Spectral properties of reducible conical metrics

Bin Xu and Xuwen Zhu

Abstract We show that the monodromy of a spherical conical metric g is reducible if and
only if the metric g has a real-valued eigenfunction with eigenvalue 2 for the holomor-
phic extension Ag"l of the associated Laplace—Beltrami operator. Such an eigenfunction
produces a meromorphic vector field, which is then related to the developing maps of the
conical metric. We also give a lower bound of the first nonzero eigenvalue of Ag"l, together
with a complete classification of the dimension of the space of real-valued 2-eigenfunctions
for Ag,"l depending on the monodromy of the metric g. This paper can be seen as a new
connection between the complex analysis method and the PDE approach in the study of
spherical conical metrics.

1. Introduction

The study of the interplay between the geometry and the spectrum of geometrically
related operators has a long history and has produced a lot of interesting results. In
this paper, we study how the monodromy of a spherical conical metric influences the
spectrum of the associated Laplace—Beltrami operator. Our results connect two areas
of research which attracted considerable attention in recent years. One is the study of
metrics of constant positive curvature with conical singularities on compact Riemann
surfaces (which we call “spherical conical metrics”), and another is the spectral theory
of the Laplace—Beltrami operators on singular surfaces. For the theory of spherical
conical metrics, reducible monodromy is expected to occur at the singular points of
the moduli space of such metrics. For the theory of Laplace operators, metrics with
conical singularities give an interesting class of examples and exhibit many surprising
phenomena. This paper appears to be the first to establish a connection between those
two areas.

We start by introducing the basic setup. Let ¥ be a compact Riemann surface, p =
(P1,..., Py) be an n-tuple of distinct points on X, and ﬁ =(B1,.---,Bn) € R\ {1})"
be an n-dimensional vector. We say g is a conical metric representing the divisor D =
Z;’-ZI (B; — D[P;] on X if g is a smooth conformal metric on the punctured surface
S\suppD = E\{Py,..., P,} and has conical singularities of angle 27; at P; for
Jj =1,...,n. The latter condition means that near P; there is a complex coordinate z
such that z(P;) = 0, and g can be written as g = e?*|dz|?, where u — (8; — 1) log |z
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extends to z = 0 continuously. We say a conical metric g representing D is spherical
if g has constant curvature one on the punctured surface X\ supp D.

A classical way to view spherical conical metrics is through their developing maps.
For any such metric g, there exists a multi-valued locally univalent meromorphic func-
tion f : X\ supp D — C, called a developing map of g, such that g is given by the
pullback by f of the standard spherical metric. Such a developing map has the follow-
ing three properties (cf. [14, Lemmas 2.1 and 3.1]):

4|dw|?

(i) 1O

1. (Pull-back) Denote the standard metric on the sphere by gg =

w € C, then g = f*gy on T\ supp D;
2. (Monodromy) The monodromy of f is contained in

+b
PSU(2) = {w s L0T2 abeC,a? + b = 1};
—bw +a
3. (Cone angle) Near each P;, the principal singular term of the Schwarzian
_p?
derivative of f is given by 1222’ .

We note here that for a given spherical conical metric, its developing map is not unique,
and all such maps are related by Mobius transforms in PSU(2). So for a given metric,
the monodromy of all its developing maps are contained in the same conjugacy class of
PSU(2). In this paper, we are in particular interested in the following class of metrics.

DEFINITION 1

A spherical conical metric g is called reducible if there exists for the metric g a devel-
oping map with monodromy in U(1) = {w > e!?w : @ € [0,27)}. Such a developing
map of g is called multiplicative. The metric g is called trivially reducible if the mon-
odromy of its developing map is trivial.

One can also view a spherical conical metric as a solution to the following singular
Liouville equation:

ey Agout — e + K¢y, =0,

where go is a conical metric with the prescribed conical singularities but not necessar-
ily with constant curvature one, and g = e?*g, gives the sought-after spherical coni-
cal metric in the same conformal class. Here, Ay, is the associated Laplace—Beltrami
operator of go. When some of the cone angles are bigger than 27, the existence and
uniqueness of solutions to (1) is still not completely understood. One approach is via
perturbation near a given spherical conical metric g, which leads one to study the lin-
earized operator of the above equation, given by

Ag—2.

Unlike for complete metrics, in order for Ag of a conical metric to be self-adjoint,
boundary conditions are needed. One common choice is the Friedrichs extension AFT
which is the extension such that the domain consists only of bounded functions on X.
This is also the extension one uses to solve the perturbation problem of (1). It is known
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that when all cone angles are less than 27, the first nonzero eigenvalue A, of A? is
bounded below by 2, and A; = 2 if and only if g is a spherical football [33, 42]. How-
ever, when some of the cone angles are bigger than 27, 2 is no longer the lower bound,
and the deformation is obstructed exactly when 2 is in the spectrum of A?. In [44],
it is shown that the deformation can be unobstructed by “splitting” cone points, and
there is a trichotomy of deformation rigidity depending on the dimension of eigenspace
with eigenvalue 2. In addition to the Friedrichs extension, in this paper we also con-
sider another extension, called the holomorphic extension ATl which was introduced
in [27] in the case of flat conical metrics. We show that the functions in the domain
of this extension are also closely related to the spectral geometry of reducible conical
metrics.

Now we state the main result of this paper, which is a spectral characterization
of spherical conical metrics with reducible monodromy. Denote by A the Laplace—
Beltrami operator of a spherical conical metric g, and D' (resp. D) the domain of
the holomorphic (resp. Friedrichs) extension of Ag. The main theorem is stated below
(for a more precise statement, see Theorems 1 and 2).

THEOREM A
A spherical conical metric g has reducible monodromy if and only if there is a real-
valued eigenfunction ¢ € DU satisfying

Agp =2¢.

There has been a lot of recent development in understanding spherical conical metrics.
One of the features of this problem is that it can be approached from many aspects
of mathematics, including complex analysis, min-max theory, integrable systems, syn-
thetic geometry, etc. (see [2, 5, 10, 12, 14, 16, 17, 19-21, 29, 33, 34, 37, 40-44, 48, 50,
51, 53] and the references therein). This paper can be seen as a new connection between
the complex analysis method and the PDE approach.

The study of reducible conical metrics was initiated in [51], and has seen a lot of
development recently [14, 20, 49]. One feature of reducible metrics is that there exist
multiplicative developing maps of such a metric which give meromorphic differentials
(sometimes called ‘““character one-forms”) that are dual to meromorphic vector fields
([14], also see Section 4.2 herein). One expects that there will be constraints on the
divisor D = Z';:l (Bj — D[ P;] for reducible metrics. When X is the Riemann sphere,
Song and the first author [49] determined the angle constraints when all the angles are in
27 Q. Recently, Eremenko [20] gave a complete answer on the angle constraint problem
on the Riemann sphere. There is ongoing work of the first author and his collaborators
[11] on the case when the genus of X is positive. In [52], the local rigidity of one
family of such metrics was shown by using synthetic geometry which exemplifies the
constraints on supp D.

The number 2 also appears as the upper bound for the first nonzero eigenvalue in
the eigenvalue isoperimetric problem among all smooth metrics on S?, where the stan-
dard spherical metric is the only extremal metric for A [26, 30]. There are also two
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analogues in Kihler geometry. One is that a positive lower bound on Ricci curvature
gives a lower bound on the first nonzero eigenvalue [32, 45]; the other is that the com-
plex gradient vector fields of 2-eigenfunctions of a Kihler—Einstein metric on a Fano
manifold are holomorphic and form a reductive Lie algebra [36]. Our proof can be seen
as an analogue of [32, 36, 45], where a similar Bochner technique is used to obtain
a lower bound for the first nonzero eigenvalue and, in the case of equality, produce
meromorphic vector fields from 2-eigenfunctions (see Section 4.1). Here we prove the
following result (see Theorem 3 and Proposition 2).

THEOREM B

For any spherical conical metric g, the first nonzero eigenvalue of A?Ol satisfies A > 2.
If there is a 2-eigenfunction ¢ € DM, then the complex gradient vector field X :=
¢>? 0, is meromorphic on X.

The existence of such meromorphic vector fields indicate some symmetry of the metric
itself. These vector fields can also be viewed as generators of gauge transformations,
which are obstructions in solving the nonlinear uniformization problem (see examples
and discussion in Section 4).

If, in addition, the 2-eigenfunction is real-valued, we then show that the metric
is reducible by relating the meromorphic vector field to a developing map. As an
application, we are also able to show that the dimension of the space of real-valued
2-eigenfunctions is completely determined by the monodromy (see Theorem 4).

THEOREM C

For a reducible spherical metric g, the dimension of real-valued 2-eigenfunctions of
A?Ol is either 1 or 3. The dimension equals 3 if and only if g is trivially reducible.

We point out here that the real-valued 2-eigenfunctions we find are actually in the
domains of both the Friedrichs extension and the holomorphic extension. Therefore,
all reducible metrics are included in the obstructed case as discussed in [44]. However,
having 2 in the spectrum of the Friedrichs Laplacian does not imply that the mon-
odromy is reducible, and in fact there is evidence that there exist irreducible metrics
with 2 in their Friedrichs spectrum. In addition, the assumption in Theorem A that the
eigenfunction is real-valued is also essential (see more discussion in Section 5).

We also mention another type of metrics called HCMU metrics. The Gaussian
curvature functions of these metrics behave similarly to the real-valued eigenfunctions
discussed above. There is also a corresponding existence of meromorphic vector fields
and character 1-forms (see [6, 8, 13, 15, 35] and the references therein for details).

This paper is organized as follows. In Section 2, we describe various self-adjoint
extensions of the Laplace—Beltrami operator of a spherical conical metric. In Section 3,
we construct appropriate eigenfunctions assuming the metric is reducible. In Section 4,
we prove a lower bound for eigenvalues, and in the case of equality we prove the
reducible monodromy property by producing a meromorphic vector field from a real-
valued 2-eigenfunction which is then related to a developing map. In Section 5, we
discuss the relation of our work to existing works and open problems.
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2. Self-adjoint extensions of the operator A,

Consider the Laplace—Beltrami operator of a spherical conical metric g, denoted by
Ag, acting on €2°(X\ supp D). Locally near a cone point of angle 2z, the metric is
given by the geodesic coordinates as

g =d + p%sin?tdh?, (r,0) € (0,€) x R/2nZ.
Under these coordinates the Laplace—Beltrami operator is locally given by

5 Cost r 1 _,
Ag ——8t — Eat— EE 9-

This operator is of conical type, which has been extensively studied [3, 4, 7, 39].
Conical operators can be viewed as rescaled versions of b-operators [38]. We now
briefly recall some notation here. Let X p := [¥; supp D] be the surface ¥ with cone
points blown up—that is, each puncture is replaced by a circle, and polar coordinates
are introduced near the cone points. Denote by Vj, the b-vector fields on ¥ p, which are
smooth in the interior and locally given by a basis of {td., dg} near the punctures. Let
Diff}’ (X p) be the space of b-differential operators of order not exceeding m, locally
of the form

A= )" aj(e.0)(xd) 0h. aj €€ (Tp).
JjH+l<m

A conical operator is a rescaled version of a b-operator, given by elements in
v~ Diff}' (X p). In particular, the Laplace operator A, can be written as —t2[(¢d.)% +
5—2351 + ---, where the remaining terms are smooth multiples of t29. and tdy—
hence, lower order. Therefore, Ag € v~2 Diff i(E p). Let Li(E p) be the L? space
with respect to the b-measure which is locally given by % ® df. Note that it is related
to the L? space associated with d Vol by the following relation: t’lLi(E D) =
L*(Ep,dVolg). We also denote by H }f(E p) the b-Sobolev space with respect to the
b-operators; that is,

H{(2p)={ueLi(Ep)|VueLi(Sp).VV eDiffy(Zp)}.

Using such b-based spaces for conic operators has certain advantages, as these func-
tions satisfy dilation invariance properties.

There is a well-developed theory of self-adjoint extensions of symmetric operators
in the setting of manifolds with conical singularities (cf. [23-25, 31]). For the case of
Laplace—Beltrami operators in this paper, we also refer to [27, 28] for the theory on flat
conical surfaces. Since such extensions only concern the local behavior near each cone
point and the leading part of A, is the same as in the flat case, the expansions later in
this section follow from exactly the same computation.

The closure of A, in ™! Li(E p) with respect to the graph norm is a symmetric
operator,

min . min —172
A" D > Ly,

D™ =€ (X \ supp D) with respect to ||u||t_1L% + ||Agu||t_1L}2),
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while there is another domain,
Ag\ax . 0.Omax N ’C_lLIZJ,
D = {u e t_lle7 tAgu e t_lle7 in the distributional sense; i.e.,
Ip ev 'L}, s.t. Vo e D™, (Agv,u) = (v.9)).

In other words, D™ is the dual space of D™" with respect to the L? product.
There is a complete description of H™" and H™ in [25]. In particular, we have
the following proposition.

PROPOSITION 1 ([25, Lemma 3.5, Proposition 3.6, Lemma 3.11])
The minimal and maximal domains of Ag satisfy the following conditions:

1. Dmin = pmax N (ﬂoo ' HZ(Zp));
2. tHZ(Zp) C D™
3. e > 0 such that D™ — v~ 'T¢HZ(Zp).

Near a cone point of angle 2778, we can write out the expansion of an element in H™**
as follows:

Umax = Ao + bo logt

+ Z |k|*1/2akt\k\/ﬁeik0+ Z |k|71/2bktf\k\/ﬁeik0+a’
L=lkl=t 1<lk|<]

ue c@min,ak,bk € (C,

where J = [B]if B ¢ Nand J = B — 1 if B € N. When there are multiple cone points,
we use the notation (a};, b,i)_ J; <k<J; for the expansion near P;. We refer to [27, Propo-
sition 3.3] for the explicit computation that justifies the above expansion. Note that if
B < 1, the only coefficients remaining are (ag, bo).

The classical von Neumann theory [46, 47] shows that any self-adjoint extension
of A, is a space between D™ and D™ and has a one-to-one correspondence with
the Lagrangian in the space of coefficients:

)

n
| fap.biyec®. J=>"@Ji+0.
0<lk|=<J; i=1

1<i<n

Here the symplectic pairing is given by
QAL A) = (A AL) —(A_ A}) = Y (@b} —bhal).

1 1 j 1 i .
A:(a_J],...,a;(,...,a'}n,b_h,...,b,‘c,..., ﬁn) =: (A4, Ao),

3

where (-,-) is the inner product in C” .
In particular, there are two self-adjoint extensions we are going to use.
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DEFINITION 2
The domain of the Friedrichs extension D consists of all bounded elements u € D™
i.e., any function with an expansion,

U=ag+ Z k|7 2ac*/B k0 L i e D™ ay € C.
1=<[k|=J

DEFINITION 3
The domain of holomorphic extension D! consists of functions with expansion,

u=agp+ Z |k|_1/2akt|k|/’3€ik0 + Z |k|—l/2bkt—\k|/ﬂeik0 +ﬁ,
(4) 1<k<J \<—k<J

Uue e@min,ak,bk eC.

We denote by A and AF! the two self-adjoint operators associated to the domain D
and DL

In terms of complex coordinate z = |z|e’?, where |z| ~ t1/# the two expansions
above can be rewritten as

G  ued" & u=a+ Y (@ +bz)+0(z' ).
1<k<J

6) u € pH! & u=ap+ Z akzk+(9(|Z|J+1).
1<|k|=J

Notice that if all 8; < 1, then the only nontrivial coefficient is ag, in which case DFr =
@HOI.

3. A2-eigenfunction in the domain
In this section, we construct a 2-eigenfunction for reducible metrics.
THEOREM 1

If g is a spherical conical metric on X with reducible monodromy, then 2 € Spec(Az,r )n
Spec(AF).

Let g be a reducible metric representing D on X. Then there exists a developing map
of g, written as f : X\ supp D — C, such that the monodromy of f is contained in
U(1). Hence, the metric g can be written as the pullback by f of the standard spherical

. __ 4ldw®> ..
metric gy = 7(1_‘_“”‘2)2 ;1.e.,
Al 2
@) &= —"T7mzldzl"
(+1117)?
Its Laplace—Beltrami operator is then given by
1+ f1?)?
®) Ag =— 0;0;.

|17
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Consider the following function on X \ supp D:
_1-1/P
L+ [fP2
Since f is a multi-valued developing map, ¢ is also potentially multi-valued on X \

supp D. Moreover, a priori ¢ is only defined on X \ supp D. However, we have the
following lemma for reducible metrics.

® ¢

LEMMA 1

If g has reducible monodromy, then ¢ is a well-defined single-valued function on X.

Proof

Take a representative f of f outside the branching points of f. Since the monodromy
of f is contained in U(1), it is straightforward to check that |f|, and hence ¢, is single-
valued on ¥ outside the branching points of f. In addition, the definition of ¢ is inde-
pendent of choice of . By [14, Theorem 1.4], ¢ extends continuously to X. U

REMARK
When g is irreducible, the function ¢ defined above is not single-valued.

LEMMA 2
Near a cone point of angle 27f, if B ¢ N, then there exists one complex coordinate z
and one representative § of f such that f = z8; if B € N, then there exists one complex

coordinate z, a PSL(2,C) matrix (‘; 3) and one representative § of f such that f =

azP4b
czB+d”

Proof
It follows from the proof of Theorem 1.4 in [14]. O

LEMMA 3
The function ¢ defined in (9) is contained in D N HHO!,

Proof
Near a cone point with noninteger cone angle, using the expression f = z#, we get the
local expression of ¢ as

1|z
14 |z|28°
and hence ¢ has the following expansion:

¢~ 1-2z]*f +0(z|*P ).

¢):



Spectral properties of reducible conical metrics 9

Near a cone point with integer cone angle 27 n, the developing map f has a dif-

ferent expression f = ZZZ: IZ, where ad — bc = 1, and hence ¢ is given by
N |b? —|d|? 2bd n 2bd n

PR TR T R PR (bRt PR

2bd(ab +cd) ,, 2bd(ab+éd) _,,
——7 ———7Z
(61> + 1d|?)? (61> + |d|?)?
2(161> = |d[>)(la]* +[c[*)
(161> +1d1?)?
In either case, by comparing with (5) and (6), we see that ¢ is in D N HH. O

(10)

|Z|2n 4 (9(|Z|2n+e).

Using the explicit expression of Ag in (8), it is easy to check that ¢ satisfies

Agp =2

This completes the proof of Theorem 1.

EXAMPLE 1

Consider the standard sphere S? with the spherical metric gy = dt? + sin® td6?, which
is related to the metric (7) in conformal coordinates (where the developing map is
f(2) =z, z = re!™) by the following relation

v =2arctanr, 0 =w.

Then one of the 2-eigenfunctions of gy is given by cosr, which is exactly the same as
¢ in (9). The other two eigenfunctions sinr cos 6 and sinr sin @ are identified with the
real and imaginary parts of

2f
L+ f]>
4. A spectral condition for reducible metrics

In this section we prove the following theorem.

THEOREM 2

If there is a real-valued function ¢ € DU satisfying Agd = 2¢, then g is a reducible
metric.

Let ¢ € DM be an eigenfunction with A ¢® = A¢. Define the complex gradient of ¢
as

X = ¢70,.

We will use this vector field to show A > 2, and if A =2, then X is a meromorphic
vector field, which will then be related to a developing map of g provided that the
2-eigenfunction ¢ is real-valued. Before the proof, we first give two examples.
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EXAMPLE 2
Take the spherical football with angles (278,27f). where B ¢ N, and let z be the
(global) conformal coordinate centered at one of the cone points. The eigenfunction

defined in (9) is given by i;lli ‘Iiz’ and its corresponding gradient vector field is given
by

X =—z0,.
EXAMPLE 3

Take the three 2-eigenfunctions on S? described in Example 1, then the three corre-
sponding vector fields are holomorphic on the sphere:

(11) X, 2—1282, Xzzl(l—zz)az, X3=li(l+zz)8z.

2 4 4
Consider the double cover of a sphere using the pullback by f : z — z2, which gives a
spherical conical metric with two antipodal cone points each with angle 4. The three
eigenfunctions from the sphere lift to the double cover, and the three meromorphic
vector fields are given by

12) X = —izaz, X, = (éz_l - %23)32, X; = ’(%2_1 + éf)az.
REMARK

Each of the meromorphic vector fields above can be viewed as a generator of an infin-
itesimal diffeomorphism on the twice-punctured sphere. In particular, X; is associated
to the conformal dilations on the sphere and generates a diffeomorphic family of spher-
ical conical metrics with the same conical data. Such conformal dilations can be seen as
gauge actions, which shows that the presence of 2-eigenfunctions creates obstructions
in solving the nonlinear Liouville equation (1) that was studied in detail in [44].

4.1. A meromorphic vector field
We will prove the following theorem.

THEOREM 3
For any spherical conical metric g, the first nonzero eigenvalue of AEOI satisfies Ay > 2.

If the equality holds, then we have the following proposition for any 2-eigenfunction in
the holomorphic extension.

PROPOSITION 2

Let ¢ € DM be an eigenfunction (not necessarily real-valued) satisfying A g =2¢.
Then its complex gradient vector field defined as X = ¢**0, is meromorphic on X.
Moreover, X has the following properties:

1. Arany point p & supp D, X is holomorphic;
2. Ata point p € supp D with B ¢ Nand B < 1, X has a zero;
3. Ata point p € supp D with B > 1, X can have a pole of order at most [] — 1.
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We start with an arbitrary eigenfunction ¢ € D! satisfying
Agp =1, A>0.

Locally the metric is given by g = e2*|dz|? as in (7), then we can write the gradient
vector field X of ¢ as

ad 4 1% 9

X=eudby ST 90,

0z (1+]f]»)? oz
Away from cone points, by elliptic regularity it is easy to see that ¢ is smooth. Hence,
X is a smooth vector field on X \ supp D.

Using Bochner’s identity (see, for example, [1, Exercise 1.38]), we have the fol-

lowing pointwise identity for X:

(13) V*VX = AX —Ric X,

where V* is the formal adjoint operator of V. Recall for the spherical metric g consid-
ered here, Ric X = X. Hence, by [1, Equation (4.80)],

1 1
(14) v*vODx = E(V*V)(—Ricx) =5 -2x.
We now show that the following integration by parts is valid:
(15) / VOV x 12 = / (V*vODx x).
= =

Note that all we need to show is that the integral of the left-hand side converges; in
other words, V(®D X is in L2. Then using VX = VO X + VO X and pointwise
(V0 x v x) =0, one can apply integration by parts to get the expression on the
right-hand side. If (15) holds, then from (14) we immediately get A > 2, and A = 2 if
and only if V@D X = 0.

To check that VD X is indeed square integrable, we compute the decay rate of
VD X near each cone point. To do this, we take z = re’? to be the complex coordi-
nate near a cone point of angle 2 and decompose the eigenfunction ¢ locally into
a Fourier series ¢ = > ", o/ k (r)ek? . We compute the functions ¢ (r) and then use
them to express V(®1 X . If all ¢ decay fast enough near the cone points, then V(D X
will be square integrable. There is a slight difference between the two cases B ¢ N and
B €N, so we carry out the computation in the first case in detail and then point out the
difference in the second case.

4.1.1. Developing maps near a cone point of § ¢ N. Near such a point, the developing
map f can be written as

f=2°,
so the metric is given by
4%z 26D

B el 2
$= Wt zppy 47!
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Recall z = re’?. Then the equation A ¢® = A¢ is given by

(1+r2$)2 1

_Wr_z((ra,)2 +03)p = A4.

Write ¢ = Y 7o _ o #k (r)e'*? . The Fourier decomposition of the equation gives a
sequence of regular-singular ODE:s:
(1+r2$)2 1

2 2 —

Each ODE has two linearly independent solutions, with leading term r¥ and r=*,
respectively. By choosing ¢ € D!, we require that for —J < k < J, each ¢ has
an expansion with leading term r¥. Putting the leading term r¥ into the equation, we
see that in order to match the right-hand side, the next term should be given by rk+28 .
This gives an r*¥+28 term to match on the right-hand side; hence, the next term in the
expansion is given by r¥+4# Tteratively, we get

(16) g (r) = Cror® + Crar* T + Crpr* ™ oo Cp yrF 28 4

where Cy; are determined iteratively. In particular, if A = 2, then there is the following
iteration:

—8B%Cr,j—1 = ((k +2jB)*> —k*)Cy
(17) +2((k +2( — 1)) — k) Cr 1

+ ((k+2( —2)B)° —k>)Crj 2.

(When j =1, the C¢_;_, term is removed.) It is straightforward to check that if 1 =2,
then Cy ; are actually given by

28
k+B

On the other hand, for |k| > J, the assumption that ¢ is in L?(X, d Vol ) requires
the solution ¢ to start with r/*!:

(19) i (r) = Croor* + Co 17 ¥172P 4 Cppr ¥ g € WP

(18) Cr,j = (—1)/

Cro. Jj=12.....

where the coefficients Cg ;, j > 0 can be determined again by Cy o in the same fashion.
In particular, when A = 2, we have a similar expression as (18), except k is replaced
by |k]|.

Now we compute X and V(O X using this local expansion.

The vector field X

Compute the complex gradient of ¢ as

X = (6_2”(3—?>82 = (%Xk(r)ei(kﬂ)e)az.

Here we use the local expression of g and 9; = #(ar — %89) to get

B2 if
ity U+ e 1 ik
20) Xy =e R (9 =0 ) (B (r)e™).
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It simplifies to the following:

(1+r?)?
X = sgaan (%~ ¢k)-

Recall when —J <k < J, ¢ is given by (16). The first term in ¢y is Ck,ork, which is
eliminated by the operator d, — k/r. Therefore,

k .
r " — . L k+2jB—1
D= b =D 2iBCir L
Jj=1
This gives

A+ -
2l) Xip= T ZZJ,BCk,jrk"‘(ZJ 2)B+1 _ 8[32

where C‘k,j =2jBCx,; +4(j —1)BCx, j—1 +2(j —2)BCy, j—> (for j =1, the last term
is removed). The same computation above applies to k > J as well.
On the other hand, when k < —J , the first term in ¢ is not eliminated, and we get

k .
I Dy, — ) 27 k2781
P — P > (=2k +2jB)Cjr :

j=0

ch k- Qi— 2)ﬂ+1

j=>1 j>1

which gives

(1+r?)? k| +2j—2)B+1
Xk TZ( 2k+2],3)Ck ir 7=

j=0

Z 7T @B+
?B2
8,3 =

(22)

where Cy ; satisfies
Cr,j = (—2k +2jB)Cx,j +2(—2k +2(j — DB)Ck, j—1 + (—2k +2(j —2)B)Ck,j—2.
Again for j = 1, the last term is removed.

Here we give the following observation of C’k, 7> which will be used later.

LEMMA 4
If A =2, then the coefficients C'k,j in (21) and (22) satisfy

(23) Cr,;, =0, Vj>2.

Proof
It follows directly by substituting (18) into the expression of Cy ;. (]

Expression of VD X
Now we compute VD X which is a (1,1)-tensor, locally given by

D 0z (Xpe'* V90, @ dz.
keZ
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Using the expression of Xj obtained above, we compute 95 (Xge!*+D0) = #(ar —
1 i (k 0
L99) (X (r)e!® 1) for each k.

When —J <k < J, the first term in (21) is given by
eliminated by the operator 9, — (k + 1)/r. So we have

i (k 0
24 : (xpeihrnoy - Y (2) —2)BCy, kI8
(24) z(Xye )= 1652 (2) )BCr ;1 .

1

S‘ﬁék,lrkH and it is again

j=2

Since J = [B] and B is not integer, we have —f8 < J. Therefore, we have a leading term
r2B+k where 28 + k > B > 0. Moreover, if A = 2, then by Lemma 4, we simply have
eik+2)0

_ i(k+1)6y
(25) az(Xke+)—16l32

> Cij2j =2kt <,
j=2
Note that when k > J, the same computation as in (24) and (25) applies.
On the other hand, when k < —J, the leading term in (22) is not eliminated, and
we get
oik+2)6

1682

(26) 85(Xkei(k+l)0) _ Zékvj (2|k| +(2j _2)ﬁ)r\k|+(2]’—2)f3_
Jj=0
Since B ¢ N, we have |k| > J > B, so the leading term in (26) is given by r/¥I=28 which
satisfies |k| — 28 > —B. Recall that r = |z|, so in terms of the geodesic coordinates
(t, 0) for which the associated volume form is tdtdf, the computation above implies
that each term decays slower than t™!.

Combining the analysis above, we have justified the integration by parts in (15)

near a cone point with 8 ¢ N.

4.1.2. Developing maps near a cone point with f = n € N. Near such a cone point the
developing map f is given by
az"+b
/= cz"+d
for some a, b, c,d € C with ad — bc = 1. By choosing a suitable coordinate and a rep-
resentative of the developing map the metric is given by the same form as the noninteger
case [22]:
4n2|Z|2(n—1)
ARS(RE
Therefore, we can again obtain the expansion of ¢, as follows:

¢r= Cpr*™n, —J <k

J=0

¢ =Y Cr*¥2m  —j >k
jz0

2
|dz|

27)
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The computation of X and V@D X can now be applied verbatim, and we list the
results here. First of all,

¥ = (X Xure @),
kezZ
In terms of local coordinates, it is given by
(1 4 r2n)2 ei@

_ —i(k+1)6 P
(28) Xp=e 22D

1 ik6
(ar—-;;39>(¢k006’ )-
It immediately follows that

Xk(r) — Zék,jrk+(2j_2)n+la _J < k,
j=1

Xi(r) =Y CpjrkTC=2mtl _j > k.
j=0

(29)

We then compute V(@1 X which is locally given by

> 0z (X' ®tV). @ dz.
keZ

As before, we compute 3 (Xye! k+10) = %(8, — L39) (X (r)e'® 1) 10 get
85(Xkei(k+l)0) — ei(k+2)9 2(2] _ 2)nék,jrk+(2j_2)n, -7 < k,
j=2

85(Xkei(k+1)9) — ei(k+2)9 Z(_Zk + (2] _ 2)’1)C~vk’j},.|kH-(2j—2)n7 —J>k.
Jj=0

(30)

Notice that J = n — 1, so we can check again that in both cases above the term has
enough decay to be integrable. In the first case, the smallest exponent k + 2n > 0. In
the second case, we have |k|—2n > —n except whenk = —(J +1) = —n. If |k| —2n >
—n, then again notice that r " ~ t™1, so the term is integrable. If k = —n, then we have
—2k — 2n = 0. In this case, the leading term vanishes in V©.D ¥ and the next term in
the expansion is integrable again.

4.1.3. Justification of the integration by parts. Now we are ready to prove Theorem 3
and Proposition 2.

Proof of Theorem 3

From the previous computation of V(DX near each conical point, we know that
|[V(©®-D X2 is integrable. Therefore, using (14) and (15) we have

1
31) 05/|V(°’”X|2=5(1—2)/|X|2,

which immediately shows that A > 2. O

Now we look at the case when A = 2.
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Proof of Proposition 2
We combine (15) and (14) to get

(32) vODy =,

which shows that V(D X is holomorphic on X \ supp D.

We next show that X can be extended to a meromorphic vector field on X. From
the expansion of X near each cone point (see Expressions (21), (22), and (29)), we
see that X is bounded by |z|~/; therefore, there cannot be any essential singularities.
Hence, X must be meromorphic on .

Moreover, we can see the worst order of pole of X from the expansion. For the
behavior near a smooth point, X is smooth since ¢ is smooth. Near a cone point, we
look at the expansion of X and V>V X If B ¢ N, then all coefficients CN‘k, jfork <—J
in (26) have to vanish because V(-1 X = 0, and this shows that the worst decay of X
is given by the k = —J mode, which is 7=/ +1 by (21). In particular, if 8 < I, then the
worst decay is rl soitis actually a zero for X; if B > 1, then the order of the pole
is given by r~181+1_On the other hand, if 8 = 1 € N, then the coefficient C_y_; o in
(30) might not vanish (since this term corresponds to k = —n and does not appear in
V@D x); therefore, the worst possible decay in X is of the order r 1. 0

We remark here that the worst order of decay of X described in the proposition above
applies to any 2-eigenfunction. In the next step, we assume in addition that ¢ is real-
valued, and the decay estimate will be improved by relating to developing maps.

4.2. From vector fields to reducible metrics
From now on, we assume that the eigenfunction ¢ is real-valued.

LEMMA 5
The algebraic dual one-form of X, denoted by 2, is a meromorphic one-form on X.

Proof
This follows from Proposition 2 that X is meromorphic. i

We denote by Dy := (2) the divisor associated to the meromorphic one-form 2. Let
(U, z) be a coordinate chart that does not intersect supp Dx U supp D. Denote g =
e?|dz|> on U, and let X = Al—tF(z)Bz; that is, F(z) = 4e™ 2% ¢;.

LEMMA 6

There exists a global positive constant C = Cy which is independent of U, such that
¢2 _ C2 ) ¢2 _ C2

33 = [ R A———

& T e ¢ TTNReR

Moreover, the real part of the one-form 2 is exact on X\ (supp Dx U supp D).
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Proof
Since ¢ is a 2-eigenfunction of Ag, in local coordinates we have

g 2z (9?

2~ F _<7>
Since F does not vanish anywhere in U, there exists a holomorphic function g(z) on
U such that

—4e P,z =2¢ and ¢z =— .

z

__ ¢
¢z = _F(Z) +g(2).
Since ¢ is real-valued, we also have
— ¢
¢z = "o +8(2).
Combining with F(z) = 4e~?*¢;, we find that
u_ A 4P 4 4P H(QIFE)
F(2) |F(2)I> " F(z) |F(2)|? |F(2)]?

Therefore, the holomorphic function 4g(z) F(z) satisfies
4g(2)F () = ([F(2)[e™ +4¢7),

where the right-hand side is a positive real function. It follows that g(z) F(z) = C? for
some positive constant C = Cy on U. Since X\ (supp Dx U supp D) is connected, the
constant C = Cy does not depend on U. This proves (33).
By the first equality in (33), we have
dz dz dz d¢ _d<11C+¢>

34 éz _dz 4z dp 1 CFe
(34 F-F T F g 2" C—4

Since Q2 = 4% and C does not depend on U, we have that €2 is exact on

Y\ (supp Dx Usupp D). |
LEMMA 7
Define the following one-form on 3:
dz
35 =-2C—.
(35 w 7

Consider the multi-valued holomorphic function on ¥\{poles of w} defined by

f(z):= exp(/z a))

f: E\(supp(a)) U supp D) —C*

is a multi-valued holomorphic function with monodromy in U(1). Moreover, on
3\ (supp(w) U supp D), we have

which satisfies that:

f*gstzg
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and

ISP
(36) p=C TR
Proof

We first observe that the divisor Dy := (2) is equal to (w) since 2 is a multiple of .
The monodromy property of f follows from the previous lemma that R is exact on
3\ (supp(w) U supp D). Using (34), we have
z C _ ¢
2
=e M) =,
P =exo( [ 20) =
which proves (36).

In order to show f*gy = g, it suffices to show that in any complex coordinate
chart (U, z) not intersecting supp Dx U supp D, we have

AR _ ¢
1727~ IFP

2 2 — . .
Since | f'(z)|> = % and | f]? = g_-i-?)’ the above equation follows from a direct

computation. g

LEMMA 8

The one-form w defined in (35) has only simple poles with real residues, and its real
part is exact outside its poles. Moreover, the R-divisor D represented by the metric g
and the Z-divisor (w) associated to w are related by

D=@o+ Y ([Resp(@)|—-1)[P].
P:pole of
where (w)g is the zero divisor of the meromorphic one-form w. In particular, a cone
point of noninteger angle 218 must be a simple pole with residue +f of w, and a cone
point of integer angle 2w n may be either a simple pole with residue £n or a zero of w
with multiplicity n — 1.

Proof
We divide the proof into the following three cases.

Case 1: A smooth point

Let P be a smooth point of the metric g where X vanishes. We show that P is
a simple pole of w such that Resp(w) equals either —1 or 1. Take an open disc U
centered at P such that U* := U\ {P} does not intersect supp(w) U supp D. Since g is
smooth on U, by [14, Lemma 3.2], we can choose a developing map of g|y+, denoted
by /i : U* — C, and a suitable coordinate z with z(P) = 0, such that 1(z) = ZZZIZ with
ad —bc = 1. On the other hand, by Lemma 7, the restriction f |+ is a developing map
of g. Since f has trivial local monodromy around P, f extends to U and coincides
with 2 up to a PSU(2) transformation. Therefore, any representative § of the developing

map f is also given by the form f(z) = % with ad —bc =1 on U. Hence, on U
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we have
_df di dz
ff (az+b)ez+d)

Since w has a pole at z = 0, we have that bd = 0, but » and d cannot both be 0 because
ad —bc = 1, which implies that P is a simple pole of @ and has residue +1.

Case 2: A cone point of noninteger angle

Let P be a cone point of angle 278, where 8 > 0 is not an integer. We show that P
is a simple pole of w such that Resp (w) equals either —f or . Similar to the previous
case, we take an open disc U centered at P such that U* = U\{P} does not intersect
supp(w) U supp D. By Lemma 7, the restriction f|y= is a developing map of g|y=.
Since f|y* has monodromy in U(1) and g|y* has a cone point of angle 27 at P, by
the proof of Theorem 1.4 in [14], there exists in U a complex coordinate z which is
centered at P, such that in any disc contained in U™, each representative f of f, has
the form of either f(z) = z# or f(z) = jiz™#, where 1 and i are nonzero constants.
Therefore, in a neighborhood of P, we have w = % =48 %.

Case 3: A cone point of integer angle

Let P be a cone point of angle 2w n, where n > 1 is an integer. We show that P
is either a simple pole with residue +n or a zero of w with multiplicity (n — 1). Take
an open disc U centered at P such that U* = U\{P} does not intersect supp(w) U
supp D. Since g is smooth on U* and has a cone point with angle 27 n € 277 at P, by
[14, Lemma 3.2], we can choose a developing map 4 : U — C for g|y and a suitable
coordinate z with z(P) = 0 such that / is given by h(z) = gj,?jgg with ad — bc = 1.
On the other hand, by Lemma 7, the restriction f|y= is a developing map of g|y=*.
Since f has trivial monodromy around P, f extends to U and coincides with & up
to a PSU(2) transformation. Therefore, each representative f of f also has the form of
f(z) = %2+b with ad — be =1 on U. Hence, on U we have

cz+d
S PR —
fF (azm+b)(ezn+d)
If bd # 0, then P is a zero of w with multiplicity (n — 1). Otherwise, P is a simple

pole of w with residue +n. |
Proof of Theorem 2

It follows immediately from Lemma 8. Moreover,  is a character one-form ([ 14, Def-
inition 1.3] ) of the reducible metric g. 0

COROLLARY 1

The function ¢ extends continuously to X and is smooth outside those poles with non-
integer residues of w. The positive constant C in Lemma 6 equals maxy, |¢|. Moreover,
¢ achieves the maximum C (resp. the minimum —C ) at each pole of @ with positive
(resp. negative) residue. Each zero of w is a saddle point of ¢.

Proof
It follows from (36), Lemma 8, and the local behavior of f near cone points described
in the proof of Lemma 8. U
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REMARK
This corollary shows that ¢ is also in the Friedrichs extension.

4.3. The dimension of the 2-eigenspace

THEOREM 4

Let Eg"l be the real vector space of real 2-eigenfunctions of A?"l for a reducible met-
ric g. Then dim E%Ol equals either 1 or 3. Moreover, dim Eg(’l =3 ifand only if g is the
pullback metric f*gg by a branched cover f : % — C.

Proof
Choose a multiplicative developing map f of the reducible metric g.

Case 1: (Nontrivial) reducible monodromy

Suppose the monodromy of f is nontrivial. Then there are exactly two multi-
plicative developing maps, f and 1/f, for the metric g. Since each real-valued 2-
eigenfunction ¢ of A?Ol can be expressed in terms of such a developing map as (36),
we can see that the dimension of Eg"l equals 1.

Case 2: Trivial monodromy

Suppose that g is the pullback metric f*gg by a branched cover f : ¥ — C. First
we know that dim EE"I > 3, as the three eigenfunctions on S? lift to ¥ via the pullback,
and they give three independent eigenfunctions. On the other hand, for a real-valued
2-eigenfunction ¢ with maximum 1, by (36), there exists constants a, b such that

1—|g|? af +b
5 forg=———.
1+ gl —bf +a
By a simple computation, we find that ¢ is a linear combination of the following three
2-eigenfunctions:

lal> + |p)> =1 and ¢ =

1-|f? . 2f ~ 2f
— = RH—"—  and .
L+ f]? L+ f]? L+|f?
This proves the dimension of EH°! in this case is 3. O

REMARK

In some cases, one can obtain more information including all complex-valued 2-
eigenfunctions. When X is a branched cover of the sphere obtained by covering map
f(z) =z",n €N, explicit computation shows that the complex dimension of complex-
valued 2-eigenfunctions in DM and DI are both equal to 3 (see [44, Lemma 2] for
the computation). In this case, the eigenfunctions in the domain of the two extensions
coincide and are given by the pullback by f of the three eigenfunctions on the sphere.

5. Further discussion

The spectral condition in Theorem A uses a real eigenfunction in the holomorphic
extension, which then is automatically a function in the Friedrichs extension—i.e.,
the coefficients a; in (6) all vanish. However, one cannot replace the statement of
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the theorem by using a real eigenfunction in the Friedrichs extension. In fact, works
by Mondello—Panov [41], Eremenko—Gabrielov—Tarasov [18], and Chen [9] suggest
that there exist irreducible metrics with eigenvalue 2 in the spectrum of the Friedrichs
Laplacian. There is ongoing work to find an explicit example of such an eigenfunction
and understand the behavior of its associated complex gradient vector field, which is
no longer guaranteed to be meromorphic.

One thing to notice here is that, even though the Laplace—Beltrami operator is real,
Friedrichs extension is the only extension that respects the real splitting—that is, we
have the following relation for a function ¢ = u + i v:

Agp =2¢ = Agu =2u, Agv =2v,
and
¢p DT — ue DT, ve D
However, for the holomorphic extension, we have only
¢ € DM — u e pH!, v e DI,

The observation above justifies the choice of a real eigenfunction in the statement of
the theorem. It is unknown whether for a reducible metric there exists any nontrivial
complex-valued eigenfunction in the holomorphic extension, such that its real or imag-
inary part is not in the same extension. Corresponding to Theorem 4, one may ask the
question about the complex dimension of all such functions.

Similarly, there is a question whether an irreducible metric can have a nontrivial
complex-valued eigenfunction in the holomorphic extension, which is not excluded by
our theorem. By Proposition 2, any such eigenfunction would produce a meromorphic
vector field, and it is an interesting question whether there is any geometric implication
if such a metric exists.
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