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We continue our study, initiated in [34], of Riemann surfaces with constant curvature
and isolated conic singularities. Using the machinery developed in that earlier paper
of extended configuration families of simple divisors, we study the existence and
deformation theory for spherical conic metrics with some or all of the cone angles
greater than 27. Deformations are obstructed precisely when the number 2 lies in the
spectrum of the Friedrichs extension of the Laplacian. Our main result is that, in this
case, it is possible to find a smooth local moduli space of solutions by allowing the cone

points to split. This analytic fact reflects geometric constructions in [37, 38].

1 Introduction

We shall study the following problem: given a compact Riemann surface M, a collection
of distinct points p = {p;,...,px} C M, and a collection of positive real numbers
Bis---, Py, is it possible to find a metric g on M with constant curvature and with conic
singularities with prescribed cone angles 27 g; at the points p;? If there is a solution, the

sign of its curvature is the same as that of the conic Euler characteristic

k
X(M, B) = x (M) + D (8 — 1), (1)

j=1
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2 R. Mazzeo and X. Zhu

by virtue of the “conic” Gaull-Bonnet formula
/ KdA =27 x (M, B).
M

We always normalize by assuming that K € {—1,0, 1}.

When x (M, B) < 0, the existence and uniqueness of solutions for any B € Rﬁ is
easy to prove using barrier arguments [35]. The spherical case, K = 1, has proved more
challenging, and many questions remain open. For cone angles lying in (0, 2r), Troyanov
[42] discovered an auxiliary set of linear inequalities on the B; that are necessary and
sufficient for existence; later, Luo and Tian [28] proved the uniqueness of the solution
in this angle regime. When M # S?, existence was recently proved by Mondello and
Panov [38] for any B with x (M, ,5) > 0, at the expense of not being able to specify
the conformal class on M; see also [1]. When M = S2, the same two authors [37] gave
necessary conditions on f for existence, again in the form of a set of linear inequalities,
and proved existence in the interior of this region. In this case, one is unable to specify
the marked conformal class, that is, the location of the points p on S2. In either of
these settings, uniqueness sometimes fails. We also wish to understand the deformation
theory, that is, how solutions depend on the “conic data”, that is, the conformal class,
the set p, and the cone angle parameters . This is understood when x (M, 5) < 0 and
also in the spherical case when all ﬂj < 1[33, 34]. However, for all of these questions, the
complete story in the spherical case with at least some of the cone angles greater than
27 still has many gaps. We review the history and further literature for this problem in
Section 2.

The main results in this paper provide new perspectives and insight into these
existence and moduli questions and indicate potential new intricacies. Our focus in this
paper is the local deformation theory for this problem, following the work of the Mazzeo
and Weif3 [33], but relying heavily on the geometric tools developed in our earlier paper
[34]. More specifically, suppose that g is a spherical cone metric on M with “conic data
set” 0,.(g) = {c,p,E}: ¢ is the conformal class of g on M, p = {p;,...,py} is an ordered k-
tuple of points on M, and g has a conic singularity with cone angle 278; atp;,j=1,...,k.
We consider the question of whether all nearby data sets {¢/,p’, 8’} are attained by nearby
spherical cone metrics and whether these metrics depend smoothly on these conic data
sets.

In this paper, we consider these questions at the “premoduli” level, that is, before
taking the quotient by the relevant diffeomorphism group. Indeed, an important feature

of the work below involves analyzing families of solutions when the k-tuples of points
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Conical Metrics on Riemann Surfaces II 3

either merge or split, and there are subtleties in passing to the diffeomorphism quotient
in these circumstances. A careful discussion of this problem is deferred to elsewhere.
Thus, we associate to g its unreduced conic data set 0(g); this consists of the triple
{s(g),p, B} where s(g) is the smooth constant curvature metric (normalized to have area
|27 x (M)] when x() # 0 and area 1 when (M) = 0) in the (unmarked) conformal
class of g, and as before, p and § indicate the locations of the conic singularities
and the cone angles. We denote by 9let,, the Banach manifold of all smooth constant
curvature metrics; this is infinite-dimensional since we are not taking the quotient by
diffeomorphisms. Each k-tuple p lies in the k-fold product M* away from any of the
partial diagonals. As we explain in Section 3, this open set in MF is identified with the
interior of the “extended configuration space” & . Altogether then, unreduced conic data
sets lie in 9Met,, x int &, x RX. In the following, we usually refer to unreduced conic data
sets simply as conic data sets.

Our 1st result is a consequence of the analysis in [33].

Theorem 1. Let g be a spherical cone metric as above with conic data set d(g). Let
A, denote the Friedrichs realization of the scalar Laplace-Beltrami operator associated
to g. If 2 ¢ spec(Ay), then the premoduli space of spherical cone metrics is a smooth
Banach manifold near g that projects diffeomorphically to an open set in the space of

data sets Met,, x int&, x RX containing 2(g).

When all g; < 1, the premoduli space of spherical cone metrics is globally
diffeomorphic to the space of data sets where the g; satisfy the Troyanov condition
(6); see [33]. For larger cone angles, one might expect the moduli space of spherical cone
metrics to “fold”, for example, the projection from the space of solutions to the space
of data sets may no longer be one-to-one. If the moduli space is a smooth manifold,
one might even expect to use degree theory to take a signed count of solutions, thus
quantifying the lack of uniqueness. Our main result indicates that the (pre)moduli space
is not a smooth manifold, but only stratified, which means that any such enumeration of
solutions may be difficult. The key problem is that the deformation theory is obstructed
when 2 € spec (Ag). We show that this spectral condition is unavoidable. In fact, the
set of cone angle data 8 for which there exists a solution metric with 2 in the spectrum
is unbounded in (R™)*. Furthermore, if this spectral condition holds, then there are
explicit examples that exhibit that the local deformation theory is obstructed; see [47].
Our main result is that even if 2 does lie in the spectrum, there is an unobstructed

deformation space if we allow for more drastic deformations that permit the individual

1202 Iudy Lz uo1senb Ag Gz 191971 LOgeul/ulwl/c601 "0 L /I0p/8]ole-e0ueApe/uIwl/wod dnoolwapede//:sdiy wolj papeojumo(



4 R. Mazzeo and X. Zhu

points p; to “splinter” into a collection of conic points with smaller cone angles. This
splitting of cone points already appears in the purely geometric arguments in [37] but
enters our analytic arguments in an apparently different way.

An alternative perspective on our work here is that we determine the behavior
of families of spherical cone metrics as the underlying marked conformal structure
degenerates in the sense that various subcollections of points coalesce.

To state the following theorem, we introduce some notation. Fix a k-tuple
Py € M* with p; # p; for all i,j. Choose positive integers N;, i = 1,...,k, and set
K = N; + ... + N; (see Theorem 2 below for their definition). Define a new K-tuple
q=1{q,,.-.,qg} by repeating the point p; N, times, p, N, times, and so on. This point q
lies in some intersection of partial diagonals in MX. The extended configuration space
&g is aresolution of MX obtained by blowing up these partial diagonals (see Section 3 for
a precise definition) and there is a boundary face F;, of & (it is a boundary hypersurface
if only one N; > 1, and a corner otherwise) that lies above q. As we describe carefully in
Section 6, it turns out to be necessary to perform an additional set of blowups on &,
leading to a slightly larger space gK. We then consider points g lying in the interior of
the front face FO of this new space over the point g.

We also specify the choice of cone angle parameters for these extended sets of
points. Let B be the angle parameter vector for p; we say that the K-tuple Be RNHX is

admissible if the Gauf3-Bonnet sum is preserved, that is,

Ny +---+Nj

Bi—1= D> B-D, (2)

i=Ny+-+Nj_1+1

and no subcluster merge to 2r (see Definition 7 for details.) We then fix any admissible
B as the set of cone angle parameters for K-tuples q’ near q.

Our main result can now be stated, albeit slightly imprecisely.

Theorem 2. Let g be a spherical cone metric with conic data set 0(g) = (s(g), p, ,5) and
suppose that 2 € spec (Ag). Define K = Z}Ll N; where N; = max{[B], 1}, and consider all
points §’ e gK that lie in a small neighborhood of the point g, that is, the (not necessarily
distinct) points g, N;+1 <i < N;,, liein a small cluster around the point p;. Let s5(g) be
a conformal structure close to s(g) and B an admissible K-tuple of cone angle parameters
for the points ¢'. Then, there exists a p-submanifold X C gK containing g, the tangent
space of which at g is determined by data drawn from the elements of the eigenspace of

Ay with eigenvalue 2, and a diffeomorphism from X to the premoduli space of spherical
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Conical Metrics on Riemann SurfacesII 5

cone metrics with K cone points near g with cone angle parameters B and background

conformal class s(g)’.

The more precise statement will require further definitions. The idea is simply
that, having fixed B, there is a “good” space X of K-tuples of conic points g that arises
by splitting various of the individual cone points in p into small clusters. The locations
of these clustering families is encoded by the configuration space gK To say that X
is a p-submanifold means simply that it intersects the boundaries and corners of gK
cleanly. We are thus asserting that for a given B and s(g)’, there exist smooth families of
spherical cone metrics g’ near to g and with conic points at the K-tuples ¢’ near (in the
sense of merging) to p if and only if §' € X C gK.

Key tools here are the use of the extended configuration spaces & (and later, EK),
as well as the associated extended configuration families Cy; these were defined and
studied in great detail and play a central role in our earlier paper [34]. We review their
geometry carefully in Section 3 but refer to [34] for a more definitive treatment. For now,
however, we recall that each £ is a manifold with corners, which is a compactification
of the open set in MX consisting of all distinct ordered K-tuples {p;,...,pg}; Cx is a
universal curve over this configuration space in the sense that it, too, is a manifold with
corners equipped with a singular fibration over &£. Over the interior of &, the fiber of
any {p;,....pg} is a copy of M blown up at these K points. The heart of our method is to
construct families of fiberwise metrics on Cx solving the curvature equation to infinite
order at the faces of Cr, which correspond to the collapse of a K-tuple {q;,..., gy}
to a k-tuple {p;,...,p;}. We also show that the infinitesimal deformations of these
approximate solutions fill out the cokernel of the linearization. This main result then
follows from the implicit function theorem (see Sections 7 and 8).

The geometry of these spaces is quite complicated, but they capture rather
complete information about families of constant curvature conic metrics. For example,
one of the main results of [34] states that when x (M, ,5) < 0; hence, solutions exist
for all choices of data sets, then the solution families are polyhomogeneous, that is,
maximally smooth, as a family of fiber metrics on C;. The analogous regularity holds
in this spherical setting too. Our methods for analyzing the family of conic Laplacians
on the fibers of Cyp should be useful in other problems involving families of elliptic
operators with merging regular singularities.

This paper is organized as follows. In Section 2, we give a review of existing
literatures on spherical conic metrics. In Section 3, we describe the two configuration

spaces & and Ci. In Section 4, we discuss the mapping and regularity properties of
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6 R. Mazzeo and X. Zhu

the linearized Liouville operator, and in particular, we prove the deformation theory
in the unobstructed case when 2 ¢ spec (Ag). In Section 5, we describe the locus of
degenerate spherical conic metrics and show there are many spherical cone metrics
with 2 in the spectrum of Ag. In Section 6, we describe the local and global behaviors
of the families of metrics with cone points splitting into clusters that generate a
family of functions that will unobstruct the main deformation problem. We also
show the construction of spaces 5~K and Cg, which is necessary to desingularize the
parametrization. In Section 7, we construct projected solutions that solve the Liouville
equation modulo the finite-dimensional space of 2-eigenfunctions and show that these
solutions are polyhomogeneous on the configuration spaces. In Section 8, we finally
identify those configurations of conic points on fK that remove the error from Section
7 determined asymptotically by a symplectic pairing formula using eigenfunctions and
functions generated by splitting of cone points from Section 6, therefore proving the

final deformation theorem.

2 Spherical Conic Metrics

We now review at least some of the rather extensive history of the study of spherical
conic metrics. These fundamental objects have the beguiling feature that they arise in
many places in mathematics and may be approached from many different points of view,
including synthetic geometry, complex analysis, theory of character varieties, calculus
of variations, and other methods of geometric analysis.

As noted earlier, it is quite easy to prove [35] that there exist hyperbolic or flat
conic metrics with any prescribed data sets {5,p,,5}, where the sign of x (M, ,5) <0
determines the curvature K € {—1, 0}. Recall that, as in the introduction, s is a smooth
constant curvature metric uniformizing its conformal class, p = {p;,...,px} is a k-tuple
of distinct points on M and § € Rﬁ. Indeed, let hy be a smooth uniformizing (nonconic)
metric representing any given conformal structure on M. Then, this problem reduces to

solving Liouville’s equation:

Ah0u+KhO _Kezu =0, (3)
where

A =—divV
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Conical Metrics on Riemann Surfaces II 7

and K, and K are the Gauss curvatures of g, and g = e?“h,. The conic singularities

arise from the “boundary value”
uiz) =B -1 log|z| + O(1) near pj (4)

where z is a local holomorphic coordinate centered at p;. Nonpositive curvature of hg
makes the signs favorable so that one can find solutions by the method of barriers.

As already explained, first in [33] and then in [34], the deformation theory is
unobstructed in these two cases. (Actually, when K = 0, there is a minor issue related to
indeterminacy of scale that can be remedied by an area normalization.) This means that

if g is any hyperbolic or flat conic metric, and if we assign to g its conic data

2g) = {5(9), p, B}, (5)

then for any data set near to this given one (subject to the constraint that y (14, B) either
remains negative or remains equal to 0), there exists a unique solution of the problem
with the same curvature, and this solution depends smoothly on these data. The point
of view in [33] is that if we fix the area, then as the cone angles vary the solution may
change smoothly from hyperbolic to flat to spherical. This argument relies only on the
surjectivity of the scalar operator A, —2K, which is obvious when K = —1, and true once
we factor out the constants when K = 0. In [33], it is shown that this operator is also
invertible when K = +1 provided the cone angles are all less than 27, so that the moduli
space of solutions is smooth in this case too. As we show below, these arguments can be
extended to handle the case of spherical cone metrics for which some or all of the angles
are greater than 27 provided we assume that Aj — 2 is invertible, that is, provided that
2 ¢ spec (Ag).

On the other hand, 2 often does lie in the spectrum. For example, if F : M — S2
is a branched cover and g, is the round metric on S?, then F*g, is a spherical conic
metric on M, where the ramification points and ramification indices give the cone
points and cone angles (which are therefore all integer multiples of 2x). If ¢ is an
eigenfunction of the Laplacian on S? with eigenvalue 2, then F*¢ is an eigenfunction
on M for the Friedrichs extension of Ag, also with eigenvalue 2. As another example,
the football, with any cone angle, has eigenvalue 2, as do certain connected sums along
short geodesics of footballs with one another (see Section 5), or with these ramified

covers. Thus, there are many spherical cone metrics for which 2 does lie in the spectrum.
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8 R. Mazzeo and X. Zhu

The recent work of Xu and Zhu [45] shows that coaxial metrics always have
eigenvalue 2 (see Section 5.1 for the definition of coaxial/reducible metrics). On the other
hand, the works of Mondello and Panov [38] and Eremenko et al. [21] indicate that there
also exist non-coaxial metrics with eigenvalue 2.

We now discuss other methods and results that have been used to study
spherical cone metrics.

We begin by clarifying the existence theory when the cone angles are less than
2m. By the conic Gaul3-Bonnet formula (1), if all the 8; are less than 1, then, assuming
M is orientable, a spherical metric with these cone angles exists only if M = S%. A
straightforward fact, observed by Troyanov [43], is that when k = 2, a solution exists
if and only if g; = B,, and in this case, (M, g) is a spherical football. A significantly
more substantial result of Troyanov [42] proves existence when k > 3 by a variational
argument that involves a strengthening of the classical Moser-Trudinger inequality
adapted to this conic setting. A solution exists in this case if and only if either M # S?,

or else M = S?% and

Bj—1> Z('Bi —1) foreachj. (6)
i#f

A later result by Luo and Tian [28] shows that Troyanov’s solution is unique. This
“Troyanov condition” has been interpreted [39] as a version of the famous K-stability
condition in complex geometry.

Troyanov's argument relies heavily on the fact that under these angle conditions,
the associated Liouville energy (for which the PDE associated to this problem is the
Euler-Lagrange equation) is bounded below, so that one can look for solutions as
minima of this energy. This argument also works in a very limited range of Rﬁ where
some of the g; are greater than 1. However, for most ,5, the energy is unbounded below.
An early breakthrough was a generalization of Troyanov's variational method, due to
Bartolucci and Tarantello [3], later generalized by Bartolucci et al. [1], who prove the
existence of minimax solutions with an arbitrary angle combination except away from
a critical set of cone angles. The critical points found by this approach are not (local)
minima. They use a subtle mountain pass lemma and, along the way, assume crucially
that M # S2. The paper [1] also shows that in certain cases, solution with a given
conic data set are not unique. This variational method has been pushed much further

by Malchiodi and his collaborators; see [2, 4-6, 31] and the citations therein. A quite
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Conical Metrics on Riemann Surfaces II 9

general result of this kind was announced recently by Carlotto and Malchiodi [29, 30],
but details have not appeared.

A related method involves the computation of the Leray-Schauder degree for the
curvature equation. We mention the work of Chen and Lin [8-10] and further papers with
their collaborators [7, 26, 27]; these give the existence and nonexistence of solutions to
the curvature equation when the angle parameters are away from a certain critical set.

There is a classical approach to this problem involving complex analysis.
Indeed, as already discussed, the special case when the cone angles are integer
multiples of 27 is closely related to the theory of ramified coverings of Riemann
surfaces. Even here, the full story is not known; see [16, 18, 24, 40, 46]. We also mention
the papers of Eremenko [13] and Umehara and Yamada [44], which give a complete
description when M = S? and k = 3, and [17, 19, 20] for some symmetric cases when
k = 4, [22] for the case of three noninteger angles and any number of integer angles.
Recently, Eremenko has also showed that the number of solutions is finite when k = 4
and none of the angles is a multiple of 27 [15]. For metrics with special monodromy, we
also mention the recent papers by Xu et al. [11, 41].

A breakthrough using purely geometric (completely non-analytic!) methods
was obtained recently by Mondello and Panov [37]. Their main result provides the
generalization of the Troyanov region (6), that is, they describe a region MP, C ]R’f|r
that characterizes the set of allowable cone angles of spherical cone metrics on S?. This

region is described as
MP = (B eRF :d;(B-T1,2K, > 1), (7)

where ZF,, = {y € Z¥ : 3.y, € 2Z + 1} and d, is the ¢! norm on R¥,

Their main result, a tour-de-force in classical geometry, is that any point in the
interior of MP, is the vector of cone angles for at least one spherical cone metric on
S?; they are not able, however, to specify the locations of the conic points p; and do not
address whether solutions exist when 8 is on the boundary of this region. After partial
results of Dey [12] and Kapovich [25], a complete answer was obtained by Eremenko [14]
on which g € dMP, are possible.

A more recent paper by Mondello and Panov [38] extends the result in [37] to
surfaces with higher genus and shows that when M # S?, there exists a spherical conic
metric for any E with x (M, 5) > 0. They also show that it is not always possible to
prescribe the underlying conformal class on M. They also show that the moduli space

of solutions when M = S? and k is large has many connected components. They identify
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10 R. Mazzeo and X. Zhu

a set of cone angle vectors B, called the “bubbling set”, near which families of solutions
are expected to diverge. They prove that away from this set, the moduli space is smooth
and the forgetful map that carries a spherical cone metric to its underlying marked
conformal structure is proper. This bubbling set is in fact the same as the set of critical
angles appearing in the variational approach in [30]. Furthermore, when M = S?, this
bubbling set strictly contains the set of cone angle vectors associated to spherical cone
metrics with coaxial monodromy; see [14].

As explained earlier, we approach this problem via deformation theory and focus
on whether it is possible to freely deform the unreduced conic data near given set
corresponding to an initial spherical cone metric g. The answer to this depends on
the spectral behavior of the Friedrichs extension of the Laplacian A,. Following [33]
and [34], we prove that if 2 does not lie in the spectrum of this operator, then the
answer to this question is affirmative. This relatively easy result motivates our key
problem, which is to understand the local deformation theory when 2 does lie in the
spectrum. Our main result states that if we allow the cone points p; to break apart into
clusters, then even near these degenerate metrics there is a submanifold in the space
of all conic data whose elements correspond to a branch in the space of spherical cone
metrics.

We have already noted our central use of the extended configuration space &
and extended configuration family Cg, both of which are defined and studied in our
earlier paper [34]. The former is a compactification of the space of K-tuples of distinct
points on M, while the latter is the bundle with fiber at § € £ the surface M blown up at
the points of q. Actually, the natural map Cr — &g is a singular fibration (technically, it
is an example of a b-fibration), and the fibers over the boundary faces of £ are unions
of surfaces with boundary. We describe this more carefully in the next section. One of
the main results in [34] is that the families of hyperbolic and flat cone metrics with k
singular points extends to a polyhomogeneous family of fiberwise metrics on C;. This
is a sharp regularity statement: polyhomogeneity is a slight extension of the notion of
smoothness that allows for series expansions with noninteger exponents. In the cases
studied in [34], existence was already known, but in the spherical setting, that is no
longer the case. Here, it is not always possible to find a smooth family of spherical
conic metrics near those with any given set of conic points p. Considering p as point
on a corresponding face of SK (which is a space constructed from an extra blow up &,
see Section 6), we show that there exists a smooth submanifold X C ffK containing the
initial k-tuple p as a coalescing limit such that spherical cone metrics exist for K-tuples
jgeX.
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Conical Metrics on Riemann Surfaces II 11
3 Configuration Spaces

There are two configuration spaces, £, and C;, at the center of our construction. These
are obtained by resolving the spaces M* and M¥ x M, respectively. These resolutions are
obtained by the process of real blowup, that is, where a p-submanifold S of a manifold
with corners Z is replaced by its (inward pointing) spherical normal bundle. (The
p-submanifolds are the natural submanifolds in manifolds with corners for which
tubular neighborhoods around them are represented by their normal bundles.) We refer
to [34] for a review of these notions and for many further details about these spaces
than we can recall here.

The key points we review here concern how the boundary faces of & and Cp

encode information about the various ways in which subclusters of points can collide.

3.1 The extended configuration space &

We start with M¥, the space of ordered k-tuples of not necessarily distinct points
Pi.---.Pr € M. The extended configuration space &, is a canonically defined space

defined by iteratively blowing up all the partial diagonals

AI:{p:(pl,...,pk)eMk:pi:p]-, Vi jel},

where 7 is any subset of {1,...,k} with |Z| > 2. Thus, using the notation that [X;S]
denotes the blowup of a manifold X around a submanifold S and compressing the fact

that there is a chain of blowups, we write

The order of blowup is important, and we perform these in order of reverse inclusion,
that is, first blowing up the smaller partial diagonals, with larger |Z|; see [34].

The space & is a manifold with corners; its boundary hypersurfaces F; are the
“front faces” created by blowing up each A;. The interior of & is naturally identified
with the open subset ¢/ ¢ MF of k-tuples of distinct points. This identification extends

smoothly to the blowdown map
lBk . Sk —> Mk

Points of &, are sometimes denoted q, so 8;(q) = p is the underlying k-tuple of points that

may lie along one or more of the partial diagonals. Finally, each face F; has a boundary
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12 R. Mazzeo and X. Zhu

defining function, which we write as p7. Thus, p7(q) measures the “clustering radius” of

the subcluster of points in p with indices in 7.

3.2 The extended configuration family Cj,

We next describe the universal curve over &. Consider the product &£, x M; points in this
space are (q,z), with z lying in the fiber. The space C; is obtained by resolving the graph

of the canonical multi-valued section o of this bundle defined as

Ut@2) e & x M:ze o ().
A

IfqeFr, T =(y,...,1) (sop;; = ... =p;) then oZ(p) denotes the (k — r + 1)-tuple
obtained by adjoining this single “r-fold” point with the remaining k — r points. Now,

define the coincidence set:
FS ={pr =0,zeal(p). 9)

Abusing notation slightly, we write F{ for the nonsingular parts of the graph of o, that
is, the sets {z=p;},i=1,...,k where p does not lie in any partial diagonal.

The extended configuration family C, is defined as the iterated blowup
Cr = [& x M; U7FT], (10)

where, once again, we blow up in order of reverse inclusion of the subsets Z. This

canonical space is again a manifold with corners.

3.3 The map Cy — &

The trivial fibration & x M — & lifts to a b-fibration:

whose geometry we now recall.

If g lies in int &, then nk_l(q) := M,, is the surface M blown up at the k points
of B (@) = p = {p;y,...,px). This fiber is a surface with k boundary components, each a
copy of S'. However, if q € Fr,|Z| = r, then the fiber nk_l (¢9) is a “tied manifold”, that is, a

union of surfaces with boundary identified in a certain pattern along their boundaries.
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Conical Metrics on Riemann Surfaces II 13

F12 (ppr

Fig. 1. The singular fibration of Co — &;. Here, we removed the center of mass for p = (p1,p2).
The boundary face in the base, Fy3, is a circle encoding the colliding direction of p; and p».

One of these surfaces is Mﬂk(q)' while the others are a certain number of copies of the
hemisphere Si blown up at a collection of points. We usually write p = 8, (q) below. The
combinatorial structure of how these surfaces fit together encode the various regimes
by which r points can cluster.

Let ¢7 denote the collection of new boundary faces generated by blowing up F7;
cf. Figure 1 for the simplest case k = 2.

In this picture, ¢, is the preimage of the central face F;, of &,; this fibers over
S? (the “direction of approach” of the pair p;,p,) and each fiber is a copy of M, and Si
blown up at two points.

For larger k, if q lies on a boundary face of &, then the preimage n,;l(q) is a
tower of hemispheres, each one attached to a previous (or lower) hemisphere at the
circle boundary created by blowing up a point in that previous hemisphere. The lowest
hemisphere in the chain is attached to M, at the circle created by blowing up the
point where the corresponding points have collided. Altogether, this tower encodes how
subclusters of p collide. The images of the nonsingular graphs {z = p;} are completely
separated, each one intersecting one of these hemispheres (or else M, if that point is not
part of a cluster).

We illustrate this further by considering the case k = 3; see Figure 2. Above a

generic point q € Fy,3, the fiber nk_l (q) is a hemisphere blown up at three points attached
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14 R. Mazzeo and X. Zhu

b3 \

Fig. 2. One of the singular fibers in C3, where two of the points collide faster than the 3rd one.

to M, at its outer boundary, much as in Figure 1. However, when q lies on Fy,3 N Fy,, for
example, then the fiber is a tower of two hemispheres; cf. Figure 2 below.

Here, the lower hemisphere, ¢,,5, is attached as before to M, while the
upper one, €,,, is attached to the blowup of the point in ¢;,; where {z = p,} and
{z = p,} intersect; note that the submanifold {z = p,} intersects ¢, but not €,,. This
corresponds to the three points coalescing, but with points 1 and 2 closer than either is
to point 3. When k is even larger, the fibers over points lying in the various edges and
corners of F; ; are more complicated towers of hemispheres that encode the way the k
points coalesce with certain subclusters coalescing faster.

The (somewhat intricate) combinatorics of the boundary faces and corners of &

and C;, are described carefully in [34, Chapter 2].

3.4 Fiber metrics restricting to the boundary faces

It is proved in [34] that the space C; fully captures the asymptotic behavior of families
of flat or hyperbolic conic metrics on M as the cone points coalesce. More precisely, fix
B = (B;,...,Py) and parametrize the family of flat or hyperbolic metrics by elements q of
the extended configuration space &,. When q lies in the interior of £, so the cone points

are all distinct, then the corresponding metric is a metric on the fiber 7 g = M.
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Conical Metrics on Riemann Surfaces II 15

The main result is that this family of fiber metrics over the interior of &, extends to a
polyhomogeneous family of fiber metrics on C;. Over int &, this simply asserts that the
constant curvature metric depends smoothly on ¢, as already proved in [33]. However,
when g lies in some boundary component of &, then ;- () is the union of M, (where
now p = B;(q) contains only k¥’ < k distinct points) and a tower of hemispheres over that
k’-fold point. The family of fiber metrics restricts to a flat or hyperbolic (depending on
the initial family) metric on M, . On each hemisphere €7 in this fiber, the restriction is
a flat metric with a certain number of interior conic singularities (at the points where
“higher” hemispheres are attached) and with a complete conic singularity at its outer
boundary. (Note that each of these metrics is flat regardless of whether the initial family
is flat or hyperbolic.) At the conic point (or rather, its S! blowup) in M, where the points

{p; i € J} are all equal, the angle parameter equals

Bri=1+ > (B—1).
ieJ

At any of the other circular boundary components, either on M, or on one of these inner
hemispheres, where €; intersects that face, the cone angle parameter is just §;. Finally,
at the outer boundary of each hemisphere in €7, the metric is asymptotic to the large
end of a flat cone with cone angle parameter ;.

The same description holds for spherical cone metrics on the fibers of C; so long
as all the cone angles are less than 27 and E lies in the Troyanov region. (There is a
minor exception when the metric above the central fiber is a spherical football.) The
restriction of this spherical metric family to each of the hemisphere faces in ¢; is still
a flat metric, exactly as above.

We shall extend this regularity result in Section 7.4 to include families of

spherical cone metrics with at least some of the cone angles bigger than 2.

4 The Linearized Liouville Operator

Our main analysis involves the Liouville operator

. 2u
Ngo(u) = Agou —i—KgO —e
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16 R. Mazzeo and X. Zhu

(recall that A = —div V); solutions to N, (u) = 0 correspond to spherical metrics e?“go.

In this section, we recall the basic mapping and regularity properties of its linearization

4.1 Function spaces

Given a k-tuple of distinct points p € &/ c MF, the blowup M, is a surface with k
boundaries, each a copy of S!. Choose a local holomorphic coordinate z near each conic
point p;, with corresponding polar coordinates (r,0). A conic differential operator of

order m on M, is an operator of the form

A=7rT" >" a;,(r,0)(rd, ),
jt+e<m

where each a;, € C*°(M,). It is called elliptic (in this conic category) if > ;. ,_,, aﬂp"ne #0
for (p,n) # (0,0). In suitable coordinates, g, = dr? + 2% sin® rde? and

or equivalently,
Agy = r2 ((rar)2 + 87202 +.. ) ,

where the remainder terms are smooth multiples of 23, and rd,, hence lower order.
Thus, Ay, is a conic elliptic operator.

The detailed theory of conic elliptic operators is discussed in [33]and [34] and
described in complete detail in [36], [32], and [23]. We review here the mapping and
regularity properties of A, on weighted b-Hélder spaces, and the closely related
definition of the Holder-Friedrichs domain.

The most convenient scale of function spaces for conic operators are those with

certain dilation invariance properties.
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Conical Metrics on Riemann Surfaces II 17

Definition 1 (b-Holder spaces). The space Cl?'“(Mp) consists of all bounded functions

on M, that are in €% in the interior of M, and such that near each p;,

|lu(r,0) — u(r’,0’)|R*
[ulp,pq = sup  sup <

f— ’
O<R<Rg R=<rr'<2R |(r1 6) - (r/r 9/) |0[
(r0)#(r' ,0")

with associated norm
ullp0,e = lullpee + [Ulpg 4

The space C{)”’“(Mp) consists of all functions u such that near each pj (rar)fagu € CZ?'“
when j 4 ¢ < m. Finally, r*C;"* (M,) = (u = r*v : v € C;"* (M)}

Directly from the definition,

Agy r“CZHZ’“ — rhm2epe (12)
is bounded for every m € N and u € R.
There are two possible choices for the space of “smooth” functions in this

setting.

Definition 2 (Conormality). The space of conormal functions (of order w) is the

intersection

ALM,) = () rCy (M) = {w: |(rd, Y oful < C; r*, ¥ j, £ > O}

m>0

Definition 3 (Polyhomogeneity). Anindex setIis a countable discrete set {y;, N;} C C x
N with fy; — oo. A function u is called polyhomogeneous with index set I if u € A*(M,)

for some u and

N;
u~ > > u;,O)ridognt.
=0

i

This is an asymptotic expansion in the classical sense, in that the difference between u
and any finite partial sum of the terms on the right lies in A**" where N — oo depends

on the largest index in the partial sum.
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18 R. Mazzeo and X. Zhu

We may also define the b-Hélder spaces, as well as the spaces of conormal
and polyhomogeneous functions on any compact manifold with corners X. In this more
general setting, we replace the vector fields rd, and d,, which appear in the definitions
above by the space of b-vector fields, V},(X), which is the space of all smooth vector
fields on X that are tangent to all boundary faces. Thus, if g € X lies on a corner of
codimension n, then there is a coordinate system (x;,...,X,, ¥;,-.., V), n+m=dimX,

with each x; > 0 and Vj € (—e€,€). Near q,

n m
V() = (V=D a;(x,1)x;0y, + D bi(x,1)d,,, a;b; € CEX).
i=1 j=1

Then, Cg""(X) is defined via a Holder seminorm similar to the one above, which is

invariant under the partial dilation (x,y) — (Ax,y) and

CPX) ={u:V,...VueCy* Ve <mand V; € V,(X)). (13)
If Hy, ..., Hy are the boundary hypersurfaces of X, then we denote by p;,j =1,...,N, a
smooth function that satisfies p; > 0onX\H; and p; =0, d,oj # 0on H;. These are called

boundary defining functions. Using multi-index notation, we write

PHCI X)) ={u=pi" ..oyt v v e G (X))

and
AX) = () pC(X).
m>0
Finally, an index family 7 is an N-tuple of index sets (I;,...,Iy), and u is polyhomoge-

neous with index family Z on X if it is conormal and has asymptotic expansion with
index set I; near Hj, with all coefficients conormal on H;. It is not hard to prove that

under these conditions, u has a product-type expansion at the corners of X.

4.2 Indicial roots and mapping properties

Sharp mapping and regularity for L,  (or indeed any other conic elliptic operator) are
naturally captured by these spaces. These properties are stated in terms of the set of

indicial data associated to this operator.
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Conical Metrics on Riemann Surfaces II 19

Definition 4 (Indicial roots). The number y € Cis called an indicial root of multiplicity
N for a conic elliptic operator A at p; if there exists some ¢ € C* (S') such that
AT logrV=1¢(©0)) = O@"logr)"~1) (as opposed to the expected O(r¥ 2(logr)V-1)),
but this estimate fails if N — 1 is replaced by N.

The set of functions r” (log M, £ =0,...,N—1 for which this improved estimate
holds is called the indicial kernel of A (at p; and for the indicial root y).

Write I'(A,p)) for the set of all indicial roots of A at pj and I'(A,p)) for the set
{y N-1):y el'(4,p), N= logarithmic multiplicity at y}. We often omit the pj in this

notation to denote the union of these sets over all p;.
The indicial roots for Lg0 are straightforward to compute; cf. [33, Section 5.1].

Lemma 1. ['(Ly,pj) = {ﬂﬁj : k € Z}. The value 0 is an indicial root of multiplicity
two with indicial kernel {1,1logr}, while the other indicial roots have multiplicity 1 and

indicial kernel {r¥/fie*ike},

We now state the 1st basic mapping property of L, .

Proposition 1.  [33, Proposition 9] Suppose u ¢ I'(Ly, ), and denote by K_, the nullspace
of Lg0 on r‘“C}f'“(Mp). Then, K?M is finite-dimensional and for any f € r“_zcg'“, there
exists an element h € K_, such that Au = f — h for some u € r”Ci"". In particular, if
K_, ={0}, then

Ly, r”Cg'“(Mp) — r“_zcg'“(Mp) (14)

is surjective.

We require an extension of this result, motivated by the following consideration.
Suppose u is a weight such that (14) is surjective. If u < 0, this result may be of limited
use in the nonlinear problem simply because the Liouville operator does not act nicely
on functions, which are unbounded near r = 0. However, if the right-hand side does not

blow up as quickly as r*~2, then we can say more in the following proposition.
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20 R. Mazzeo and X. Zhu

Proposition 2. Suppose that ' > p, with neither value an indicial root, and Lyu=f

’
for some f € r* —chf‘* and u e r“CIf"". Then,

J2
u= Z ﬂ/ﬂ(aj cosjo + b;sinjo) +u
Jj=n

for some constants a;, b;. Here, J; is the smallest integer greater than or equal to 48 and
J, is the largest integer less than p/g; if J; < 0 < J,, then the term with j = 0 should be

replaced by aj + by logr. Finally, the remainder term # lies in r“’Ci'”‘.

This is a regularity statement: if the right-hand side decays faster than expected,
then the solution has a partial expansion as r — 0.

A special case of particular importance is when u = —¢ < 0 and u’ = 2 (so
u' — 2 = 0). We are thus searching for a solution u € r‘ECE'O‘ to Ly u = f, where f €
Cg'“; since K, the nullspace of L, on r€C§"", is trivial, Proposition 1 may be applied to
obtain that (14) is surjective; hence, we may always find a solution u to Lgou =fe Cg’“.

Proposition 2 states that

J
u=ag+bylogr+ Z(aj cosjo +b; sinjo)r'/? + 1,
j=1

where J is the largest integer strictly less than 28 and @ € rzcg"".
A familiar classical construction is to characterize the domain of Ly, as an

unbounded operator on L? (M,,). More specifically, L, is symmetric and semibounded

0
on C°(M \ p), and hence there is a canonical Friedfichs domain DFr(Lgo), which is a
dense subspace in L? on which Ly, is self-adjoint and has the same lower bound. This
is the set of all functions w e L? such that both Vw, Lg,w € L?. From the asymptotic
expansion above, this last condition implies that the logr term is absent. Accordingly,

we make the following definition.

Definition 5. The Hélder-Friedrichs domain of L, is the space Dpr*(L

90) = {u e
Cp (M) : Lyue Cp (M)}
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By the results above,

J
ue Dgfr'“(LgO) = u=2ay+ Z(aj cosjo + bj sinj@)rf/ﬁ +u,
j=1

where J is as before and @ € rZCZnJ“z'O‘.

4.3 Deformation theory—the unobstructed case

Let gq be a spherical cone metric with conic data (s(gg), p, E), and let SCM; denote the
set of all spherical cone metrics with the same s(g,). We show in this section that if
2 ¢ spec(Ay), then the map SCM; — Mk x Rﬁ is a local diffeomorphism near g,.
In other words, the space of spherical cone metrics g near g, with a fixed unmarked
conformal class is smoothly parametrized by the data (p’,E’) near (p,,é). It is also the
case that the dependence on the underlying unmarked conformal class s is smooth. This
argument is the same as the one in [33]. That paper assumes that all cone angles are
less than 27, in which case it turns out to be automatic that Lgo is invertible. If some
or all cone angles are greater than 27, we must assume the invertibility of this operator
to reach the same conclusion. We review these arguments in this section and prove the

following theorem.

Theorem 3. Let g be a spherical conic metric with conic data (5,p,/§), and suppose
that 2 ¢ spec (A,). Then, for each fixed constant curvature metric s’ sufficiently near
5 representing a slice in the space of unmarked conformal structures, there exists a
neighborhood V of (p, B) in int &, x Rﬁ and a neighborhood W containing g in the space
of spherical conic metrics with the same unmarked conformal class, such that the map
assigning to g’ € W its conic data ', B) is a diffeomorphism W — V. This map also

depends smoothly on s'.

The proof relies on a preliminary computation that provides a link between the
geometric and analytic parts of this result. Namely, we compute the derivative of a
family of metrics g(¢) with varying conic data (p(e), ,é(e)). The relevant information is
entirely local so we may as well work in a disk around one conic point; furthermore, the
fact that the metrics are spherical rather than flat only adds higher order perturbations

to the answer below. Thus, it suffices to consider the family of flat metrics

g(e) = |z + ew|?PO2|dz|?. (15)
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22 R. Mazzeo and X. Zhu

Here, B(¢) is any smooth function with 8(0) = B and w is a fixed complex number

indicating the direction of motion of the family of conic points. Then,
g'(0) = (28'(0)log |z| + 2(B(0) — )% (w/z)) 2P~ |dz|*.
In particular,

w = 0= g'(0) = 28'(0)log |z|g(0),

B'(0) =0= g'(0) =2(8 — HR(w/2)g(0).
We have used complex coordinates here, but switching to r = |z|# /B, we have
g'(0) = (cplogr+ (¢, cos b + ¢} sin O)rfl/ﬁ)g(O).

The constants ¢y, c¢;,c; depend on B(0), 8/(0) and w; the latter two encode the angle
at which the singular point moves in this deformation. Now, recall that logr and
r~YP cos®, r'1/Fsinf are model solutions for the indicial problem. This calculation
shows that these particular solutions to the indicial equation arise as derivatives of
certain (local) one-parameter families of conic metrics.

We capitalize on this as follows. Choose local holomorphic coordinates near
each p; in p(0). The neighborhood V around (p,B) in the space of conic data is defined
as the product of k copies of B% (0) C R? and a ball BX(0) in R¥ around £(0). A point

{=(W1,...,Wk,)/1,...,]/k)ev

corresponds to conic data

((p1+W11~-~/pk+Wk)l(ﬁ1+y1,...,ﬂk+)/k)).

Next, for each ¢ € V, choose a conic (but not necessarily spherical) metric g(¢)
that has conic data ¢. For example, we can glue together a fixed metric outside the union
of balls around the p; and some varying model metrics as in (15). We may also choose a
smooth family of diffeomorphisms F, : M — M with the following properties: F, is the
identity outside some small neighborhood of the points p; and F, (p;) = p; + w;. (We may
as well assume that the F, only depend on the w but not the y coordinates of ¢.) Finally,
define g(¢) = F3(0).
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The point of all of this is that g(¢) is a smooth family of conic metrics that
represents the conic data ¢, but where, using the diffeomorphism action on M, we have
arranged that the cone points remain fixed. We refer to [33] for an explanation of what
this means in terms of the Teichmiiller theory. One must also modify these local families
into families that leave the underlying uniformizing metric s(g(¢)) fixed, but this is
straightforward and we omit details.

We have now reduced the problem to proving that there exists a family of
functions u(¢) that lies in one of the (possibly weighted) Hélder spaces discussed earlier,

which solves
Agie () + Ky — 2@ =0, u(0)=0

and which depends smoothly on ¢. This is a straightforward application of the implicit
function theorem, by virtue of the results of the last subsection. Namely, consider the

Liouville operator with base metric g(¢) as a nonlinear operator
. 0,a 0,« _ 2
NV x Dy’ — G, N u) = Agyu+ Ky — e

This is a smooth mapping and by Propositions 1 and 2 and the computation at the
beginning of this proof, the linearization of this map is surjective. Noting further that
the linearization only in the 2nd (u) slot is injective, we conclude that the kernel projects
isomorphically to the tangent space of V. This uses our main hypothesis that 2 does not
lie in the nullspace of Aoy if it were not to hold, there would be an extra cokernel. Note
finally that we may also let the underlying nonsingular constant curvature metric vary
in some slice representing the family of unmarked conformal structures; the family of
solutions clearly depends smoothly on this extra parameter too. Altogether, this proves
the local deformation theorem and the smoothness of the moduli space of spherical

conic metrics under this spectral hypothesis.

5 The Locus of Degenerate Spherical Cone Metrics

The last section explains the importance of understanding when 2 ¢ spec(A,), or
equivalently, when L, is invertible, for a spherical conic metric g. We begin our
discussion of this case.

We first recall a result from [33].
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Proposition 3. Let (M, g) be a spherical conic metric with all cone angles in (0, 27).
Let A, be the 1st nonzero eigenvalue of the Friedrichs extension of Ag. Then, A; > 2, with
equality if and only if M is either the round 2-sphere or else the spherical football (with

constant Gauss curvature 1). Apart from these cases,
Ly: Dp” (M) — (i (M,,) (16)
is invertible.

We also record a small generalization of this. The Liouville energy (referenced

in Section 2) is the functional
E(u) = l/(|Vu|2+21< u)dv, —llog/eZ”dA ;
2 go 9o 2 go

cf. [30]. The Euler-Lagrange equation for E reduces to the Liouville equation (3), while
the Hessian of E(u) equals Agy — 2 — Py; here, P, is the L2 orthogonal projection off the
constants (i.e., the lowest eigenmode for Ago).

In the approach to existence discussed in Section 2 using the calculus of
variations, the direct method to find minimizers of E is successful in the “subcritical”
case defined by the condition x (M, B) < min{2, 2 minj B;} (where the background metric
go has angle parameters ). This can occur even if some of the cone angles are greater
than 2. In this subcritical case, E is bounded below and coercive and there is a unique
minimizer u that is nondegenerate; the metric e?“g, is then spherical. In this case, L,—P,

is invertible and of Morse index 0O, so in the language of the proposition above, 1; > 2.

5.1 Metrics with reducible monodromy

Our 1st goal is to show that there must be many spherical cone metrics for which 2 lies
in the (Friedrichs) spectrum of Ag. Recall that the monodromy group of a spherical cone
metric is defined by its developing map and is contained in PSU(2). If the monodromy
is contained in a subgroup that lies in U(1) (up to conjugation), then the metric is called
reducible [11] or coaxial [14, 37]. In particular, any metric obtained by a branched cover

of the sphere has trivial monodromy and is therefore reducible.

Proposition 4. For any bounded set B C MP, defined in (7), there exists a spherical
cone metric g on S? with cone angle parameters g ¢ B such that 2 € spec (Ag). When
k=>5, ,5 can be chosen to be in the interior of MP;.
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Proof. If a spherical conical metric g is reducible, then 2 € spec (A ) and at least one
such eigenfunction is generated by the developing map; see [45]. From [14], the angle
condition that gives a reducible metric is unbounded, that is, for any bounded B ¢ MP,
there exists at least one B outside B that admits a reducible metric. In detail, there exists
a reducible metric with angles g if and only if one of the following holds.

o AllB eN,du(f— T,Zg‘dd) =1,and 2max;(8;— 1) < > ;(B;—1). In this case,

such a metric is a branched cover of S?.
e (Up to reordering) There exists 1 < m < n such that g,,...8, ¢ N,

Bmi1:r---1Bn € N. Moreover, ,3 satisfies the following “coaxial conditions”:

— there exists {¢;}]", with ¢; € {£1} such that
m
K= efi>0;
i=1

K'=>" . 1B—n—Fk +2>0andk”is even;
— if there exist integers {b;} whose greatest common divisor is 1 and such

that (By, ..., Bpr 1, 1) = n(by, ..., by issr), then
k+k"

m+k'+k"
n
2 max f; < E b;.
i=m+1 1
1=

For the 2nd condition above, we can also see that when k > 5 such metrics exist in the
interior of MP;. u

5.2 Spherical cone metrics with a large number of small eigenvalues

We now prove some more general results that use a spectral flow argument to show
that there should be many examples of spherical cone metrics with E arbitrarily large
for which A, has eigenvalue 2. There are two main steps. The 1st is to show that for any
N > 0, there exists some § € MP; and a spherical cone metric g with this conic angle
data such that Aj has at least N eigenvalues less than 2. The 2nd is to show that if the
space of spherical cone metrics has only finitely many connected components, then by
spectral flow, one can find such metrics with eigenvalue 2. If 2 never lies in the spectrum
of Laplacians of conic surfaces with “sufficiently large” cone angles, then one can find
go and g; in the same connected component, satisfying that Agj has N; eigenvalues less
than 2, j = 1,2, and there is a continuous family of spherical conic metrics between

go and g,. A simple spectral flow argument leads to a contradiction if N, # N;; hence,
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there must be a non-empty locus of spherical cone metrics with large cone angles and
with 2 lying in the spectrum of the Laplacian. Therefore, either the space of spherical
cone metrics has infinitely many connected components, or there are infinitely many
codimension-one strata with 2 € spec (Ag).

We begin with the analysis of the football with arbitrary cone angle.

Lemma 2. The eigenvalues of Aj on the spherical football with cone angle 278 are
{G/B+OG/B+L+1): j,£eN}L (17)

The eigenspace is simple when j = 0 since logr does not lie in the Friedrichs domain,
with eigenfunction P?(cos(r)), while if j > 0, then the eigenspace is two-dimensional and
spanned by Pz/ﬁ(cos r) cos(jO) and Pf/ﬂ(cos r) sin(j). Here, P, is the associated Legendre

function of order ¢ and degree v.

Proof. This is an explicit computation. Since g = dr? + g2 sin? rd62, we seek solutions
of

cosr 1

92 3 -2 32 +Mu = 0.

(r+SiIl7' r+13 sin2r9+ )u
Inserting u = R(r)e¥? yields

j2
sin® rR"(r) + sinrcos rR'(r) + A sin rR(r) — ER(r) =0, (18)
or, changing variable to t = cos(r),
2 Jj
(1 —-1t°)Ry — 2tR, + [ — W]R =0, tel[-1,1].

A basis of solutions when A > 0 consists of the 1st and 2nd associated Legendre
functions Pg/ b (t) and O]e/ P (t). In order that the solution lies in the Friedrichs domain,

one of the following must hold:

e j=0,and R(-1),R(1) < o0, Or
e j>0,and R(~1) = R(1) = 0.

In the 1st case, the equation becomes

(1—t)R, — 2tR, + AR = 0.
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This has a solution that is regular at both ¢ = +1 only when A = £(£ + 1), £ € N; the
solution itself is P?(t). In particular, A = 2 when ¢ = 1 and the eigenfunction is u = cosr.

In the 2nd case, when j > 0, then using properties of Pf/ﬂ and O’g/ﬂ, we get that
A=({/B+0(G/B+€+1), £ € N and the only admissible solution is Pé/ﬂ (t); the eigenspace
is spanned by P} (cos r) cos(j#), P, (cos r) sin(jo). [ |

Lemma 3. There are 2 + 2[8] eigenvalues A less than or equal to 2 for the Friedrichs

extension of A, for a football with angle 278.

Proof. We count the numbers in (17) with A < 2. These occur only when j = 0 and
£ =0,1,orelsej>0,¢=0and (j/B)(j/B +1) < 2, which holds if and only if j/8 < 1.
Each of these have multiplicity 2. This leads to 2 + 2[3] eigenvalues in [0, 2]. |

Lemma 4. Fix k > 2 and a bounded set B ¢ MP, of admissible cone angles. Then, for
any N € N there exists a spherical cone metric g with cone angle parameters E ¢ B and

with at least N eigenvalues of A/ less than 2.

Proof. The arguments for the cases k = 2,3,4 and k > 5 are somewhat different.

When k = 2, the preceding lemma shows just the following: we simply take a
football with cone angle 278 where [8] > NT_Z

Next, any spherical cone surface with k = 3 conic points has a Z, reflection
symmetry, or in other words, is obtained by doubling a spherical triangle; see [13].
Thus, we need only show that there exists a spherical triangle with at least N Dirichlet
eigenvalues less than 2; the odd reflections to the doubled surface of the corresponding
eigenfunctions will be eigenfunctions in the Friedrichs domain of the cone surface. We
consider here a spherical triangle with angles 7, 7,78 where g > 1. Using that the
double of this triangle across the side connecting the two right angles produces “half”

of a football, we see that the Dirichlet eigenvalues of this triangle are

{G/B+20)(G/B+2¢+1):j,LeN, j>1}. (19)

Hence, if [8] > N, then at least N of these are less than 2.
For k = 4, consider the shape obtained by gluing 4 spherical triangles as in
Figure 3: two of these are triangles with angles (7/2,7/2,78), and the other two have

angles (/2,7 /2,7/2). The sides that are matched have the same length (the only sides
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m(B+1)

Fig. 3. A spherical metric with four cone points (w(8 + 1), 7 (8 + 1),37/2,37/2) with at least N
eigenvalues below 2.

that do not have length 7 /2 are those that connect the two right angles). This yields a
spherical cone polygon with angles (z(8 + 1), 7 (8 + 1),37/2,37/2); see Figure 3.

If B is chosen so that the spherical triangle with one angle 78 has at least N
Dirichlet eigenvalues less than 2, then this new surface has an N-dimensional space of
functions spanned by the functions F; that equal the Dirichlet eigenfunctions f] on the
two large triangles and 0 on the two smaller triangles. These functions are all in H! and
have Dirichlet energy less than 2. By the min-max characterization of eigenvalues, there
must be at least NV eigenvalues on the spherical cone surface less than 2.

Finally, suppose k > 5. We use a different gluing here. Start with a football with
cone angle 27 3. By the explicit expression of the eigenfunctions in Lemma 2, if 8 is large
enough, there exists N eigenfunction fj, ..., fy each with eigenvalue less than 2, which
vanish on a “meridian” of this football (i.e., a geodesic curve connecting the two cone
points). For example, takefj = Pé/ﬂ(cos r)sin(jo), j < [B], which vanishes along the curve
{6 = 0}.

Now, suppose that L > 0 is quite small, and choose a slit of length L in this
meridian. Choose (8, ..., B;_,) so that the vector E =B, B, 1+B1,1+B5,B3,-...Br_sa) €
MPy. There exists a spherical cone metric, obtained by gluing together two identical
spherical polygons, with cone angles 27 (8;,...,B;_,) at points (p;,...,p;_,) arranged
along the equator such that dist(p;, p,) = L. Cut along the slit between these two points
and glue this surface to the football. This new spherical cone surface has cone angle
parameters ,5 =B,B, 1+ 81,1+ B5,B3,...,Br_o); see Figure 4.
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Fig. 4. A spherical metric glued from three pieces such that it has k > 5 cone points 27(8, 8,1 +
B1,14 B2,B3,...,Br_2) and at least N eigenvalues below 2.

Now, we proceed much as before. The eigenfunctions f; on the football that

vanish on the equator extend by 0 to H! functions fl on this new surface. Since

112 2
IVFilll. VAL <

7 - 2

If1Z A%
for i = 1,...,N, the min-max characterization shows that there are at least N
eigenvalues less than 2 for this new surface. |

5.3 Spectral flow

Using the above constructions, we can get the following description of the interior of
the space of spherical metrics with k cone points on S?: either it has infinitely many
connected components or there exist infinitely many subsets of codimension one and
corresponding metrics with 2 in the spectrum.

We can see this by the following argument. Suppose the interior of the space only
has finitely many connected components. By the results of the previous subsection, we
may choose two spherical cone metrics, g, and g,, with cone angle parameters B© and
B such that Ay, has N; eigenvalues less than 2, and Ny # N,. Since there are only
finitely many connected components, g, and g; can be chosen so that there is a path
gs. s €10, 1] connecting g, and g;. And if we denote by N(s) the number of eigenvalues in

(0,2), then N(s) is a continuous function. However, this contradicts the fact that N(0) #
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N(1). Therefore, there exists s € [0, 1] such that 2 is an eigenvalue of Ags' Since the whole
path is contained in the interior of the space, one can perturb the metrics while keeping
the number of eigenvalues below 2 for g, and g, and therefore, we get a codimensional-
one set of such metrics with 2 in the spectrum.

The space of solutions does have many connected components [38], and the
preceding discussion does not rule out the possibility that it might have infinitely many
components. In that case, this spectral flow would not produce metrics with 2 in the

spectrum.

6 Splitting Cone Points—Local Theory

We now take up the description of families of metrics with merging cone points, or
equivalently, the construction of families of metrics where isolated cone points split
into clusters. It suffices here to consider flat conic metrics since the change from flat to
spherical simply adds higher order perturbations that are irrelevant for the immediate
considerations. We first carry out a local analysis and describe a parametrization
of these splitting families using weighted symmetric polynomials in the locations of
the cone points. The differential of this parametrization yields a family of functions
which, as we show later, unobstructs our main deformation problem. Unfortunately,
this parametrization is singular at the front face F;, of £; and it is necessary to perform
an iterated blowup of the range in order to obtain a local diffeomorphism near F;,. This
step is unfortunately rather technical. The passage from the local to the global version

of these results is straightforward.

6.1 Weighted factorizations

Consider the flat conic metric
go = 121*P7V|dz|* = e*0|dz|?, vy = (B, — 1)log|z|, zeD={lz| <1},

with By > 1. Our aim is to parametrize the family of flat conic metrics in D with conic
data (py,....ps/ By, ---.By), where all p; are near 0 and Z(,Bj —1) = By — 1, and then
compute the variations of this family.

While no local constraints prevent us from considering splittings into arbitrarily
large clusters of points, we prove below that certain global constraints dictate that we
must restrict to splittings into at most J = [8,] points, that is, the size of the initial cone

angle determines the cardinality of the cluster. We use local versions of the spaces &;,
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C;, where M is replaced by the (open) disk D, or in fact by the entire complex plane C.
Fix B = (By,...,Bjy) with each B; # 1 such that

J
> B -1)=p-1. (20)
j=1
The equal angle case,
1
eq _ (8 _ P
B —1=—(h— 1), j=1,....7, (21)

is of particular importance.
We first explain how local clustering families are in bijective correspondence

(away from a certain locus) with functions of the form

J
7(0) = > (€j cos(j6) + €] sin(jo)) rI/Fo

= (22)

J
A. ,
=03 5 A=pRE i) r=la"/p,
j=1

Note that j < J implies —1 < —j/B, < 0, so our restriction on J ensures that these
exponents are not less than —1.

Define the constants

b Bj—l
=7 )
J Bo—1

and write b = (by,...,b;). Thus, ij = J, and in the equal angle case, each bj = 1.
We must avoid “degenerate” J-tuples of cone angles lying in the set A = U;A;, where
I={iy,...,i,) C{l,...,J}and A; = {b: b; +...+b; =0). (Recall that b; +...+b; =01is
equivalent to > 271(Bij — 1) =2n(1 — 1), i.e., this subcluster merge to a point with angle
27.)

Proposition 5. For every b ¢ A, there is a subvariety S C C7, called the weighted
discriminant locus associated to b, and a proper holomorphic mapping 7 = F; : Cc/ -
C’ that assigns to a J-tuple Z = (z4,...,25) the J-tuple A= (A,,...,A;), as determined
by (26) below. This map has the following properties:
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i) F is ramified along the union of the partial diagonals in C/, and the image
of this branch locus equals the weighted discriminant locus S;;

ii) the restriction of this mapping to the unramified set is a J!-sheeted covering
map from the interior of £; to C7 \ S¢;

iii) fixing any local inverse }'gl DA (z, (Zl), .. ,zJ(A)), then the function

v(4;z) = Z b;log |z — zj(ﬁ)l (23)

is differentiable at A = 0 and satisfies

oV - —¢ v - . —¢
(0) = cos(¥9)|z| ", (0) = sin(40)|z|~".

/ /!
de, de,

Proof. For any A € €7, define the polynomial

PA;z)=2 +A,27 1+ + A, (24)
Then,
3 - 7/
2—1log|P(4;2)| = ———,
0A; P(4; 2)

and in particular, at A = 0, this derivative equals z/ 77 = |z| e~ ¥?.
In the equal angle case (where all b; = 1), we define 4; = oj(é) to be the jth
symmetric polynomial of the z;, so P(Zl; z) =(z—z (Zl)) . (z—zJ(A)) and {z, (Zl), e ,ZJ(Z\)}

is some ordering of the set of roots of P(Zl; z). Then,
v(A4;z) = > log|z — z;(A)| = 1og |P(A)|, z ¢ (z,(A),...,2z;(A)},
and the computation above establishes the result in this special case.

For more general angle splittings, assume that |z| > max |z;|, and expand the

product

z—z)" ... z—2z)" =D di(z,,...,z)z" 7 (25)
j=0
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using the binomial theorem in each factor. We then write
Aj(zy,....2p) =dj(2y,...,25), j=1,...,J, (26)

which defines the coefficients in P(Zl,z) as in (24). This defines the map ]—"(2) — A. The

remainder of the series in (25) is lower order as all the zj — 0 in the sense that
IP(A; 2)| = |z — 2, ... |z — 2;|™ (1 + O(max |z]|” ™)), (27)

where the error term is uniform for (1 + ¢) max({|z;|} < |z| < 1, say. As we show below

(see the error term estimates near the end of the proof), it is also true that
IP(4;2)| = |z — 2, (A)"" ... |z — 2;(A)|™ (1 + O(A]'T9)Y), (28)

and assuming this, then the derivative of v, defined as in (23), with respect to A;_, at
i00

-

A =01is equal to r—fe %Y, as before.

We next consider the local inverses of F. Let {A;,...,A;} denote the roots of
the polynomial P(Zl,z), SO P(A; zZ)=(z—Xy)...(z—%j;) and 4, = (—l)zoﬁ()\l,...,)\_]) are
the standard symmetric polynomials of these roots. Now, take the Taylor expansion of
log(z — A) in A around A = 0; in the range 2 max Al < lz] < 1, the error term is uniform

and we have
log(z—») =Q;,(0) + O(rl7th), Q;,(A) =cy(2) +c1(2r+---+ CJ(Z))»J;

for some functions ¢j(z) (which we do not need to write out explicitly). Therefore,

J J
logP = > log(z— 1) = > Q;,() + Omax |1;|”*")
j=1 j=1
(29)
J J
=Jcy(2) + €1 (2) DA+ +¢p(2) DA + O(max |17 ).
j=1 j=1

By Newton's formula, the £th power sum is a quasi-homogeneous polynomial R, of the
elementary symmetric functions oy, ..., o,; hence, the previous formula can be rewritten

as

log P = Jcy(2) + ¢, (2)R, (A) + ... + ¢;(2)R;(A) + O(max |1;}”T).
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Now, consider the (locally defined) holomorphic function

J
V(z) = > b;log(z—z) = > _b,Q;,(z,) + O(max |z;|"™). (30)
j=1 i

Equating this to (29) and discarding the error terms give

ijz]‘f=2xjf=Rz(A), e=1,...,J. (31)

We use this set of equations to determine the z; from A. Multiply the right side of the ¢th
equation by zg to interpret these as homogeneous polynomials in the variables z,, ..., z;.
This modified set of equations corresponds to a collection of projective hypersurface
¥, C CP/, ¢ =1,...,J, with deg (¥,) = ¢£. By Bezout's theorem, the intersection of the
¥, contains J! points, counted with multiplicity. When all the b; = 1, these J! points
of intersection are just the orbit of a single solution under the symmetric group. As we
show momentarily, away from the partial diagonals there are J! distinct solutions to
these equations, and for each of these, z, # 0. After that, we analyze the error terms.
We first show that z; # 0 for each solution, that is, all solutions lie in C7 rather

than in the divisor at infinity. For this, rewrite >_ bjzf. =0as

bz, +...+byz; z, ... zZy b,
6,22 +...+b,z2 z2 ... Z% by
byz] +...+ bz zl ...z b, 0

The 1st factor is a van der Monde matrix, hence is nonsingular precisely when the z;
are all distinct and nonzero. On the other hand, suppose that z; = ... = zi, #0 for
some I = {ij,... ,ip} c {1,...,J} and all other z; = 0. Then, we obtain a solution to this
equation provided b; +...+b; = 0, which indicates why the sets A; are excluded. To
see that these sets create the only problem, an inductive argument shows that nonzero
solutions to this system exist only if some such relationship exists among the b;, that is,
b € A. We have now shown that if b does not lie in this finite union of subspaces, then
all J! solutions, Z® = (z(li), . ,z(f)), i=1,...,J!, are elements of C’.

Now, observe that F is the composition of the two maps

Z=(zy,...,2;) — (Zbizi,...,Zbiz{) - (in,...,ZA{)
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and the global polynomial biholomorphism

(Z/\i,...,ZA{) — (0, (R, ..., 0,(0) = A.

In particular, F is an algebraic mapping from C’ to C’, which is generically a J!-sheeted
cover.
Claim: This map is a proper ramified cover of degree J! with ramification locus the
image of the partial diagonals (in 2).

Properness is obvious. It suffices, therefore, to show that F is a local biholomor-
phism at every Z away from a partial diagonal. Since the 2nd mapping in the composition

is a biholomorphism, it suffices to examine the 1st mapping. Its complex Jacobian

equals
bl ... bJ
2byzy ... 2b;z;
Joyzl b Jbyz !
1 1 1 b, O 0
0 zZ; Zy 0 b, 0
0 0 J z ! z ! 0 0 by

this is nonsingular provided the z; are distinct since no b; = 0, and the middle term
on the right is once again a van der Monde matrix. The inverse function theorem now
establishes the claim. The weighted discriminant locus S; is, by definition, the image
under F of the union of partial diagonals.

We now analyze the error terms. Our goal is to show that |Z;], 12| = O(max |Ai|1/i)

for all j. Granting this, then comparing (29) and (30), we obtain the desired estimate
log |P| — > bjlog |z — z;| = O(max{|3;|”", |z;"T1}) = O(AI'T).

To prove this claim, set M = max{|Ai|1/i} and recall that Zkf is a quasihomoge-

neous polynomial of degree £ in A,,...,4,, so

Dl sceMt, e=1,...,J.
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Claim: There exists a constant C > 0, depending on E, such that if A € CJ has M =
max{|4;|'/!} < 1, then any solution Z to F(Z) = A satisfies |Z| < CM.

If no such constant C exists, then there exists a sequence A™M and corresponding
solutions Z™ such that A, = |ZW| > nM™ , n=1,2,3,.... Dividing each of the original

equations by the appropriate powers of A,, yields

s(n)\e _ (n) , —¢ _
ij(zj ) _Z,\j AL, e=1,...,J,
where EJ(.") = z](.”)/An. By construction, |2J(.n)| <1forj=1,...,J with |2](.”)| =1 for at least
one j, for every n.
Since the sequence zZm /A,, is bounded and has norm bounded away from zero,

some subsequence converges to a limiting J-tuple Z # 0 satisfying

0 __ _
ijzj_o, e=1,...,J.

However, b o4 Z, so these equations have no nontrivial solutions. This contradiction
proves the estimate.

Notice that if all bj = 1, we recover that for the exact roots,

Ajl=CM, j=1,...,J.

6.2 Desingularization of F~1

The map F~! is a local diffeomorphism from C/ \ S, onto the interior of &;, at least
locally in 0 < |Zl| < €. It will be particularly useful to study one-parameter paths t —
F‘l(tﬁ), at least for certain A or, more globally, to consider (any branch of) Flasa
map from the blowup [C7; {A = 0}] := A; — &;.

Observe that the front face F(A;) is a sphere S*’~1, and the intersection S, N
F(A;) = T, has real codimension two in this sphere. In the following, we will identify an
additional finite number of real codimension two subsets 77,..., 7y of this front face,
and corresponding conic extensions S; = C(7) (so Sy = Sp). Write 7 = 75 U... U Ty and
S = C(T). We shall study the restriction of 77! to the set Q = A;\ S, and in particular,
the behavior of this map near dQ = Q N F(A;).

Fix a branch of 7~! and 4 € Q \ 99, and consider the curve F~1(tA) = Z(t) =
(z,(®),...,2z;(t). As t — 0, tA converges to the point Zl/|21| € F(A;) and é(t) converges to
some point in F;. We define S; = {A; = 0} (and 7; = §; NF(A;)). Thus, if A € Q, then A; #
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0 and by the algebraic nature of F, at least one component zi(t) of é(t) satisfies z(t) ~
tl/J§j+ O(t?/7). By contrast, if A; = 0, then the leading term of each of these components
is of order ¢'//~1 or lower. The coefficients ¢; are determined as follows. For each ¢,
R,(tA) is a polynomial in ¢ with no constant term; furthermore, the quasihomogeneity
of R, implies that the only term with a linear power of t is tA;, and this occurs only in
R;. All other powers of ¢ in any RZ(tZl) have exponent at least 2. Inserting these putative
expansions for z; into the algebraic system (31) and equating the coefficients of t yields

the sequence of equations
Db =0,6<J, > bl =4, (32)
J J

Clearly, the solution Z’ = (¢, .- ,§J)T depends only on A;, but none of the other
17
7
Hence, the image of every point in the face Q2 lies on a particular circle determined

A,, £ < J. In addition, its dependence on A; is homogeneous, that is, E(AJ) = E(I)A

solely by b and which we denote by o,. We shall also see momentarily that o, lies entirely
in a single spherical fiber of F.

There are complete expansions for each z;(t); hence (as also shown by general
algebraic principles), each branch of 7~! extends to a polyhomogeneous function on .
However, this is not a local (polyhomogeneous) diffeomorphism near boundary points
since it is far from surjective. Our deformation theory will ultimately require that we
somehow extend F~! to a map with invertible differential even at F(A;), and we now
explain how this may be achieved by replacing £; by some iterated blowup along o.
The goal of these blowups is to “separate out” the different paths Z(t) corresponding to

different values of A.

6.2.1 Directions of increasing order of vanishing

This construction will be somewhat lengthy and occupy the remainder of this subsec-
tion. The idea is that each function z;(t) has an expansion where, after some preliminary
analysis, we can see that the coefficient of t// for any 2 < i < J involves only
Aj; i1/ Ay i1o,--.,Aj_. Further study of these coefficients shows that there exists a
linearly independent set of directions in the bundle of vectors normal to o}, in F, that
represent the directions tangent to those paths that decay like ¢t//, i = 2,...,J. The

iterated blowup is defined in terms of this independent set of directions.
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The 1st step is to examine more closely how the system
/ -
ijzj =R,(A), t=1,...,J

determines the asymptotics of the z;. Since A; # 0 in Q, we can normalize by setting
p = |A;1'7 and also write A, = A,/|A;|, or equivalently A, = p’4,, ¢ = 1,...,J. We
also write A 7= e'; this angle # will appear often below. The entire collection of these
normalized components will be denoted A= (AJ = eie,AJ_l, .. ,Al). Finally, decompose
R,(A) = tA, +e,(A,,...,A, ,); each monomial in e, is a constant multiple of a product
Ail1 ...Ai‘fi where i; + 2i, + ...+ (¢ — 1)i,_; = ¢ and hence has degree at least 2. This
implies that R,(4) = A, 07 + O(p?).

Now, substitute

J
Zi = ZCijp} + O(,OJ+1)

J=1

into the ¢th equation of this system and collect terms with like powers to get
Dbzl =Pyopt + o Py p T O, (33)

where

J J
_ I _ 0—1 .
Po= E bici1, Ppy=1¢ E b;c;; Cjp, andin general
i=1 i=1

(34)

J
Pop=0> b + 2. 6;Qu(ch, ..., cp), 2<k<J—1.

i=1 i

Each Q,  is a sum of monomials Cfll . Cf,’g with Zjﬁj ={+k, Zﬁj ={and ¢; <¢—1;for
example, Q, , = £(¢ — 1)c}; °c2,.
Equating the coefficients of p¢*¥ on the left and right side yields, for¢ =1,...,J

andk=0,...,J —1 that

0, ifk £ J

Pz,kz -
J—kA; ., ifk=J.
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When k = 0, this is an algebraic system for the components of the vector ¢; =

(€11, et

J J
D bich =0, L<J—1, > bic) =JA; =Je",

i=1 i=1

and the solution is just a scalar multiple of the solution ¢ to (32). As in that case, there
exist J! solutions to this system and when b; = 1 for all i, these correspond to permuting
the components of (J1/el@Tk+0)/7y =1, . ,J.

On the other hand, when k¥ = 1 the equation is now a linear system for

P T.
Cz = (012,022,. N ,CJ2) .

J J

(1 2 i
D bici e =0, LAT—1, > b o =Asy,
i=1

i=1

which we write as T¢, = X,, where X, = (0,...,0,A; ;,0)T and
T = byjcyr bycyy byCn

-1 -1 -1
ot ot ... ocp 0 ... 0 b

Since the b; are all nonzero, this matrix is invertible unless ¢;; = ¢;; for some i # j.
Therefore, except for a (real) codimension 2 subset of values of A that we denote as Sy
to accord with previous notation, T is invertible and hence there is a unique solution
vector ¢,, whose components are multiples of 4;_;.

Similarly, for larger values of k, we obtain an inhomogeneous linear system for

¢k = (C1gr-- - Cp)T that is now slightly more complicated because of the appearance of
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40 R. Mazzeo and X. Zhu

the lower order terms Q, ;:

J

Z bicfl_lcik = — Zbiaelk_l(cil, . 'Ci,k—l)’ V4 ;é J — k+ 1, and
i=1

~

J
-k ~

Dbl e =45 1 — D 0,0 gk 1(Cinse i Cigr)-

—

~

This can be written more simply as T¢; = yj, where y;, = X;, — g, where

> ~ T -
X =(0,...,4; 11,0,....07, G = @) Qe =D 0;Qux_1(Cits -1 Cig_1)-
i

By the invertibility of the same matrix T, there exists a unique solution, at least for A
outside of a real codimension two subvariety that is denoted as S ;.

Now, write the entire system as TC = Y, where

C=@...,8p), Y= V0 7).

The entries of T depend on the c¢;;; hence, the 1st column of TC is actually a nonlinear
equation in these variables; however, it is convenient to think of the entries of these two

matrices as uncoupled.

Lemma 5. The matrix C has rank J when A lies outside of a real codimension 2

subvariety of C”.

Proof. We have shown that T is invertible for any A outside a real codimension 2
subvariety. Thus, restricting to such values of Zl, it suffices to prove that X is also

invertible, possibly restricting the set of allowable A further. Now, Y = X — Q where

X has entries A; on the antidiagonal (i.e., X;; = 4, Xo71 = A,, etc.) and zeroes
elsewhere, and Q has columns g, ..., q;. Recall that g; = g, = 0, and g;, depends only
ONAj pi1,---, 4y

We now use column operations to reduce to a matrix with all entries below
the main antidiagonal equal to 0. These operations involve multiplication by rational
functions of the Ai, and we need to keep some track of the dependence.

The only two nonzero entries in the 1st two columns are Je and A 71, and
appropriate multiples of the inverses of these entries can be used to clear all the entries

in the bottom two rows. Next, use the inverse of the antidiagonal entry 4; , — 4352 to
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clear all entries to its right on row J — 2. Note that this introduces rational functions
with denominators depending only on A J,A 71, and A ;_p. Carrying on, we use the
antidiagonal entry A; , — g, +1,7—¢ to clear the entries to its right; this uses rational
functions with denominators depending only on 4;,..., A, ,.

Provided we restrict to the complement of the zero sets of the denominators
which appear along the way, that is, to the union of a finite number of real codimension
two varieties S; 11, We obtain a matrix with all entries below the main antidiagonal
equal to 0. The entries along the main antidiagonal are each of the form AJ_Z plus
a rational function depending only on A Tty A ;. Restricting one final time to the
complement of where these entries vanish denoted as S;,,, we see that Y is invertible,

as claimed. [ |

By induction, each component of ¢, k > 2, is a constant multiple of A;_;,, plus

a polynomial depending only on 4;_;,...,A;_.,, that is,

Cirk = Ay Hix@y_ikiar - Ag_1)

(with f;, = 0 for all i). Note that, by its defining equation, ¢; = Ells, where Ell is a
constant vector and & := A}/J = pel?/J,
Employing complex notation to simplify calculations, the information above

allows us to compute the Jacobian of the change of variables
A = (éIAJ_ll . /Al) > (le ce IZJ)'

The structure of the f;; now shows that

d11 +O(p) d12/02 + 0(103) s d1J,0J + O(PJ+1)

~ dyy +0(p)  dopp* + 0% -+ dyzp? + Ot
D;Z =

dj +O0@p) dyp?+0%) -+ dyp’ + 0™

By the preceding calculations, the matrix (d;) is nonsingular provided A remains

outside a real codimension two variety.

6.2.2 The final iterated blowup
The computations above indicate precisely how F~! becomes singular near F(A;) and

motivate how this map can be desingularized by a sequence of blowups.
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We first explain this when J = 2. Passing from the coordinates z;,z, to z; =

%(zl +2z,)and z; = %(zl — z,), and writing ,/b,/b; := b for simplicity, we have
z) = —2A, +10JA? — 44, = —1p%A, + 1 pb,/p2A2 — 4¢if
~bie2p — LA, p? + 00,

and similarly,

-1 ——1. ~
VA2 —aA, ~ —b ie%p — 1A, p? + O(p%),

N
%)
|
|
Nol—
hS
-
Nol—
o

and hence

| O ~ ~
2o =5 (b0 )ie"/2p — 34,07 + O(p%) = c(6,0)p — 34,0 + 0%,

7 = 3@ +0 Hie"?p +0(p%) = (0, 6)pe?’? + 0(p%).

Now, set z; = Re'?, so that R, ¢, z, are coordinates on &£,. We can then use these to write
the lift PO : A, — & of F71:C2 - C? as

P9 (p,0,A) ~ (R, ¢, 2,

R=c©0,0)p+0(p), ¢ =0/2+0(p%), 25 =c(6,b)p — 30°A; + O(0%).

Clearly, P has submaximal rank at p = 0 since P(?(0,6,4,) = (0,6/2,0). To remedy
this, we perform two blowups.

Rename o, = 0© (to accord with later conventions); this equals the image
PO ({p = 0}). The 1st step is to blow up &, along ¢ @, yielding the space &} = [£,; 0 ©)].
Coordinates on this new space are obtained by replacing z, with the new coordinate
28" = z,/R and the lift of P© equals

PY :(p,60,4,) — (R, $,2")

= (c'0,0)p + O(p?),0/2+ O(p?),c(6,b) — 3pA; + O(p?)).

This is still singular at p = 0 since c(8,b) = (b — b ")ie?/? is independent of A, but is
slightly less singular than P(9. The image o := PV ({p = 0}) is a circle in the interior

of the new front face F(Eél)) of this new blowup.
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Finally, blow up once again to arrive at 5}2) = [5}1);0(1)]. This has the new
coordinate zgz) = (z(()l) —c(#,b))/R and the lift of PV is

P?:(p,0,A) — R, ¢,20) = (C0,0)p +O(0?),0/2 + O(p?), 1A, + O(p)).

This now is a local diffeomorphism, even at p = 0.

Let us now return to the general case and summarize the entire process before
writing the steps more carefully. First, blow up &; at o, = 0(®. Then, P© lifts to a
map PV : @ — £V that is slightly less degenerate at p = 0 in the sense that the
image 0 = PM({p = 0}) is now three-dimensional (instead of one-dimensional). We
continue blowing up @ to obtain £* and a lifted map P® that is less degenerate
still. The dimension of P ({p = 0}) increases by 2. The later blowups £U+D = lgy); o]
and maps PY are defined the same way. Continuing through J — 2 steps, the image
oU=2 = pU=2({p = 0}) is (2J — 3)-dimensional. This dimension does not increase after
the next blowup, but finally, P¥) : @ — £ is nondegenerate even at p = 0.

We prepare by choosing coordinates analogous to (R, ¢,z,) on &;. The center of
mass of (z;,...,2;) is z, = > z;/J; thus, if we set 2, = z; — 7z, (s0 >7_, 7, = 0), then
Zy,2y,...,2Z;_; is a full coordinate system on C’/. We next pass to projective coordinates

near a point in the interior of F; in £; by writing

SO (R,q&,zo,zgo),...,zgo_)l) eRT xS! x C x C72,
The expansions for each z; in p yield
Zo~C1p+Cop? H ..., Z;=Cpp+ Cppit. ..,

where ¢; = ¢; — ¢;. We recall that the coefficient of p in each of these expansions
is a function of ¢ alone, the coefficient of p? is a function of 6 multiplied by 4;_;,
and for j > 2, the coefficient of p’ takes the form a(O)AJ,j + b(@,AJ,I, ... ,AJ,J»H). We
refer to this as the “standard dependence”. It is straightforward to check that R, ¢,
and the Zl(.o) all exhibit this same standard dependence and in particular R = O(p),
¢ = 6/J + O(p), and ZEO) = ¢;;(0)/¢;,(0) + O(p). This parametrizes the circle o, by 6

via 6 — (0,6/J,0,¢5(0)/C11(0),...,C5_11(0)/cy1(0)). We change notation slightly, first
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writing z, = z* and th
g Zyp =z, and then

J+1

J J
i 0) 0) j-1 0) o j-1 . _
R~Elcj,o’,zo ~Ee0jp’ . Z Ngeij/ﬂ ,1=2,...,J—1.
j:l j=2 j=1

This defines the lift of 7~! to amap P? : Q@ — &;.
For the next step, where we blow up o, = ¢©@ in &;, we find projective

coordinates on £ = [£,;0©] by recentering each zl@ and then dividing by R, to get

R, ¢, 2y’ =zy/R, 2" = (2 —e))/R, i=2,...,0 - 1L

As will be the case at each step below, the expansions for each of these functions

exhibits standard dependence, with
2 = e _
R=0(p), $ =0/J+O(p), z 2 /K1 +0(p), 1=0,2,...,J -1,

or, changing notation again and writing out more of the expansion,
J
D Q) j-2 - _
Zeij P4 i=0,2,...,J-1
j=2

Write PV for the lift of P. At p = 0, e(l) depends only on 6 while e(l) = (ei.;))’(e)ixj_l,

i > 2. Hence, PV ({p = 0}) is a three-dimensional submanifold ¢); it is a bundle of
hemispheres S over a cn‘cle parametrized by ¢ = 6/J. This circle itself is given by z(l)
02) (), with all other zi =0,and A ;_1 is a projective coordinate on each hemisphere.

The pattern is now relatively clear, but we write out the next step since there is

one further minor twist. Define £ = [£/"; ¢(V]. Each point of o)) corresponds to some

values of 9 and AJ_l, which we now fix.

eY) (1)

Rotate the coordinates z;’, 1 =2,...,J—1, to new coordinates Zi , Where
2(1) = f22(¢)AJ_1 + O(p) and ZEI) = O(p) for i > 2, still with standard dependence.
Thus, z(l) ...,251_)1 are coordinates in directions complementary to o (and of course

if J = 3, this latter part of the coordinate system is absent). The blowup is realized
by the new coordinates z(z) (zy zV e(()lz))/R and 2(2) = Z(l)/R i =3,...,J — 1. Define
6823) = eg;/xl Then, PV hfts to a map P? into 8(2), which satisfies z(z) = eé%) + O(p) =
€)Y ©A;_; + Op) and 22 = (€)Y @A;_, + (€3)'(0,A; ) + O(p), i > 3. Here,
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(1))//

(e};))"(8,4A;_)) is rational in A; ;, with coefficients smooth in 6. The small difference

here is that the leading coefficients in the expansions in p of each of these new

(1))’ (1))” are determined

coordinates is affine in AJ , instead of just linear. Both (e and (e
in terms of the location on ¢! We see from this that P® ({p = 0}) is a bundle of two-
dimensional hemispheres over ¢, now parametrized affinely rather than just linearly

by A;_,. New coordinates at this step are as follows:
R, $,22,50,52,...,72)).
In general, there is a sequence of blowups
£V =gV V60 M) j=1,...,0—1,

along with the repeated lifted maps PV : Q@ — E}j), where ¢U~D = pi-D({p = 0}). This
corresponds to new coordinates
0 1) £2 G- £ 10))
(R, ¢, Zy 12y Zg e g ,ZJ._H,.. Z5- D)
as follows. At each point of 60D, the values of 6,4, ,,.. .AJ_]-H are fixed. At this jth

stage, we have

U) G- -1)
= (2 eOJ )/R
(eo(m)) OA; ;i + (eow))”(e,ilj,l,...,AHH) + O(p).

G- S0-1

Because z; ) depends affinely on AJ _j41 fori > j, we can rotate the coordinates z; ,

i >j, sothat z](.’ b =fJ-j(<i>)AJ_jJrl + O(p), and zlg D _ = O(p) for i > j. Thus, we can define
zlg) = zlg_l) /R. These coordinates are again affine in A s—j» which guarantees that one
can proceed further in this iteration.

When j < J — 2, the limiting set ¥ is a bundle with fibers S over o=V,
and we continue as before. If j = J — 1, then ¢ is a graph over and hence has
the same dimension as, ¢Y~1. We blow this submanifold up and have coordinates
zJ 1 2(21),222),.. z(JJ 12)) The final step, when j = J, involves the new coordinate

(J) (Z(J b eOJ 1))/R Just as when J = 3 earlier, the lifted map

PO (p,0,A,,... Ay ) (25,20, 207 (35)
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is a local diffeomorphism at p = 0; indeed, to leading order, ZE)J) ~ Al,zj(i_l) ~ AJ_jH, 2 <
j < J — 1. Therefore, the limiting set ¢ is open in the front face of £, and the map
PY is a local diffeomorphism at p = 0.

The goal of this entire construction has now been realized: we have (implicitly)
identified a finite number of real codimension 2 conic subvarieties S; C A; and the
space SEJ) and have demonstrated that if A € \ 092, then Z(t) = ./—'._l(tl_é) lifts to
a polyhomogeneous map [0,1) — v
)

We emphasize that this description is “very” local, and in particular, we have not

, and this is a “slice” of a local diffeomorphism

tried to describe the behavior near the possible intersection of o, with other faces of £;.
A careful understanding of such behavior is likely to be complicated and should involve
a more complicated set of blowups around the successive strata of S;.

In any case, in terms of all of this, we can now define, locally in 2, a suitable
family of conformal factors V(A; z) as a fiberwise function on C;. Our earlier calculations
produce the derivatives of v.

Recall the following definition.

Definition 6. For a manifold with corner M, a subset X is called a p-submanifold
if for any p € X there is a neighborhood p € U <C M and local coordinates
{X1,.... X, V1,..., ¥y} on U such that X N U is given by {x; = --- = x,, = 0}.

We have proved the following proposition.

Proposition 6. Fix any point ¢ € dQ C A;, and suppose that W is a subspace of
R2 = (>7_ A,z7¢, A, € C}. Then, there is a p-submanifold W c £ containing P“(q)
such that the differential of the function v(4; z) restricted to W is equal to the subspace
w.

6.3 The global parametrization

We now formulate the global version of this result. Let g, be a spherical conical metric
with conic data py = (p;,...,py) and Eo = (B;,....By). We reindex so as to list the cone

angle parameters in decreasing order, that is, so that

/312,1‘322~~2,3k0>1>ﬁk0+12~-~zﬁk. (36)
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For each j < kj, we allow p; to split into [;] points, so altogether, there are

ko k
K=k+ > (8]1—1 =) max{[g],1} (37)
i=1 i=1

points after splitting. For each j < k; choose splitting parameters BY = 8Y, ... ,B[(g])
with Zi(Blg) -1)=p—-1.We also set BY) = (B%i)) = (ﬂj),j > ky and decompose the entire

set B into clusters associated to each pj
B=@3BWY,...,BP) ¢ (0,000, (38)

where each cluster BY is interpreted as above. Points p; with i > kj or ; < 2 do not
split. Same as the single cluster case, we require B to avoid A = UJ’?ZI Uy Zg), where
I={i,... ,ip} C {1,...,[/3]-]} and 'A\}” = {f? D Dier 2n(BE’) — 1) = 0}. (That is, no subcluster

merge to a point with angle 27.)

Definition 7. An angle vector B e (0,00)X is called admissible if it satisfies the

constraints above, and the set of all such B is denoted B.

We next define a lift of p,, first to the point

K
(P1/---1P1/P2r---1Por--- 1 Piyr -1 Pigr P17+ - -1 Pi) €M™,

where each p; with j < k, is repeated [,Bj] times. Finally, we choose a lift of this point
to p = (qV,...,q%®) € £ (M), where each ¥ is a lift of (p;,...,p)) to the interior of the
central front face of 5[/31,] for j < k,. We can certainly assume that each q? lies in the
admissible set Q = Q(ij]). (We are abusing notation slightly here, regarding each E[ﬁj]
as a local factor in &.) For j > kj, q" = pj € £ (M) = M. Recall that the lift of p, to
MX lies on the intersection of partial diagonals, where the blow up is done within each
local factor. That is, p lies in a corner F, C £ where locally there is a product structure,
and the factors are E[ﬁj],j < kg, and (k — k) copies of M.

Analogous to the map F~!, we lift (one branch of) the initial map F~! as follows.
Write CX = [];2, ! @ C*%, and define

F1.@a®W, . ako gkt = Aty o 0 0 zko) pkotD) o k)
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where
720 = F1(AY), j <kyand 2V = —4D, j > k.
Taking each 7 as the local coordinate in M then F~1 lifts to
PO Ay > &.

As in the local case, P is not a diffeomorphism at 92, so we perform the
additional sequence of blowups in & near p. Indeed, we replicate the iterative blowup
from the single-cluster case in each factor 5[/3],],1' < ko. When j > kj, we simply blow up
p; € M in that factor. Because of the transversality, these operations can be performed

in any order. We call the final space 5K,' it is locally given by

AP i
5[/3]] X [Mr {p]}],
j=1 Jj=ko+1

and the final lift of 71 is

ko k
PO TTIc ;01 [ [c;01 — &°. (39)
Jj=1 Jj=ko+1

This is a local diffeomorphism, including up to 9<2.

Proposition 7. Fix any point q on the front face of Ax(M) := Hjil[(C[ﬂJ‘];O] X
H}C:ko 4+11C; 0], and not lying on the codimension two subvarieties 7. Suppose further-

more that W is a subspace of

RE =T APz, al ey x ] 149271, a¥ e ). (40)
j=1 t=1 j=ko+1

Then, there is a p-submanifold W C &, containing P®)(q) such that the differential of
the function v(4; z) restricted to W equal the subspace W.

6.4 Examples of cone point splitting

We now illustrate the ideas and calculations above with some explicit calculations when

J =1,2 or 3. As before, we work locally in the disk near a single cone point.
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Example 1 278, € (27,4n): In this simplest case, J = [fy] = 1, and hence the point p,

moves rather than splits. The family of conformal factors in this case is
v(4;z) = loglz+ A,],

so, writing A, = ﬂé/ﬂo (€] +1ie}), this has infinitesimal variation

0 a
v (0) = cos§ r— /P, v

0) = sing r—/ho,
oe} ae’{( )

d
i(o) = $%(1/z), thatis,

This computation is independent of the phase of 4.
Example 2 278, € (4m,6m): Now, p, splits into 2 cone points with an admissible pair
of cone angles 27rB(1) and 2713(2), that is, (B(l) -1+ (Bg —1) = By — 1. Set 2571 _ b; and

Bo—1
solve for the functions z;(4), i = 1, 2, such that

V(Zl; z) =b,log|z -z, (Zl)l +b,log|z — ZZ(ZL)|
satisfies
log |P(A; z)| = log |2% + A,z + A,| = V(4; 2) + O(A|'H).
This leads to the system of equations

0,2, +byzy, = A, + Ay = R, (A) = —4,

0122 + by23 = 22 + 22 = Ry(A) = (A})% — 24,.

Since b; + b, = 2, the restriction thatb ¢ A = {b : b, + b, = 0} is vacuous. This system

has two solutions:

(Zgl) Zél)) _ (_Al + (A2 —4A,)by/b; —A; —/(A))? — 4A2)b1/[’2)
! 2 ! 2

and

(2,22 (—A1 — V(47— 445)b5/b; —A, + /(A2 - 4A2>bl/bz)
' 2 ' 2 ’
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The weighted discriminant locus S: = {A : 4A, — (A;)? = 0} is independent of b in this

special case and corresponds to solutions on the diagonal z;, = z, = —%. The map
F:C? - C?, (2y,29) — (A}, Ay)

is a 2-to-1 branched cover ramifying along the diagonal {z; = z,}. Finally, the two
local inverses to F are given by the explicit formulae above. These also imply that
|z;l < Cmax({|A,],|4,]!/?} for any fixed b. For the construction of Eéz), see previous
subsection. ‘
Example 3 278, € (6r,87) : Fix an admissible triple (B}, B3, B), and set b; = 3%,
i =1,2,3. The functions z;(4) in

3
v(4;z) = Z b;log |z — zi(Zl)|

i=1

satisfy the set of equations

Zbizi = Z)\,l = _Al
D bz =) 12 =(A)" - 24,

> bzl => 23 =-(4)%+34,4, - 34,

Ifb ¢ A, that is, b; + b; # 0 for i # j, these equations have 3! = 6 solutions in C3,
counted with multiplicity. The map

F:C3\ {partial diagonals} — C? \ S

is a 6-to-1 covering. Unfortunately, it is no longer so easy to find an explicit expression
for the weighted discriminant locus S(B) in this case.

However, in the special case that all bj = 1, the six solutions Z9 are the
rearrangements of the roots of the polynomial z3 + A,2z2 + A,z + A; = 0. The bound

1/i

max{|z;|} < Cmax{|4;]"/"} follows from the explicit formula for the roots of a cubic.
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We now compute the asymptotic expansions of z;,. Write z; = Z?:l picij + O(p*)

and plug into the equations (33), then we get

3
s 3 2 3
—Ap° = Z bi[ci10 + Ciap® + ci30°]
i=1
—24,p° = Z b;[cf p? + 251 ¢i20° + (21053 + Cly)?]
—3p%" = > by} 0 + 8¢ cipp® + (3chcis + 3¢y ci)p®.
Then, one can solve for Cyj iteratively as described above. Below, we give an explicit

computation for the case when all b; = 1.

We first solve for {c;, }3_, that satisfy
2 3 i6
Zcﬂ =0, Zcﬂ =0, Zcﬂ = —36Y.
i i i
We choose one of the six solutions (which come from permutations):

C;; = —eie/srj, j=1,2,3,

71

where 1 = _1+‘/§l

. We then solve for {c;,} that satisfy

Zciz =0, ZZcilciz = —2A2, Z3C§1Ci2 =0,

which gives

1+iV3 - . 3i 3 - . 1- .
Cyp = _+TA26719/3I Cyp = + f Aze,lg/sl Cgy = § 28719/3'

 3(=3i++/3)

Then, the equations for {c;;} are

D iz =—Ay, D (2cnCi3+¢h) =0, D (3chciz+3c;¢h) =0,

which gives

4,
C13 = Cy3 =C33 = 3
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7 The Obstruction Subbundle and Projected Solutions

Our next step is to construct families of solutions of the Liouville equation modulo the

finite-dimensional space of eigenfunctions
E, = {¢ € Dp/" (M, ) : Ay ¢ = 2¢}.

These will be called projected solutions. The remainder of the argument, in the next
section, consists in identifying the subfamilies that can be deformed to exact spherical
conic metrics.

The difficult questions surrounding the parametrization of K-tuples of points
by vectors A described in the last section do not play a role here, so we are able to work
exclusively on & and Cy here and lift to EK and the corresponding space 51( only at
the end.

7.1 The fibers near the central face

Following Section 6.3, consider a spherical cone metric g, with conic data p, =

(y,....py) and ,é This uniquely determines an “exploded point”

K
do = ®1/---+P1s Por---1DP2s -+ Pkyr---1Pkgr Pho+1+Pkot2r---Pr) € M.
~—————
[41] (2] (B
Any nearby point q € MX determines a set of clusters qJ(.i), i=1,...,kyj=1,...,08],
where q(li),...,q[(;)i] all lie in a small neighborhood of p;, along with the remaining

isolated points g;, i = ky + 1,...,k, each lying near the corresponding point p;. The

set of lifts of q, to & fills out a corner

ko
Fy = mFiz...[ﬁi] C &g, (41)
i=1
where Fiz...[ﬁ»] is the face arising from blowing up the partial diagonal {q‘i == qfﬁ,]}.

We denote points on & by q. The corresponding lift nlgl(q) C Cg (where ny : Cp — &)
is a union of hemispheres, each lying over F,, attached in succession to the punctured

surface Mpo; cf. Section 3 and, for further details, [34].
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We fix a neighborhood U/ of F;, in £ and set V = EI(U). If g € U, then the fiber
ngl(q) contains, as one of its constituents, the surface M blown up at the points g; of

Bx(q) € MX. These points lie in two classes:

e when i > k;, the cone angles at the initial points p; are less than 2x, so the
corresponding points g; move without splitting;

e on the other hand, if i < k;, then the cone angles at p; and at the points of
the associated cluster ql@,j =1,..., [,3]-], which have split from p;, are greater
than 27.

Fix an admissible set of cone angle parameters B € B (see Definition 7 for the
definition of being admissible). We now produce, for each q € U, a spherical conic metric
945 0N the regular part of the fiber ngl(q) that solves the Liouville equation modulo a
certain finite-dimensional obstruction subspace.

In the following, we use weighted b-Holder spaces C;"* on each fiber; these are

the restrictions of the space Cg”'“ (Cg) to that fiber; see [34, Lemma 5].

7.2 The 1st approximation

Fix a smooth (nonconic) metric h, on M that is flat in balls B;(e) containing p;,
Jj < kgy. Next, define the family of (nonconstant curvature) conic metrics g, = gl(ﬁ,q),

parametrized by B and q € U, which equals g, = ez"@"q)h0 in each B;; here,

Bl .
v(B,q) = > (B, — 1)log|z — q}|. (42)
i=1

We can arrange, for simplicity, that near each p;, j > kq, g, is spherical with cone angle
2B . This family of metrics is polyhomogeneous on nlgl(m; cf. [34, Theorem 1].

We next modify g, to a new family g,(B, q) = e2?B9g, that has the same conic
data but such that g, is the original conic metric g, on the constituent M,, in the
singular fiber nlgl (qg)- The function v on nlgl (U) is first determined on the central fibers
over F, by the equation

82‘7(3’q°)91|M,,0 =9y (43)
and then extended to be polyhomogeneous over the whole neighborhood V. We can also

arrange for this extension to satisfy v(p) — v(0) = O(ij+e) where Pj is the boundary

defining function of front face F/ corresponding to the cluster of B; and J = max{[B], 1}.
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7.3 Projected solution family

We now solve the Liouville equation up to a finite rank error on all fibers near 7, Y(q)-
To do this, we first construct a vector bundle E, over &/ C &y that extends the ¢-
dimensional eigenspace E, = ker(Ag —2) on M, . Specifically, first, pull back E, to a
trivial rank ¢ vector bundle on the face F; lying over p,. Then, extend this trivial bundle
smoothly to /. This extension is not yet well adapted to the family of Laplacians, so we
arrange this next.

For any q € U, consider the resolvent (A — 1)~ ! of the Friedrichs extension

92(q)
of the Laplacian. By standard eigenvalue perturbation theory, there exists some small
€ > 0 so that, shrinking U/ if necessary, then the spectrum of A, ;) does not intersect

the loop y = {|» — 2| = €¢}. We then define
M, = (2ri)~! /V(Agz(q) — 0~ hda;

this is an L?-orthogonal projector onto the sum of eigenspaces for all eigenvalues inside

y. Its range E, is a smooth rank ¢ bundle, with E,|, C D;"r'“(Mn(q)). Furthermore,

Hé = Id — I1, projects onto the complementary finite codimensional subspace ]Ezlﬂl- C
m,x

G (Mn(q))'

Proposition 8. For each q € U, there exists a unique u € ]E%|cl and f € E,|, such that
2u _
Agu—e"+Ky =f. (44)

Both u and f depend smoothly on q € U.

Proof. By construction, if q € U, the linearization in u of
(@ u) — N(q,u) =I5 o (A, u— e +K,,)

is an isomorphism HéDE’“(Mn(q)) — HéCZ”'“(Mn(q)). Furthermore, N(q,,0) = 0. Since
N depends continuously on g, N(q,0) remains small in norm for q € U. Using the
invertibility of this linearization, a standard contraction argument produces both the
solution u and the error term f. Obviously, we could simply invoke the inverse function
theorem, but for the arguments in the next subsection, it is helpful to recall that this

relies on a contraction. |
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z=pz

R = \/r2+p2

p= Rs

Fig. 5. Coordinates used in the computation of expansion near the singular fiber €2 |J My, .

7.4 Polyhomogeneity of projected solution family

Proposition 9. The solution u to (44) is polyhomogeneous on Cg.

The detailed proof of this same result for flat and hyperbolic metrics appears
in the lengthy [34, Section 6]. The present setting differs only very slightly because of
the finite corank projection. Hence, we shall sketch the argument only briefly since
the modifications needed are very minor. In fact, near conic points that do not split,
that proof carries over verbatim. Thus, we focus on a neighborhood of some point that
splits. For simplicity, we describe the proof in the simplest situation where one conic

point splits into two. The general case proceeds in the same way but more steps.

Lemma 6. If 8; € (2,3), which implies that p, splits into two points, then the solution

family u is polyhomogeneous on Cg.

Proof. We use the coordinates as labeled in Figure 5 and recall how we can produce
the successive terms in the polyhomogeneous expansion of the solution family.

Step 1: The initial metric. The metric g,(B,q) = e2"®Dh, is flat near ¢, C C,. This
is precisely the situation in [34, Equation (48)] (where this metric was called g, ,). Its

polyhomogeneity is proved there.
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Step 2: Expansion at the central face M, N <,, in M, . The solution of the curvature
equation on the central fiber M,
2V _
Agv—e” +K, =0
provides the conformal factor v on M, in (43). The only difference with [34] is that here
e2'~’g1 = gy is a priori fixed on the central fiber. Choosing appropriate local holomorphic

coordinates near the cone point, we obtain the expansion of v on approach to this

boundary in Mpo as in [34, Lemma 6], to get

v ~ 2j
V|MP0 z ajt '

JjeNo

Step 3: Expansion at the face M, . We next extend v away from this face and solve the
projected curvature equation near M, but away from ¢,,. This uses the invertibility of

operator (Ag, — 2)|Mp0 on EZ; cf. Proposition 8. Proceeding on as in [34], we obtain that

o0
~ i~/
V+u~ E s’uj,
j=0
where, forj > 1,

W~ > i ayg@) + DL g, (g).

LeN £,keN,£>0,k>1

Compatibility with the previous step is the fact that @ equals the function f/IMpo
in Step 2.

Step 4: Expansion at ¢;,. To extend to an expansion at ¢;,, recall from [34] that
the writing things in terms of the projective coordinates near this face rescales the
linearized Liouville equation at ¢;, to the Laplacian for a flat conic metric on that face,

see [34, Lemmas 7-11]. The regularity theory for solutions of this equation yields

Vru~ > R‘uy(e). (45)
a=j+2kB,L<j

Step 5: Polyhomogeneity on Cp. Putting these steps together, we obtain the entire
expansion for u. What remains is to show that this is the actual asymptotic expansion
for the solution family we obtained earlier. In other words, we must show that the

difference of u and any finite partial sum of this expansion is conormal and vanishes
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at a rate just larger than the last term in this partial sum. This, too, is carried out in the

same way as in [34, Theorem 1]. [ |

The general case of Proposition 9 is proved along the same lines; cf. [34,
Theorems 2 and 3]. We extend the expansion iteratively on each of the faces along the
tower of hemispheres in the singular fibers of Cr. Each step is carried out essentially
the same as in the two-point case above.

Now, let us return to the fact, discussed at the very beginning of this section,
that we actually need to consider solutions over the final iterated blowup EK rather
than just £. More specifically, the extended configuration family Cx can be lifted by
the blowdown map & — & to a space we call Cy. There is a lifted map 7x : Cx — &,
and the added complexity is just in the base.

The fact that solution family u is polyhomogeneous already on Cr immediately
implies that its lift 7zu is polyhomogeneous on C~K. This is the fact that will be needed

in the next section.

8 The Solution Space

The final step is to identify the points q € £ where the error term f in (44) vanishes.
These correspond to the configurations of conic points such that the projected solution
g = e?*g, is actually spherical. The way we do this is as follows. In the last section,
we found solutions up to a finite-dimensional error, so the problem reduces to one
of understanding when this error vanishes. Suppose, for the moment, that E, is one-
dimensional and spanned by the eigenfunction ¢ for q € Y. The defect is then of the form
A@dg, where A(q) is a scalar function. Clearly, A vanishes on F, and we seek to compute
where it vanishes in the interior. We compute the derivative of A along any one of the
curves 2(1?) =F1! (tﬁ) discussed at length in Section 6. This derivative turns out to have
an exceptionally pretty form: it is given by a symplectic pairing between the asymptotic
coefficients of the eigenfunction ¢ and of the (flat) conformal factor v with the real and
imaginary parts of the constants A. Of course, in order for this parametrization in terms
of A to be nonsingular, we must pass from &g to E. The end result is that the kernel of
this pairing (for fixed ¢ and v) determines a codimension one submanifold that meets
the front face 1?'0 transversely. We also show that A vanishes only to 1st order along this
submanifold. Taken together, this establishes the existence of a smooth codimension

one submanifold in gK where the problem is solved exactly. If the rank of E, equals
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¢ > 1, the same considerations lead to the existence of a codimension ¢ submanifold of
exact solutions.

Suppose then that ¢ = 1, that is, the eigenspace E, for g, is one-dimensional, so
E, is a (real) line bundle over /. As will become clear below, it is necessary to work over
the base EK, so we lift the solution family u, the neighborhood ¢/, and the line bundle E,
up to this larger space via the blowdown map. If p is a K-tuple of points on M, possibly
with multiplicities, we write q for some point over it in £ and q for a point over it in
EK. As usual, write [M; p] = Mp, and denote by ¢p the associated eigenfunction, which
is unique up to scale because £ = 1. We normalize it to have L? norm 1. To simplify
notation below, v + ¥ = ¥; this depends on q € Y. Since K,, = Angz + e*Z‘A’KhO, we write
(44) as

Ag,u— €™+ Ay 0 +e 2Ky, = A, (46)

This identifies the error term f as A y¢, for some A, € R. As above, we lift this equation
and all these functions up to . In particular, we regard Aj as a function on /.

Again for simplicity, we consider the special case where there is only one cluster
of points; we explain how to carry this over to the general case at the end.

Our goal is to find the entire locus where Az = 0. Note that Az = 0 on the face
F,, so if there is an additional submanifold V that is transverse to this face and on that
Aﬁ vanishes, then this function must vanish to 2nd order at V' N Fo-

Differentiate A; with respect to q. For the moment, fix a nonzero vector AecCk
as in (40), such that >°; |Ai|2 =1, and let A(t) = (tA,,...,tAg), be a path in (Cf and A(t)
the lifted path in Ag (M). We assume that A(t) intersects the front face Ay (M) in the open
set Q (i.e., the complement of the finite number of codimension two subvarieties) where
the lifted parametrization PX) of £ by A is nonsingular; see (35). Define y (t) = PE) (A(t))
to be the corresponding path in gK. Since y () lies in the interior of gK for t > 0, we can
write y (t) = z(t) = (z,(t),...,2g(t)) € MK. Assume the 1st (z,....,z;) gives the cluster of
points.

We now use the chain rule to compute that the derivative of

J
v(y (@) := D bjloglz — z;(t)| =log |z’ + t(A, 27" + -+ Ap|+ O,

i=1
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with respect to t equals

J

dy®), 3 A

di =0 = zt

(=1

Using dots to indicate infinitesimal variation with respect to ¢, and dropping

various subscripts (like g) to unclutter notation and recalling that e_z‘A’AhO = A, , we get

g2’
(—2%92 (W+ D) + Ag, U+ ?x)) —2ue™ — 206 27K, = A¢ + Ad.

Taking the inner product with ¢ and integrating yields

/M —20A,, (u+ g dA,, + /M Ag, L+ )¢ dA,,
- /M 2ue™pdA,, — /M 2ve 2K, ¢ dA,,
=A/]M|¢|2dAgz +A/Mq's¢dAgz.
At any point on FO, q projects to py and A = u = 0, so at this face,

A = / —20(A,, D) dA,, + / Ag, L+ )¢ dA,, — 2/(11 +ve 2K, )pdA,,.  @47)
By Green's theorem,

/ Ag, V9 dA,, = (6ar¢ - arx*np) rdo.

VA, ¢dA, + lim
Mp Mp g2 g2 e—0

r=€

Inserting this into (47) and using the two equalities Ay, ¢ = 2¢ and —A , V+1 —e*2‘7Kh0 =

0 (since K, = K, = 1), we see that almost all terms cancel and we are left simply with

A= /(Agzu —2¢ +lim [ (V9,6 - 9,9¢) rdo. (48)

€—>0 Jr—¢

We now show that the 1st term vanishes, that is,

lim [ (A, — 2i)$ = 0. (49)

d—4do

For this, we use the expansion of u from the previous section. Recall that if p is a

boundary defining function for F,, then p = ¢!//.
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Let u' = 3—5, and note that & = u/(9p/dt) = J'u't!//~1. We claim that

/(Agzu’ —2u)¢ = O(p” 7174, (50)
If this is true, then by the chain rule,
tim [(A, i — 2w)¢ = 1im 22 [ (A, w — 20 = 0
lim [ (Ag,u—2i)¢ =lim = [ (Ag,u’ —2u)p =

since the variables p and t are constant on the fibers of Cx and hence commute with
Ag,.
We now prove the claim (50). Observe first that

/(Ag2 —2)u¢p = liII(l) (u'd,¢ — d,u'¢p)rdo + / U (Ag, —2)¢.

r=

The integral in the middle vanishes since u’ decays sufficiently near each cone point.
On the other hand, the integral on the right equals [u/(A — 2)¢, so it suffices to show
that the function p — A(p) satisfies

A, —2=0("), (51)

where A, = 9,,. We prove this by inductively showing that each of the 1st J — 1

derivatives of A vanish at p = 0. This in turn relies on the following lemma.
Lemma 7.

okt
—(0,2)=0,k=1,...,J—1.
dpk

Proof. We initially extended ¥ from the front face so that ¥(p,z) — 7(0,2) = O(p’ ™).
Thus, it suffices to prove the vanishing of the 1st J — 1 derivatives of the flat conformal
factor v.

Recalling

v(p) =log 1z + ,OJ(AIZ‘]_l ++ A+ O(p7T),
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then direct computation gives that

kv J Az 1.+ A
e — ,OJ_kEHZ 1 + + J + O(pj_k+€),
dpk J —k)! =2+ p A+ Ay
and this clearly vanishes at p = 0 when k < J — 1. [ |
Now, let us prove the corresponding fact for the eigenvalue. Differentiate the
equation

(Ag, — Vb =0,g, = €*"h,

with respect to p; this gives

A

(—20,A4, — 1,)0 + (Ag, — V)¢, = 0.

As in [34], the eigenfunction ¢ is polyhomogeneous on Cr and hence lifts to be

polyhomogeneous on 51(- Now, multiply this expression by ¢ and integrate to get

A, = —/2)\‘7p|¢|2. (52)

Using flplpzO = 0, we obtain 4,(0) = 0.

Similarly, taking another derivative gives

_ A2 A A 2
Aoy = —2xp/vp|¢| —4x/vp¢¢p—2x/vpp|¢| ,

so by Lemma 7 again, ,,(0) = 0. More generally,

dkx .

TE="2 2. OFVEFTD 67,
p g +kp Hhg=k—1

k;=0

Evaluating at p = 0 and assuming by induction that 8{,A(O) = 0forj < k-1, the only

terms remaining in the expression above are those with k; = 0. However, in that case,

ko+1

ky+1<k—1s00,"" ¥(0) =0 and all terms in the sum vanish.
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We now obtain from (48) and (49) that

A = lim (éarqs _ ar%/qs) rde. (53)

€e—0 Jpr—¢

To evaluate this more explicitly, we next show that only v (in the decomposition V= v+v)
contributes. Indeed, this follows by differentiating 7(p) — 7(0) = O(p’+¢) = Ot *¢') with

respect to t. We conclude that

A= ; g}% {rze}(varqs — ¢d,v)rde. (54)
J

(The sum indicates that we must sum the appropriate quantity over all conic points.)

Suppose first that g; > 1. Then,

(8]
¢ ~ > (@) cos(td) + ay sin(t))r'’fi + O+,
=0
(55)
(8]
v~ Z e}, cos(mO) + €, sin(m)lr ™k + O€),
m=0
where (22) relates {e,,,e, } to {A; : i =1,...,[8;]}. A brief computation then shows that
m'“m i 'j
this integral equals
(8]
27 Zﬁ(a’gez +aye))
(=1
in the limit as € — 0.
On the other hand, when ,BJ- <1,
¢ ~ Cjo +1cj; 00s(0) + ¢y sin@)Ir' + O(r),
(56)

v~ d;-o + [dJ’-1 cos(6) + d}/l sin(@)r Y8 + O@°),
and this leads to the contribution

/ / /! "
2r(c;ydjy + cjydjy).
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We have now proved the formula

A =277 wd)€, +ajef,) +2n Z (cjydjy + ¢y djy). (57)
j=1t=1 J=ko+1

The key feature of (57) is the fact that the eigenfunction ¢ determines the
o @ } and {c. e ]1} We prove below that if these all vanish, then ¢ =
Assuming that, then the equation A = 0 defines a codimension 1 subspace of the data
(eje, e}’e, d;l, d?)) for v. Both sets of data lie in R%2K K = 211'21[/3]'] + (k — ky).

If the dimension of E, has dimension ¢ > 1, the computation is similar. Since

constants {a’

E, is smooth, there exists a local smooth orthonormal basis {¢;,...,¢,}, and the error
term f; in (44) is a linear combination of these sections at every point g. Calculating the
derivativef along any curve Z(t) emanating from g, just as before and pairing with each

element of this basis at §, € F,, we see that

/ fo;dA, = lun (Vo,¢p; — ¢;0,v) rdb. (58)

e—0 {T:é}

Each ¢; has an expansion as in (55) with coefficients {a’.im, ﬂm} j=

} whenj > k. Slmllarly, Vhas expansions

., kg, and an
expansion as in (56) with coefficients {Cﬁim, im
with coefficients {e}m,e]//m} and {d} d” } for j < ky and j > k, respectively. The same

computation shows that the infinitesunal variation of f vanishes provided

ko 18] k
0=27 | > > M@i€jm + Fim€jm) + D, Gy +cindj)) (59)
j=1m=1 Jj=ko+1

foreachi=1,...,¢.

We summarize all of this in the following definition.

Definition 8. Fix any basis ¢, ..., ¢, for E,, and define the coefficient pairs (a’ Qi a}’im)
in the expansion for ¢; near each p;, j = 1,...,k, and triples (c;;o, Cjil’cjil) near p; with

j > ko. Suppose that v € rfl/ﬂkCZ'E(M JNA
j=1,...,kyandm < (8] and triplets (

with coefficient pairs (€] /m) for each

phgl Jml
Jl, 1) for p; with j > k.
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Define the bilinear form B : R?X x E, — R,

ko [ﬂ]]
B 7) = D D M@y + i)

j=1m=1

(60)
k
+ D> (Cpdy +cdy, i=1,..,L
Jj=ko+1

We say a vector v is a solution if B(¢;,v) = 0 for i = 1,...,£. Denote the vector

space of all such v as V.
Our next goal is to prove that £ = dim E, is not too large.

Lemma 8. Let g, be a spherical cone metric on M = S? with k > 3 cone points. If
(Ago — 2)¢ =0, that is, ¢ € E,, and furthermore, near each pj ¢ = const. + O@F1+e), then
¢ =0.

Proof. We restate the assumption as saying that near a cone point with B; > 1 all
coefficients of the terms ™% vanish, m = 1,...,[ﬂj]. The proof of [33, Proposition 13]

can then be applied verbatim. Indeed, recall the absence of these terms validates the

integration by parts
/ (A, d¢, do) =/ (IV do|* + | do|?);
M M

here, A; = V*V + 1 is the Hodge Laplacian for 1-form. Next, using A,d¢ = dA¢ = 2d¢
and the Cauchy-Schwarz inequality, [Vd¢|? > $|A¢|?, we see that

2||d¢||2=/ (dAge, d¢>=/ (A, do, d¢>=/ (IVdel* + | do|*)
M M M
1 1
z/ (§|A¢|2+|d¢|2>=/ (5 (81 6, dg) +1dgI) = 2] dg .
M M

Hence, the inequalities are actually equalities, so |[Vdg|? = |A¢|? = 2|¢|?, that is, the

Hessian of ¢ is pure trace:

1
Vdp=—2Ap-g=—¢-g.
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If J is the complex structure on M, then define the vector field JV¢. For any
vector fields X,Y on M,

LivsgX,Y) = (IV)g(X,Y) —g(lJVe,X],Y) — g(X,[IV¢, Y])
=g(VyyeX —IV$, X1, Y) + g(X, Vg, Y — LIV, Y1)
=g (VxWV),Y) + g (X, Vy(JV))
= —g(VxV$,JY) — g(Vy Ve, JX)

—(Vd¢)(X,JY) — (Vde)(Y,JX)

¢ -19(X,JY) + 9(Y,JX)] =0,

that is, V¢ is a Killing field on M,,. It also extends over each p; as a conformal Killing
field since it vanishes at these points. However, no such field exists since k > 3. Hence,
V¢ = 0 and so ¢ is constant, but A¢ = 2¢ so ¢ = 0. |

Lemma 9. Let (M,g,) be a spherical cone metric with k > 3 conic points (so M is not a
spherical football). Then, the rank of the linear system is precisely ¢, hence ¢ = dimE, <
2K, where K, = 2;21[:3]']' Furthermore,

e if ¢ < 2K, then there is a (2K — ¢)-dimensional space of solutions
(e]’-m, ej’.’m, d]’.l,dJ’.’l) in V c R3X;

o if ¢ =2K, = 2K (so ky = k), then V is trivial.

Proof. To prove the 1st assertion, suppose that £ > 2K|,. Then, there exists some linear
combination of elements in E, that vanishes like r'*¢ modulo constants for each pj
J < ko. However, as we have just shown, any such ¢ vanishes identically, which is a

contradiction. The remaining statements are elementary. |

Remark. When (M, g,) is a spherical football of angle 278, then by direct computation,
K, = 2[p], so

ko=0K=2, if B<1;ky=2K=2[g], if g=>1.

Since ¢ = 1if B8 ¢ N and ¢ = 3 if 8 € N, the football always lies in the 1st case above,
with ¢ < 2K.
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We now state our final and main theorem. Recall from Definition 6 in Section

6.2 the definition of p-submanifolds, and from Definition 7 in Section 6.3 the set B of

admissible

Theorem 4.

angles.

Let (M, gy) be a spherical cone metric. With all the notation as above, and

in particular, setting

then
a)
b)
c)
Remark.

ko k
KO = Z[ﬁ]], K = Zmax{[ﬂj], 1} = KO + (k — kO)'
=1

J=1

(The unobstructed case) if 2 ¢ spec(A,)), there is a smooth neighborhood
in the space of spherical cone metrics around g, parametrized by (s,p, ) €
Met,, x (E)° x ]R’i;

(Partial rigidity) if 1 < dimE, = ¢ < 2K, then for any1§ € Band s € Met,, near
the dataset for g,, there exists a 2K — ¢ dimensional p-submanifold X C gK
such that for each point q € X, there exists a spherical cone metric, that is,
a solution to K(e?“hy) — 1 = 0; this family of solutions depends on a choice
of a branch of roots as described in Section 6, but given that choice, locally
unique for the specific conic data;

(Rigidity) if K, = K and ¢ = 2K, then for any BeBands € Met

is a neighborhood U € gK such that p, is the only configuration admitting

there

cc’

a spherical cone metric. In other words, there is no nearby spherical cone

metric obtained by moving or splitting the conic points of g.

We have not explicitly stated the smooth dependence of these solutions on

the underlying smooth conformal class. Indeed, this is a bit complicated since even if

a given conic metric (M, g,) is obstructed, that is, 2 is in the spectrum of its scalar

Laplacian so we are case b), then for generic nearby classes and conic metrics, 2 will

no longer b

e in the spectrum. More generally, if the multiplicity of the eigenvalue 2 is

¢, there is a local stratification of the space of nearby conic metrics according to the

multiplicity of this eigenvalue. The family of solution metrics is smooth within each

stratum. However, this is somewhat subtle and we do not prove this here.

Proof. Case 1 is just Theorem 3.
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Next, for prove Case 2, we show that the set of configurations q € gK near
for which the error term f in (44) vanishes is a p-submanifold. Since ¢ < 2K, there is
a (2K — ¢)-dimensional subspace V € R%X for which f(0) = 0. In terms of the map P&

from (39), we define
A:Ag = Ey A APB(A)).

The computation in (60) determines the 2K — ¢ dimensional kernel of dA.
The front face of Ay is locally diffeomorphic to F,. Writing the error f = > A;¢;,

then near this front face, then by the computation leading to (60), for each i,
A; = th;(0) + Ot );

hence,

ko [/3]] k
/ / " /! / ! 7/ 4
(Ai/Dlmg =D > M(Qj;, iy, + Ajin i) + > (cjndjy + Cjiydjy)
j=1m=1 Jj=ko+1

on this front face. Note that ]\(t) = 0 on the face 13'0, so if there is an additional
submanifold X that is transverse to this face and on which Z\(t) vanishes, then this
function must vanish to 2nd order at X N F,. If we could show that A/t changes sign
when crossing a submanifold on 13'0; hence, there exists such a p-submanifold X where
A = 0. Since the projectivisation of {x = (€,,€/,d,,d/)} give coordinates on this front
face, we conclude that there exist directions such that 8X(Z\ /t) = 0, and other directions
for which 9, (A/t) # 0.

The implicit function theorem now provides the existence of a p-submanifold in
gK, as claimed.

Finally, Case 3 is almost the same as Case 2. Here, the linear system (60) has no
nontrivial solutions, so dA is invertible, and the conclusion follows from the inverse

function theorem. [ |

Remark. Case 2 definitely can occur. The reader is referred to [46], which discusses the
example of two glued footballs. There the dimension of E, is positive but not maximal.
We are not aware of any examples which fall under Case 3, but it is not excluded by any

results at present.
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68 R. Mazzeo and X. Zhu

Proposition 10. In Cases 1 or 2 above, the solution u(s,f?, q) lies in CZ““((?K) for all m

and is polyhomogeneous on 51{

Proof. This follows from Proposition 9. The solution modulo the obstruction bundle
is polyhomogeneous, hence so is its restriction to any smooth p-submanifold. However,
the restriction to the particular p-submanifold identified in this theorem corresponds

to the family of actual solutions. |
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