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ENTROPY CONJUGACY FOR MARKOV MULTI-MAPS
OF THE INTERVAL

JAMES P. KELLY AND KEVIN MCGOFF

ABSTRACT. We consider a class F of Markov multi-maps on the
unit interval. Any multi-map gives rise to a space of trajectories,
which is a closed, shift-invariant subset of [0, 1]%+. For a multi-map
in F, we show that the space of trajectories is (Borel) entropy con-
jugate to an associated shift of finite type. Additionally, we char-
acterize the set of numbers that can be obtained as the topological
entropy of a multi-map in F.

1. INTRODUCTION

Multi-maps, also called set-valued maps, have been studied in the
topological dynamics literature for some time, with such notable ex-
amples as [1,21,22]. In the past decade multi-maps have been studied
extensively, with a particular focus on the topological structure of the
associated space of trajectories or a related inverse limit space; see [15].
This development has also led to a renewed interest in the dynamics
of multi-maps [11,13,17,18]. Additionally, multi-maps are the topo-
logical analogues of random maps of the interval, which have received
substantial attention, e.g., [4,10, 14, 23].

In the study of single-valued maps of the interval, Markov maps [7]
are particularly well-understood. These maps have a finite invariant
set such that the map is strictly monotone on the intervals between
elements of that set. This structure allows one to associate to each
Markov interval map a corresponding shift of finite type that preserves
many aspects of the dynamics.

Recent work [3,5,6,12] has generalized the notion of Markov interval
maps to the setting of multi-maps and established some of their basic
properties. In particular, [2] proves that under some conditions on
the Markov multi-map, one may find upper and lower bounds for its
entropy using associated shifts of finite type.

Our main results substantially sharpen this previous work. Under
mild conditions on the Markov multi-map, we associate to it a single

shift of finite type, and then we establish a close connection (in the
1
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2 J. P. KELLY AND K. MCGOFF

form of a Borel entropy conjugacy) between the dynamics of the multi-
map and its associated shift of finite type. In particular, for a Markov
multi-map in the class F considered here, the topological entropies of
the Markov multi-map and of the associated shift of finite type must
be equal. Furthermore, we demonstrate the richness of the class F by
showing that any number that appears as the entropy of a shift of finite
type also appears as the entropy of a Markov multi-map in F.

1.1. Statement of main results. A multi-map of the unit interval
is a function F : [0,1] — 20U where 2[*1 is taken to be the set of
closed subsets of [0,1]. Given such a multi-map, its trajectory space

X = X(F) is defined by
X(F) = {x = ()% € [0, 1%+ : V0 > 0,211 € F(xn)}.

Further, let ox : X — X denote the left-shift map (x,,)2% , — (z,11)22,
on X. We seek to understand the multi-map F' by studying the dy-
namics of the system (X, ox).

In Section 3 we introduce a class of multi-maps that we call Markov
multi-maps, and in Definition 3.4 we state what it means for a Markov
multi-map to be properly parametrized. In this work we focus on a
specific class F of Markov multi-maps (see Definition 3.9): properly
parametrized Markov multi-maps with complete sets of coding and
avoiding words and positive entropy. For any multi-map F' in this
class, one may associate to F' a square matrix M = M (F') with entries
in {0,1} (see Section 3.2). The matrix M encodes the combinatorial
structure of F. Let ), be the shift of finite type defined by M, with
left-shift map ;. The following theorem provides a precise correspon-
dence between a “large” subset of the trajectory space X and a “large”
subset of the SF'T ¥;;, where “large” here refers to a notion of entropy.
A precise definition of Borel entropy conjugacy, originally defined by
Buzzi [9] under the term “entropy conjugacy,” appears in Definition
2.2.

Theorem 1.1. Let F be the class of Markov multi-maps specified in
Definition 3.9. Let F' be in F with trajectory space X and associated
SET Y. Then (X, 0x) is Borel entropy conjugate to (X, o).

Since Borel entropy conjugacy is known to preserve topological en-
tropy, we immediately obtain the following corollary.

Corollary 1.2. Let F' be in F with trajectory space X and associated
SET EM Then htop(Xy O'X) = htOp(EM7 O'M).
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ENTROPY CONJUGACY FOR MARKOV MULTI-MAPS OF THE INTERVAL 3

In fact, since Borel entropy conjugacy provides a correspondence
between all ergodic measures with large enough entropy, the following
corollary is also immediate.

Corollary 1.3. Let F' be in F with trajectory space X and associated
SFT Y. Then (X,0x) has the same number of measures of maximal
entropy as (Xnr, o). In particular, if (Xp, 00r) is irreducible, then
(X, 0x) is intrinsically ergodic (i.e., has a unique measure of mazximal
entropy).

Remark 1.4. Random maps of the interval have been studied primarily
with an eye towards the existence and properties of absolutely contin-
uous invariant measures, e.g., see [4,7]. While the entropy conjugacy
guaranteed by Theorem 1.1 provides a correspondence between ergodic
measures of large entropy on X and on X, it does not address ques-
tions about whether any of these measures is absolutely continuous on

X.

Let us now answer a question of Karl Petersen (personal commu-
nication). Let H(F) denote the set of real numbers r > 0 such
that there exists a multi-map F' € F having trajectory space X with
hiop(X,0x) = 7. Recall that Lind has characterized the set of positive
real numbers that arise as the entropy of a SF'T as the set of all positive
rational multiples of logarithms of Perron numbers [19].

Theorem 1.5. The set H(F) is equal to the set of all positive rational
multiples of logarithms of Perron numbers.

1.2. Organization of the paper. In Section 2, we provide back-
ground information and notation concerning shifts of finite type, er-
godic theory, and Borel entropy conjugacy. Section 3 introduces Markov
multi-maps and the class F of interest. Taken together, Sections 4 —
7 contain the proof of our main result, Theorem 1.1. In Section 8 we
establish some sufficient conditions for a Markov multi-map to be in
F, and then in Section 9 we prove the realization result, Theorem 1.5.
Finally, Section 10 contains some examples of Markov multi-maps.

2. BACKGROUND AND NOTATION

We denote by 2[%! the set of all non-empty, closed subsets of [0, 1].
A multi-map on [0,1] is a function F: [0,1] — 20U The graph of
a multi-map F is the set G(F) = {(x,y) € [0,1]*:y € F(x)}. A
trajectory for F is a sequence (xg,x1,...) € [0,1]%+ such that for all
n > 1, we have z, € F(x,_1), or equivalently (x,_1,z,) € G(F).
We denote by X = X(F) the set of trajectories for F', and we give
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4 J. P. KELLY AND K. MCGOFF

X the topology it inherits as a subspace of [0, 1]%+ with the product
topology. We also define the left-shift on X, denoted ox, by setting
ox(zo,x1,...) = (1, 22,...). Observe that ox is a continuous mapping
on X, and if G(F) is closed in [0, 1]%, then X is closed in [0, 1]%+.

2.1. Shifts of finite type. Let A be a finite set, which we call the
alphabet. An element b € A™ is called a word of length n. The full shift
on Ais ¥ = A%+, endowed with the product topology induced by the
discrete topology on A. Given a set of words F, we may define Xz C X
to be the set of points that do not contain any word in F. We refer to
words in F as forbidden words. Then ¥z is closed and invariant under
the left-shift on . If F is finite, then we refer to X x as a shift of finite
type (SFT). In this work we restrict attention to SF'Ts for which all the
forbidden words have length two, called nearest neighbor SFTs. For
more on SETs, we refer the reader to the book [20].

Any nearest neighbor SF'T may be expressed in terms of a directed
graph, (V. E), where the set of vertices V' is equal to A, and given
a,b € A, there is an edge from a to b in the edge set E if and only
if ab ¢ F. Furthermore, we associate to any such graph its adjacency
matriz M, defined as the square matrix indexed by A such that for
a,b € A, if ab ¢ F then M(a,b) = 1, and otherwise M(a,b) = 0.
Note that any zero-one matrix indexed by A also defines an associated
nearest neighbor SFT (by letting ab be a forbidden word whenever
M (a,b) = 0). The nearest neighbor SF'T defined by a zero-one matrix
M is denoted by Xj;, and the left-shift restricted to 3, is denoted by
oM-

In what follows it is convenient to have some notation for words of
arbitrary length that do not contain any forbidden word. For n > 2, we
let £,, denote the set of words ag . .. a,_1 € A" such that M(a;, a;11) =
1 for each i = 0,...,n — 2. Then let

L=Jc.,

n>1

where £, = A.

A nearest neighbor SF'T defined by the matrix M is irreducible if
for every pair of non-empty, open sets U,V C ¥, there exists n > 1
such that o7, (U) NV # (). Equivalently, 3, is irreducible if for each
a,b € A, there exists n > 1 such that M"(a,b) > 0.

Consider an arbitrary nearest neighbor SF'T X,, on alphabet A. It
has an associated finite directed graph I', with vertex set A and an edge
from a to b whenever M (a,b) = 1. Let Cy,...,Cx C A be the vertex
sets of the maximal strongly connected components of I'; which we call
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the irreducible components of I'. For each Cg, the set of points in 3,
containing only symbols from C; forms an irreducible SFT, which we
denote by X,/(Cx). We refer to 3/(Cx) as an irreducible component
of ¥ps. Note that the irreducible components ¥,,(Cy), ..., 3 (Cy) are
pairwise disjoint, and the set X, \ |, X/ (Ci,) contains only wandering
points. See [20, Chapter 4] for more details on this decomposition. We
also denote by £(Cy) the set of words of arbitrary length on C that do
not contain a forbidden word.

2.2. Invariant measures and entropy. In this work a topological
dynamical system consists of a pair (X,T'), where T" : X — X is
a continuous self-map of a compact metrizable space. For any such
system, we let M(X,T) denote the set of Borel probability measures
p on X such that u(E) = p(T~1E) for all Borel sets E C X. Note
that M(X,T) is a nonempty, convex set that is compact in the weak*
topology. A measure y € M(X,T) is called ergodic if u(E) € {0, 1} for
all Borel sets F such that T~!'(E) C E. The set of ergodic measures
is denoted by M.(X,T). Note that a measure p € M(X,T) is an
extreme point in M(X,T') if and only if u is ergodic.

The following notation is used in subsequent sections. For any Borel
set ¥ C X, the union of all of its pre-images is denoted

Pre(E) = | T7(E).

n>0

Note that 7! (Pre(E)) C Pre(E), and therefore if y € M (X, T) then
u(Pre(E)) € {0,1}.

We also require some elementary facts regarding the entropy theory
of dynamical systems. Complete definitions and proofs can be found
in [24]. Let he,, (X, T') denote the topological entropy of the topological
system (X, 7). Furthermore, when the system (X, T') is understood
and p € M(X,T), we denote the measure-theoretic entropy of p by
h(u). The standard variational principle for entropy states that

htop(Xv T) = sSup h’(:u)a

HEM(X,T)
and the supremum may be taken over only the ergodic measures. Fur-
thermore, for SFTs it is known that the supremum is achieved, and if
the SF'T is irreducible, then it has a unique measure of maximal en-
tropy. Furthermore, we note for future use that an irreducible SFT is
entropy minimal, i.e., if X is an irreducible SF'T of positive entropy
and Y is a strict subset of X, then hio, (Y, 0ly) < hiop(X, 0|x) (see [20]
for a proof).
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2.3. Entropy conjugacy. We adopt the following definition of en-
tropy for Borel sets (following Buzzi [9]).

Definition 2.1. Let T : X — X be a topological dynamical system.
For a Borel set £ C X, let

hprob(E) = sup{h(p) : 1 € Mc(X,T), p(E) > 0}.

Now we define a notion of entropy conjugacy, which was previously
introduced by Buzzi [9].

Definition 2.2. Suppose that Ty : &y — Ay and T} : A} — A are
topological dynamical systems. We say that they are Borel entropy
conjugate if there exist Borel sets Fy C Ay and E; C A and an
invertible Borel bi-measurable map ¢ : Xy \ Ey — X7 \ E; such that

L4 hprob(EO) < htop(X07 TO);

® hprob(El) < htop(XlaTl); and

[} 1/)OT0:T10¢ on Xo\E().

It is an easy corollary of the variational principle for topological
dynamical systems that if (Xp, Ty) and (X, 7)) are Borel entropy con-
jugate, then hyo, (X, Tp) = hyop (X, T1).

Remark 2.3. In his work on topological entropy for non-compact sets,
Bowen introduced a notion that he called entropy conjugacy [8]. Bowen’s
definition of entropy conjugacy requires that the sets Fy and E; have
smaller topological entropy (in the dimension-theoretic sense defined
in his paper) than the full system and that the conjugating map v is
continuous. As such, Bowen’s notion of entropy conjugacy is stronger
than the notion of Borel entropy conjugacy defined above.

3. MARKOV MULTI-MAPS

We now give a precise definition of Markov multi-maps on the inter-
val [0,1]. This definition is based on the one given in [2], though our
definition is slightly less general.

Definition 3.1. A Markov multi-map F' of the interval [0, 1] is de-
fined by a tuple (P, Ao, A1, A2, D, R, { fo}aca,) satisfying the following
conditions:
(1) P = {po,...,pr} is a partition of the interval [0, 1] with 0 =
po<---<p =1
(2) A= AyUA; U A, is a finite set;
(3) D : A — 2% and for each a € A, there exists p; € P such
that [ Lt 4
Di; Piv1], 1L a € Ag
D(a) - { {pi}, if a € Ay U Ay;
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(4) R: A — 2091 and for each a € A, there exists u < v in P such
that R(a) = [u,v] and

u<w, ifa e A
u<vand R(a) NP ={u,v}, ifae A
U ="v, 1fCL€./42,

(5) for each a € Ay, the map f, : D(a) — R(a) is a homeomor-
phism;
(6) 0,1] € Usen D(@).
3.1. The graph of a Markov multi-map. Let F' be a Markov multi-

map. For a € Ay, let G(a) denote the graph of f,. For a € A; U A,,
let G(a) = D(a) x R(a). Then the graph of F is

G(F) =] G(a).
acA

Note that each G(a) is closed in [0,1] x [0,1], and so is G(F). An
example of a Markov multi-map and its graph is given in Example 3.6,
and more examples are shown in Section 10.

Now we make some additional graph-related definitions that are used
repeatedly throughout this work.

Definition 3.2. Let a € A.

e Suppose a € Ay with D(a) = [p;, pir1] and R(a) = [u,v]. Define
Dy(a) = (pi,pit1) and Ro(a) = (u,v), and let Go(a) be the
graph of fo|py(a)-

e Suppose a € A; with D(a) = {p} and R(a) = [u,v]. Define
Do(a) = {p} and Ry(a) = (u,v), and let Go(a) = {p} x Ro(a).

e Suppose a € Ay with D(a) = {p} and R(a) = {q}. Define
Do(a) = {p} and Ro(a) = {q}, and let Go(a) = {(p,q)}-

Our results require that F' has some additional structure, which we
now begin to define.

Definition 3.3. We say that I satisfies the no crossing property if the
following holds: for all a,b € Ay, if Go(a) N Go(b) # @ then a = b.

The following property strictly implies the no crossing property.

Definition 3.4. We say that F' is properly parametrized if the collec-
tion {Gy(a) : a € A} forms a partition of G(F).

We think of the no crossing property as a property of the graph G(F)
(and the partition P), whereas being properly parametrized depends on
the particular parametrization of the Markov multi-map F'. However,
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8 J. P. KELLY AND K. MCGOFF

these properties are related by Lemma 4.1: if Fj is a Markov multi-map
with the no crossing property, then there exists a properly parametrized
Markov multi-map F such that G(Fp) = G(F)).

Remark 3.5. If F'is a Markov multi-map, then it possesses the following
graph Markov property: for all a,b € A, if Dy(b) N Ry(a) # &, then
Dy(b) C Ry(a). This property is used to define the SFT associated
with F', which appears in the next section.

3.2. The SFT associated to a Markov multi-map. We associate
to any Markov multi-map F' an SF'T as follows. Let M be the square
matrix indexed by A such that for a,b € A,

. 1, if Do(b) C Ro(a)
M{(a,b) = { 0, otherwise.

Let ¥y C A%+ be the nearest neighbor SFT with alphabet A and
adjacency matrix M.

To show how a Markov multi-map may be properly parametrized
and how the adjacency matrix is constructed, we present the follow-
ing example of a fairly simple Markov multi-map with the no-crossing

property.

Example 3.6. The graph in Figure 1 shows the graph of a Markov
multi-map on [0, 1] with the partition P = {0,1/2,1}. To properly
parametrize it, we first consider the two diagonal lines, and we index
them with the set A4y = {1,2}. Then the vertical line segment is
indexed by A; = {3}. Finally this leaves the four endpoints of those
segments which we index with Ay = {4,5,6,7}. Then we define the
following;:

D(1) =[0,1/2] R(1) =[0,1]  D(2) =[1/2,1] R(2) = [1/2,1]

D) ={1/2}  R@)=[1/2,1] D(4)={0}  R(4)={0}

D) ={1/2} R()={1}  D(6)={1/2} R(6)={1/2}

D(T)={1}  R(7) ={1}.

Then for all a € A = Ay U A; U Ay, if D(a) is a singleton, we let
Dy(a) = D(a), and if D(a) is an interval of the form D(a) = [p,q],
then Dy(a) = (p,q). We define each Ry(a) likewise.

Next we construct the adjacency matrix corresponding to this graph.
Note that Ry(1) = (0,1) which contains as subsets all of the following:
Do(l), Dg(z), D0(3), D0(5), D0(6) However D0<4> and DQ(?) are not
subsets of Ry(1). This produces the first row of the adjacency matrix
which has a 1 in every column except for the 4th and 7th. We may
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FiGURE 1. The graph of a Markov multi-map and its
corresponding adjacency matrix

do the same for each element of A to produce the adjacency matrix
pictured in Figure 1.

In our main results, we relate the SFT ¥, to the trajectory space
X. In particular, Theorem 1.1 establishes sufficient conditions for these
systems to be Borel entropy conjugate.

3.3. Nested intervals. Let I’ be a properly parametrized Markov
multi-map with associated matrix M. Here we associate to each se-
quence a € Y, a nonempty closed (possibly degenerate) interval in
[0,1]. To begin, for each a € Ay, we let f, ! be the standard in-
verse function (which exists since f, is assumed to be a homeomor-
phism). For a € A; U Ay, we let f,! be the unique map such that
[t R(a) — D(a) (which exists since R(a) is non-empty and D(a) is
a singleton in this case).
Let u=ag...a, € L,+1. Define the set

L= flo--—-of ! (D(ay))

ao an—1
We make the following elementary observations.
e [, isnon-empty. (Since M (a;,a;1+1) = 1, we have that D(a;41) C
R(a;), so f;.' maps D(a;41) into D(a;).)
e [, is aclosed (possibly degenerate) interval, since I, is the image
of the closed interval D(a,) under the continuous, monotone

-1 -1
map ag © © ap—1"

b Iao-nan+1 = fa_ol(Ia1~~~an+1)'
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. Iao-.-an+1 C lug...an (Since fa:Ll(D(an-i-l)) - D(an))'

Now consider a = (a,), € Xp. Then {I,, 4, }5°, is a nested
sequence of non-empty, closed intervals in [0, 1]. Let

oo
Ia = m [ao...an'
n=1
Then [, is a non-empty, closed interval. Additionally, we note that

Ia = f;ol(ja(a)>-
These intervals appear in the next section in the definitions that char-
acterize the class of Markov multi-maps in our main results.

3.4. Definition of the class F. In this section we define the class F
of Markov multi-maps that appears in our main results. Let I be a
properly parametrized Markov multi-map with associated matrix M.

Definition 3.7. Suppose C C A is an irreducible component of the
graph with adjacency matrix M. We say that C has a coding word if
there exists u € £(C) such that if a € ¥),/(C) and {n > 0: ¢"(a) € [u]}
is infinite, then I, is a singleton. Furthermore, we say that F' has a
complete set of coding words if each irreducible component with positive
entropy has a coding word.

Definition 3.8. Suppose C C A is an irreducible component of the
graph with adjacency matrix M. We say that C has an avoiding word
if there exists u € L£(C) such that if a € [u], then [, N P = &. Fur-
thermore, we say that F' has a complete set of avoiding words if the
following condition holds: if C is an irreducible component with posi-
tive entropy that is entirely contained in Ay, then C has an avoiding
word.

Now we are prepared to give a precise definition of the class of
Markov multi-maps that appears in our main results.

Definition 3.9. The class F consists of all properly parametrized
Markov multi-maps F' such that F' has a complete set of coding words,
F has a complete set of avoiding words, and the associated SFT X,
has positive entropy.

3.5. Finite labeled trajectories. Here we define some additional ter-
minology that is useful in the following sections.

Definition 3.10. Let F' € F. Let m > 1. Wesay that x = xg, ..., 2z, €
0, 1] is a finite trajectory of F if

(Tn, Tpt1) € G(F), VYn=0,...,m—1.
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Next, we say that (z,b) € [0,1]™! x L,, is a finite labeled trajectory
(of length m + 1) if

(Tny Tny1) € G(bn), Yn=0,....,m—1.

Let 7., be the set of finite labeled trajectories of length m+1. We endow
T.. with the subspace topology inherited from [0,1]™"! x £,, (which
has the product of the usual topology on [0,1]™"! and the discrete
topology on L,,).

Finally, we say that (x,b) € T, is a special finite labeled trajectory
of length m + 1 if

(Tp, Tng1) € Go(bn), Yn=0,...,m—1.

Let S,, denote the set of special finite labeled trajectories of length
m+ 1, and we let S,,, inherit the subspace topology inherited from 7,,.

Remark 3.11. Let F be in F, and let = be a finite trajectory of F' of
length m + 1. Since G(F') is the union of the sets {G(a)}sea, there
exists b € L,, such that (z,b) is in 7,,. In fact, since F is prop-
erly parametrized, the sets {Go(a)}aea form a partition of G(F'), and
therefore there exists a unique element b € L,, such that (z,b) is in

S

4. PRELIMINARY RESULTS

4.1. Parametrization lemma. The following simple result states that
any Markov multi-map with the no-crossing property can be prop-
erly parametrized without changing its graph. Since the space of
trajectories of a Markov multi-map depends only on its graph, this
reparametrization also preserves the space of trajectories.

Lemma 4.1. Suppose that Fy is a Markov multi-map with the no-
crossing property. Then there exists a properly parametrized Markov
multi-map Fy with G(Fy) = G(F}).

Proof. Let F' be a Markov multi-map with the no-crossing property.
Let BO = Ao. Let

Bu= { (X [pspyul iy € P and 30 € A, (i} <lpspy] € o) .
Let

B, = {(p,Q) ‘g€ P (pg) € G(F)}-
Then let F; be the Markov multi-map defined by By, By, and B,. [
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12 J. P. KELLY AND K. MCGOFF

4.2. Graph lemmas. In this section we prove a few facts about graphs
of Markov multi-maps. Throughout the remainder of this section, we
consider I’ € F. Since F is properly parametrized, we know that if
a,b € A are distinct elements, then Go(a) N Go(b) = @. However, it
is possible that a # b and yet G(a) has nontrivial intersection with
G(b). The following lemma shows that any such intersection must be
contained in P x P.

Lemma 4.2. Let F be in F. Suppose (x,y) € G(F)\ (P x P). Then
there is a unique a € A such that (z,y) € G(a), and furthermore

(x,y) € Go(a).

Proof. Since (z,y) € G(F) = U,G(a), there must exist some a € A
such that (z,y) € G(a). For uniqueness, suppose that (z,y) € G(a) N
G(b). By the no-crossing property, for any a # b, we have G(a)NG(b) C
P x P. Since (z,y) ¢ P x P, we conclude that a = b.

Since (x,y) ¢ P x P and (z,y) € G(a), we see that a € Ay U Ay,
and we must have (x,y) € Go(a). O

The next lemma asserts that G(F') cannot accumulate along a hori-
zontal line to any point of G(F) N (P x P).

Lemma 4.3. Let (p,q) € G(F)N (P x P). Then there ezists an open
set U C [0,1] %[0, 1] such that (p,q) € U and if (y,q) € Go(a)NU, then
y = p and a is the unique element of Ay such that G(a) = {(p,q)}.

Proof. Let L, = [0,1] x {q}. By our definition of Markov multi-map,
L,NG(F) is a finite set containing (p, ¢). Then there exists a relatively
open interval I in [0, 1] such that I x {¢} N G(F) = {(p,q)}. Let
U =1x][0,1]. Then U is open in [0,1] x [0,1] and if (y,q) € Go(a),
then y = p and @ must be the unique element of Ay such that G(a) =

{(p,a)}- O

The next two lemmas address the convergence of sequences in the
space of finite labeled trajectories.

Lemma 4.4. Let m > 1. Suppose that x = xg,...,x, € [0,1]" is a
finite trajectory of F' such that

® Io,...,Tm_1 € P, and
o 1z, €[0,1]\P.

Let w be the unique element of L, such that (z,w) € S,,. If the
sequence {(y*, b*) 152, is in S,, and converges to (z,b) in [0, 1] x A™,
then b = w.
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Proof. By our hypotheses on zg, ..., z,,, we have that w,,_; € A; and
if m > 2, then w,, € Ay for n = 0,...,m — 2. Let us now show that
bo...bm,1 = w.

First, note that since A™ has the discrete topology, for all large
enough k, we have b* = b. Then for all large enough k, we have
(v, yk. ) € G(by,) for all n = 0,...,m — 1. Since G(b,) is closed and
{(y%, yk 1)}, converges to (T, Tyi1), we see that (z,, 2,41) € G(by)
foreachn=0,...,m — 1.

Since z,, ¢ P, Lemma 4.2 gives that there is a unique a € A
such that (z,,_1,2,) € G(a), and therefore we must have b,,_; =
@ = Wy—1. Furthermore, since z,,—1 € P and z,, ¢ P, we see that
Wp—1 € Aj, which implies that Do(w,;,—1) = {zm,-1}. Then since
(y* 1 yk) € Go(bE, ) = Go(bm_1) = Go(wy,_1) for all large enough k
and Do(wp,_1) = {x_1}, we see that y* | = x,,,_; for all large enough
k.

We claim by backwards induction that for each j =0,...,m—1, we
have b; = w; and yf = x; for all large enough k. We have established
the base case (j = m — 1) in the preceding paragraph. Now suppose
it holds for some j + 1. Let U be given by Lemma 4.3 for the point
(xj,zj+1). By the inductive hypothesis, for all large enough k, we
have yfﬂ = zj41 € P. Also, for all large enough n, we must have
(yF yhy) € U (since {(yf, 45, 1)}, converges to (x,2;41)). Then for
all large enough k, we have (y}, z;41) € UNGo(b;). By our choice of U,
we must have that b; = w; and y;? = z; for all large enough k, which
completes the induction. 0

Lemma 4.5. Let m > 1. Suppose that x = x, ..., T, € [0,1]™" is
a finite trajectory of F such that x,, € [0,1] \ P. Let w be the unique
element of L, such that (z,w) € S,,. If the sequence {(y*,b%)}2, is
in S, and converges to (z,b) in [0,1]™ x A™, then b = w.

Proof. As A™ has the discrete topology, we must have that b* = b for all
large enough k. Then for all large enough k, we have (y%, y¥.,) € G(b,),
which is closed, and therefore (z,,, z,41) € G(by,).

Observe that if (z,,z,41) € G(F) \ (P x P), then b, = w, by
Lemma 4.2. Now suppose that we have some n such that (z,,z,41) €
P x P. Then there exists N € [n + 2, m| such that z; € P for all
j=mn,...,N—1and zx ¢ P. Thus z,,...,zy satisfies the conditions
of Lemma 4.4, and we conclude that b, = w,,. ]
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14 J. P. KELLY AND K. MCGOFF

5. CONSTRUCTION OF THE JOINT SYSTEM AND FACTOR MAPS

Let F' be a Markov multi-map in F with associated trajectory space
X and SFT ¥j;. In the following section, we introduce a topological
dynamical system by taking limits of special finite labeled trajectories.
We call this system the joint system. Then in Sections 5.2 and 5.3, we
show that the joint system is in fact a common extension of X and ¥,;.
The joint system and its factor maps onto X and X;; are central to the
construction of the Borel entropy conjugacy in our proof of Theorem
1.1. We establish their key properties in this section.

5.1. The joint system. Let F' be a Markov multi-map in F with
associated SFT X,,. Here we define a subset V' of the product space
[0, 1)Z+ x X237, which will serve as a common extension of the trajectory
space X and the SFT »,,.

Definition 5.1. Let F' be in F with associated trajectory space X
and SFT X,;. Define a set V = V(F) C [0, 1]%+ x ) as follows. A
pair (z,a) € [0,1]%+ x ), is in V if there exists a sequence {£;}°,
of natural numbers tending to infinity and a sequence {(y*,a*)}°, of
special finite labeled trajectories, with (y*,a*) € Sy, , such that for each
n > 0, the sequence {(y*,ak)}?°, converges to (z,,a,) in [0,1] x A.

Proposition 5.2. V is closed and invariant under the left shift.

Proof. Suppose that (z™,a™) is a sequence in V' that converges in
[0,1)%+ x Xy to (z,a). For each m, we have that (z™ a™) € V,
and therefore there exists a sequence of natural numbers {¢(m, k)}72,
tending to infinity and a sequence of special finite labeled trajectories
(ym’k, bm’k) € Sy(m,k) such that for each m and n,

m

. m,k __ : mk __ ,.m
hlgnbn =a,', and hinyn =z,

To complete the proof, we exhibit a sequence {/;}32, of natural num-
bers and a sequence { (27, ¢’) of special finite labeled trajectories to
demonstrate that (z,a) € V.

Let j > 1. First choose m; such that for all n = 0,..., 7, we have

e
an’ = a, and

o0
i=1

’xmj — :vn| < i
Next choose k; (depending on mj;) such that ¢(m;, k;) > j and for all
n=0,...,7, we have bp?" = ql and

mjk; 1

|yn —x;”j‘ < Z
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Finally, let ¢; = j, and define

my,k;j my,k;j

J—
2=y Y

and

i pmgkj my,kj
d =10, .. .bj )

Then {/;}52, tends to infinity and {(27,¢7)}52, is a sequence of spe-
cial finite labeled trajectories. Furthermore, for each n, we have that
{(2],¢})}32, converges to (2, a,) in [0, 1] x A. We have thus exhibited
the necessary sequences to establish that (z,a) € V.

To establish shift invariance, suppose that (z,a) € V. Let us show
that (o(x),0(a)) € V. There exists natural numbers {{;}?2, and spe-
cial finite trajectories {(y*,a*)}22, that witness the fact that (z,a) €
V. Define zF = y* | and 0% = af,|. Then the sequences {¢; — 1},
and {(z%,%)}%°, establish that (o(z),0(a)) € V. O

As V is invariant under the left shift, we define oy : V. — V by
letting oy (z,a) = (o(x),0(a)).

In the proof of our main results, we use the joint space V as an
intermediary between the spaces X and Yj;. To make this connection
precise, we define factor maps from V onto each of X and ;.

5.2. Factoring onto >,,. Here we show that the joint space V from
Definition 5.1 factors onto ;.

Definition 5.3. Let F' be in F with associated trajectory space X,
SFT ¥j, and joint space V. Define the map ¢ : V' — ¥, by the rule

¢(z,a) = a.
It is clear that ¢ is continuous and commutes with the left shift.

Remark 5.4. Note that if M(a,b) =1, then f,;*(Dy(b)) C Dy(a). Fur-
thermore, if y € Dy(b) and z = f,'(y), then (x,y) € Go(a). Thus, if
ag...ap € Loy and y, € Dy(ay), then for each n = 0,...,¢—1, we have

Yn = a_nl 0:-+0 Jil(ye) € Do(an),

and (yn7yn+1) € GO(an)-
Proposition 5.5. ¢ is surjective.

Proof. Let a € %,,,. For each ¢ > 1, let y5 € Dy(as) be arbitrary. For
n=0,...,0-1lety, = flo---of 1 (y;). By Remark 5.4, for each
n=0,...,0—1, wehave (y5, y5.1) € Go(a,). Also, for each n, we have
that vy’ € [0,1], which is sequentially compact. Thus, by a diagonal
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16 J. P. KELLY AND K. MCGOFF

argument, there exists a subsequence {f;}?°, tending to infinity such
that for each n, there exists z, € [0, 1] such that

ol
lim y,F = .
k—ro0

Setting © = (2,)5°,, we see that (z,a) € V and ¢(z,a) = a. O

The following proposition asserts that ¢ preserves the entropy of
ergodic measures. Its proof is an adaptation of the proof of [2, Theorem
4.1], and we provide it in Appendix A for completeness.

Proposition 5.6. Let ¢ : V. — X, be as in Definition 5.3. Further-
more, let 1 € M.(V,ov) andv € M(Zr, 00r) be such that v = po¢™!.
Then h(v) = h(u).

5.3. Factoring onto X. Here we show that the joint space V' from
Definition 5.1 factors onto X.

Definition 5.7. Let F' be in F with associated trajectory space X,
SFT X, and joint space V. Define the map 7 : V' — [0, 1]%+ by the
rule w(x,a) = .

It is clear that 7 is continuous and commutes with the left shift. The
following result shows that the image of 7 is contained in X.

Proposition 5.8. Suppose that (x,a) € V. Then z € X.

Proof. Let n > 0. Since (x,a) € V, there exists y* and y*,, such that
limg y% = xp, lim, y¥, = 2,01, and (y5, 9%, ) € G(a,). Since G(ay)
is closed, we see that (z,,z,41) € G(a,) for each n > 0. Then by the
definition of X, we have z € X. O

By Proposition 5.8, we have m : V' — X. Next we establish that =
in fact maps onto X. First, let Vj C V' be the set of points (z,a) € V
such that for each n > 0, we have (z,, x,11) € Go(ay).

Proposition 5.9. For each x € X, there exists a unique a € Xy such
that (xz,a) € Vy. In particular, m: V — X is surjective.

Proof. Let © = (2,)22, € X. Let n > 0. Since (zp,xn11) € G(F)
and {Go(a) : a € A} is a partition of G(F'), there is a unique element
a, € Asuch that (z,,x,.1) € Go(a,). This uniquely defines a sequence
a = (an)plo-

Let us show that a € ¥,;. Since X, is a SF'T defined by the matrix
M, it suffices to show that for each n > 1, we have M(a,_1,a,) = 1.
Let n > 1. By construction, we have that (x,_1,%,) € Go(a,_1) and
(Tn, Zny1) € Golap). Then z, € Ro(a,_1) and z, € Dy(a,), and
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therefore Dy(a,)NRy(a,_1) # &. By the Markov property, we conclude
that Dy(a,) C Ro(an—1), and therefore M(a,_1,a,) = 1, as desired.
Finally, note that (z,a) € V. Indeed, for each k > 1, let ¢, = k,
y* = x,, and b* = a,. Then we have exhibited the necessary sequences
to establish that (z,a) € V. O

6. CONSTRUCTING THE BAD SETS

Our aim is to show that under certain conditions, we can construct a
Borel entropy conjugacy between X and X,,. In this construction, we
identify “bad sets”, on which the Borel entropy conjugacy map will not
be defined. The main source of difficulty in constructing our Borel en-
tropy conjugacy arises from the fact that points in the trajectory space
that stay in the critical set P can have multiple symbolic codings. In
order to deal with this difficulty, we group such symbolic codings into
the “bad sets” and show that we have only removed sets of strictly
smaller entropy that the full system. In fact, we carry out this process
for each irreducible component of ¥,, separately. In the following sec-
tion, we define the critical set of points in X that cause us difficulty.
Then in the following sections we analyze the irreducible components
in detail and construct their bad sets.

6.1. The critical system. Let F' be in F with trajectory space X,
SFT o), and joint system V. Consider the set of trajectories contained
in the critical set P:

Xp:{xGX:‘v’nZO,anP}.

Note that Xp is closed and invariant under oxy. We refer to Xp as
the critical system. Now let Z = 7 1(Xp) C V, and note that Z is
closed and invariant under oy. As we mentioned above, one of the
main difficulties in relating X and >,; lies in the fact that 7 may not
be injective on Z (or its pre-images under the shift).

6.2. Irreducible components. We find it useful to distinguish be-
tween the following types of irreducible components for Markov multi-
maps.

Definition 6.1. Let F' be in F with associated SFT X;;. Let C C A
be an irreducible component of the M-graph. We say that

e Cis of Type Iif C C Ay;
e Cisof Type Il if C C As;
e C is of Type III if it is not Type I or Type IL.
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18 J. P. KELLY AND K. MCGOFF

Remark 6.2. Suppose C is of Type III. Then for each i € {0,1,2}, we
must have C N A; # 0. In fact, there must exist allowable transitions
in C from Ay to Ay (cross-over), from A, to A; (into a vertical line),
and from A; to Ay (out of vertical line).

Let ¥)/(C) denote the irreducible component of ¥, corresponding
to C. Note that X,,(C) is an SFT contained in ;. Also, for distinct
irreducible components C; and Cy, we have that ¥,,(C;) and X,,(Cs)
are disjoint. Let V(C) denote ¢~(X3,(C)) C V, where V is the joint
system. Also, let Z(C) = ZNV(C), where Z =7 (Xp) C V.

6.3. Constructing the bad sets: Types I and III. We now show
the existence of our “bad sets” off of which ¢ and 7 are injective. In
the proof of the following proposition, we use the following immediate
consequence of Lemma 4.5: if (z,a), (z,b) € V and z,, ¢ P, then for
each n < m, we have a,, = b,. Also, for notation, for any word w € L
and any a € X, let

Ny(a) = |[{n>0:0"(a) € [w]}|.

Proposition 6.3. Let F' be in F with SFT ¥y, and joint system V.
Suppose that C is a Type I or Type I1I irreducible component of the M-
graph such that hyop (X1 (C), oar|s,,(c)) > 0. Then there exists words u®

and u® in L(C) such that if
By ={a € Xy(C): Ny(a) < oo or Ny (a) < oo},
and B = ¢~Y(By), then
(1) Pre(Z(C)) C B,
(2) hpron(B) < hiop(V(C), alv(c), and
(3) both m and ¢ are injective on V(C) \ B.

Proof. First, suppose that C is Type I. Since F'is in F, it has a complete
set of coding words, and we may select a coding word u* for C. Similarly,
since F'is in F, it has a complete set of avoiding words, and then since
C is of Type I, we may select an avoiding word u* for C.

Now suppose that C is Type III. Since C is of Type III, it contains
a word u® = wow; such that wg € Ay and w; € A; U A,. Note that u®
is an avoiding word. Furthermore, since C is of Type III, it contains a
symbol u¢ € A;. Note that u¢ is a coding word for C.

For the remainder of the proof, we do not distinguish between whether
C is Type I or Type III.

Then let

By ={a € Xy(C): Nyu(a) < oo or Ny(a) < oo},
and let B = ¢~ 1(By). (Note that By and B are invariant.)
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To establish (1), let (z,a) € Pre(Z(C)). Then there exists N such
that for each n > N, we have x € I,na) N P. Since u® is an avoiding
word, we see that Ny(a) < oco. It follows that a € By, and therefore
(z,a) € B.

Now we establish (2). Let Y C X, be the SFT obtained by for-
bidding u¢ and u®. Since ¥,/(C) is irreducible, it is entropy minimal.
Then hop (Y, 0ly) < hiop(Eas(C), onrlsys(c)), as Y is a strict subsys-
tem of ¥,,(C). Suppose u is an ergodic measure on ¥,,(C) such that
w(By) = 1. As pu is ergodic and the words u® and u® appear only
finitely for points in By, we must have p([u¢]) = p([u*]) = 0, and
therefore p(Y) = 1. Then by the variational principle, we see that
h(p) < hiop(Y,0ly). Taking the supremum over all such u, we ob-
tain that hpon(Bo) < hiop(Y, 0ly) < hiop(Xa(C), omls,, () Further-
more, since ¢ preserves the entropy of ergodic measures (by Proposition
56), we obtain that hprob(B) = hprob<B0> < htop(zM(C),0M|zM(c)) =
hiop (V(C), ov]v(c))-

To show that ¢ is injective on V(C) \ B, let (z,a) € V(C) \ B, and
suppose (y,a) € V(C) \ B. Then a ¢ By, and in fact ¢"(a) ¢ By for
all n > 0. Let n > 0. Then 0" (a) contains the word u¢ infinitely many
times, and therefore I;n) is a singleton (since u® is a coding word).
Since we must have both x, € I;n) and ¥y, € I;n(a), we conclude that
Tn = Yn. As n > 0 was arbitrary, we have shown that ¢ is injective on
V(C)\ B.

To show that 7 is injective on V(C) \ B, let (z,a), (z,b) € V(C)\ B.
Let T = {m > 0:0"(a) € [u*]}. For each m € T, we have that
Ty € Igmea) C [0,1] \ P (since u® is an avoiding word). Since (z,a) €
V(C) \ B, the set T" must be infinite. Let n > 0. Since 7T is infinite,
there exists m > n such that m € T. Then x,, ¢ P. By Lemma 4.5,
we see that a, = b,. As n > 0 was arbitrary, we conclude that 7 is
injective on V(C) \ B. O

6.4. Constructing the bad sets: Type II. We don’t have to re-
move any bad sets from Type Il components. Indeed, the following
proposition establishes that 7 and ¢ are injective on the union of all
Type II components.

Proposition 6.4. Let F' be in F, and let

o= |J V@

C of Type II

Then 7 and ¢ are injective on Vp.
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Proof. Suppose (z,a), (x,b) € Vp. Then a,,b, € As for all n > 0,
and we must have G(a,) = {(zpn, Tn41)} = G(by,) for all n. Therefore
a, = b, for all n > 0, and 7 is injective on Vp.

Suppose that (z,a), (y,a) € Vp. Then D(a,) is a singleton for each
n, and we must have {z,} = D(a,) = {y,} for all n. Therefore z,, = y,
for all n > 0, and ¢ is injective on Vp. U

7. PROOF OF THE MAIN RESULT

Now that we have constructed the bad sets for each type of irre-
ducible component, we are ready to prove our main result on Borel
entropy conjugacy.

PrROOF OF THEOREM 1.1. Let F' be in F with associated trajectory
space X and SFT X,,. Furthermore, let V' be the associated joint
space, as in Definition 5.1, and let ¢ : V — X3, and 7 : V' — X be the
maps defined in Definitions 5.3 and 5.7, respectively.

Since F' € F, we have that ), has positive entropy. Enumerate
the irreducible components with positive entropy: Cy,...,C;. For each
C; of Type I or Type III, let B; C V(C;) be the bad set given by
Proposition 6.3. For each C; of Type II, let B; = &. Furthermore, let

By=¢" (EM \ (U ZM<Cj)> ) :

J
B=|]JB
=0
Foreach j=1,...,J,1let A; =V(C;)\ B;. Note that

Then let

(7.1) V\B= LJJAj.

Proposition 7.1. 7 is injective on V' \ B.

Proof. Suppose that (z,a), (z,b) € V '\ B. By (7.1), there exists i, j
such that (z,a) € 4; and (z,b) € A;. If ,, ¢ P for infinitely many n,
then a = b by Lemma 4.5.

Now suppose that x,, € P for all by finitely many n. Then there
exists N such that o"V(z) € Xp. Hence (z,a), (z,b) € Pre(Z), and
therefore C; and C; must be of Type II (since Ay N Z = & whenever Cj,

is of Type I or Type III). Since 7 is injective on Vp, we conclude that
a=bhb. U
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Proposition 7.2. ¢ is injective on V' \ B.

Proof. Suppose that (z,a), (y,a) € V \ B. By (7.1), there exists i, j
such that (z,a) € A; and (y,a) € A;. Then a € X(C;) N X (C)).
Since distinct irreducible components are disjoint, we see that i = j.
Since ¢ is injective on A;, we conclude that z = y. 0

Lemma 7.3. hi,, (X, 0x) = hiop(V, 0v).

Proof. First, by Proposition 5.8, we have that 7 is a factor map. Since
entropy cannot increase under a factor map, heop (X, 0x) < hiop(V, ov).

Now fix C; such that hy,(V,ov) = hip(V(Ci), 0lv(c,), and let p
be an ergodic measure on V(C;) such that h(x) = hip(V(C;), 0lv(c,))
(which exists ¥,/(C;) has a measure of maximal entropy and ¢ pre-
serves entropy). Since hpon(B;) < hiop(V(Cs), olv(c,)) = h(it), we must
have that u(B;) = 0. Then 7 is injective a set of full y-measure, and
therefore 7 is an isomorphism from g to mp = po 7w, In particu-
1ar, biop (V. 011) = huop (V(C), o lvicy) = h(s2) = h(mp) < heopl(X, o),
where the last inequality follows from the Variational Principle. We
have now shown that hi., (X, 0x) = hiop(V, o). O

Let Ax =n(V\ B) and Ay = ¢(V \ B).

Proposition 7.4. Ax is Borel, 0(Ax) = Ax, and hpon(X \ Ax) <
htop(Xaa’X)'

Proof. Consider A;. First suppose that C; is of Type II. Then A; =
V(C;), which is compact. Thus 7(A4;) is also compact. In particular,
m(A;) is closed and hence Borel.

Now suppose that C; is of Type I or Type III. Then there exist words
wand v in £(C;) (in particular, a coding word and any avoiding word)

such that
A = m [( U J"[U]) N < U O’n[U]>] :

Note that for each n, the sets [u] and [v] are compact. Hence 7[u] and
7[v] are compact and in particular closed. Then

m(A;) = ﬂ (U U_nﬁ[u]> N (U 0‘”#[1}])],

N
which shows that 7(A;) is Borel. Finally, since Ax = U;w(4;), we
conclude that Ax is Borel.

For each A;, we have 0(A;) = A;, and therefore o(m(A;)) = m(0(A;)) =
w(A;). As Ax = U;m(A4;), we see that o(Ax) = Ax.
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Let v be an ergodic invariant measure on X such that v(X\ Ax) > 0.
Since Ax is invariant and v is ergodic, we have that v(X \ Ax) = 1,
and therefore v(Ay) = 0. Also, v is supported on some set of the form
7(B;), with 1 <14 < J. Let u be an ergodic measure on V' such that
7 = v. Then pu(A) < p(r~'7(A)) = v(Ax) = 0, and p(V(C;)) =
1. Therefore u(B;) = 1. Finally, we observe that h(v) < h(u) <
hprob(B;) < max; hyon(B;). Since the right hand side is strictly less
than hio,(V, o), which equals hyo, (X, 0x) by Lemma 7.3, we conclude
that hpon(X \ Ax) < hiop(X, 0]x). O

The following proposition may be quite easily deduced from the def-
initions, and we omit its proof.

Proposition 7.5. Ay, is Borel, 0(Ax) = Ay, and hyon(E0 \ As) <
hprob(ZM)'

Now define ¢ = 7|y\p o ¢|“/i3 . Ay, — Ax, which will serve as our
Borel entropy conjugacy map.

Proposition 7.6. v is bijective, bi-measurable, and commutes with the
left shift.

Proof. Taken together, Propositions 7.1 and 7.2 yield that v is bijective.
Let E C Ax be Borel. Then 7~'(E) N (V \ B) is Borel. Also, since
®|y\p is an injective continuous map on the Borel set V' \ B, it maps
Borel sets to Borel sets. Therefore ¢~ H(E) = ¢|y\p(r " H(E) N (V \ B))
is Borel measurable. Therefore v is Borel measurable. An analogous
argument shows that ¢! is also Borel measurable. Finally, since m and
¢ commute with the left shift, ¢ also commutes with the left shift. [

By the previous propositions, we conclude that v is the desired Borel
entropy conjugacy between X and X,,. 0

8. SUFFICIENT CONDITIONS FOR F' TO BE IN F

Now that we have proved Theorem 1.1, we wish to highlight its utility
by establishing some straightforward conditions that are sufficient for a
Markov multi-map F' to be in the family F. We focus on the case where
there is an irreducible component C that contains all of Ay. For single-
valued functions, this condition amounts to the topological transitivity
of the system.

Definition 8.1. Suppose C is an irreducible component. We say that
F codes for points on C if

lim sup max {¢ (l4y...a,) : @ € Xp(C)} = 0.

n
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Lemma 8.2. Suppose C is an irreducible component with Ay C C. If
F' codes for points on C, then C has a coding word and an avoiding
word.

Proof. Since F' codes for points on C, by definition, we must have that
I, is a singleton for all a € 3,,(C). Therefore every word in £(C) is a
coding word. To see that C also has an avoiding word, we consider two
cases.

Case 1: Suppose Ay is a strict subset of C. Then C must be a Type
ITT component, and we showed in the proof of Proposition 6.3 that
every Type III component has an avoiding word.

Case 2: Suppose Ay = C. We have shown that C has a coding word,
so there must exist a,b € Ay such that ab € L(Ag) and I, is a strict
subset of I, = D(a). This would imply that D(b) is a strict subset of
R(a).

By the definition of a Markov multi-map, D(b) is an interval between
adjacent elements of the partition P. It follows that P partitions R(a)
into at least two intervals, so there exist distinct elements p;,p; € P
such that [p;, pit1] U [pj, pj+1] € R(a). Then there must be by, by € Ay
such that D(b1) = [p;, pi+1] and D(be) = [p;, pj+1]-

The interval I, is a strict subset of I,, so it contains at most one
endpoint of D(a). Since Ay is irreducible, there exists u € L(Ap)
such that abjua € L(Ap). The interval I, ., is contained in I, , so
it contains at most one endpoint of I,. Then 4 uap, and Iup,uap, are
non-overlapping, so at least one of them is disjoint from P. Therefore
Ap has an avoiding word. O

Next we define what it means for F' to be uniformly expanding on C,
and we show that if that is the case, then F' codes for points on C. Recall
that for each a € A, we have a well-defined function f,;': R(a) — D(a),

1

and if u = ug - - - u, € L, then we define f;' = f,lo---o f .

Definition 8.3. Suppose C is an irreducible component and F' is a
Markov multi-map such that f, is a diffeomorphism for each a € A,.
We say that F' is uniformly expanding on C if there exists N € N such
that

sup {|(f, ") (z)] : w € Ln(C) N (Ag)™, 2 € D(un)} < 1.
Lemma 8.4. Let C be an irreducible component. If F' is uniformly
expanding on C, then F' codes for points on C.

Proof. Let 0 < X\ < 1 such that |(f; 1) (z)] < AMorallu=ag---ax_1 €
Ly(C) and z € R(an—1). Then £(I,) < M(R(an-1)) < A. It follows
that for all & > 1 and u € Lyn(C), we have ((I,) < A\*. Therefore F
codes for points on C. 0
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By combining these results, we arrive at the following sufficient con-
dition for F' to be in F.

Corollary 8.5. Let F' be a properly parametrized Markov multi-map
with associated SFT Xy Suppose that hiop(Xar, o) > 0, and fur-
thermore there is an irreducible component C with Ay C C. If F 1is
uniformly expanding on C, then F € F, and hence (X, 0x) is entropy
conjugate to (Xpr, oar).

Proof. By Lemma 8.4 and Lemma 8.2, the component C has a coding
word and an avoiding word. Since Ay C C, no irreducible component
(except possibly C) could be contained in Ay, so F' has a complete set
of coding words and a complete set of avoiding words. Thus F' € F, so
by Theorem 1.1, (X, ox) is entropy conjugate to (Xar, o). O

9. REALIZATION OF ENTROPIES

We now prove Theorem 1.5, which we restate here.

Theorem 1.5. The set H(F) is equal to the set of all positive rational
multiples of logarithms of Perron numbers.

Proof. Tt suffices to show that for any irreducible SFT with positive
entropy, there is a Markov multi-map in F with the same entropy.

Let s be an irreducible SF'T with positive entropy associated with
the n x n matrix M. Since X, has positive entropy, there is one row
of M with (at least) two ones. After possibly permuting the alphabet,
suppose the first row has a one in columns k£ and k + 1.

Now we define a Markov multi-map F' on the interval [1,n + 2] in
terms of its graph. (To illustrate our construction, we give a specific
matrix M in Example 9.1, and we show that graph of the corresponding
multi-map in Figure 2.)

Let

1 1 1 3

P = {1,1+ 2,2,2%— 2,...,n,n—i— 2,n—|—1,n+ 2,n+2}.
For each i,j € {1,...,n}, we associate the rectangle [i,7+1/2] X [j, 7+
1/2] with the matrix entry M(i,7). If M(i,7) = 1, we include (in the
graph of F') a straight line connecting the bottom left corner (i, j) to
the top right corner (i +1/2,741/2), and if M (i, j) = 0, we leave that
rectangle empty. There is one exception to this rule however. We have
assumed that M (1,k) = M(1,k+ 1) = 1, and instead of including two
separate graphs in those two rectangles, we include one line connecting
(1,k) to (14+1/2,k+3/2).
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In this way we would have the graph of a multi-map with domain
Ui,lé,i + 1/2]. We need F to be defined on all of [1,n + 2], so we
next define the graph in each rectangle of the form [i + 1/2,7 4 1] x
[n+3/2,n+2], where i € {1,...,n}. In these rectangles, we include a
straight line connecting the points (i +1/2,n+3/2) and (i + 1,n + 2).
Then finally, in each of the rectangles [n+1,n+3/2] x [n+3/2,n+ 2]
and [n+3/2, n+2] x[n+3/2,n+2], we include a straight line connecting
the bottom left corner to the top right corner.

We have described the graph of F', but in order to show it is a Markov
multi-map in F we should specify the indexing set A and identify a
coding word and an avoiding word. Let Cy be a labeling of all of the
straight lines that correspond to ones in the matrix M. (Recall that
the cardinality of Cy will be one less than the number of ones in M,
because the ones in the (1, %) and (1,k + 1) entries correspond to just
one straight line in the graph.) Then let By be the additional straight
lines whose ranges were all [n + 3/2,n + 2], and define Ay = Cy U By.

Each of the straight lines we considered have a bottom left endpoint
and a top right endpoint. Let Cy and B, be the collections of these
left and right endpoints, respectively, and let Ay = Co U By. Finally let
A =0.

Then Cy is a Type I irreducible component whose corresponding SFT
has the same entropy as ;. To complete the proof, we show that if
Y(A) and 3(Cy) are the SFTs associated with A and Cy respectively,
then hyop(X(A)) = hiop(X(Co)). Towards this end, we show that the
symbols in By, Cs, and By do not increase the entropy.

Let by € By represent the straight line in [n + 3/2,n + 2] x [n +
3/2,n + 2], then any b € By can only be followed by by. This means
hprob(2(Ag)) = hpob(2(Cp)). Now we consider Co and B,. Each of
these individually follows nearly the same pattern as Ay with only one
difference. Let a* € Ay correspond to the straight line in [1,1/2] x
[k, k + 3/2], and let ¢* € Cy and b* € By correspond to the respective
endpoints of this line. The symbol a* can be followed by any symbol
whose domain is [k, k + 1/2] or [k + 1,k + 3/2]. On the other hand
c* can only be followed by points whose first coordinate is k, and b*
can only be followed by points whose first coordinate is k& + 3/2. The
SF'Ts corresponding to Cs and B, are disjoint from one another and are
invariant. It follows that the entropy contributed by these sets is less
than or equal to the entropy from Cy.

All of this shows that F' is a Markov multi-map whose associated SF'T
has the same entropy as (X7, o). It only remains to show that F' € F.
The only irreducible component in Ag with positive entropy is Cy. We
must show it has a coding word and an avoiding word. Once again let
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F1GURE 2. Markov multi-map from Example 9.1

a* € Ay correspond to the straight line in [1,1/2] x [k, k + 3/2]. The
range R(a*) is partitioned by P into three non-overlapping intervals,
so every occurrence of a* in a word u decreases the length of I, by a
factor of 3. It follows that a* is a coding word.

We can also use a* to construct an avoiding word. Let u = uy - - - u,, €
L(Cp) be any word such that a*ua* € L(Cp). The interval [+, is a strict
subset of [1,1 + 1/2], so it contains at most one point of P. There is
then an element b € Cy such that I s+, is disjoint from P and hence
an avoiding word. Therefore F' € F. O

Example 9.1. Consider the 3 x 3 matrix

0
M=11
1

=
o O =

Using the method outlined in the proof of Theorem 1.5, this matrix
would yield the graph pictured in Figure 2. Recall we stipulated that
there must be at least two adjacent 1s in the first row of the matrix.
These appear in the second and third columns of M. This gives us a
line in the graph connecting the points (1,2) and (1.5, 3.5).

For the rest of the graph, note that if we rotate the matrix counter-
clockwise ninety degrees, then the pattern of 1s in the matrix matches
the pattern of lines in the lower portion of the graph.
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10. EXAMPLES

We show various examples demonstrating the utility of our results.
We begin by showing that Theorem 1.1 generalizes the well-known
result for the case that F' is single-valued.

Ezample 10.1. Suppose F' is any uniformly expanding (single-valued)
Markov map. Then Corollary 8.5 recovers the well-known fact that F'
is entropy conjugate to its combinatorial SF'T.

Next we give an example of a Markov multi-map that is not uniformly
expanding but still satisfies the hypotheses of Theorem 1.1.

Ezample 10.2. Let P ={0,1/3,2/3,1}, Ay = {1,2,3,4}, A; = 0, and
AQ = {5,...,10}. Let

D(1) = [0,1/3] R(1) = [1/3,2/3]
D(2) =[1/3,2/3] R(2) =[0,2/3]
D(3) = [1/3,2/3] R(3) = [2/3,1]
D(4) = [2/3,1] R(4) = [1/3,2/3]

For each a € {1,2,3}, let G(a) be a straight line from the bottom
left corner to the top right corner of D(a) x R(a), and let G(4) be a
straight line from the top left to the bottom right of D(4) x R(4). Then
we define G(5) = {(0,1/3)}, G(6) = {(1/3,2/3)}, G(7) = {(2/3,1)},
G(8) ={(1/3,0)}, G(9) = {(2/3,1/3)}, G(10) = {(1,1/3)} (all of the
endpoints of G(1),...,G(4)). This defines a Markov multi-map whose
graph is pictured in Figure 3.

Then Ay and Ay are both irreducible components with Ay (a Type
I component) having greater entropy. The graph G(3) has slope 2,
but the rest of the graphs G(1),G(2), and G(4) have slope 1, so F'is
not uniformly expanding on A,. However, 3 € L; is a coding word,
because each time the symbol 3 appears in a word u € L, the length
of the interval I, is divided in half. Also 331 € L3 is an avoiding word,
because I331 = [3/6,7/12]. Thus F' € F, so by Theorem 1.1 (X,0x) is
entropy conjugate to (X7, oar)-

Next we show an example with a Type III irreducible component.

Ezample 10.3. Let P = {0,1/2,1}, Ay = {1,2}, A; = {3,4}, and
Ay = {5,6,7,8,9}. Let
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FIGURE 3. Markov multi-maps from Example 10.2 (left)
and Example 10.3 (right)

D(1) = [0,1/2] R(1) = [0,1]
D(2) = [1/2,1] R(2) =[0,1/2]

Let G(1) be the straight line connecting (0,0) and (1/2,1), and let
(G(2) be the straight line connecting (1/2,0) and (1,1/2). Then let G(3)
and G(4) be the vertical lines {1/2} x [0,1/2] and {1/2} x [1/2,1] re-
spectively. Finally, define G(5), ..., G(9) so that they are the endpoints
of the graphs of G(1),...,G(4). The graph of this Markov multi-map
is pictured in Figure 3.

In this case, two symbols from A, represent the points {(0,0)} and
{(1/2,0)}. For simplicity, say these are G(8) and G(9). Then C =
{1,...,7} is a Type III irreducible component which means it must
have a coding and an avoiding word. In this case, we can use u = 13 €
Ly as both a coding and an avoiding word, because I13 = {1/4}. Since
there is no Type I component, we automatically have ' € F.

Finally we give an example that does not satisfy our hypotheses, and
for which hyop(Xar, oar) is strictly greater than hyo, (X, ox).

Ezample 10.4. Define a Markov multi-map as follows. Let P = {0, 1},
Ao = {1,2}, A = @, and Ay = {3,4}. Let D(1) = D(2) = R(1) =
R(2) = [0,1]. Let fi, fo: [0,1] — [0,1] be defined by fi(x) = z* and
fa(x) = 2. Let G(3) = {(0,0)}, and G(4) = {(1,1)}.
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Then the only non-trivial irreducible component is Ay = {1, 2}, and
Y1 (Ap) is the full shift on two symbols, which has entropy log 2. How-
ever, the only non-wandering points of (X, ox) are the fixed points
(0,0,...) and (1,1,...), so hp(X,0x) = 0.

Note that I, = [0,1] for all u € Ay, so this multi-map has neither
coding words nor avoiding words. Thus F' ¢ F, and Theorem 1.1 does
not apply.
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APPENDIX A. PROOF OF PROPOSITION 5.6

Here we aim to prove Proposition 5.6. First, we recall the result of
Katok [16] relating the measure-theoretic entropy of an ergodic mea-
sure to Bowen balls. Consider a compact metric space (X,d) and a
continuous transformation 7' : X — X. For n > 1, define the metric
d, on X by setting

dy(z,y) = max{d(T"(z),T"(y)) : k=0,...,n—1}.

For € > 0, an (n, €)-ball is a ball of radius € with respect to the metric
d,. Now let p be in M (X,T). For a« € (0,1), ¢ > 0, and n > 1, let
s(T,n, €, ) denote the minimal cardinality of a collection of (n, €)-balls
whose union has p-measure at least a. Katok showed that

1

h(p) = Elirgh hmnsup - log s(T',n, €, ).
Let us now prove that the factor map ¢ : V. — X, preserves the

entropy of all ergodic measures.

PROOF OF PROPOSITION 5.6. As entropy cannot increase under factor

maps, we have h(v) < h(u). To complete the proof, we establish the

reverse inequality. Fix a € (0,1). For n > 1, let r(n,a) denote the
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minimal cardinality of a set of words W C L,, such that

(A1) u<wgv[w]) > a.

Let € > 0. For n > 1, let s(n, €, @) denote the minimal cardinality of a
collection U of (n,€) balls in V' such that

W(Uv)za

Now let n > 1. Select aset W = {wy, ..., wx} C L, with cardinality
K = r(n,«a) and satisfying (A.1). By the construction given in the
proof of [2, Theorem 4.1], for each k, there exists a collection U}, of
(n,€) balls in V' such that

6w c |J U

Uely,

Uy < (n—l—l)(E-‘ +1>.

Let U = Ul,,. Note that

w(U) = u(gw[wk])) - u([][wk]) > a,

veu k=1

and

and furthermore

u| < ij\uky <(n+ 1)<H + 1)r(n,a).

k=1

Hence

€

s(n,e,a) < U] < (n + 1>(H + 1)r(n,a).

Taking the limit supremum of this inequality as n tends to infinity
yields

1 1
limsup — log s(n, €, a) < limsup — log r(n, a).
n n n n

By Katok [16], as we let € tend to 0, we obtain
h(p) < h(v).
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