaces, as well as the spaces of conormal

and polyhomogeneous functions on any compact manifold with corners X. In this more

general setting, we replace the vector fields r∂r and ∂θ , which appear in the definitions

above by the space of b-vector fields, Vb(X), which is the space of all smooth vector

fields on X that are tangent to all boundary faces. Thus, if q ∈ X lies on a corner of

codimension n, then there is a coordinate system (x1, . . . , xn, y1, . . . , ym), n + m = dim X,

with each xi ≥ 0 and yj ∈ (−ǫ, ǫ). Near q,

Vb(X) = {V =
n∑

i=1

ai(x, y)xi∂xi
+

m∑

j=1

bj(x, y)∂yj
, ai, bj ∈ C∞(X)}.

Then, C
0,α
b (X) is defined via a Hölder seminorm similar to the one above, which is

invariant under the partial dilation (x, y) 7→ (λx, y) and

C
m,α
b (X) = {u : V1 . . . Vℓu ∈ C

0,α
b ∀ ℓ ≤ m and Vj ∈ Vb(X)}. (13)

If H1, . . . , HN are the boundary hypersurfaces of X, then we denote by ρj, j = 1, . . . , N, a

smooth function that satisfies ρj > 0 on X \Hj and ρj = 0, dρj 6= 0 on Hj. These are called

boundary defining functions. Using multi-index notation, we write

ρµC
m,α
b (X) = {u = ρ

µ1
1 . . . ρ

µN
N v : v ∈ C

m,α
b (X)}

and

Aµ(X) =
⋂

m≥0

ρµC
m,α
b (X).

Finally, an index family I is an N-tuple of index sets (I1, . . . , IN), and u is polyhomoge-

neous with index family I on X if it is conormal and has asymptotic expansion with

index set Ij near Hj, with all coefficients conormal on Hj. It is not hard to prove that

under these conditions, u has a product-type expansion at the corners of X.

4.2 Indicial roots and mapping properties

Sharp mapping and regularity for Lg0
(or indeed any other conic elliptic operator) are

naturally captured by these spaces. These properties are stated in terms of the set of

indicial data associated to this operator.
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Conical Metrics on Riemann Surfaces II 19

Definition 4 (Indicial roots). The number γ ∈ C is called an indicial root of multiplicity

N for a conic elliptic operator A at pj if there exists some φ ∈ C∞(S1) such that

A(rγ (log r)N−1φ(θ)) = O(rγ−1(log r)N−1) (as opposed to the expected O(rγ−2(log r)N−1)),

but this estimate fails if N − 1 is replaced by N.

The set of functions rγ (log r)ℓφ, ℓ = 0, . . . , N −1 for which this improved estimate

holds is called the indicial kernel of A (at pj and for the indicial root γ ).

Write Ŵ(A, pj) for the set of all indicial roots of A at pj and Ŵ̃(A, pj) for the set

{(γ , N − 1) : γ ∈ Ŵ(A, pj), N = logarithmic multiplicity at γ }. We often omit the pj in this

notation to denote the union of these sets over all pj.

The indicial roots for Lg0
are straightforward to compute; cf. [33, Section 5.1].

Lemma 1. Ŵ(Lg0
, pj) = { k

βj
: k ∈ Z}. The value 0 is an indicial root of multiplicity

two with indicial kernel {1, log r}, while the other indicial roots have multiplicity 1 and

indicial kernel {rk/βje±ikθ }.

We now state the 1st basic mapping property of Lg0
.

Proposition 1. [33, Proposition 9] Suppose µ 6∈ Ŵ(Lg0
), and denote by K−µ the nullspace

of Lg0
on r−µC

2,α
b (Mp). Then, K−µ is finite-dimensional and for any f ∈ rµ−2C

0,α
b , there

exists an element h ∈ K−µ such that Au = f − h for some u ∈ rµC
2,α
b . In particular, if

K−µ = {0}, then

Lg0
: rµC

2,α
b (Mp) → rµ−2C

0,α
b (Mp) (14)

is surjective.

We require an extension of this result, motivated by the following consideration.

Suppose µ is a weight such that (14) is surjective. If µ < 0, this result may be of limited

use in the nonlinear problem simply because the Liouville operator does not act nicely

on functions, which are unbounded near r = 0. However, if the right-hand side does not

blow up as quickly as rµ−2, then we can say more in the following proposition.
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20 R. Mazzeo and X. Zhu

Proposition 2. Suppose that µ′ > µ, with neither value an indicial root, and Lg0
u = f

for some f ∈ rµ′−2C
0,α
b and u ∈ rµC

2,α
b . Then,

u =
J2∑

j=J1

rj/β(aj cos jθ + bj sin jθ) + ũ

for some constants aj, bj. Here, J1 is the smallest integer greater than or equal to µβ and

J2 is the largest integer less than µ′β; if J1 ≤ 0 ≤ J2, then the term with j = 0 should be

replaced by a0 + b0 log r. Finally, the remainder term ũ lies in rµ′
C

2,α
b .

This is a regularity statement: if the right-hand side decays faster than expected,

then the solution has a partial expansion as r → 0.

A special case of particular importance is when µ = −ǫ < 0 and µ′ = 2 (so

µ′ − 2 = 0). We are thus searching for a solution u ∈ r−ǫC
2,α
b to Lg0

u = f , where f ∈
C

0,α
b ; since Kǫ , the nullspace of Lg0

on rǫC
2,α
b , is trivial, Proposition 1 may be applied to

obtain that (14) is surjective; hence, we may always find a solution u to Lg0
u = f ∈ C

0,α
b .

Proposition 2 states that

u = a0 + b0 log r +
J∑

j=1

(aj cos jθ + bj sin jθ)rj/β + ũ,

where J is the largest integer strictly less than 2β and ũ ∈ r2C
2,α
b .

A familiar classical construction is to characterize the domain of Lg0
as an

unbounded operator on L2(Mp). More specifically, Lg0
is symmetric and semibounded

on C∞
0 (M \ p), and hence there is a canonical Friedrichs domain DFr(Lg0

), which is a

dense subspace in L2 on which Lg0
is self-adjoint and has the same lower bound. This

is the set of all functions w ∈ L2 such that both ∇w, Lg0
w ∈ L2. From the asymptotic

expansion above, this last condition implies that the log r term is absent. Accordingly,

we make the following definition.

Definition 5. The Hölder–Friedrichs domain of Lg0
is the space D

m,α
Fr (Lg0

) = {u ∈
C

m,α
b (Mp) : Lg0

u ∈ C
m,α
b (Mp)}.
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By the results above,

u ∈ D
m,α
Fr (Lg0

) H⇒ u = a0 +
J∑

j=1

(aj cos jθ + bj sin jθ)rj/β + ũ,

where J is as before and ũ ∈ r2C
m+2,α
b .

4.3 Deformation theory—the unobstructed case

Let g0 be a spherical cone metric with conic data (s(g0), p, Eβ), and let SCMk denote the

set of all spherical cone metrics with the same s(g0). We show in this section that if

2 6∈ spec (1g0
), then the map SCMk → Mk × R

k
+ is a local diffeomorphism near g0.

In other words, the space of spherical cone metrics g near g0 with a fixed unmarked

conformal class is smoothly parametrized by the data (p′, Eβ ′) near (p, Eβ). It is also the

case that the dependence on the underlying unmarked conformal class s is smooth. This

argument is the same as the one in [33]. That paper assumes that all cone angles are

less than 2π , in which case it turns out to be automatic that Lg0
is invertible. If some

or all cone angles are greater than 2π , we must assume the invertibility of this operator

to reach the same conclusion. We review these arguments in this section and prove the

following theorem.

Theorem 3. Let g be a spherical conic metric with conic data (s, p, Eβ), and suppose

that 2 6∈ spec (1g). Then, for each fixed constant curvature metric s′ sufficiently near

s representing a slice in the space of unmarked conformal structures, there exists a

neighborhood V of (p, Eβ) in int Ek × R
k
+ and a neighborhood W containing g in the space

of spherical conic metrics with the same unmarked conformal class, such that the map

assigning to g′ ∈ W its conic data (p′, Eβ ′) is a diffeomorphism W → V. This map also

depends smoothly on s′.

The proof relies on a preliminary computation that provides a link between the

geometric and analytic parts of this result. Namely, we compute the derivative of a

family of metrics g(ǫ) with varying conic data (p(ǫ), Eβ(ǫ)). The relevant information is

entirely local so we may as well work in a disk around one conic point; furthermore, the

fact that the metrics are spherical rather than flat only adds higher order perturbations

to the answer below. Thus, it suffices to consider the family of flat metrics

g(ǫ) = |z + ǫw|2β(ǫ)−2|dz|2. (15)
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22 R. Mazzeo and X. Zhu

Here, β(ǫ) is any smooth function with β(0) = β and w is a fixed complex number

indicating the direction of motion of the family of conic points. Then,

g′(0) =
(
2β ′(0) log |z| + 2(β(0) − 1)ℜ(w/z)

)
|z|2(β−1)|dz|2.

In particular,

w = 0 ⇒ g′(0) = 2β ′(0) log |z|g(0),

β ′(0) = 0 ⇒ g′(0) = 2(β − 1)ℜ(w/z)g(0).

We have used complex coordinates here, but switching to r = |z|β/β, we have

g′(0) =
(
c0 log r + (c1 cos θ + c′

1 sin θ)r−1/β
)
g(0).

The constants c0, c1, c′
1 depend on β(0), β ′(0) and w; the latter two encode the angle

at which the singular point moves in this deformation. Now, recall that log r and

r−1/β cos θ , r−1/β sin θ are model solutions for the indicial problem. This calculation

shows that these particular solutions to the indicial equation arise as derivatives of

certain (local) one-parameter families of conic metrics.

We capitalize on this as follows. Choose local holomorphic coordinates near

each pj in p(0). The neighborhood V around (p, Eβ) in the space of conic data is defined

as the product of k copies of B2
w(0) ⊂ R

2 and a ball Bk
γ (0) in R

k around Eβ(0). A point

ζ = (w1, . . . , wk, γ1, . . . , γk) ∈ V

corresponds to conic data

((p1 + w1, . . . , pk + wk), (β1 + γ1, . . . , βk + γk)).

Next, for each ζ ∈ V, choose a conic (but not necessarily spherical) metric g̃(ζ )

that has conic data ζ . For example, we can glue together a fixed metric outside the union

of balls around the pk and some varying model metrics as in (15). We may also choose a

smooth family of diffeomorphisms Fζ : M → M with the following properties: Fζ is the

identity outside some small neighborhood of the points pj and Fζ (pj) = pj +wj. (We may

as well assume that the Fζ only depend on the w but not the γ coordinates of ζ .) Finally,

define g(ζ ) = F∗
ζ g̃(ζ ).
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The point of all of this is that g(ζ ) is a smooth family of conic metrics that

represents the conic data ζ , but where, using the diffeomorphism action on M, we have

arranged that the cone points remain fixed. We refer to [33] for an explanation of what

this means in terms of the Teichmüller theory. One must also modify these local families

into families that leave the underlying uniformizing metric s(g(ζ )) fixed, but this is

straightforward and we omit details.

We have now reduced the problem to proving that there exists a family of

functions u(ζ ) that lies in one of the (possibly weighted) Hölder spaces discussed earlier,

which solves

1g(ζ )u(ζ ) + Kg(ζ ) − e2u(ζ ) = 0, u(0) = 0

and which depends smoothly on ζ . This is a straightforward application of the implicit

function theorem, by virtue of the results of the last subsection. Namely, consider the

Liouville operator with base metric g(ζ ) as a nonlinear operator

N : V × D
0,α
Fr −→ C

0,α
b , N (ζ , u) = 1g(ζ )u + Kg(ζ ) − e2u.

This is a smooth mapping and by Propositions 1 and 2 and the computation at the

beginning of this proof, the linearization of this map is surjective. Noting further that

the linearization only in the 2nd (u) slot is injective, we conclude that the kernel projects

isomorphically to the tangent space of V. This uses our main hypothesis that 2 does not

lie in the nullspace of 1g(0); if it were not to hold, there would be an extra cokernel. Note

finally that we may also let the underlying nonsingular constant curvature metric vary

in some slice representing the family of unmarked conformal structures; the family of

solutions clearly depends smoothly on this extra parameter too. Altogether, this proves

the local deformation theorem and the smoothness of the moduli space of spherical

conic metrics under this spectral hypothesis.

5 The Locus of Degenerate Spherical Cone Metrics

The last section explains the importance of understanding when 2 /∈ spec (1g), or

equivalently, when Lg is invertible, for a spherical conic metric g. We begin our

discussion of this case.

We first recall a result from [33].
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24 R. Mazzeo and X. Zhu

Proposition 3. Let (Mp, g) be a spherical conic metric with all cone angles in (0, 2π).

Let λ1 be the 1st nonzero eigenvalue of the Friedrichs extension of 1g. Then, λ1 ≥ 2, with

equality if and only if M is either the round 2-sphere or else the spherical football (with

constant Gauss curvature 1). Apart from these cases,

Lg : Dm,α
Fr (Mp) → C

m,α
b (Mp) (16)

is invertible.

We also record a small generalization of this. The Liouville energy (referenced

in Section 2) is the functional

E(u) = 1

2

∫
(|∇u|2 + 2Kg0

u) dVg0
− 1

2
log

∫
e2u dAg0

;

cf. [30]. The Euler–Lagrange equation for E reduces to the Liouville equation (3), while

the Hessian of E(u) equals 1g0
− 2 − P0; here, P0 is the L2 orthogonal projection off the

constants (i.e., the lowest eigenmode for 1g0
).

In the approach to existence discussed in Section 2 using the calculus of

variations, the direct method to find minimizers of E is successful in the “subcritical”

case defined by the condition χ(M, Eβ) < min{2, 2 minj βj} (where the background metric

g0 has angle parameters Eβ). This can occur even if some of the cone angles are greater

than 2π . In this subcritical case, E is bounded below and coercive and there is a unique

minimizer u that is nondegenerate; the metric e2ug0 is then spherical. In this case, Lg−P0

is invertible and of Morse index 0, so in the language of the proposition above, λ1 > 2.

5.1 Metrics with reducible monodromy

Our 1st goal is to show that there must be many spherical cone metrics for which 2 lies

in the (Friedrichs) spectrum of 1g. Recall that the monodromy group of a spherical cone

metric is defined by its developing map and is contained in PSU(2). If the monodromy

is contained in a subgroup that lies in U(1) (up to conjugation), then the metric is called

reducible [11] or coaxial [14, 37]. In particular, any metric obtained by a branched cover

of the sphere has trivial monodromy and is therefore reducible.

Proposition 4. For any bounded set B ⊂ MPk defined in (7), there exists a spherical

cone metric g on S
2 with cone angle parameters Eβ /∈ B such that 2 ∈ spec (1g). When

k ≥ 5, Eβ can be chosen to be in the interior of MPk.
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Conical Metrics on Riemann Surfaces II 25

Proof. If a spherical conical metric g is reducible, then 2 ∈ spec (1g) and at least one

such eigenfunction is generated by the developing map; see [45]. From [14], the angle

condition that gives a reducible metric is unbounded, that is, for any bounded B ⊂ MPk

there exists at least one Eβ outside B that admits a reducible metric. In detail, there exists

a reducible metric with angles Eβ if and only if one of the following holds.

• All βi ∈ N, dℓ1( Eβ − E1,Zn
odd) = 1, and 2 maxi(βi −1) ≤ ∑n

i=1(βi −1). In this case,

such a metric is a branched cover of S2.

• (Up to reordering) There exists 1 < m < n such that β1, . . . βm /∈ N,

βm+1, . . . , βn ∈ N. Moreover, Eβ satisfies the following “coaxial conditions”:

– there exists {ǫi}m
i=1 with ǫi ∈ {±1} such that

k′ =
m∑

i=1

ǫiβi ≥ 0;

– k′′ = ∑n
i=m+1 βi − n − k′ + 2 ≥ 0 and k′′ is even;

– if there exist integers {bi} whose greatest common divisor is 1 and such

that (β1, . . . , βm, 1, . . . , 1︸ ︷︷ ︸
k′+k′′

) = η(b1, . . . , bm+k′+k′′), then

2
n

max
i=m+1

βi ≤
m+k′+k′′∑

i=1

bi.

For the 2nd condition above, we can also see that when k ≥ 5 such metrics exist in the

interior of MPk. �

5.2 Spherical cone metrics with a large number of small eigenvalues

We now prove some more general results that use a spectral flow argument to show

that there should be many examples of spherical cone metrics with Eβ arbitrarily large

for which 1g has eigenvalue 2. There are two main steps. The 1st is to show that for any

N > 0, there exists some Eβ ∈ MPk and a spherical cone metric g with this conic angle

data such that 1g has at least N eigenvalues less than 2. The 2nd is to show that if the

space of spherical cone metrics has only finitely many connected components, then by

spectral flow, one can find such metrics with eigenvalue 2. If 2 never lies in the spectrum

of Laplacians of conic surfaces with “sufficiently large” cone angles, then one can find

g0 and g1 in the same connected component, satisfying that 1gj
has Nj eigenvalues less

than 2, j = 1, 2, and there is a continuous family of spherical conic metrics between

g0 and g1. A simple spectral flow argument leads to a contradiction if N0 6= N1; hence,
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26 R. Mazzeo and X. Zhu

there must be a non-empty locus of spherical cone metrics with large cone angles and

with 2 lying in the spectrum of the Laplacian. Therefore, either the space of spherical

cone metrics has infinitely many connected components, or there are infinitely many

codimension-one strata with 2 ∈ spec (1g).

We begin with the analysis of the football with arbitrary cone angle.

Lemma 2. The eigenvalues of 1g on the spherical football with cone angle 2πβ are

{(j/β + ℓ)(j/β + ℓ + 1) : j, ℓ ∈ N}. (17)

The eigenspace is simple when j = 0 since log r does not lie in the Friedrichs domain,

with eigenfunction P0
ℓ (cos(r)), while if j > 0, then the eigenspace is two-dimensional and

spanned by P
j/β
ℓ (cos r) cos(jθ) and P

j/β
ℓ (cos r) sin(jθ). Here, Pν

ℓ is the associated Legendre

function of order ℓ and degree ν.

Proof. This is an explicit computation. Since g = dr2 + β2 sin2 rdθ2, we seek solutions

of

(∂2
r + cos r

sin r
∂r + β−2 1

sin2 r
∂2
θ + λ)u = 0.

Inserting u = R(r)eijθ yields

sin2 r R′′(r) + sin r cos r R′(r) + λ sin2 rR(r) − j2

β2
R(r) = 0, (18)

or, changing variable to t = cos(r),

(1 − t2) Rtt − 2tRt + [λ − j2

β2(1 − t2)
]R = 0, t ∈ [−1, 1].

A basis of solutions when λ > 0 consists of the 1st and 2nd associated Legendre

functions P
j/β
ℓ (t) and Q

j/β
ℓ (t). In order that the solution lies in the Friedrichs domain,

one of the following must hold:

• j = 0, and R(−1), R(1) < ∞, or

• j > 0, and R(−1) = R(1) = 0.

In the 1st case, the equation becomes

(1 − t2)Rtt − 2tRt + λR = 0.
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This has a solution that is regular at both t = ±1 only when λ = ℓ(ℓ + 1), ℓ ∈ N; the

solution itself is P0
ℓ (t). In particular, λ = 2 when ℓ = 1 and the eigenfunction is u = cos r.

In the 2nd case, when j > 0, then using properties of Pk/β

ℓ and Qk/β

ℓ , we get that

λ = (j/β + ℓ)(j/β + ℓ+1), ℓ ∈ N and the only admissible solution is P
j/β
ℓ (t); the eigenspace

is spanned by Pµ
ℓ (cos r) cos(jθ), Pµ

ℓ (cos r) sin(jθ). �

Lemma 3. There are 2 + 2[β] eigenvalues λ less than or equal to 2 for the Friedrichs

extension of 1g0
for a football with angle 2πβ.

Proof. We count the numbers in (17) with λ ≤ 2. These occur only when j = 0 and

ℓ = 0, 1, or else j > 0, ℓ = 0 and (j/β)(j/β + 1) ≤ 2, which holds if and only if j/β ≤ 1.

Each of these have multiplicity 2. This leads to 2 + 2[β] eigenvalues in [0, 2]. �

Lemma 4. Fix k ≥ 2 and a bounded set B ⊂ MPk of admissible cone angles. Then, for

any N ∈ N there exists a spherical cone metric g with cone angle parameters Eβ 6∈ B and

with at least N eigenvalues of 1g less than 2.

Proof. The arguments for the cases k = 2, 3, 4 and k ≥ 5 are somewhat different.

When k = 2, the preceding lemma shows just the following: we simply take a

football with cone angle 2πβ where [β] > N−2
2 .

Next, any spherical cone surface with k = 3 conic points has a Z2 reflection

symmetry, or in other words, is obtained by doubling a spherical triangle; see [13].

Thus, we need only show that there exists a spherical triangle with at least N Dirichlet

eigenvalues less than 2; the odd reflections to the doubled surface of the corresponding

eigenfunctions will be eigenfunctions in the Friedrichs domain of the cone surface. We

consider here a spherical triangle with angles π
2 , π

2 , πβ where β ≫ 1. Using that the

double of this triangle across the side connecting the two right angles produces “half”

of a football, we see that the Dirichlet eigenvalues of this triangle are

{(j/β + 2ℓ)(j/β + 2ℓ + 1) : j, ℓ ∈ N, j ≥ 1}. (19)

Hence, if [β] > N, then at least N of these are less than 2.

For k = 4, consider the shape obtained by gluing 4 spherical triangles as in

Figure 3: two of these are triangles with angles (π/2, π/2, πβ), and the other two have

angles (π/2, π/2, π/2). The sides that are matched have the same length (the only sides
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28 R. Mazzeo and X. Zhu

Fig. 3. A spherical metric with four cone points (π(β + 1), π(β + 1), 3π/2, 3π/2) with at least N

eigenvalues below 2.

that do not have length π/2 are those that connect the two right angles). This yields a

spherical cone polygon with angles (π(β + 1), π(β + 1), 3π/2, 3π/2); see Figure 3.

If β is chosen so that the spherical triangle with one angle πβ has at least N

Dirichlet eigenvalues less than 2, then this new surface has an N-dimensional space of

functions spanned by the functions Fj that equal the Dirichlet eigenfunctions fj on the

two large triangles and 0 on the two smaller triangles. These functions are all in H1 and

have Dirichlet energy less than 2. By the min-max characterization of eigenvalues, there

must be at least N eigenvalues on the spherical cone surface less than 2.

Finally, suppose k ≥ 5. We use a different gluing here. Start with a football with

cone angle 2πβ. By the explicit expression of the eigenfunctions in Lemma 2, if β is large

enough, there exists N eigenfunction f1, . . . , fN each with eigenvalue less than 2, which

vanish on a “meridian” of this football (i.e., a geodesic curve connecting the two cone

points). For example, take fj = P
j/β
0 (cos r) sin(jθ), j ≤ [β], which vanishes along the curve

{θ = 0}.
Now, suppose that L > 0 is quite small, and choose a slit of length L in this

meridian. Choose (β1, . . . , βk−2) so that the vector Eβ = (β, β, 1 + β1, 1 + β2, β3, . . . , βk−2) ∈
MPk. There exists a spherical cone metric, obtained by gluing together two identical

spherical polygons, with cone angles 2π(β1, . . . , βk−2) at points (p1, . . . , pk−2) arranged

along the equator such that dist(p1, p2) = L. Cut along the slit between these two points

and glue this surface to the football. This new spherical cone surface has cone angle

parameters Eβ = (β, β, 1 + β1, 1 + β2, β3, . . . , βk−2); see Figure 4.
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Fig. 4. A spherical metric glued from three pieces such that it has k ≥ 5 cone points 2π(β, β, 1 +
β1, 1 + β2, β3, . . . , βk−2) and at least N eigenvalues below 2.

Now, we proceed much as before. The eigenfunctions fi on the football that

vanish on the equator extend by 0 to H1 functions f̃i on this new surface. Since

‖∇ f̃i‖2
L2

‖f̃i‖2
L2

=
‖∇fi‖2

L2

‖fi‖2
L2

≤ 2

for i = 1, . . . , N, the min-max characterization shows that there are at least N

eigenvalues less than 2 for this new surface. �

5.3 Spectral flow

Using the above constructions, we can get the following description of the interior of

the space of spherical metrics with k cone points on S
2: either it has infinitely many

connected components or there exist infinitely many subsets of codimension one and

corresponding metrics with 2 in the spectrum.

We can see this by the following argument. Suppose the interior of the space only

has finitely many connected components. By the results of the previous subsection, we

may choose two spherical cone metrics, g0 and g1, with cone angle parameters Eβ(0) and

Eβ(1) such that 1gj
has Nj eigenvalues less than 2, and N0 6= N1. Since there are only

finitely many connected components, g0 and g1 can be chosen so that there is a path

gs, s ∈ [0, 1] connecting g0 and g1. And if we denote by N(s) the number of eigenvalues in

(0, 2), then N(s) is a continuous function. However, this contradicts the fact that N(0) 6=
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30 R. Mazzeo and X. Zhu

N(1). Therefore, there exists s ∈ [0, 1] such that 2 is an eigenvalue of 1gs
. Since the whole

path is contained in the interior of the space, one can perturb the metrics while keeping

the number of eigenvalues below 2 for g0 and g1, and therefore, we get a codimensional-

one set of such metrics with 2 in the spectrum.

The space of solutions does have many connected components [38], and the

preceding discussion does not rule out the possibility that it might have infinitely many

components. In that case, this spectral flow would not produce metrics with 2 in the

spectrum.

6 Splitting Cone Points—Local Theory

We now take up the description of families of metrics with merging cone points, or

equivalently, the construction of families of metrics where isolated cone points split

into clusters. It suffices here to consider flat conic metrics since the change from flat to

spherical simply adds higher order perturbations that are irrelevant for the immediate

considerations. We first carry out a local analysis and describe a parametrization

of these splitting families using weighted symmetric polynomials in the locations of

the cone points. The differential of this parametrization yields a family of functions

which, as we show later, unobstructs our main deformation problem. Unfortunately,

this parametrization is singular at the front face F0 of EJ and it is necessary to perform

an iterated blowup of the range in order to obtain a local diffeomorphism near F0. This

step is unfortunately rather technical. The passage from the local to the global version

of these results is straightforward.

6.1 Weighted factorizations

Consider the flat conic metric

g0 = |z|2(β0−1)|dz|2 = e2v0 |dz|2, v0 = (β0 − 1) log |z|, z ∈ D = {|z| < 1},

with β0 > 1. Our aim is to parametrize the family of flat conic metrics in D with conic

data (p1, . . . , pJ , β1, . . . , βJ), where all pj are near 0 and
∑

(βj − 1) = β0 − 1, and then

compute the variations of this family.

While no local constraints prevent us from considering splittings into arbitrarily

large clusters of points, we prove below that certain global constraints dictate that we

must restrict to splittings into at most J = [β0] points, that is, the size of the initial cone

angle determines the cardinality of the cluster. We use local versions of the spaces EJ ,
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CJ , where M is replaced by the (open) disk D, or in fact by the entire complex plane C.

Fix EB = (B1, . . . , BJ) with each Bi 6= 1 such that

J∑

j=1

(Bj − 1) = β0 − 1. (20)

The equal angle case,

B
eq
j − 1 = 1

J
(β0 − 1), j = 1, . . . , J, (21)

is of particular importance.

We first explain how local clustering families are in bijective correspondence

(away from a certain locus) with functions of the form

v̇(0) =
J∑

j=1

(e′
j cos(jθ) + e′′

j sin(jθ)) r−j/β0

= ℜ
J∑

j=1

Aj

zj
, Aj = β

j/β0

0 (e′
j + ie′′

j ), r = |z|β0/β0.

(22)

Note that j ≤ J implies −1 ≤ −j/β0 < 0, so our restriction on J ensures that these

exponents are not less than −1.

Define the constants

bj = J
Bj − 1

β0 − 1
,

and write Eb = (b1, . . . , bJ). Thus,
∑

bj = J, and in the equal angle case, each bj = 1.

We must avoid “degenerate” J-tuples of cone angles lying in the set 1̂ = ∪I1̂I , where

I = {i1, . . . , ip} ⊂ {1, . . . , J} and 1̂I = {Eb : bi1 + . . .+bip = 0}. (Recall that bi1 + . . .+bip = 0 is

equivalent to
∑

2π(Bij
− 1) = 2π(1 − 1), i.e., this subcluster merge to a point with angle

2π .)

Proposition 5. For every Eb 6∈ 1̂, there is a subvariety SEb ⊂ C
J , called the weighted

discriminant locus associated to Eb, and a proper holomorphic mapping F = FEb : CJ →
C

J that assigns to a J-tuple EZ = (z1, . . . , zJ) the J-tuple EA = (A1, . . . , AJ), as determined

by (26) below. This map has the following properties:
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32 R. Mazzeo and X. Zhu

i) F is ramified along the union of the partial diagonals in C
J , and the image

of this branch locus equals the weighted discriminant locus SEb;

ii) the restriction of this mapping to the unramified set is a J!-sheeted covering

map from the interior of EJ to C
J \ SEb;

iii) fixing any local inverse F−1
Eb : EA 7→ (z1( EA), . . . , zJ( EA)), then the function

v( EA; z) =
∑

bj log |z − zj(
EA)| (23)

is differentiable at EA = E0 and satisfies

∂v

∂e′
ℓ

(E0) = cos(ℓθ)|z|−ℓ,
∂v

∂e′′
ℓ

(E0) = sin(ℓθ)|z|−ℓ.

Proof. For any EA ∈ C
J , define the polynomial

P( EA; z) = zJ + A1zJ−1 + · · · + AJ . (24)

Then,

2
∂

∂Aj
log |P( EA; z)| = zJ−j

P( EA; z)
,

and in particular, at EA = 0, this derivative equals zJ−j−J = |z|−je−ijθ .

In the equal angle case (where all bj = 1), we define Aj = σj(
EZ) to be the jth

symmetric polynomial of the zi, so P( EA; z) = (z−z1( EA)) . . . (z−zJ( EA)) and {z1( EA), . . . , zJ( EA)}
is some ordering of the set of roots of P( EA; z). Then,

v( EA; z) =
∑

log |z − zj(
EA)| = log |P( EA)|, z 6∈ {z1( EA), . . . , zJ( EA)},

and the computation above establishes the result in this special case.

For more general angle splittings, assume that |z| > max |zj|, and expand the

product

(z − z1)b1 . . . (z − zJ)bJ =
∞∑

j=0

dj(z1, . . . , zJ)zJ−j (25)
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using the binomial theorem in each factor. We then write

Aj(z1, . . . , zJ) = dj(z1, . . . , zJ), j = 1, . . . , J, (26)

which defines the coefficients in P( EA, z) as in (24). This defines the map F(EZ) = EA. The

remainder of the series in (25) is lower order as all the zj → 0 in the sense that

|P( EA; z)| = |z − z1|b1 . . . |z − zJ |bJ (1 + O(max |zj|J+1)), (27)

where the error term is uniform for (1 + ǫ) max{|zj|} < |z| < 1, say. As we show below

(see the error term estimates near the end of the proof), it is also true that

|P( EA; z)| = |z − z1( EA)|b1 . . . |z − zJ( EA)|bJ (1 + O(| EA|1+ǫ)), (28)

and assuming this, then the derivative of v, defined as in (23), with respect to AJ−ℓ at

EA = 0 is equal to r−ℓe−iℓθ , as before.

We next consider the local inverses of F . Let {λ1, . . . , λJ} denote the roots of

the polynomial P( EA, z), so P( EA; z) = (z − λ1) . . . (z − λJ) and Aℓ = (−1)ℓσℓ(λ1, . . . , λJ) are

the standard symmetric polynomials of these roots. Now, take the Taylor expansion of

log(z − λ) in λ around λ = 0; in the range 2 max |λj| < |z| < 1, the error term is uniform

and we have

log(z − λ) = QJ,z(λ) + O(|λ|J+1), QJ,z(λ) = c0(z) + c1(z)λ + · · · + cJ(z)λJ ;

for some functions cj(z) (which we do not need to write out explicitly). Therefore,

log P =
J∑

j=1

log(z − λj) =
J∑

j=1

QJ,z(λj) + O(max |λj|J+1)

= Jc0(z) + c1(z)

J∑

j=1

λj + · · · + cJ(z)

J∑

j=1

λJ
j + O(max |λj|J+1).

(29)

By Newton’s formula, the ℓth power sum is a quasi-homogeneous polynomial Rℓ of the

elementary symmetric functions σ1, . . . , σℓ; hence, the previous formula can be rewritten

as

log P = Jc0(z) + c1(z)R1( EA) + . . . + cJ(z)RJ( EA) + O(max |λj|J+1).
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Now, consider the (locally defined) holomorphic function

V(z) =
J∑

j=1

bj log(z − zj) =
∑

j

bjQJ,z(zj) + O(max |zj|J+1). (30)

Equating this to (29) and discarding the error terms give

∑
bjz

ℓ
j =

∑
λℓ

j = Rℓ(
EA), ℓ = 1, . . . , J. (31)

We use this set of equations to determine the zj from EA. Multiply the right side of the ℓth

equation by zℓ
0 to interpret these as homogeneous polynomials in the variables z0, . . . , zJ .

This modified set of equations corresponds to a collection of projective hypersurface

6ℓ ⊂ CP
J , ℓ = 1, . . . , J, with deg (6ℓ) = ℓ. By Bezout’s theorem, the intersection of the

6ℓ contains J! points, counted with multiplicity. When all the bj = 1, these J! points

of intersection are just the orbit of a single solution under the symmetric group. As we

show momentarily, away from the partial diagonals there are J! distinct solutions to

these equations, and for each of these, z0 6= 0. After that, we analyze the error terms.

We first show that z0 6= 0 for each solution, that is, all solutions lie in C
J rather

than in the divisor at infinity. For this, rewrite
∑

bjz
ℓ
j = 0 as




b1z1 + . . . + bJzJ

b1z2
1 + . . . + bJz2

J
...

b1zJ
1 + . . . + bJzJ

J




=




z1 . . . zJ

z2
1 . . . z2

J
...

...
...

zJ
1 . . . zJ

J







b1

b2

...

bJ




=




0

0

...

0




.

The 1st factor is a van der Monde matrix, hence is nonsingular precisely when the zj

are all distinct and nonzero. On the other hand, suppose that zi1 = . . . = zip 6= 0 for

some I = {i1, . . . , ip} ⊂ {1, . . . , J} and all other zj = 0. Then, we obtain a solution to this

equation provided bi1 + . . . + bip = 0, which indicates why the sets 1̂I are excluded. To

see that these sets create the only problem, an inductive argument shows that nonzero

solutions to this system exist only if some such relationship exists among the bi, that is,

Eb ∈ 1̂. We have now shown that if Eb does not lie in this finite union of subspaces, then

all J! solutions, EZ(i) = (z(i)
1 , . . . , z(i)

J ), i = 1, . . . , J!, are elements of CJ .

Now, observe that F is the composition of the two maps

EZ = (z1, . . . , zJ) 7−→
(∑

bizi, . . . ,
∑

biz
J
i

)
=
(∑

λi, . . . ,
∑

λJ
i

)
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and the global polynomial biholomorphism

(∑
λi, . . . ,

∑
λJ

i

)
7−→ (σ1(Eλ), . . . , σJ(Eλ)) = EA.

In particular, F is an algebraic mapping from C
J to C

J , which is generically a J!-sheeted

cover.

Claim: This map is a proper ramified cover of degree J! with ramification locus the

image of the partial diagonals (in EZ).

Properness is obvious. It suffices, therefore, to show that F is a local biholomor-

phism at every EZ away from a partial diagonal. Since the 2nd mapping in the composition

is a biholomorphism, it suffices to examine the 1st mapping. Its complex Jacobian

equals




b1 . . . bJ

2b1z1 . . . 2bJzJ
...

...
...

Jb1zJ−1
1 . . . JbJzJ−1

J




=




1 0 . . . 0

0 2 . . . 0

...
...

...
...

0 . . . 0 J







1 . . . 1

z1 . . . zJ
...

...
...

zJ−1
1 . . . zJ−1

J







b1 0 . . . 0

0 b2 . . . 0

...
...

...
...

0 . . . 0 bJ




;

this is nonsingular provided the zj are distinct since no bj = 0, and the middle term

on the right is once again a van der Monde matrix. The inverse function theorem now

establishes the claim. The weighted discriminant locus SEb is, by definition, the image

under F of the union of partial diagonals.

We now analyze the error terms. Our goal is to show that |zj|, |λj| = O(max |Ai|1/i)

for all j. Granting this, then comparing (29) and (30), we obtain the desired estimate

log |P| −
∑

bj log |z − zj| = O(max{|λj|J+1, |zj|J+1}) = O(| EA|1+ǫ).

To prove this claim, set M = max{|Ai|1/i} and recall that
∑

λℓ
i is a quasihomoge-

neous polynomial of degree ℓ in A1, . . . , Aℓ, so

∑
|λj|ℓ ≤ C0Mℓ, ℓ = 1, . . . , J.
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Claim: There exists a constant C > 0, depending on Eb, such that if EA ∈ C
J has M =

max{|Ai|1/i} ≤ 1, then any solution EZ to F(EZ) = EA satisfies |EZ| ≤ CM.

If no such constant C exists, then there exists a sequence EA(n) and corresponding

solutions EZ(n) such that 3n := |EZ(n)| ≥ nM(n), n = 1, 2, 3, . . .. Dividing each of the original

equations by the appropriate powers of 3n yields

∑
bj(z̃

(n)

j )ℓ =
∑

λ
(n)

j 3−ℓ
n , ℓ = 1, . . . , J,

where z̃(n)

j = z(n)

j /3n. By construction, |z̃(n)

j | ≤ 1 for j = 1, . . . , J with |z̃(n)

j | = 1 for at least

one j, for every n.

Since the sequence EZ(n)/3n is bounded and has norm bounded away from zero,

some subsequence converges to a limiting J-tuple EZ 6= E0 satisfying

∑
bjz

ℓ
j = 0, ℓ = 1, . . . , J.

However, Eb 6∈ 1̂, so these equations have no nontrivial solutions. This contradiction

proves the estimate.

Notice that if all bj = 1, we recover that for the exact roots,

|λj| ≤ CM, j = 1, . . . , J.

�

6.2 Desingularization of F−1

The map F−1 is a local diffeomorphism from C
J \ Sb onto the interior of EJ , at least

locally in 0 < | EA| < ǫ. It will be particularly useful to study one-parameter paths t 7→
F−1(t EA), at least for certain EA or, more globally, to consider (any branch of) F−1 as a

map from the blowup [CJ ; { EA = 0}] := AJ −→ EJ .

Observe that the front face F(AJ) is a sphere S
2J−1, and the intersection Sb ∩

F(AJ) = T0 has real codimension two in this sphere. In the following, we will identify an

additional finite number of real codimension two subsets T1, . . . , TN of this front face,

and corresponding conic extensions Sj = C(Tj) (so S0 = Sb). Write T = T0 ∪ . . . ∪ TN and

S = C(T ). We shall study the restriction of F−1 to the set � = AJ \ S, and in particular,

the behavior of this map near ∂� = � ∩ F(AJ).

Fix a branch of F−1 and EA ∈ � \ ∂�, and consider the curve F−1(t EA) = EZ(t) =
(z1(t), . . . , zJ(t)). As t → 0, t EA converges to the point EA/| EA| ∈ F(AJ) and EZ(t) converges to

some point in F0. We define S1 = {AJ = 0} (and T1 = S1 ∩F(AJ)). Thus, if EA ∈ �, then AJ 6=
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0 and by the algebraic nature of F , at least one component zj(t) of EZ(t) satisfies zj(t) ∼
t1/Jζj +O(t2/J). By contrast, if AJ = 0, then the leading term of each of these components

is of order t1/(J−1) or lower. The coefficients ζj are determined as follows. For each ℓ,

Rℓ(t EA) is a polynomial in t with no constant term; furthermore, the quasihomogeneity

of Rℓ implies that the only term with a linear power of t is tAJ , and this occurs only in

RJ . All other powers of t in any Rℓ(t EA) have exponent at least 2. Inserting these putative

expansions for zj into the algebraic system (31) and equating the coefficients of t yields

the sequence of equations

∑

j

bjζ
ℓ
j = 0, ℓ < J,

∑

j

bjζ
J
j = AJ . (32)

Clearly, the solution Eζ = (ζ1, . . . , ζJ)T depends only on AJ , but none of the other

Aℓ, ℓ < J. In addition, its dependence on AJ is homogeneous, that is, Eζ (AJ) = Eζ (1)A1/J
J .

Hence, the image of every point in the face ∂� lies on a particular circle determined

solely by Eb and which we denote by σb. We shall also see momentarily that σb lies entirely

in a single spherical fiber of F0.

There are complete expansions for each zj(t); hence (as also shown by general

algebraic principles), each branch of F−1 extends to a polyhomogeneous function on �.

However, this is not a local (polyhomogeneous) diffeomorphism near boundary points

since it is far from surjective. Our deformation theory will ultimately require that we

somehow extend F−1 to a map with invertible differential even at F(AJ), and we now

explain how this may be achieved by replacing EJ by some iterated blowup along σb.

The goal of these blowups is to “separate out” the different paths EZ(t) corresponding to

different values of EA.

6.2.1 Directions of increasing order of vanishing

This construction will be somewhat lengthy and occupy the remainder of this subsec-

tion. The idea is that each function zj(t) has an expansion where, after some preliminary

analysis, we can see that the coefficient of ti/J for any 2 ≤ i ≤ J involves only

AJ−i+1, AJ−i+2, . . . , AJ−1. Further study of these coefficients shows that there exists a

linearly independent set of directions in the bundle of vectors normal to σb in F0 that

represent the directions tangent to those paths that decay like ti/J , i = 2, . . . , J. The

iterated blowup is defined in terms of this independent set of directions.
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38 R. Mazzeo and X. Zhu

The 1st step is to examine more closely how the system

∑
bjz

ℓ
j = Rℓ(

EA), ℓ = 1, . . . , J

determines the asymptotics of the zi. Since AJ 6= 0 in �, we can normalize by setting

ρ = |AJ |1/J and also write Ãℓ = Aℓ/|AJ |, or equivalently Aℓ = ρJÃℓ, ℓ = 1, . . . , J. We

also write ÃJ = eiθ ; this angle θ will appear often below. The entire collection of these

normalized components will be denoted Ã = (ÃJ = eiθ , ÃJ−1, . . . , Ã1). Finally, decompose

Rℓ(
EA) = ℓAℓ + eℓ(A1, . . . , Aℓ−1); each monomial in eℓ is a constant multiple of a product

Ai1
1 . . . A

iℓ−1

ℓ−1 where i1 + 2i2 + . . . + (ℓ − 1)iℓ−1 = ℓ and hence has degree at least 2. This

implies that Rℓ(
EA) = ℓÃℓρ

J + O(ρ2J).

Now, substitute

zi =
J∑

j=1

cijρ
j + O(ρJ+1)

into the ℓth equation of this system and collect terms with like powers to get

∑
bjz

ℓ
j = Pℓ,0ρℓ + · · · + Pℓ,J−1ρℓ+J−1 + O(ρℓ+J), (33)

where

Pℓ,0 =
J∑

i=1

bic
ℓ
i1, Pℓ,1 = ℓ

J∑

i=1

bic
ℓ−1
i1 ci2, and in general

Pℓ,k = ℓ

J∑

i=1

bic
ℓ−1
i1 ci,k+1 +

∑

i

biQℓ,k(ci1, . . . , cik), 2 ≤ k ≤ J − 1.

(34)

Each Qℓ,k is a sum of monomials cℓ1

i1 . . . cℓk
ik with

∑
jℓj = ℓ + k,

∑
ℓj = ℓ and ℓ1 < ℓ − 1; for

example, Qℓ,2 = ℓ(ℓ − 1)cℓ−2
i1 c2

i2.

Equating the coefficients of ρℓ+k on the left and right side yields, for ℓ = 1, . . . , J

and k = 0, . . . , J − 1 that

Pℓ,k =





0, if k 6= J

(J − k)ÃJ−k, if k = J.
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When k = 0, this is an algebraic system for the components of the vector Ec1 =
(c11, . . . , cJ1)T :

J∑

i=1

bic
ℓ
i1 = 0, ℓ ≤ J − 1,

J∑

i=1

bic
J
i1 = JÃJ = Jeiθ ,

and the solution is just a scalar multiple of the solution Eζ to (32). As in that case, there

exist J! solutions to this system and when bi = 1 for all i, these correspond to permuting

the components of (J1/Jei(2πk+θ)/J), k = 1, . . . , J.

On the other hand, when k = 1 the equation is now a linear system for

Ec2 = (c12, c22, . . . , cJ2)T :

J∑

i=1

bic
ℓ−1
i1 ci2 = 0, ℓ 6= J − 1,

J∑

i=1

bic
J−2
i1 ci2 = ÃJ−1,

which we write as TEc2 = Ex2, where Ex2 = (0, . . . , 0, ÃJ−1, 0)T and

T =




b1 b2 . . . bJ

b1c11 b2c21 . . . bJcJ1

. . .

b1cJ−1
11 b2cJ−1

21 . . . bJcJ−1
J1




=




1 1 . . . 1

c11 c21 . . . cJ1

. . .

cJ−1
11 cJ−1

21 . . . cJ−1
J1







b1 0 . . . 0

0 b2 . . . 0

...
...

...
...

0 . . . 0 bJ




.

Since the bi are all nonzero, this matrix is invertible unless ci1 = cj1 for some i 6= j.

Therefore, except for a (real) codimension 2 subset of values of EA that we denote as S2

to accord with previous notation, T is invertible and hence there is a unique solution

vector Ec2, whose components are multiples of ÃJ−1.

Similarly, for larger values of k, we obtain an inhomogeneous linear system for

Eck = (c1k, . . . , cJk)T that is now slightly more complicated because of the appearance of
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the lower order terms Qℓ,i:

J∑

i=1

bic
ℓ−1
i1 cik = −

∑
biQℓ,k−1(ci1, . . . , ci,k−1), ℓ 6= J − k + 1, and

J∑

i=1

bic
J−k
i1 cik = ÃJ−k+1 −

∑
biQJ−k+1,k−1(ci1, . . . , ci,k−1).

This can be written more simply as TEck = Eyk, where Eyk = Exk − Eqk, where

Exk = (0, . . . , ÃJ−k+1, 0, . . . , 0)T , Eqk = (qkℓ), qkℓ =
∑

i

biQℓ,k−1(ci1, . . . , ci,k−1).

By the invertibility of the same matrix T, there exists a unique solution, at least for EA
outside of a real codimension two subvariety that is denoted as Sk+1.

Now, write the entire system as TC = Y, where

C = (Ec1, . . . , EcJ), Y = (Ey1, Ey2, . . . , EyJ).

The entries of T depend on the ci1; hence, the 1st column of TC is actually a nonlinear

equation in these variables; however, it is convenient to think of the entries of these two

matrices as uncoupled.

Lemma 5. The matrix C has rank J when EA lies outside of a real codimension 2

subvariety of CJ .

Proof. We have shown that T is invertible for any EA outside a real codimension 2

subvariety. Thus, restricting to such values of EA, it suffices to prove that X is also

invertible, possibly restricting the set of allowable EA further. Now, Y = X − Q where

X has entries Ãi on the antidiagonal (i.e., X1J = Ã1, X2,J−1 = Ã2, etc.) and zeroes

elsewhere, and Q has columns Eq1, . . . , EqJ . Recall that Eq1 = Eq2 = 0, and Eqk depends only

on ÃJ−k+1, . . . , ÃJ .

We now use column operations to reduce to a matrix with all entries below

the main antidiagonal equal to 0. These operations involve multiplication by rational

functions of the Ãi, and we need to keep some track of the dependence.

The only two nonzero entries in the 1st two columns are Jeiθ and ÃJ−1, and

appropriate multiples of the inverses of these entries can be used to clear all the entries

in the bottom two rows. Next, use the inverse of the antidiagonal entry ÃJ−2 − q3,J−2 to
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clear all entries to its right on row J − 2. Note that this introduces rational functions

with denominators depending only on ÃJ , ÃJ−1, and ÃJ−2. Carrying on, we use the

antidiagonal entry ÃJ−ℓ − qℓ+1,J−ℓ to clear the entries to its right; this uses rational

functions with denominators depending only on ÃJ , . . . , ÃJ−ℓ.

Provided we restrict to the complement of the zero sets of the denominators

which appear along the way, that is, to the union of a finite number of real codimension

two varieties SJ+1, we obtain a matrix with all entries below the main antidiagonal

equal to 0. The entries along the main antidiagonal are each of the form ÃJ−ℓ plus

a rational function depending only on ÃJ−ℓ1
, . . . , ÃJ . Restricting one final time to the

complement of where these entries vanish denoted as SJ+2, we see that Y is invertible,

as claimed. �

By induction, each component of Eck, k ≥ 2, is a constant multiple of ÃJ−k+1 plus

a polynomial depending only on ÃJ−1, . . . , ÃJ−k+2, that is,

cik = dikÃJ−k+1 + fik(ÃJ−k+2, . . . , ÃJ−1)

(with fi2 = 0 for all i). Note that, by its defining equation, Ec1 = Ed1ξ , where Ed1 is a

constant vector and ξ := A1/J
J = ρeiθ/J .

Employing complex notation to simplify calculations, the information above

allows us to compute the Jacobian of the change of variables

Ã := (ξ , ÃJ−1, . . . , Ã1) 7−→ (z1, . . . , zJ).

The structure of the fij now shows that

DÃ
EZ =




d11 + O(ρ) d12ρ2 + O(ρ3) · · · d1JρJ + O(ρJ+1)

d21 + O(ρ) d22ρ2 + O(ρ3) · · · d2JρJ + O(ρJ+1)

· · · · · · · · · · · ·
dJ1 + O(ρ) dJ2ρ2 + O(ρ3) · · · dJJρJ + O(ρJ+1)




.

By the preceding calculations, the matrix (dij) is nonsingular provided EA remains

outside a real codimension two variety.

6.2.2 The final iterated blowup

The computations above indicate precisely how F−1 becomes singular near F(AJ) and

motivate how this map can be desingularized by a sequence of blowups.
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We first explain this when J = 2. Passing from the coordinates z1, z2 to z0 =
1
2 (z1 + z2) and z̃1 = 1

2 (z1 − z2), and writing
√
b2/b1 := b̄ for simplicity, we have

z1 = −1
2A1 + 1

2 b̄

√
A2

1 − 4A2 = −1
2ρ2Ã1 + 1

2ρb̄

√
ρ2Ã2

1 − 4eiθ

∼ b̄ieiθ/2ρ − 1
2 Ã1ρ2 + O(ρ3),

and similarly,

z2 = −1
2A1 − 1

2 b̄
−1
√

A2
1 − 4A2 ∼ −b̄

−1
ieiθ/2ρ − 1

2 Ã1ρ2 + O(ρ3),

and hence

z0 = 1

2
(b̄ − b̄

−1
)ieiθ/2ρ − 1

2 Ã1ρ2 + O(ρ3) = c(θ , b)ρ − 1
2 Ã1ρ2 + O(ρ3),

z̃1 = 1
2 (b̄ + b̄

−1
)ieiθ/2ρ + O(ρ3) = c′(θ , b)ρeiθ/2 + O(ρ3).

Now, set z̃1 = Reiφ , so that R, φ, z0 are coordinates on E2. We can then use these to write

the lift P(0) : A2 → E2 of F−1 : C2 → C
2 as

P(0) : (ρ, θ , Ã1) 7→ (R, φ, z0),

R = c′(θ , b)ρ + O(ρ3), φ = θ/2 + O(ρ2), z0 = c(θ , b)ρ − 1
2ρ2Ã1 + O(ρ3).

Clearly, P(0) has submaximal rank at ρ = 0 since P(0)(0, θ , Ã1) = (0, θ/2, 0). To remedy

this, we perform two blowups.

Rename σb = σ (0) (to accord with later conventions); this equals the image

P(0)({ρ = 0}). The 1st step is to blow up E2 along σ (0), yielding the space E
(1)
2 = [E2; σ (0)].

Coordinates on this new space are obtained by replacing z0 with the new coordinate

z(1)
0 = z0/R and the lift of P(0) equals

P(1) :(ρ, θ , Ã1) 7→ (R, φ, z(1)
0 )

= (c′(θ , b)ρ + O(ρ2), θ/2 + O(ρ2), c(θ , b) − 1
2ρÃ1 + O(ρ2)).

This is still singular at ρ = 0 since c(θ , b) = (b̄ − b̄
−1

)ieiθ/2 is independent of Ã1 but is

slightly less singular than P(0). The image σ (1) := P(1)({ρ = 0}) is a circle in the interior

of the new front face F(E
(1)
2 ) of this new blowup.
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Finally, blow up once again to arrive at E
(2)
J = [E

(1)
J ; σ (1)]. This has the new

coordinate z(2)
0 = (z(1)

0 − c(θ , b))/R and the lift of P(1) is

P(2) : (ρ, θ , Ã1) 7→ (R, φ, z(2)
0 ) = (c′(θ , b)ρ + O(ρ2), θ/2 + O(ρ2), −1

2 Ã1 + O(ρ)).

This now is a local diffeomorphism, even at ρ = 0.

Let us now return to the general case and summarize the entire process before

writing the steps more carefully. First, blow up EJ at σb = σ (0). Then, P(0) lifts to a

map P(1) : � → E
(1)
J that is slightly less degenerate at ρ = 0 in the sense that the

image σ (1) = P(1)({ρ = 0}) is now three-dimensional (instead of one-dimensional). We

continue blowing up σ (1) to obtain E
(2)
J and a lifted map P(2) that is less degenerate

still. The dimension of P(2)({ρ = 0}) increases by 2. The later blowups E (j+1) = [E
(j)
J ; σ (j)]

and maps P(j) are defined the same way. Continuing through J − 2 steps, the image

σ (J−2) = P(J−2)({ρ = 0}) is (2J − 3)-dimensional. This dimension does not increase after

the next blowup, but finally, P(J) : � → E
(J)
J is nondegenerate even at ρ = 0.

We prepare by choosing coordinates analogous to (R, φ, z0) on EJ . The center of

mass of (z1, . . . , zJ) is z0 = ∑
zi/J; thus, if we set z̃i = zi − z0 (so

∑J
i=1 z̃i = 0), then

z0, z̃1, . . . , z̃J−1 is a full coordinate system on C
J . We next pass to projective coordinates

near a point in the interior of F0 in EJ by writing

z̃1 = Reiφ , z(0)

j = z̃j/R, j = 2, . . . , J − 1,

so (R, φ, z0, z(0)
2 , . . . , z(0)

J−1) ∈ R
+ × S

1 × C × C
J−2.

The expansions for each zi in ρ yield

z0 ∼ c̄1ρ + c̄2ρ2 + . . . , z̃i = c̃i1ρ + c̃i2ρ2 + . . . ,

where c̃ij = cij − c̄j. We recall that the coefficient of ρ in each of these expansions

is a function of θ alone, the coefficient of ρ2 is a function of θ multiplied by ÃJ−1,

and for j ≥ 2, the coefficient of ρj takes the form a(θ)ÃJ−j + b(θ , ÃJ−1, . . . , ÃJ−j+1). We

refer to this as the “standard dependence”. It is straightforward to check that R, φ,

and the z(0)

i all exhibit this same standard dependence and in particular R = O(ρ),

φ = θ/J + O(ρ), and z(0)

i = c̃i1(θ)/c̃11(θ) + O(ρ). This parametrizes the circle σb by θ

via θ 7→ (0, θ/J, 0, c21(θ)/c11(θ), . . . , cJ−1,1(θ)/c11(θ)). We change notation slightly, first
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writing z0 = z(0)
0 and then

R ∼
J∑

j=1

κjρ
j, z(0)

0 ∼
J+1∑

j=2

e(0)

0j ρj−1, z(0)

i ∼
J∑

j=1

e(0)

ij ρj−1, i = 2, . . . , J − 1.

This defines the lift of F−1 to a map P(0) : � −→ EJ .

For the next step, where we blow up σb = σ (0) in EJ , we find projective

coordinates on E
(1)
J = [EJ ; σ (0)] by recentering each z(0)

i and then dividing by R, to get

R, φ, z(1)
0 = z(0)

0 /R, z̃(1)

i = (z(0)

i − e(0)

i1 )/R, i = 2, . . . , J − 1.

As will be the case at each step below, the expansions for each of these functions

exhibits standard dependence, with

R = O(ρ), φ = θ/J + O(ρ), z(1)

i = e(0)

i2 /κ1 + O(ρ), i = 0, 2, . . . , J − 1,

or, changing notation again and writing out more of the expansion,

z(1)

i ∼
J∑

j=2

e(1)

ij ρj−2, i = 0, 2, . . . , J − 1.

Write P(1) for the lift of P. At ρ = 0, e(1)
02 depends only on θ while e(1)

i2 = (e(1)

i2 )′(θ)ÃJ−1,

i ≥ 2. Hence, P(1)({ρ = 0}) is a three-dimensional submanifold σ (1); it is a bundle of

hemispheres S
2
+ over a circle parametrized by φ = θ/J. This circle itself is given by z(1)

0 =
e(1)

02 (θ), with all other z(1)

i = 0, and ÃJ−1 is a projective coordinate on each hemisphere.

The pattern is now relatively clear, but we write out the next step since there is

one further minor twist. Define E
(2)
J = [E

(1)
J ; σ (1)]. Each point of σ (1) corresponds to some

values of θ and ÃJ−1, which we now fix.

Rotate the coordinates z(1)

i , i = 2, . . . , J − 1, to new coordinates z̃(1)

i , where

z̃(1)
2 = f22(φ)ÃJ−1 + O(ρ) and z̃(1)

i = O(ρ) for i > 2, still with standard dependence.

Thus, z̃(1)
3 , . . . , z̃(1)

J−1 are coordinates in directions complementary to σ (1) (and of course

if J = 3, this latter part of the coordinate system is absent). The blowup is realized

by the new coordinates z(2)
0 = (z(1)

0 − e(1)
02 )/R and z(2)

i = z̃(1)

i /R, i = 3, . . . , J − 1. Define

e(2)
03 := e(1)

03 /κ1. Then, P(1) lifts to a map P(2) into E
(2)
J , which satisfies z(2)

0 = e(2)
03 + O(ρ) =

(e(2)
03 )′(θ)ÃJ−1 + O(ρ) and z(2)

i = (e(1)

i3 )′(θ)ÃJ−2 + (e(1)

i3 )′′(θ , ÃJ−1) + O(ρ), i ≥ 3. Here,
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(e(1)

i3 )′′(θ , ÃJ−1) is rational in ÃJ−1, with coefficients smooth in θ . The small difference

here is that the leading coefficients in the expansions in ρ of each of these new

coordinates is affine in ÃJ−2 instead of just linear. Both (e(1)

i3 )′ and (e(1)

i3 )′′ are determined

in terms of the location on σ (1)! We see from this that P(2)({ρ = 0}) is a bundle of two-

dimensional hemispheres over σ (1), now parametrized affinely rather than just linearly

by ÃJ−2. New coordinates at this step are as follows:

(R, φ, z(2)
0 , z̃(1)

2 , z̃(2)
3 , . . . , z̃(2)

J−1).

In general, there is a sequence of blowups

E
(j)
J = [E

(j−1)

J ; σ (j−1)], j = 1, . . . , J − 1,

along with the repeated lifted maps P(j) : � → E
(j)
J , where σ (j−1) = P(j−1)({ρ = 0}). This

corresponds to new coordinates

(R, φ, z
(j)
0 , z̃(1)

2 , z̃(2)
3 , . . . , z̃

(j−1)

j , z̃
(j)
j+1, . . . , z̃

(j)
J−1)

as follows. At each point of σ (j−1), the values of θ , ÃJ−1, . . . ÃJ−j+1 are fixed. At this jth

stage, we have

z
(j)
0 = (z

(j−1)

0 − e
(j−1)

0j )/R

∼ (e
(j)
0(j+1)

)′(θ)ÃJ−j+1 + (e
(j)
0(j+1)

)′′(θ , ÃJ−1, . . . , ÃJ−j+2) + O(ρ).

Because z
(j−1)

i depends affinely on ÃJ−j+1 for i ≥ j, we can rotate the coordinates z̃
(j−1)

i ,

i ≥ j, so that z̃
(j−1)

j = fjj(φ)ÃJ−j+1 + O(ρ), and z
(j−1)

i = O(ρ) for i > j. Thus, we can define

z
(j)
i = z

(j−1)

i /R. These coordinates are again affine in ÃJ−j, which guarantees that one

can proceed further in this iteration.

When j ≤ J − 2, the limiting set σ (j) is a bundle with fibers S
2
+ over σ (j−1),

and we continue as before. If j = J − 1, then σ (j) is a graph over and hence has

the same dimension as, σ (j−1). We blow this submanifold up and have coordinates

(zJ−1
0 , z̃(1)

2 , z̃(2)
3 , . . . , z̃(J−2)

J−1 ). The final step, when j = J, involves the new coordinate

z(J)
0 = (z(J−1)

0 − e(J−1)
0J )/R. Just as when J = 3 earlier, the lifted map

P(J) : (ρ, θ , Ã1, . . . , ÃJ−1) 7→ (φ, z(J)
0 , z̃(1)

2 , . . . , z̃(J−2)
J−1 ) (35)
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is a local diffeomorphism at ρ = 0; indeed, to leading order, z(J)
0 ∼ Ã1, z

(j−1)

j ∼ ÃJ−j+1, 2 ≤
j ≤ J − 1. Therefore, the limiting set σ (J) is open in the front face of E

(J)
J , and the map

P(J) is a local diffeomorphism at ρ = 0.

The goal of this entire construction has now been realized: we have (implicitly)

identified a finite number of real codimension 2 conic subvarieties Sj ⊂ AJ and the

space E
(J)
J and have demonstrated that if EA ∈ � \ ∂�, then EZ(t) = F−1(t EA) lifts to

a polyhomogeneous map [0, 1) → E
(J)
J , and this is a “slice” of a local diffeomorphism

� → E
(J)
J .

We emphasize that this description is “very” local, and in particular, we have not

tried to describe the behavior near the possible intersection of σb with other faces of EJ .

A careful understanding of such behavior is likely to be complicated and should involve

a more complicated set of blowups around the successive strata of SEb.

In any case, in terms of all of this, we can now define, locally in �, a suitable

family of conformal factors v( EA; z) as a fiberwise function on CJ . Our earlier calculations

produce the derivatives of v.

Recall the following definition.

Definition 6. For a manifold with corner M, a subset X is called a p-submanifold

if for any p ∈ X there is a neighborhood p ∈ U ⊂ M and local coordinates

{x1, . . . , xn, y1, . . . , ym} on U such that X ∩ U is given by {x1 = · · · = xn = 0}.

We have proved the following proposition.

Proposition 6. Fix any point q ∈ ∂� ⊂ AJ , and suppose that W is a subspace of

R
2J ∼= {∑J

ℓ=1 Aℓz
−ℓ, Aℓ ∈ C}. Then, there is a p-submanifold W ⊂ E

(J)
J containing P(J)(q)

such that the differential of the function v( EA; z) restricted to W is equal to the subspace

W.

6.3 The global parametrization

We now formulate the global version of this result. Let g0 be a spherical conical metric

with conic data p0 = (p1, . . . , pk) and Eβ0 = (β1, . . . , βk). We reindex so as to list the cone

angle parameters in decreasing order, that is, so that

β1 ≥ β2 ≥ · · · ≥ βk0
> 1 > βk0+1 ≥ · · · ≥ βk. (36)
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For each j ≤ k0, we allow pj to split into [βj] points, so altogether, there are

K = k +
k0∑

i=1

([βi] − 1) =
k∑

i=1

max{[βi], 1} (37)

points after splitting. For each j ≤ k0 choose splitting parameters EB(j) = (B
(j)
1 , . . . , B

(j)
[βj]

)

with
∑

i(B
(j)
i − 1) = βj − 1. We also set EB(j) = (B

(j)
1 ) = (βj), j > k0 and decompose the entire

set EB into clusters associated to each pj,

EB = (EB(1), . . . , EB(k)) ∈ (0, ∞)K , (38)

where each cluster EB(j) is interpreted as above. Points pi with i > k0 or βi < 2 do not

split. Same as the single cluster case, we require EB to avoid 1̂ = ∪k
j=1 ∪I 1̂

(j)
I , where

I = {i1, . . . , ip} ⊂ {1, . . . , [βj]} and 1̂
(j)
I = {EB :

∑
i∈I 2π(B

(j)
i − 1) = 0}. (That is, no subcluster

merge to a point with angle 2π .)

Definition 7. An angle vector EB ∈ (0, ∞)K is called admissible if it satisfies the

constraints above, and the set of all such EB is denoted B.

We next define a lift of p0, first to the point

(p1, . . . , p1, p2, . . . , p2, . . . , pk0
, . . . , pk0

, pk0+1, . . . , pk) ∈ MK ,

where each pj with j ≤ k0 is repeated [βj] times. Finally, we choose a lift of this point

to p̂ = (q(1), . . . , q(k)) ∈ EK(M), where each q(j) is a lift of (pj, . . . , pj) to the interior of the

central front face of E[βj]
for j ≤ k0. We can certainly assume that each q(j) lies in the

admissible set � = �(E[βj]
). (We are abusing notation slightly here, regarding each E[βj]

as a local factor in EK .) For j > k0, q(j) = pj ∈ E1(M) = M. Recall that the lift of p0 to

MK lies on the intersection of partial diagonals, where the blow up is done within each

local factor. That is, p̂ lies in a corner F0 ⊂ EK where locally there is a product structure,

and the factors are E[βj]
, j ≤ k0 and (k − k0) copies of M.

Analogous to the map F−1, we lift (one branch of) the initial map F−1 as follows.

Write C
K = ∏k0

j=1 C
[βj] ⊕ C

k−k0 , and define

F−1 : ( EA(1), . . . , EA(k0), A(k0+1), . . . , A(k)) → (Ez(1), . . . , Ez(k0), z(k0+1), . . . , z(k)),
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48 R. Mazzeo and X. Zhu

where

Ez(j) = F−1( EA(j)), j ≤ k0 and z(j) = −A(j), j > k0.

Taking each Ez(j) as the local coordinate in M [ Eβj] then F−1 lifts to

P(0) : AK → EK .

As in the local case, P(0) is not a diffeomorphism at ∂�, so we perform the

additional sequence of blowups in EK near p̂. Indeed, we replicate the iterative blowup

from the single-cluster case in each factor E[βj]
, j ≤ k0. When j > k0, we simply blow up

pj ∈ M in that factor. Because of the transversality, these operations can be performed

in any order. We call the final space ẼK ; it is locally given by

k0∏

j=1

E
([βj])

[βj]
×

k∏

j=k0+1

[M; {pj}],

and the final lift of F−1 is

P(K) :

k0∏

j=1

[C[βj]; 0] ×
k∏

j=k0+1

[C; 0] → E
(K)
K . (39)

This is a local diffeomorphism, including up to ∂�.

Proposition 7. Fix any point q on the front face of AK(M) := ∏k0

j=1[C[βj]; 0] ×
∏k

j=k0+1[C; 0], and not lying on the codimension two subvarieties T . Suppose further-

more that W is a subspace of

R
2K ∼=

k0∏

j=1

{
[βj]∑

ℓ=1

A
(j)
ℓ z−ℓ, A

(j)
ℓ ∈ C} ×

k∏

j=k0+1

{A(j)z−1, A(j) ∈ C}. (40)

Then, there is a p-submanifold W ⊂ ẼK containing P(K)(q) such that the differential of

the function v( EA; z) restricted to W equal the subspace W.

6.4 Examples of cone point splitting

We now illustrate the ideas and calculations above with some explicit calculations when

J = 1, 2 or 3. As before, we work locally in the disk near a single cone point.
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Example 1 2πβ0 ∈ (2π , 4π): In this simplest case, J = [β0] = 1, and hence the point p0

moves rather than splits. The family of conformal factors in this case is

v( EA; z) = log |z + A1|,

so, writing A1 = β
1/β0

0 (e′
1 + ie′′

1), this has infinitesimal variation

∂v

∂A1

(0) = 1
2ℜ(1/z), that is,

∂v

∂e′
1

(0) = cos θ r−1/β0 ,
∂v

∂e′′
1

(0) = sin θ r−1/β0 .

This computation is independent of the phase of A1.

Example 2 2πβ0 ∈ (4π , 6π): Now, p0 splits into 2 cone points with an admissible pair

of cone angles 2πB0
1 and 2πB0

2, that is, (B0
1 − 1) + (B0

2 − 1) = β0 − 1. Set 2
Bi

0−1

β0−1 = bi and

solve for the functions zi(
EA), i = 1, 2, such that

v( EA; z) = b1 log |z − z1( EA)| + b2 log |z − z2( EA)|

satisfies

log |P( EA; z)| = log |z2 + A1z + A2| = v( EA; z) + O(| EA|1+ǫ).

This leads to the system of equations

b1z1 + b2z2 = λ1 + λ2 = R1( EA) = −A1

b1z2
1 + b2z2

2 = λ2
1 + λ2

2 = R2( EA) = (A1)2 − 2A2.

Since b1 + b2 = 2, the restriction that Eb /∈ 1̂ = {Eb : b1 + b2 = 0} is vacuous. This system

has two solutions:

(
z(1)

1 , z(1)
2

)
=
(

−A1 +
√

((A1)2 − 4A2)b2/b1

2
,
−A1 −

√
((A1)2 − 4A2)b1/b2

2

)

and

(
z(2)

1 , z(2)
2

)
=
(

−A1 −
√

((A1)2 − 4A2)b2/b1

2
,
−A1 +

√
((A1)2 − 4A2)b1/b2

2

)
.
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The weighted discriminant locus SEb = {EA : 4A2 − (A1)2 = 0} is independent of Eb in this

special case and corresponds to solutions on the diagonal z1 = z2 = −A1
2 . The map

F : C2 → C
2, (z1, z2) 7→ (A1, A2)

is a 2-to-1 branched cover ramifying along the diagonal {z1 = z2}. Finally, the two

local inverses to F are given by the explicit formulæ above. These also imply that

|zi| ≤ C max{|A1|, |A2|1/2} for any fixed Eb. For the construction of E
(2)
2 , see previous

subsection.

Example 3 2πβ0 ∈ (6π , 8π) : Fix an admissible triple (B1
0, B2

0, B3
0), and set bi = 3

Bi
0−1

β0−1 ,

i = 1, 2, 3. The functions zi(
EA) in

v( EA; z) =
3∑

i=1

bi log |z − zi(
EA)|

satisfy the set of equations

∑
bizi =

∑
λi = −A1

∑
biz

2
i =

∑
λ2

i = (A1)2 − 2A2

∑
biz

3
i =

∑
λ3

i = −(A1)3 + 3A1A2 − 3A3.

If Eb /∈ 1̂, that is, bi + bj 6= 0 for i 6= j, these equations have 3! = 6 solutions in C
3,

counted with multiplicity. The map

F : C3 \ {partial diagonals} → C
3 \ SEb

is a 6-to-1 covering. Unfortunately, it is no longer so easy to find an explicit expression

for the weighted discriminant locus S(Eb) in this case.

However, in the special case that all bj = 1, the six solutions EZ(i) are the

rearrangements of the roots of the polynomial z3 + A1z2 + A2z + A3 = 0. The bound

max{|zj|} ≤ C max{|Ai|1/i} follows from the explicit formula for the roots of a cubic.
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We now compute the asymptotic expansions of zi. Write zi = ∑3
j=1 ρjcij + O(ρ4)

and plug into the equations (33), then we get

−Ã1ρ3 =
3∑

i=1

bi

[
ci1ρ + ci2ρ2 + ci3ρ3

]

−2Ã2ρ3 =
∑

bi

[
c2

i1ρ2 + 2ci1ci2ρ3 + (2ci1ci3 + c2
i2)ρ4

]

−3ρ3eiθ =
∑

bi

[
c3

i1ρ3 + 3c2
i1ci2ρ4 + (3c2

i1ci3 + 3ci1c2
i2)ρ5

]
.

Then, one can solve for cij iteratively as described above. Below, we give an explicit

computation for the case when all bi = 1.

We first solve for {ci1}3
i=1 that satisfy

∑

i

ci1 = 0,
∑

i

c2
i1 = 0,

∑

i

c3
i1 = −3eiθ .

We choose one of the six solutions (which come from permutations):

cj1 = −eiθ/3τ j, j = 1, 2, 3,

where τ = −1+
√

3i
2 . We then solve for {ci2} that satisfy

∑
ci2 = 0,

∑
2ci1ci2 = −2Ã2,

∑
3c2

i1ci2 = 0,

which gives

c12 = −1 + i
√

3

6
Ã2e−iθ/3, c22 = 3i +

√
3

3(−3i +
√

3)
Ã2e−iθ/3, c32 = 1

3
Ã2e−iθ/3.

Then, the equations for {ci3} are

∑
ci3 = −Ã1,

∑(
2ci1ci3 + c2

i2

)
= 0,

∑(
3c2

i1ci3 + 3ci1c2
i2

)
= 0,

which gives

c13 = c23 = c33 = − Ã1

3
.
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7 The Obstruction Subbundle and Projected Solutions

Our next step is to construct families of solutions of the Liouville equation modulo the

finite-dimensional space of eigenfunctions

E2 =
{
φ ∈ D

m,α
Fr (Mp0

) : 1g0
φ = 2φ

}
.

These will be called projected solutions. The remainder of the argument, in the next

section, consists in identifying the subfamilies that can be deformed to exact spherical

conic metrics.

The difficult questions surrounding the parametrization of K-tuples of points

by vectors EA described in the last section do not play a role here, so we are able to work

exclusively on EK and CK here and lift to ẼK and the corresponding space C̃K only at

the end.

7.1 The fibers near the central face

Following Section 6.3, consider a spherical cone metric g0 with conic data p0 =
(p1, . . . , pk) and Eβ. This uniquely determines an “exploded point”

q0 = (p1, . . . , p1︸ ︷︷ ︸
[β1]

, p2, . . . , p2︸ ︷︷ ︸
[β2]

, . . . , pk0
, . . . , pk0︸ ︷︷ ︸
[βk0

]

, pk0+1, pk0+2, . . . , pk) ∈ MK .

Any nearby point q ∈ MK determines a set of clusters q
(i)
j , i = 1, . . . , k0, j = 1, . . . , [βi],

where q(i)
1 , . . . , q(i)

[βi]
all lie in a small neighborhood of pi, along with the remaining

isolated points qi, i = k0 + 1, . . . , k, each lying near the corresponding point pi. The

set of lifts of q0 to EK fills out a corner

F0 :=
k0⋂

i=1

Fi
12...[βi]

⊂ EK , (41)

where Fi
12...[βi]

is the face arising from blowing up the partial diagonal {qi
1 = · · · = qi

[βi]
}.

We denote points on EK by q. The corresponding lift π−1
K (q) ⊂ CK (where πK : CK → EK )

is a union of hemispheres, each lying over F0, attached in succession to the punctured

surface Mp0
; cf. Section 3 and, for further details, [34].
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We fix a neighborhood U of F0 in EK and set V = π−1
K (U). If q ∈ U , then the fiber

π−1
K (q) contains, as one of its constituents, the surface M blown up at the points qj of

βK(q) ∈ MK . These points lie in two classes:

• when i > k0, the cone angles at the initial points pi are less than 2π , so the

corresponding points qi move without splitting;

• on the other hand, if i ≤ k0, then the cone angles at pi and at the points of

the associated cluster q
(j)
i , j = 1, . . . , [βj], which have split from pi, are greater

than 2π .

Fix an admissible set of cone angle parameters EB ∈ B (see Definition 7 for the

definition of being admissible). We now produce, for each q ∈ U , a spherical conic metric

gq,EB on the regular part of the fiber π−1
K (q) that solves the Liouville equation modulo a

certain finite-dimensional obstruction subspace.

In the following, we use weighted b-Hölder spaces C
m,α
b on each fiber; these are

the restrictions of the space C
m,α
b (CK) to that fiber; see [34, Lemma 5].

7.2 The 1st approximation

Fix a smooth (nonconic) metric h0 on M that is flat in balls Bj(ǫ) containing pj,

j ≤ k0. Next, define the family of (nonconstant curvature) conic metrics g1 = g1(EB, q),

parametrized by EB and q ∈ U , which equals g1 = e2v(EB,q)h0 in each Bj; here,

v(EB, q) =
[βj]∑

i=1

(B
j
i − 1) log |z − q

j
i|. (42)

We can arrange, for simplicity, that near each pj, j > k0, g1 is spherical with cone angle

2πBj. This family of metrics is polyhomogeneous on π−1
K (U); cf. [34, Theorem 1].

We next modify g1 to a new family g2(EB, q) = e2ṽ(EB,q)g1 that has the same conic

data but such that g2 is the original conic metric g0 on the constituent Mp0
in the

singular fiber π−1
K (q0). The function ṽ on π−1

K (U) is first determined on the central fibers

over F0 by the equation

e2ṽ(EB,q0)g1|Mp0
= g0 (43)

and then extended to be polyhomogeneous over the whole neighborhood V. We can also

arrange for this extension to satisfy ṽ(ρ) − ṽ(0) = O(ρJ+ǫ
j ) where ρj is the boundary

defining function of front face Fj corresponding to the cluster of βj and J = max{[βj], 1}.
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7.3 Projected solution family

We now solve the Liouville equation up to a finite rank error on all fibers near π−1
K (q0).

To do this, we first construct a vector bundle E2 over U ⊂ EK that extends the ℓ-

dimensional eigenspace E2 = ker(1g0
− 2) on Mp0

. Specifically, first, pull back E2 to a

trivial rank ℓ vector bundle on the face F0 lying over p0. Then, extend this trivial bundle

smoothly to U . This extension is not yet well adapted to the family of Laplacians, so we

arrange this next.

For any q ∈ U , consider the resolvent (1g2(q) − λ)−1 of the Friedrichs extension

of the Laplacian. By standard eigenvalue perturbation theory, there exists some small

ǫ > 0 so that, shrinking U if necessary, then the spectrum of 1g2(q) does not intersect

the loop γ = {|λ − 2| = ǫ}. We then define

5q = (2π i)−1

∫

γ

(1g2(q) − λ)−1 dλ;

this is an L2-orthogonal projector onto the sum of eigenspaces for all eigenvalues inside

γ . Its range E2 is a smooth rank ℓ bundle, with E2|q ⊂ D
m,α
Fr (Mπ(q)). Furthermore,

5⊥
q = Id − 5q projects onto the complementary finite codimensional subspace E2|⊥q ⊂

C
m,α
b (Mπ(q)).

Proposition 8. For each q ∈ U , there exists a unique u ∈ E
⊥
2 |q and f ∈ E2|q such that

1g2
u − e2u + Kg2

= f . (44)

Both u and f depend smoothly on q ∈ U .

Proof. By construction, if q ∈ U , the linearization in u of

(q, u) 7→ N(q, u) := 5⊥
q ◦ (1g2(q)u − e2u + Kg2

)

is an isomorphism 5⊥
qD

m,α
Fr (Mπ(q)) → 5⊥

q C
m,α
b (Mπ(q)). Furthermore, N(q0, 0) = 0. Since

N depends continuously on q, N(q, 0) remains small in norm for q ∈ U . Using the

invertibility of this linearization, a standard contraction argument produces both the

solution u and the error term f . Obviously, we could simply invoke the inverse function

theorem, but for the arguments in the next subsection, it is helpful to recall that this

relies on a contraction. �
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Fig. 5. Coordinates used in the computation of expansion near the singular fiber C12
⋃

Mp0
.

7.4 Polyhomogeneity of projected solution family

Proposition 9. The solution u to (44) is polyhomogeneous on CK .

The detailed proof of this same result for flat and hyperbolic metrics appears

in the lengthy [34, Section 6]. The present setting differs only very slightly because of

the finite corank projection. Hence, we shall sketch the argument only briefly since

the modifications needed are very minor. In fact, near conic points that do not split,

that proof carries over verbatim. Thus, we focus on a neighborhood of some point that

splits. For simplicity, we describe the proof in the simplest situation where one conic

point splits into two. The general case proceeds in the same way but more steps.

Lemma 6. If β1 ∈ (2, 3), which implies that p1 splits into two points, then the solution

family u is polyhomogeneous on CK .

Proof. We use the coordinates as labeled in Figure 5 and recall how we can produce

the successive terms in the polyhomogeneous expansion of the solution family.

Step 1: The initial metric. The metric g1(EB, q) = e2v(EB,q)h0 is flat near C12 ⊂ C2. This

is precisely the situation in [34, Equation (48)] (where this metric was called g0,p). Its

polyhomogeneity is proved there.
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Step 2: Expansion at the central face Mp0
∩ C12 in Mp0

. The solution of the curvature

equation on the central fiber Mp0

1g1
ṽ − e2ṽ + Kg1

= 0

provides the conformal factor ṽ on Mp0
in (43). The only difference with [34] is that here

e2ṽg1 = g0 is a priori fixed on the central fiber. Choosing appropriate local holomorphic

coordinates near the cone point, we obtain the expansion of ṽ on approach to this

boundary in Mp0
as in [34, Lemma 6], to get

ṽ|Mp0
∼
∑

j∈N0

ajr
2j.

Step 3: Expansion at the face Mp0
. We next extend ṽ away from this face and solve the

projected curvature equation near Mp0
but away from C12. This uses the invertibility of

operator (1g2
− 2)|Mp0

on E
⊥
2 ; cf. Proposition 8. Proceeding on as in [34], we obtain that

ṽ + u ∼
∞∑

j=0

sjũ′
j,

where, for j ≥ 1,

ũ′
j ∼

∑

ℓ∈N
rj+ℓajℓ0(φ) +

∑

ℓ,k∈N,ℓ≥0,k≥1

rj+ℓ+2kβajℓk(φ).

Compatibility with the previous step is the fact that ũ′
0 equals the function ṽ|Mp0

in Step 2.

Step 4: Expansion at C12. To extend to an expansion at C12, recall from [34] that

the writing things in terms of the projective coordinates near this face rescales the

linearized Liouville equation at C12 to the Laplacian for a flat conic metric on that face,

see [34, Lemmas 7–11]. The regularity theory for solutions of this equation yields

ṽ + u ∼
∑

α=j+2kβ,ℓ≤j

Rαsℓuαℓ(φ). (45)

Step 5: Polyhomogeneity on CK . Putting these steps together, we obtain the entire

expansion for u. What remains is to show that this is the actual asymptotic expansion

for the solution family we obtained earlier. In other words, we must show that the

difference of u and any finite partial sum of this expansion is conormal and vanishes
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at a rate just larger than the last term in this partial sum. This, too, is carried out in the

same way as in [34, Theorem 1]. �

The general case of Proposition 9 is proved along the same lines; cf. [34,

Theorems 2 and 3]. We extend the expansion iteratively on each of the faces along the

tower of hemispheres in the singular fibers of CK . Each step is carried out essentially

the same as in the two-point case above.

Now, let us return to the fact, discussed at the very beginning of this section,

that we actually need to consider solutions over the final iterated blowup ẼK rather

than just EK . More specifically, the extended configuration family CK can be lifted by

the blowdown map ẼK → EK to a space we call C̃K . There is a lifted map π̃K : C̃K → ẼK ,

and the added complexity is just in the base.

The fact that solution family u is polyhomogeneous already on CK immediately

implies that its lift π̃∗
Ku is polyhomogeneous on C̃K . This is the fact that will be needed

in the next section.

8 The Solution Space

The final step is to identify the points q ∈ EK where the error term f in (44) vanishes.

These correspond to the configurations of conic points such that the projected solution

g = e2ug2 is actually spherical. The way we do this is as follows. In the last section,

we found solutions up to a finite-dimensional error, so the problem reduces to one

of understanding when this error vanishes. Suppose, for the moment, that E2 is one-

dimensional and spanned by the eigenfunction φ for q ∈ U . The defect is then of the form

3(q)φq, where 3(q) is a scalar function. Clearly, 3 vanishes on F0 and we seek to compute

where it vanishes in the interior. We compute the derivative of 3 along any one of the

curves EZ(t) = F−1(t EA) discussed at length in Section 6. This derivative turns out to have

an exceptionally pretty form: it is given by a symplectic pairing between the asymptotic

coefficients of the eigenfunction φ and of the (flat) conformal factor v with the real and

imaginary parts of the constants EA. Of course, in order for this parametrization in terms

of EA to be nonsingular, we must pass from EK to ẼK . The end result is that the kernel of

this pairing (for fixed φ and v) determines a codimension one submanifold that meets

the front face F̃0 transversely. We also show that 3 vanishes only to 1st order along this

submanifold. Taken together, this establishes the existence of a smooth codimension

one submanifold in ẼK where the problem is solved exactly. If the rank of E2 equals
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ℓ > 1, the same considerations lead to the existence of a codimension ℓ submanifold of

exact solutions.

Suppose then that ℓ = 1, that is, the eigenspace E2 for g0 is one-dimensional, so

E2 is a (real) line bundle over U . As will become clear below, it is necessary to work over

the base ẼK , so we lift the solution family u, the neighborhood U , and the line bundle E2

up to this larger space via the blowdown map. If p is a K-tuple of points on M, possibly

with multiplicities, we write q for some point over it in EK and q̃ for a point over it in

ẼK . As usual, write [M; p] = Mp, and denote by φp the associated eigenfunction, which

is unique up to scale because ℓ = 1. We normalize it to have L2 norm 1. To simplify

notation below, v + ṽ = v̂; this depends on q ∈ U . Since Kg2
= 1g2

v̂ + e−2v̂Kh0
, we write

(44) as

1g2
u − e2u + 1g2

v̂ + e−2v̂Kh0
= 3qφq. (46)

This identifies the error term f as 3qφq for some 3q ∈ R. As above, we lift this equation

and all these functions up to ẼK . In particular, we regard 3q̃ as a function on Ũ .

Again for simplicity, we consider the special case where there is only one cluster

of points; we explain how to carry this over to the general case at the end.

Our goal is to find the entire locus where 3q̃ = 0. Note that 3q̃0
= 0 on the face

F̃0, so if there is an additional submanifold V that is transverse to this face and on that

3q̃ vanishes, then this function must vanish to 2nd order at V ∩ F̃0.

Differentiate 3q̃ with respect to q̃. For the moment, fix a nonzero vector EA ∈ C
K

as in (40), such that
∑

i |Ai|2 = 1, and let EA(t) = (tA1, . . . , tAK), be a path in C
K
A and Ã(t)

the lifted path in AK(M). We assume that Ã(t) intersects the front face AK(M) in the open

set � (i.e., the complement of the finite number of codimension two subvarieties) where

the lifted parametrization P(K) of ẼK by EA is nonsingular; see (35). Define γ (t) = P(K)(Ã(t))

to be the corresponding path in ẼK . Since γ (t) lies in the interior of ẼK for t > 0, we can

write γ (t) = Ez(t) = (z1(t), . . . , zK(t)) ∈ MK . Assume the 1st (z1. . . . , zJ) gives the cluster of

points.

We now use the chain rule to compute that the derivative of

v(γ (t)) :=
J∑

i=1

bi log |z − zi(t)| = log |zJ + t(A1zJ−1 + · · · + AJ)| + O(t1+ǫ),
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with respect to t equals

dv(γ (t))

dt
|t=0 = ℜ

J∑

ℓ=1

Aℓ

zℓ
.

Using dots to indicate infinitesimal variation with respect to t, and dropping

various subscripts (like q̃) to unclutter notation and recalling that e−2v̂1h0
= 1g2

, we get

(
−2 ˙̂v1g2

(u + v̂) + 1g2
(u̇ + ˙̂v)

)
− 2u̇e2u − 2 ˙̂ve−2v̂Kh0

= 3̇φ + 3φ̇.

Taking the inner product with φ and integrating yields

∫

M
−2 ˙̂v1g2

(u + v̂)φ dAg2
+
∫

M
1g2

(u̇ + ˙̂v)φ dAg2

−
∫

M
2u̇e2uφ dAg2

−
∫

M
2 ˙̂ve−2v̂Kh0

φ dAg2

= 3̇

∫

M
|φ|2 dAg2

+ 3

∫

M
φ̇φ dAg2

.

At any point on F̃0, q̂ projects to p0 and 3 = u = 0, so at this face,

3̇ =
∫

−2 ˙̂v(1g2
v̂)φ dAg2

+
∫

1g2
(u̇ + ˙̂v)φ dAg2

− 2

∫
(u̇ + ˙̂ve−2v̂Kh0

)φ dAg2
. (47)

By Green’s theorem,

∫

Mp

1g2

˙̂vφ dAg2
=
∫

Mp

˙̂v1g2
φ dAg2

+ lim
ǫ→0

∫

r=ǫ

( ˙̂v∂rφ − ∂r
˙̂vφ
)

r dθ .

Inserting this into (47) and using the two equalities 1g2
φ = 2φ and −1g2

v̂+1−e−2v̂Kh0
=

0 (since Kg2
= Kg0

= 1), we see that almost all terms cancel and we are left simply with

3̇ =
∫

(1g2
u̇ − 2u̇)φ + lim

ǫ→0

∫

r=ǫ

( ˙̂v∂rφ − ∂r
˙̂vφ
)

r dθ . (48)

We now show that the 1st term vanishes, that is,

lim
q̃→q̃0

∫
(1g2

u̇ − 2u̇)φ = 0. (49)

For this, we use the expansion of u from the previous section. Recall that if ρ is a

boundary defining function for F̃0, then ρ = t1/J .
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Let u′ = ∂u
∂ρ

, and note that u̇ = u′(∂ρ/∂t) = J−1u′t1/J−1. We claim that

∫
(1g2

u′ − 2u′)φ = O(ρJ−1+ǫ). (50)

If this is true, then by the chain rule,

lim
t→0

∫
(1g2

u̇ − 2u̇)φ = lim
t→0

∂ρ

∂t

∫
(1g2

u′ − 2u′)φ = 0

since the variables ρ and t are constant on the fibers of C̃K and hence commute with

1g2
.

We now prove the claim (50). Observe first that

∫
(1g2

− 2)u′φ = lim
ǫ→0

∫

r=ǫ

(u′∂rφ − ∂ru′φ)r dθ +
∫

u′(1g2
− 2)φ.

The integral in the middle vanishes since u′ decays sufficiently near each cone point.

On the other hand, the integral on the right equals
∫

u′(λ − 2)φ, so it suffices to show

that the function ρ 7→ λ(ρ) satisfies

λρ − 2 = O(ρJ), (51)

where λρ = ∂ρλ. We prove this by inductively showing that each of the 1st J − 1

derivatives of λ vanish at ρ = 0. This in turn relies on the following lemma.

Lemma 7.

∂kv̂

∂ρk
(0, z) ≡ 0, k = 1, . . . , J − 1.

Proof. We initially extended ṽ from the front face so that ṽ(ρ, z) − ṽ(0, z) = O(ρJ+ǫ).

Thus, it suffices to prove the vanishing of the 1st J − 1 derivatives of the flat conformal

factor v.

Recalling

v(ρ) = log |zJ + ρJ(A1zJ−1 + · · · + AJ)| + O(ρJ+ǫ),
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then direct computation gives that

∂kv

∂ρk
= J!

(J − k)!
ρJ−k ℜ

J∑

ℓ=1

A1zJ−1 + · · · + AJ

zJ + ρJ(A1zJ−1 + · · · + AJ)
+ O(ρJ−k+ǫ),

and this clearly vanishes at ρ = 0 when k ≤ J − 1. �

Now, let us prove the corresponding fact for the eigenvalue. Differentiate the

equation

(1g2
− λ)φ = 0, g2 = e2v̂h0

with respect to ρ; this gives

(−2v̂ρ1g2
− λρ)φ + (1g2

− λ)φρ = 0.

As in [34], the eigenfunction φ is polyhomogeneous on CK and hence lifts to be

polyhomogeneous on C̃K . Now, multiply this expression by φ and integrate to get

λρ = −
∫

2λv̂ρ |φ|2. (52)

Using v̂ρ |ρ=0 = 0, we obtain λρ(0) = 0.

Similarly, taking another derivative gives

λρρ = −2λρ

∫
v̂ρ |φ|2 − 4λ

∫
v̂ρφφρ − 2λ

∫
v̂ρρ |φ|2,

so by Lemma 7 again, λρρ(0) = 0. More generally,

dkλ

dρk
= −2

∑

k1+k2+k3=k−1

ki≥0

(∂k1
ρ λ) (∂k2+1

ρ v̂) (∂k3
ρ (|φ|2)).

Evaluating at ρ = 0 and assuming by induction that ∂
j
ρλ(0) = 0 for j ≤ k − 1, the only

terms remaining in the expression above are those with k1 = 0. However, in that case,

k2 + 1 ≤ k − 1 so ∂
k2+1
ρ v̂(0) = 0 and all terms in the sum vanish.
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We now obtain from (48) and (49) that

3̇ = lim
ǫ→0

∫

r=ǫ

( ˙̂v∂rφ − ∂r
˙̂vφ
)

r dθ . (53)

To evaluate this more explicitly, we next show that only v̇ (in the decomposition ˙̂v = ˙̃v+v̇)

contributes. Indeed, this follows by differentiating ṽ(ρ)− ṽ(0) = O(ρJ+ǫ) = O(t1+ǫ′
) with

respect to t. We conclude that

3̇ =
∑

pj

lim
ǫ→0

∫

{r=ǫ}
(v̇∂rφ − φ∂rv̇) r dθ . (54)

(The sum indicates that we must sum the appropriate quantity over all conic points.)

Suppose first that βj > 1. Then,

φ ∼
[βj]∑

ℓ=0

(a′
ℓ cos(ℓθ) + a′′

ℓ sin(ℓθ))rℓ/βj + O(r1+ǫ),

v̇ ∼
[βj]∑

m=0

[e′
m cos(mθ) + e′′

m sin(mθ)]r−m/βj + O(rǫ),

(55)

where (22) relates {e′
m, e′′

m} to {Ai : i = 1, . . . , [βj]}. A brief computation then shows that

this integral equals

2π

[βj]∑

ℓ=1

ℓ(a′
ℓe

′
ℓ + a′′

ℓe′′
ℓ)

in the limit as ǫ → 0.

On the other hand, when βj < 1,

φ ∼ c′
j0 + [c′

j1 cos(θ) + c′′
j1 sin(θ)]r1/βj + O(r2),

v̇ ∼ d′
j0 + [d′

j1 cos(θ) + d′′
j1 sin(θ)]r−1/βj + O(rǫ),

(56)

and this leads to the contribution

2π(c′
j1d′

j1 + c′′
j1d′′

j1).
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We have now proved the formula

3̇ = 2π

k0∑

j=1

[βj]∑

ℓ=1

ℓ(a′
jℓe

′
jℓ + a′′

jℓe
′′
jℓ) + 2π

k∑

j=k0+1

(c′
j1d′

j1 + c′′
j1d′′

j1). (57)

The key feature of (57) is the fact that the eigenfunction φ determines the

constants {a′
jℓ, a′′

jℓ} and {c′
j1, c′′

j1}. We prove below that if these all vanish, then φ = 0.

Assuming that, then the equation 3̇ = 0 defines a codimension 1 subspace of the data

(e′
jℓ, e′′

jℓ, d′
j1, d′′

j1) for v. Both sets of data lie in R
2K , K = ∑k0

j=1[βj] + (k − k0).

If the dimension of E2 has dimension ℓ > 1, the computation is similar. Since

E2 is smooth, there exists a local smooth orthonormal basis {φ1, . . . , φℓ}, and the error

term fq̂ in (44) is a linear combination of these sections at every point q̂. Calculating the

derivative ḟ along any curve EZ(t) emanating from q̃0 just as before and pairing with each

element of this basis at q̃0 ∈ F̃0, we see that

∫

M
ḟ φi dAg2

= lim
ǫ→0

∫

{r=ǫ}
(v̇∂rφi − φi∂rv̇) r dθ . (58)

Each φi has an expansion as in (55) with coefficients {a′
jim, a′′

jim}, j = 1, . . . , k0, and an

expansion as in (56) with coefficients {c′
jim, c′′

jim} when j > k0. Similarly, v̇ has expansions

with coefficients {e′
jm, e′′

jm} and {d′
jm, d′′

jm} for j ≤ k0 and j > k0, respectively. The same

computation shows that the infinitesimal variation of f vanishes provided

0 = 2π




k0∑

j=1

[βj]∑

m=1

m(a′
jime′

jm + a′′
jime′′

jm) +
k∑

j=k0+1

(c′
ji1d′

j1 + c′′
ji1d′′

j1)


 (59)

for each i = 1, . . . , ℓ.

We summarize all of this in the following definition.

Definition 8. Fix any basis φ1, . . . , φℓ for E2, and define the coefficient pairs (a′
jim, a′′

jim)

in the expansion for φi near each pj, j = 1, . . . , k0 and triples (cji0, c′
ji1, c′′

ji1) near pj with

j > k0. Suppose that v̇ ∈ r−1/βkC
ℓ,δ
b (Mp0

) ∩ Aphg, with coefficient pairs (e′
jm, e′′

jm) for each

j = 1, . . . , k0 and m ≤ [βj] and triplets (dj0, d′
j1, d′′

j1) for pj with j > k0.
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Define the bilinear form B : R2K × E2 → R,

B(φi, v̇) =
k0∑

j=1

[βj]∑

m=1

m(a′
jime′

jm + a′′
jime′′

jm)

+
k∑

j=k0+1

(c′
ji1d′

j1 + c′′
ji1d′′

j1), i = 1, . . . , ℓ.

(60)

We say a vector v̇ is a solution if B(φi, v̇) = 0 for i = 1, . . . , ℓ. Denote the vector

space of all such v̇ as V.

Our next goal is to prove that ℓ = dim E2 is not too large.

Lemma 8. Let g0 be a spherical cone metric on M = S
2 with k ≥ 3 cone points. If

(1g0
− 2)φ = 0, that is, φ ∈ E2, and furthermore, near each pj, φ = const. + O(r1+ǫ), then

φ ≡ 0.

Proof. We restate the assumption as saying that near a cone point with βj > 1 all

coefficients of the terms rm/βj vanish, m = 1, . . . , [βj]. The proof of [33, Proposition 13]

can then be applied verbatim. Indeed, recall the absence of these terms validates the

integration by parts

∫

M
〈11 dφ, dφ〉 =

∫

M
(|∇ dφ|2 + | dφ|2);

here, 11 = ∇∗∇ + 1 is the Hodge Laplacian for 1-form. Next, using 11dφ = d1φ = 2dφ

and the Cauchy–Schwarz inequality, |∇dφ|2 ≥ 1
2 |1φ|2, we see that

2‖dφ‖2 =
∫

M
〈d10φ, dφ〉 =

∫

M
〈11 dφ, dφ〉 =

∫

M
(|∇ dφ|2 + | dφ|2)

≥
∫

M
(
1

2
|1φ|2 + | dφ|2) =

∫

M
(
1

2
〈11 dφ, dφ〉 + | dφ|2) = 2‖ dφ‖2.

Hence, the inequalities are actually equalities, so |∇dφ|2 = 1
2 |1φ|2 = 2|φ|2, that is, the

Hessian of φ is pure trace:

∇dφ = −1

2
1φ · g = −φ · g.
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If J is the complex structure on M, then define the vector field J∇φ. For any

vector fields X, Y on M,

LJ∇φg(X, Y) = (J∇φ)g(X, Y) − g([J∇φ, X], Y) − g(X, [J∇φ, Y])

= g(∇J∇φX − [J∇φ, X], Y) + g(X, ∇J∇φY − [J∇φ, Y])

= g
(
∇X(J∇φ), Y

)
+ g

(
X, ∇Y(J∇φ)

)

= −g(∇X∇φ, JY) − g(∇Y∇φ, JX)

= −(∇dφ)(X, JY) − (∇dφ)(Y, JX)

= φ · [g(X, JY) + g(Y, JX)] = 0,

that is, ∇φ is a Killing field on Mp. It also extends over each pj as a conformal Killing

field since it vanishes at these points. However, no such field exists since k ≥ 3. Hence,

∇φ ≡ 0 and so φ is constant, but 1φ = 2φ so φ ≡ 0. �

Lemma 9. Let (M, g0) be a spherical cone metric with k ≥ 3 conic points (so M is not a

spherical football). Then, the rank of the linear system is precisely ℓ, hence ℓ = dim E2 ≤
2K0 where K0 = ∑k0

j=1[βj]. Furthermore,

• if ℓ < 2K, then there is a (2K − ℓ)-dimensional space of solutions

(e′
jm, e′′

jm, d′
j1, d′′

j1) in V ⊂ R
2K ;

• if ℓ = 2K0 = 2K (so k0 = k), then V is trivial.

Proof. To prove the 1st assertion, suppose that ℓ > 2K0. Then, there exists some linear

combination of elements in E2 that vanishes like r1+ǫ modulo constants for each pj,

j ≤ k0. However, as we have just shown, any such φ vanishes identically, which is a

contradiction. The remaining statements are elementary. �

Remark. When (M, g0) is a spherical football of angle 2πβ, then by direct computation,

K0 = 2[β], so

k0 = 0, K = 2, if β < 1; k0 = 2, K = 2[β], if β ≥ 1.

Since ℓ = 1 if β /∈ N and ℓ = 3 if β ∈ N, the football always lies in the 1st case above,

with ℓ < 2K.
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We now state our final and main theorem. Recall from Definition 6 in Section

6.2 the definition of p-submanifolds, and from Definition 7 in Section 6.3 the set B of

admissible angles.

Theorem 4. Let (M, g0) be a spherical cone metric. With all the notation as above, and

in particular, setting

K0 =
k0∑

j=1

[βj], K =
k∑

j=1

max{[βj], 1} = K0 + (k − k0),

then

a) (The unobstructed case) if 2 /∈ spec (1g0
), there is a smooth neighborhood

in the space of spherical cone metrics around g0 parametrized by (s, p, Eβ) ∈
Metcc × (Ek)◦ × R

k
+;

b) (Partial rigidity) if 1 ≤ dim E2 = ℓ < 2K, then for any EB ∈ B and s ∈ Metcc near

the dataset for g0, there exists a 2K − ℓ dimensional p-submanifold X ⊂ ẼK

such that for each point q̃ ∈ X, there exists a spherical cone metric, that is,

a solution to K(e2uh0) − 1 = 0; this family of solutions depends on a choice

of a branch of roots as described in Section 6, but given that choice, locally

unique for the specific conic data;

c) (Rigidity) if K0 = K and ℓ = 2K0, then for any EB ∈ B and s ∈ Metcc, there

is a neighborhood U ∈ ẼK such that p0 is the only configuration admitting

a spherical cone metric. In other words, there is no nearby spherical cone

metric obtained by moving or splitting the conic points of g0.

Remark. We have not explicitly stated the smooth dependence of these solutions on

the underlying smooth conformal class. Indeed, this is a bit complicated since even if

a given conic metric (M, g0) is obstructed, that is, 2 is in the spectrum of its scalar

Laplacian so we are case b), then for generic nearby classes and conic metrics, 2 will

no longer be in the spectrum. More generally, if the multiplicity of the eigenvalue 2 is

ℓ, there is a local stratification of the space of nearby conic metrics according to the

multiplicity of this eigenvalue. The family of solution metrics is smooth within each

stratum. However, this is somewhat subtle and we do not prove this here.

Proof. Case 1 is just Theorem 3.
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Next, for prove Case 2, we show that the set of configurations q̃ ∈ ẼK near q̃0

for which the error term f in (44) vanishes is a p-submanifold. Since ℓ < 2K, there is

a (2K − ℓ)-dimensional subspace V ∈ R
2K for which ḟ (0) = 0. In terms of the map P(K)

from (39), we define

E3 : AK → E2, Ã 7→ E3(P(K)(Ã)).

The computation in (60) determines the 2K − ℓ dimensional kernel of d E3.

The front face of AK is locally diffeomorphic to F̃0. Writing the error f = ∑
3iφi,

then near this front face, then by the computation leading to (60), for each i,

3i = t3̇i(0) + O(t1+ǫ);

hence,

(3i/t)|t=0 =
k0∑

j=1

[βj]∑

m=1

m(a′
jime′

jm + a′′
jime′′

jm) +
k∑

j=k0+1

(c′
ji1d′

j1 + c′′
ji1d′′

j1)

on this front face. Note that E3(t) = 0 on the face F̃0, so if there is an additional

submanifold X that is transverse to this face and on which E3(t) vanishes, then this

function must vanish to 2nd order at X ∩ F̃0. If we could show that E3/t changes sign

when crossing a submanifold on F̃0; hence, there exists such a p-submanifold X where

3 = 0. Since the projectivisation of {Ex = (e′
∗, e′′

∗, d′
∗, d′′

∗)} give coordinates on this front

face, we conclude that there exist directions such that ∂x( E3/t) = 0, and other directions

for which ∂x( E3/t) 6= 0.

The implicit function theorem now provides the existence of a p-submanifold in

ẼK , as claimed.

Finally, Case 3 is almost the same as Case 2. Here, the linear system (60) has no

nontrivial solutions, so d E3 is invertible, and the conclusion follows from the inverse

function theorem. �

Remark. Case 2 definitely can occur. The reader is referred to [46], which discusses the

example of two glued footballs. There the dimension of E2 is positive but not maximal.

We are not aware of any examples which fall under Case 3, but it is not excluded by any

results at present.
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Proposition 10. In Cases 1 or 2 above, the solution u(s, EB, q̃) lies in C
m,α
b (C̃K) for all m

and is polyhomogeneous on C̃K .

Proof. This follows from Proposition 9. The solution modulo the obstruction bundle

is polyhomogeneous, hence so is its restriction to any smooth p-submanifold. However,

the restriction to the particular p-submanifold identified in this theorem corresponds

to the family of actual solutions. �
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