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Abstract. We consider a class F of Markov multi-maps on the
unit interval. Any multi-map gives rise to a space of trajectories,
which is a closed, shift-invariant subset of [0, 1]Z+ . For a multi-map
in F , we show that the space of trajectories is (Borel) entropy con-
jugate to an associated shift of finite type. Additionally, we char-
acterize the set of numbers that can be obtained as the topological
entropy of a multi-map in F .

1. Introduction4

Multi-maps, also called set-valued maps, have been studied in the5

topological dynamics literature for some time, with such notable ex-6

amples as [1,21,22]. In the past decade multi-maps have been studied7

extensively, with a particular focus on the topological structure of the8

associated space of trajectories or a related inverse limit space; see [15].9

This development has also led to a renewed interest in the dynamics10

of multi-maps [11, 13, 17, 18]. Additionally, multi-maps are the topo-11

logical analogues of random maps of the interval, which have received12

substantial attention, e.g., [4, 10, 14, 23].13

In the study of single-valued maps of the interval, Markov maps [7]14

are particularly well-understood. These maps have a finite invariant15

set such that the map is strictly monotone on the intervals between16

elements of that set. This structure allows one to associate to each17

Markov interval map a corresponding shift of finite type that preserves18

many aspects of the dynamics.19

Recent work [3,5,6,12] has generalized the notion of Markov interval20

maps to the setting of multi-maps and established some of their basic21

properties. In particular, [2] proves that under some conditions on22

the Markov multi-map, one may find upper and lower bounds for its23

entropy using associated shifts of finite type.24

Our main results substantially sharpen this previous work. Under25

mild conditions on the Markov multi-map, we associate to it a single26

shift of finite type, and then we establish a close connection (in the27
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form of a Borel entropy conjugacy) between the dynamics of the multi-1

map and its associated shift of finite type. In particular, for a Markov2

multi-map in the class F considered here, the topological entropies of3

the Markov multi-map and of the associated shift of finite type must4

be equal. Furthermore, we demonstrate the richness of the class F by5

showing that any number that appears as the entropy of a shift of finite6

type also appears as the entropy of a Markov multi-map in F .7

1.1. Statement of main results. A multi-map of the unit interval8

is a function F : [0, 1] ! 2[0,1], where 2[0,1] is taken to be the set of9

closed subsets of [0, 1]. Given such a multi-map, its trajectory space10

X = X(F ) is defined by11

X(F ) =
n
x = (xn)

1
n=0 2 [0, 1]Z+ : 8n � 0, xn+1 2 F (xn)

o
.

Further, let �X : X ! X denote the left-shift map (xn)1n=0 7! (xn+1)1n=012

on X. We seek to understand the multi-map F by studying the dy-13

namics of the system (X, �X).14

In Section 3 we introduce a class of multi-maps that we call Markov15

multi-maps, and in Definition 3.4 we state what it means for a Markov16

multi-map to be properly parametrized. In this work we focus on a17

specific class F of Markov multi-maps (see Definition 3.9): properly18

parametrized Markov multi-maps with complete sets of coding and19

avoiding words and positive entropy. For any multi-map F in this20

class, one may associate to F a square matrix M = M(F ) with entries21

in {0, 1} (see Section 3.2). The matrix M encodes the combinatorial22

structure of F . Let ⌃M be the shift of finite type defined by M , with23

left-shift map �M . The following theorem provides a precise correspon-24

dence between a “large” subset of the trajectory space X and a “large”25

subset of the SFT ⌃M , where “large” here refers to a notion of entropy.26

A precise definition of Borel entropy conjugacy, originally defined by27

Buzzi [9] under the term “entropy conjugacy,” appears in Definition28

2.2.29

Theorem 1.1. Let F be the class of Markov multi-maps specified in30

Definition 3.9. Let F be in F with trajectory space X and associated31

SFT ⌃M . Then (X, �X) is Borel entropy conjugate to (⌃M , �M).32

Since Borel entropy conjugacy is known to preserve topological en-33

tropy, we immediately obtain the following corollary.34

Corollary 1.2. Let F be in F with trajectory space X and associated35

SFT ⌃M . Then htop(X, �X) = htop(⌃M , �M).36
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In fact, since Borel entropy conjugacy provides a correspondence1

between all ergodic measures with large enough entropy, the following2

corollary is also immediate.3

Corollary 1.3. Let F be in F with trajectory space X and associated4

SFT ⌃M . Then (X, �X) has the same number of measures of maximal5

entropy as (⌃M , �M). In particular, if (⌃M , �M) is irreducible, then6

(X, �X) is intrinsically ergodic (i.e., has a unique measure of maximal7

entropy).8

Remark 1.4. Random maps of the interval have been studied primarily9

with an eye towards the existence and properties of absolutely contin-10

uous invariant measures, e.g., see [4, 7]. While the entropy conjugacy11

guaranteed by Theorem 1.1 provides a correspondence between ergodic12

measures of large entropy on X and on ⌃M , it does not address ques-13

tions about whether any of these measures is absolutely continuous on14

X.15

Let us now answer a question of Karl Petersen (personal commu-16

nication). Let H(F) denote the set of real numbers r > 0 such17

that there exists a multi-map F 2 F having trajectory space X with18

htop(X, �X) = r. Recall that Lind has characterized the set of positive19

real numbers that arise as the entropy of a SFT as the set of all positive20

rational multiples of logarithms of Perron numbers [19].21

Theorem 1.5. The set H(F) is equal to the set of all positive rational22

multiples of logarithms of Perron numbers.23

1.2. Organization of the paper. In Section 2, we provide back-24

ground information and notation concerning shifts of finite type, er-25

godic theory, and Borel entropy conjugacy. Section 3 introduces Markov26

multi-maps and the class F of interest. Taken together, Sections 4 –27

7 contain the proof of our main result, Theorem 1.1. In Section 8 we28

establish some su�cient conditions for a Markov multi-map to be in29

F , and then in Section 9 we prove the realization result, Theorem 1.5.30

Finally, Section 10 contains some examples of Markov multi-maps.31

2. Background and notation32

We denote by 2[0,1] the set of all non-empty, closed subsets of [0, 1].33

A multi-map on [0, 1] is a function F : [0, 1] ! 2[0,1]. The graph of34

a multi-map F is the set G(F ) = {(x, y) 2 [0, 1]2 : y 2 F (x)}. A35

trajectory for F is a sequence (x0, x1, . . .) 2 [0, 1]Z+ such that for all36

n � 1, we have xn 2 F (xn�1), or equivalently (xn�1, xn) 2 G(F ).37

We denote by X = X(F ) the set of trajectories for F , and we give38
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X the topology it inherits as a subspace of [0, 1]Z+ with the product1

topology. We also define the left-shift on X, denoted �X , by setting2

�X(x0, x1, . . .) = (x1, x2, . . .). Observe that �X is a continuous mapping3

on X, and if G(F ) is closed in [0, 1]2, then X is closed in [0, 1]Z+ .4

2.1. Shifts of finite type. Let A be a finite set, which we call the5

alphabet. An element b 2 A
n is called a word of length n. The full shift6

on A is ⌃ = A
Z+ , endowed with the product topology induced by the7

discrete topology on A. Given a set of words F , we may define ⌃F ✓ ⌃8

to be the set of points that do not contain any word in F . We refer to9

words in F as forbidden words. Then ⌃F is closed and invariant under10

the left-shift on ⌃. If F is finite, then we refer to ⌃F as a shift of finite11

type (SFT). In this work we restrict attention to SFTs for which all the12

forbidden words have length two, called nearest neighbor SFTs. For13

more on SFTs, we refer the reader to the book [20].14

Any nearest neighbor SFT may be expressed in terms of a directed15

graph, (V,E), where the set of vertices V is equal to A, and given16

a, b 2 A, there is an edge from a to b in the edge set E if and only17

if ab /2 F . Furthermore, we associate to any such graph its adjacency18

matrix M , defined as the square matrix indexed by A such that for19

a, b 2 A, if ab /2 F then M(a, b) = 1, and otherwise M(a, b) = 0.20

Note that any zero-one matrix indexed by A also defines an associated21

nearest neighbor SFT (by letting ab be a forbidden word whenever22

M(a, b) = 0). The nearest neighbor SFT defined by a zero-one matrix23

M is denoted by ⌃M , and the left-shift restricted to ⌃M is denoted by24

�M .25

In what follows it is convenient to have some notation for words of26

arbitrary length that do not contain any forbidden word. For n � 2, we27

let Ln denote the set of words a0 . . . an�1 2 A
n such that M(ai, ai+1) =28

1 for each i = 0, . . . , n� 2. Then let29

L =
[

n�1

Ln,

where L1 = A.30

A nearest neighbor SFT defined by the matrix M is irreducible if31

for every pair of non-empty, open sets U, V ✓ ⌃M , there exists n � 132

such that �n
M(U) \ V 6= ;. Equivalently, ⌃M is irreducible if for each33

a, b 2 A, there exists n � 1 such that Mn(a, b) > 0.34

Consider an arbitrary nearest neighbor SFT ⌃M on alphabet A. It35

has an associated finite directed graph �, with vertex set A and an edge36

from a to b whenever M(a, b) = 1. Let C1, . . . , CK ⇢ A be the vertex37

sets of the maximal strongly connected components of �, which we call38



ENTROPY CONJUGACY FOR MARKOV MULTI-MAPS OF THE INTERVAL 5

the irreducible components of �. For each Ck, the set of points in ⌃M1

containing only symbols from Ck forms an irreducible SFT, which we2

denote by ⌃M(Ck). We refer to ⌃M(Ck) as an irreducible component3

of ⌃M . Note that the irreducible components ⌃M(C1), . . . ,⌃M(Ck) are4

pairwise disjoint, and the set ⌃M \
S

k ⌃M(Ck) contains only wandering5

points. See [20, Chapter 4] for more details on this decomposition. We6

also denote by L(Ck) the set of words of arbitrary length on Ck that do7

not contain a forbidden word.8

2.2. Invariant measures and entropy. In this work a topological9

dynamical system consists of a pair (X , T ), where T : X ! X is10

a continuous self-map of a compact metrizable space. For any such11

system, we let M(X , T ) denote the set of Borel probability measures12

µ on X such that µ(E) = µ(T�1E) for all Borel sets E ⇢ X . Note13

that M(X , T ) is a nonempty, convex set that is compact in the weak⇤14

topology. A measure µ 2 M(X , T ) is called ergodic if µ(E) 2 {0, 1} for15

all Borel sets E such that T�1(E) ⇢ E. The set of ergodic measures16

is denoted by Me(X , T ). Note that a measure µ 2 M(X , T ) is an17

extreme point in M(X , T ) if and only if µ is ergodic.18

The following notation is used in subsequent sections. For any Borel19

set E ⇢ X , the union of all of its pre-images is denoted20

Pre(E) =
[

n�0

T�n(E).

Note that T�1(Pre(E)) ⇢ Pre(E), and therefore if µ 2 Me(X , T ) then21

µ(Pre(E)) 2 {0, 1}.22

We also require some elementary facts regarding the entropy theory23

of dynamical systems. Complete definitions and proofs can be found24

in [24]. Let htop(X , T ) denote the topological entropy of the topological25

system (X , T ). Furthermore, when the system (X , T ) is understood26

and µ 2 M(X , T ), we denote the measure-theoretic entropy of µ by27

h(µ). The standard variational principle for entropy states that28

htop(X , T ) = sup
µ2M(X ,T )

h(µ),

and the supremum may be taken over only the ergodic measures. Fur-29

thermore, for SFTs it is known that the supremum is achieved, and if30

the SFT is irreducible, then it has a unique measure of maximal en-31

tropy. Furthermore, we note for future use that an irreducible SFT is32

entropy minimal, i.e., if X is an irreducible SFT of positive entropy33

and Y is a strict subset of X, then htop(Y, �|Y ) < htop(X, �|X) (see [20]34

for a proof).35
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2.3. Entropy conjugacy. We adopt the following definition of en-1

tropy for Borel sets (following Buzzi [9]).2

Definition 2.1. Let T : X ! X be a topological dynamical system.3

For a Borel set E ⇢ X , let4

hprob(E) = sup
�
h(µ) : µ 2 Me(X , T ), µ(E) > 0

 
.

Now we define a notion of entropy conjugacy, which was previously5

introduced by Buzzi [9].6

Definition 2.2. Suppose that T0 : X0 ! X0 and T1 : X1 ! X1 are7

topological dynamical systems. We say that they are Borel entropy8

conjugate if there exist Borel sets E0 ⇢ X0 and E1 ⇢ X1 and an9

invertible Borel bi-measurable map  : X0 \ E0 ! X1 \ E1 such that10

• hprob(E0) < htop(X0, T0);11

• hprob(E1) < htop(X1, T1); and12

•  � T0 = T1 �  on X0 \ E0.13

It is an easy corollary of the variational principle for topological14

dynamical systems that if (X0, T0) and (X1, T1) are Borel entropy con-15

jugate, then htop(X0, T0) = htop(X1, T1).16

Remark 2.3. In his work on topological entropy for non-compact sets,17

Bowen introduced a notion that he called entropy conjugacy [8]. Bowen’s18

definition of entropy conjugacy requires that the sets E0 and E1 have19

smaller topological entropy (in the dimension-theoretic sense defined20

in his paper) than the full system and that the conjugating map  is21

continuous. As such, Bowen’s notion of entropy conjugacy is stronger22

than the notion of Borel entropy conjugacy defined above.23

3. Markov multi-maps24

We now give a precise definition of Markov multi-maps on the inter-25

val [0, 1]. This definition is based on the one given in [2], though our26

definition is slightly less general.27

Definition 3.1. A Markov multi-map F of the interval [0, 1] is de-28

fined by a tuple (P,A0,A1,A2, D,R, {fa}a2A0) satisfying the following29

conditions:30

(1) P = {p0, . . . , pr} is a partition of the interval [0, 1] with 0 =31

p0 < · · · < pr = 1;32

(2) A = A0 tA1 tA2 is a finite set;33

(3) D : A ! 2[0,1], and for each a 2 A, there exists pi 2 P such34

that35

D(a) =

⇢
[pi, pi+1], if a 2 A0

{pi}, if a 2 A1 [A2;



ENTROPY CONJUGACY FOR MARKOV MULTI-MAPS OF THE INTERVAL 7

(4) R : A ! 2[0,1], and for each a 2 A, there exists u  v in P such1

that R(a) = [u, v] and2
8
<

:

u < v, if a 2 A0

u < v and R(a) \ P = {u, v}, if a 2 A1

u = v, if a 2 A2;

(5) for each a 2 A0, the map fa : D(a) ! R(a) is a homeomor-3

phism;4

(6) [0, 1] ⇢
S

a2A D(a).5

3.1. The graph of a Markov multi-map. Let F be a Markov multi-6

map. For a 2 A0, let G(a) denote the graph of fa. For a 2 A1 [ A2,7

let G(a) = D(a)⇥R(a). Then the graph of F is8

G(F ) =
[

a2A

G(a).

Note that each G(a) is closed in [0, 1] ⇥ [0, 1], and so is G(F ). An9

example of a Markov multi-map and its graph is given in Example 3.6,10

and more examples are shown in Section 10.11

Now we make some additional graph-related definitions that are used12

repeatedly throughout this work.13

Definition 3.2. Let a 2 A.14

• Suppose a 2 A0 with D(a) = [pi, pi+1] and R(a) = [u, v]. Define15

D0(a) = (pi, pi+1) and R0(a) = (u, v), and let G0(a) be the16

graph of fa|D0(a).17

• Suppose a 2 A1 with D(a) = {p} and R(a) = [u, v]. Define18

D0(a) = {p} and R0(a) = (u, v), and let G0(a) = {p}⇥R0(a).19

• Suppose a 2 A2 with D(a) = {p} and R(a) = {q}. Define20

D0(a) = {p} and R0(a) = {q}, and let G0(a) = {(p, q)}.21

Our results require that F has some additional structure, which we22

now begin to define.23

Definition 3.3. We say that F satisfies the no crossing property if the24

following holds: for all a, b 2 A0, if G0(a) \G0(b) 6= ? then a = b.25

The following property strictly implies the no crossing property.26

Definition 3.4. We say that F is properly parametrized if the collec-27

tion {G0(a) : a 2 A} forms a partition of G(F ).28

We think of the no crossing property as a property of the graph G(F )29

(and the partition P ), whereas being properly parametrized depends on30

the particular parametrization of the Markov multi-map F . However,31
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these properties are related by Lemma 4.1: if F0 is a Markov multi-map1

with the no crossing property, then there exists a properly parametrized2

Markov multi-map F1 such that G(F0) = G(F1).3

Remark 3.5. If F is a Markov multi-map, then it possesses the following4

graph Markov property : for all a, b 2 A, if D0(b) \ R0(a) 6= ?, then5

D0(b) ⇢ R0(a). This property is used to define the SFT associated6

with F , which appears in the next section.7

3.2. The SFT associated to a Markov multi-map. We associate8

to any Markov multi-map F an SFT as follows. Let M be the square9

matrix indexed by A such that for a, b 2 A,10

M(a, b) =

⇢
1, if D0(b) ⇢ R0(a)
0, otherwise.

Let ⌃M ⇢ A
Z+ be the nearest neighbor SFT with alphabet A and11

adjacency matrix M .12

To show how a Markov multi-map may be properly parametrized13

and how the adjacency matrix is constructed, we present the follow-14

ing example of a fairly simple Markov multi-map with the no-crossing15

property.16

Example 3.6. The graph in Figure 1 shows the graph of a Markov
multi-map on [0, 1] with the partition P = {0, 1/2, 1}. To properly
parametrize it, we first consider the two diagonal lines, and we index
them with the set A0 = {1, 2}. Then the vertical line segment is
indexed by A1 = {3}. Finally this leaves the four endpoints of those
segments which we index with A2 = {4, 5, 6, 7}. Then we define the
following:

D(1) = [0, 1/2] R(1) = [0, 1] D(2) = [1/2, 1] R(2) = [1/2, 1]

D(3) = {1/2} R(3) = [1/2, 1] D(4) = {0} R(4) = {0}

D(5) = {1/2} R(5) = {1} D(6) = {1/2} R(6) = {1/2}

D(7) = {1} R(7) = {1}.

Then for all a 2 A = A0 [ A1 [ A2, if D(a) is a singleton, we let17

D0(a) = D(a), and if D(a) is an interval of the form D(a) = [p, q],18

then D0(a) = (p, q). We define each R0(a) likewise.19

Next we construct the adjacency matrix corresponding to this graph.20

Note that R0(1) = (0, 1) which contains as subsets all of the following:21

D0(1), D0(2), D0(3), D0(5), D0(6). However D0(4) and D0(7) are not22

subsets of R0(1). This produces the first row of the adjacency matrix23

which has a 1 in every column except for the 4th and 7th. We may24
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0 1

1

0
1
2

1
2 M =

0

BBBBBBB@

1 1 1 0 1 1 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 1 0 1 1 0
0 0 0 0 0 0 1

1

CCCCCCCA

Figure 1. The graph of a Markov multi-map and its
corresponding adjacency matrix

do the same for each element of A to produce the adjacency matrix1

pictured in Figure 1.2

3

In our main results, we relate the SFT ⌃M to the trajectory space4

X. In particular, Theorem 1.1 establishes su�cient conditions for these5

systems to be Borel entropy conjugate.6

3.3. Nested intervals. Let F be a properly parametrized Markov7

multi-map with associated matrix M . Here we associate to each se-8

quence a 2 ⌃M a nonempty closed (possibly degenerate) interval in9

[0, 1]. To begin, for each a 2 A0, we let f�1
a be the standard in-10

verse function (which exists since fa is assumed to be a homeomor-11

phism). For a 2 A1 [ A2, we let f�1
a be the unique map such that12

f�1
a : R(a) ! D(a) (which exists since R(a) is non-empty and D(a) is13

a singleton in this case).14

Let u = a0 . . . an 2 Ln+1. Define the set15

Iu = f�1
a0 � · · · � f�1

an�1
(D(an))

We make the following elementary observations.16

• Iu is non-empty. (SinceM(ai, ai+1) = 1, we have thatD(ai+1) ⇢17

R(ai), so f�1
ai maps D(ai+1) into D(ai).)18

• Iu is a closed (possibly degenerate) interval, since Iu is the image19

of the closed interval D(an) under the continuous, monotone20

map f�1
a0 � · · · � f�1

an�1
.21

• Ia0...an+1 = f�1
a0 (Ia1...an+1).22
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• Ia0...an+1 ⇢ Ia0...an (since f�1
an (D(an+1)) ⇢ D(an)).1

Now consider a = (an)1n=0 2 ⌃M . Then {Ia0...an}
1
n=1 is a nested2

sequence of non-empty, closed intervals in [0, 1]. Let3

Ia =
1\

n=1

Ia0...an .

Then Ia is a non-empty, closed interval. Additionally, we note that4

Ia = f�1
a0 (I�(a)).

These intervals appear in the next section in the definitions that char-5

acterize the class of Markov multi-maps in our main results.6

3.4. Definition of the class F . In this section we define the class F7

of Markov multi-maps that appears in our main results. Let F be a8

properly parametrized Markov multi-map with associated matrix M .9

Definition 3.7. Suppose C ⇢ A is an irreducible component of the10

graph with adjacency matrix M . We say that C has a coding word if11

there exists u 2 L(C) such that if a 2 ⌃M(C) and {n � 0 : �n(a) 2 [u]}12

is infinite, then Ia is a singleton. Furthermore, we say that F has a13

complete set of coding words if each irreducible component with positive14

entropy has a coding word.15

Definition 3.8. Suppose C ⇢ A is an irreducible component of the16

graph with adjacency matrix M . We say that C has an avoiding word17

if there exists u 2 L(C) such that if a 2 [u], then Ia \ P = ?. Fur-18

thermore, we say that F has a complete set of avoiding words if the19

following condition holds: if C is an irreducible component with posi-20

tive entropy that is entirely contained in A0, then C has an avoiding21

word.22

Now we are prepared to give a precise definition of the class of23

Markov multi-maps that appears in our main results.24

Definition 3.9. The class F consists of all properly parametrized25

Markov multi-maps F such that F has a complete set of coding words,26

F has a complete set of avoiding words, and the associated SFT ⌃M27

has positive entropy.28

3.5. Finite labeled trajectories. Here we define some additional ter-29

minology that is useful in the following sections.30

Definition 3.10. Let F 2 F . Letm � 1. We say that x = x0, . . . , xm 231

[0, 1]m+1 is a finite trajectory of F if32

(xn, xn+1) 2 G(F ), 8n = 0, . . . ,m� 1.
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Next, we say that (x, b) 2 [0, 1]m+1
⇥Lm is a finite labeled trajectory1

(of length m+ 1) if2

(xn, xn+1) 2 G(bn), 8n = 0, . . . ,m� 1.

Let Tm be the set of finite labeled trajectories of lengthm+1. We endow3

Tm with the subspace topology inherited from [0, 1]m+1
⇥ Lm (which4

has the product of the usual topology on [0, 1]m+1 and the discrete5

topology on Lm).6

Finally, we say that (x, b) 2 Tm is a special finite labeled trajectory7

of length m+ 1 if8

(xn, xn+1) 2 G0(bn), 8n = 0, . . . ,m� 1.

Let Sm denote the set of special finite labeled trajectories of length9

m+1, and we let Sm inherit the subspace topology inherited from Tm.10

Remark 3.11. Let F be in F , and let x be a finite trajectory of F of11

length m + 1. Since G(F ) is the union of the sets {G(a)}a2A, there12

exists b 2 Lm such that (x, b) is in Tm. In fact, since F is prop-13

erly parametrized, the sets {G0(a)}a2A form a partition of G(F ), and14

therefore there exists a unique element b 2 Lm such that (x, b) is in15

Sm.16

4. Preliminary results17

4.1. Parametrization lemma. The following simple result states that18

any Markov multi-map with the no-crossing property can be prop-19

erly parametrized without changing its graph. Since the space of20

trajectories of a Markov multi-map depends only on its graph, this21

reparametrization also preserves the space of trajectories.22

Lemma 4.1. Suppose that F0 is a Markov multi-map with the no-23

crossing property. Then there exists a properly parametrized Markov24

multi-map F1 with G(F0) = G(F1).25

Proof. Let F be a Markov multi-map with the no-crossing property.26

Let B0 = A0. Let27

B1 =

⇢
{pi}⇥[pj, pj+1] : pi, pj 2 P and 9a 2 A1, {pi}⇥[pj, pj+1] ⇢ G(a)

�
.

Let28

B2 =

⇢
(p, q) : p, q 2 P, (p, q) 2 G(F )

�
.

Then let F1 be the Markov multi-map defined by B0, B1, and B2. ⇤29
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4.2. Graph lemmas. In this section we prove a few facts about graphs1

of Markov multi-maps. Throughout the remainder of this section, we2

consider F 2 F . Since F is properly parametrized, we know that if3

a, b 2 A are distinct elements, then G0(a) \ G0(b) = ?. However, it4

is possible that a 6= b and yet G(a) has nontrivial intersection with5

G(b). The following lemma shows that any such intersection must be6

contained in P ⇥ P .7

Lemma 4.2. Let F be in F . Suppose (x, y) 2 G(F ) \ (P ⇥ P ). Then8

there is a unique a 2 A such that (x, y) 2 G(a), and furthermore9

(x, y) 2 G0(a).10

Proof. Since (x, y) 2 G(F ) = [aG(a), there must exist some a 2 A11

such that (x, y) 2 G(a). For uniqueness, suppose that (x, y) 2 G(a) \12

G(b). By the no-crossing property, for any a 6= b, we have G(a)\G(b) ⇢13

P ⇥ P . Since (x, y) /2 P ⇥ P , we conclude that a = b.14

Since (x, y) /2 P ⇥ P and (x, y) 2 G(a), we see that a 2 A0 [ A1,15

and we must have (x, y) 2 G0(a). ⇤16

The next lemma asserts that G(F ) cannot accumulate along a hori-17

zontal line to any point of G(F ) \ (P ⇥ P ).18

Lemma 4.3. Let (p, q) 2 G(F ) \ (P ⇥ P ). Then there exists an open19

set U ⇢ [0, 1]⇥ [0, 1] such that (p, q) 2 U and if (y, q) 2 G0(a)\U , then20

y = p and a is the unique element of A2 such that G(a) = {(p, q)}.21

Proof. Let Lq = [0, 1] ⇥ {q}. By our definition of Markov multi-map,22

Lq\G(F ) is a finite set containing (p, q). Then there exists a relatively23

open interval I in [0, 1] such that I ⇥ {q} \ G(F ) = {(p, q)}. Let24

U = I ⇥ [0, 1]. Then U is open in [0, 1] ⇥ [0, 1] and if (y, q) 2 G0(a),25

then y = p and a must be the unique element of A2 such that G(a) =26

{(p, q)}. ⇤27

The next two lemmas address the convergence of sequences in the28

space of finite labeled trajectories.29

Lemma 4.4. Let m � 1. Suppose that x = x0, . . . , xm 2 [0, 1]m+1 is a30

finite trajectory of F such that31

• x0, . . . , xm�1 2 P , and32

• xm 2 [0, 1] \ P .33

Let w be the unique element of Lm such that (x, w) 2 Sm. If the34

sequence {(yk, bk)}1k=1 is in Sm and converges to (x, b) in [0, 1]m+1
⇥A

m,35

then b = w.36



ENTROPY CONJUGACY FOR MARKOV MULTI-MAPS OF THE INTERVAL13

Proof. By our hypotheses on x0, . . . , xm, we have that wm�1 2 A1 and1

if m � 2, then wn 2 A2 for n = 0, . . . ,m � 2. Let us now show that2

b0 . . . bm�1 = w.3

First, note that since A
m has the discrete topology, for all large4

enough k, we have bk = b. Then for all large enough k, we have5

(ykn, y
k
n+1) 2 G(bn) for all n = 0, . . . ,m � 1. Since G(bn) is closed and6

{(ykn, y
k
n+1)}

1
k=1 converges to (xn, xn+1), we see that (xn, xn+1) 2 G(bn)7

for each n = 0, . . . ,m� 1.8

Since xm /2 P , Lemma 4.2 gives that there is a unique a 2 A9

such that (xm�1, xm) 2 G(a), and therefore we must have bm�1 =10

a = wm�1. Furthermore, since xm�1 2 P and xm /2 P , we see that11

wm�1 2 A1, which implies that D0(wm�1) = {xm�1}. Then since12

(ykm�1, y
k
m) 2 G0(bkm�1) = G0(bm�1) = G0(wm�1) for all large enough k13

and D0(wm�1) = {xm�1}, we see that ykm�1 = xm�1 for all large enough14

k.15

We claim by backwards induction that for each j = 0, . . . ,m� 1, we16

have bj = wj and ykj = xj for all large enough k. We have established17

the base case (j = m � 1) in the preceding paragraph. Now suppose18

it holds for some j + 1. Let U be given by Lemma 4.3 for the point19

(xj, xj+1). By the inductive hypothesis, for all large enough k, we20

have ykj+1 = xj+1 2 P . Also, for all large enough n, we must have21

(ykj , y
k
j+1) 2 U (since {(ykj , y

k
j+1)}

1
k=1 converges to (xj, xj+1)). Then for22

all large enough k, we have (ykj , xj+1) 2 U \G0(bj). By our choice of U ,23

we must have that bj = wj and ykj = xj for all large enough k, which24

completes the induction. ⇤25

Lemma 4.5. Let m � 1. Suppose that x = x0, . . . , xm 2 [0, 1]m+1 is26

a finite trajectory of F such that xm 2 [0, 1] \ P . Let w be the unique27

element of Lm such that (x, w) 2 Sm. If the sequence {(yk, bk)}1k=1 is28

in Sm and converges to (x, b) in [0, 1]m+1
⇥A

m, then b = w.29

Proof. AsAm has the discrete topology, we must have that bk = b for all30

large enough k. Then for all large enough k, we have (ykn, y
k
n+1) 2 G(bn),31

which is closed, and therefore (xn, xn+1) 2 G(bn).32

Observe that if (xn, xn+1) 2 G(F ) \ (P ⇥ P ), then bn = wn by33

Lemma 4.2. Now suppose that we have some n such that (xn, xn+1) 234

P ⇥ P . Then there exists N 2 [n + 2, m] such that xj 2 P for all35

j = n, . . . , N � 1 and xN /2 P . Thus xn, . . . , xN satisfies the conditions36

of Lemma 4.4, and we conclude that bn = wn. ⇤37
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5. Construction of the joint system and factor maps1

Let F be a Markov multi-map in F with associated trajectory space2

X and SFT ⌃M . In the following section, we introduce a topological3

dynamical system by taking limits of special finite labeled trajectories.4

We call this system the joint system. Then in Sections 5.2 and 5.3, we5

show that the joint system is in fact a common extension of X and ⌃M .6

The joint system and its factor maps onto X and ⌃M are central to the7

construction of the Borel entropy conjugacy in our proof of Theorem8

1.1. We establish their key properties in this section.9

5.1. The joint system. Let F be a Markov multi-map in F with10

associated SFT ⌃M . Here we define a subset V of the product space11

[0, 1]Z+ ⇥⌃M , which will serve as a common extension of the trajectory12

space X and the SFT ⌃M .13

Definition 5.1. Let F be in F with associated trajectory space X14

and SFT ⌃M . Define a set V = V (F ) ⇢ [0, 1]Z+ ⇥ ⌃M as follows. A15

pair (x, a) 2 [0, 1]Z+ ⇥ ⌃M is in V if there exists a sequence {`k}1k=116

of natural numbers tending to infinity and a sequence {(yk, ak)}1k=1 of17

special finite labeled trajectories, with (yk, ak) 2 S`k , such that for each18

n � 0, the sequence {(ykn, a
k
n)}

1
k=1 converges to (xn, an) in [0, 1]⇥A.19

Proposition 5.2. V is closed and invariant under the left shift.20

Proof. Suppose that (xm, am) is a sequence in V that converges in21

[0, 1]Z+ ⇥ ⌃M to (x, a). For each m, we have that (xm, am) 2 V ,22

and therefore there exists a sequence of natural numbers {`(m, k)}1k=123

tending to infinity and a sequence of special finite labeled trajectories24

(ym,k, bm,k) 2 S`(m,k) such that for each m and n,25

lim
k

bm,k
n = amn , and lim

k
ym,k
n = xm

n .

To complete the proof, we exhibit a sequence {`j}1j=1 of natural num-26

bers and a sequence {(zj, cj)}1j=1 of special finite labeled trajectories to27

demonstrate that (x, a) 2 V .28

Let j � 1. First choose mj such that for all n = 0, . . . , j, we have29

a
mj
n = an and30

��xmj
n � xn

�� < 1

2j
.

Next choose kj (depending on mj) such that `(mj, kj) � j and for all31

n = 0, . . . , j, we have b
mj ,kj
n = a

mj
n and32

��ymj ,kj
n � xmj

n

�� < 1

2j
.
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Finally, let `j = j, and define1

zj = y
mj ,kj
0 , . . . , y

mj ,kj
j

and2

cj = b
mj ,kj
0 . . . b

mj ,kj
j .

Then {`j}1j=1 tends to infinity and {(zj, cj)}1j=1 is a sequence of spe-3

cial finite labeled trajectories. Furthermore, for each n, we have that4

{(zjn, c
j
n)}

1
j=1 converges to (xn, an) in [0, 1]⇥A. We have thus exhibited5

the necessary sequences to establish that (x, a) 2 V .6

To establish shift invariance, suppose that (x, a) 2 V . Let us show7

that (�(x), �(a)) 2 V . There exists natural numbers {`k}1k=1 and spe-8

cial finite trajectories {(yk, ak)}1k=1 that witness the fact that (x, a) 29

V . Define zkn = ykn+1 and bkn = akn+1. Then the sequences {`k � 1}1k=110

and {(zk, bk)}1k=1 establish that (�(x), �(a)) 2 V . ⇤11

As V is invariant under the left shift, we define �V : V ! V by12

letting �V (x, a) = (�(x), �(a)).13

In the proof of our main results, we use the joint space V as an14

intermediary between the spaces X and ⌃M . To make this connection15

precise, we define factor maps from V onto each of X and ⌃M .16

5.2. Factoring onto ⌃M . Here we show that the joint space V from17

Definition 5.1 factors onto ⌃M .18

Definition 5.3. Let F be in F with associated trajectory space X,19

SFT ⌃M , and joint space V . Define the map � : V ! ⌃M by the rule20

�(x, a) = a.21

It is clear that � is continuous and commutes with the left shift.22

Remark 5.4. Note that if M(a, b) = 1, then f�1
a (D0(b)) ⇢ D0(a). Fur-23

thermore, if y 2 D0(b) and x = f�1
a (y), then (x, y) 2 G0(a). Thus, if24

a0 . . . a` 2 L`+1 and y` 2 D0(a`), then for each n = 0, . . . , `�1, we have25

yn = f�1
an � · · · � f�1

a`�1
(y`) 2 D0(an),

and (yn, yn+1) 2 G0(an).26

Proposition 5.5. � is surjective.27

Proof. Let a 2 ⌃m. For each ` � 1, let y`` 2 D0(a`) be arbitrary. For28

n = 0, . . . , `� 1, let y`n = f�1
an � · · · � f�1

a`�1
(y``). By Remark 5.4, for each29

n = 0, . . . , `�1, we have (y`n, y
`
n+1) 2 G0(an). Also, for each n, we have30

that y`n 2 [0, 1], which is sequentially compact. Thus, by a diagonal31
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argument, there exists a subsequence {`k}1k=1 tending to infinity such1

that for each n, there exists xn 2 [0, 1] such that2

lim
k!1

y`kn = xn.

Setting x = (xn)1n=0, we see that (x, a) 2 V and �(x, a) = a. ⇤3

The following proposition asserts that � preserves the entropy of4

ergodic measures. Its proof is an adaptation of the proof of [2, Theorem5

4.1], and we provide it in Appendix A for completeness.6

Proposition 5.6. Let � : V ! ⌃M be as in Definition 5.3. Further-7

more, let µ 2 Me(V, �V ) and ⌫ 2 Me(⌃M , �M) be such that ⌫ = µ���1.8

Then h(⌫) = h(µ).9

5.3. Factoring onto X. Here we show that the joint space V from10

Definition 5.1 factors onto X.11

Definition 5.7. Let F be in F with associated trajectory space X,12

SFT ⌃M , and joint space V . Define the map ⇡ : V ! [0, 1]Z+ by the13

rule ⇡(x, a) = x.14

It is clear that ⇡ is continuous and commutes with the left shift. The15

following result shows that the image of ⇡ is contained in X.16

Proposition 5.8. Suppose that (x, a) 2 V . Then x 2 X.17

Proof. Let n � 0. Since (x, a) 2 V , there exists ykn and ykn+1 such that18

limk ykn = xn, limk ykn+1 = xn+1, and (ykn, y
k
n+1) 2 G(an). Since G(an)19

is closed, we see that (xn, xn+1) 2 G(an) for each n � 0. Then by the20

definition of X, we have x 2 X. ⇤21

By Proposition 5.8, we have ⇡ : V ! X. Next we establish that ⇡22

in fact maps onto X. First, let V0 ⇢ V be the set of points (x, a) 2 V23

such that for each n � 0, we have (xn, xn+1) 2 G0(an).24

Proposition 5.9. For each x 2 X, there exists a unique a 2 ⌃M such25

that (x, a) 2 V0. In particular, ⇡ : V ! X is surjective.26

Proof. Let x = (xn)1n=0 2 X. Let n � 0. Since (xn, xn+1) 2 G(F )27

and {G0(a) : a 2 A} is a partition of G(F ), there is a unique element28

an 2 A such that (xn, xn+1) 2 G0(an). This uniquely defines a sequence29

a = (an)1n=0.30

Let us show that a 2 ⌃M . Since ⌃M is a SFT defined by the matrix31

M , it su�ces to show that for each n � 1, we have M(an�1, an) = 1.32

Let n � 1. By construction, we have that (xn�1, xn) 2 G0(an�1) and33

(xn, xn+1) 2 G0(an). Then xn 2 R0(an�1) and xn 2 D0(an), and34
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thereforeD0(an)\R0(an�1) 6= ?. By the Markov property, we conclude1

that D0(an) ⇢ R0(an�1), and therefore M(an�1, an) = 1, as desired.2

Finally, note that (x, a) 2 V . Indeed, for each k � 1, let `k = k,3

ykn = xn and bkn = an. Then we have exhibited the necessary sequences4

to establish that (x, a) 2 V . ⇤5

6. Constructing the bad sets6

Our aim is to show that under certain conditions, we can construct a7

Borel entropy conjugacy between X and ⌃M . In this construction, we8

identify “bad sets”, on which the Borel entropy conjugacy map will not9

be defined. The main source of di�culty in constructing our Borel en-10

tropy conjugacy arises from the fact that points in the trajectory space11

that stay in the critical set P can have multiple symbolic codings. In12

order to deal with this di�culty, we group such symbolic codings into13

the “bad sets” and show that we have only removed sets of strictly14

smaller entropy that the full system. In fact, we carry out this process15

for each irreducible component of ⌃M separately. In the following sec-16

tion, we define the critical set of points in X that cause us di�culty.17

Then in the following sections we analyze the irreducible components18

in detail and construct their bad sets.19

6.1. The critical system. Let F be in F with trajectory space X,20

SFT �M , and joint system V . Consider the set of trajectories contained21

in the critical set P :22

XP =
�
x 2 X : 8n � 0, xn 2 P

 
.

Note that XP is closed and invariant under �X . We refer to XP as23

the critical system. Now let Z = ⇡�1(XP ) ⇢ V , and note that Z is24

closed and invariant under �V . As we mentioned above, one of the25

main di�culties in relating X and ⌃M lies in the fact that ⇡ may not26

be injective on Z (or its pre-images under the shift).27

6.2. Irreducible components. We find it useful to distinguish be-28

tween the following types of irreducible components for Markov multi-29

maps.30

Definition 6.1. Let F be in F with associated SFT ⌃M . Let C ⇢ A31

be an irreducible component of the M -graph. We say that32

• C is of Type I if C ⇢ A0;33

• C is of Type II if C ⇢ A2;34

• C is of Type III if it is not Type I or Type II.35
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Remark 6.2. Suppose C is of Type III. Then for each i 2 {0, 1, 2}, we1

must have C \ Ai 6= 0. In fact, there must exist allowable transitions2

in C from A0 to A2 (cross-over), from A2 to A1 (into a vertical line),3

and from A1 to A0 (out of vertical line).4

Let ⌃M(C) denote the irreducible component of ⌃M corresponding5

to C. Note that ⌃M(C) is an SFT contained in ⌃M . Also, for distinct6

irreducible components C1 and C2, we have that ⌃M(C1) and ⌃M(C2)7

are disjoint. Let V (C) denote ��1(⌃M(C)) ⇢ V , where V is the joint8

system. Also, let Z(C) = Z \ V (C), where Z = ⇡�1(XP ) ⇢ V .9

6.3. Constructing the bad sets: Types I and III. We now show10

the existence of our “bad sets” o↵ of which � and ⇡ are injective. In11

the proof of the following proposition, we use the following immediate12

consequence of Lemma 4.5: if (x, a), (x,b) 2 V and xm /2 P , then for13

each n < m, we have an = bn. Also, for notation, for any word w 2 L14

and any a 2 ⌃M , let15

Nw(a) =
���n � 0 : �n(a) 2 [w]

 ��.

Proposition 6.3. Let F be in F with SFT ⌃M and joint system V .16

Suppose that C is a Type I or Type III irreducible component of the M-17

graph such that htop(⌃M(C), �M |⌃M (C)) > 0. Then there exists words uc
18

and ua in L(C) such that if19

B0 = {a 2 ⌃M(C) : Nuc(a) < 1 or Nua(a) < 1},

and B = ��1(B0), then20

(1) Pre(Z(C)) ⇢ B,21

(2) hprob(B) < htop(V (C), �|V (C), and22

(3) both ⇡ and � are injective on V (C) \B.23

Proof. First, suppose that C is Type I. Since F is in F , it has a complete24

set of coding words, and we may select a coding word uc for C. Similarly,25

since F is in F , it has a complete set of avoiding words, and then since26

C is of Type I, we may select an avoiding word ua for C.27

Now suppose that C is Type III. Since C is of Type III, it contains28

a word ua = w0w1 such that w0 2 A0 and w1 2 A1 [A2. Note that ua
29

is an avoiding word. Furthermore, since C is of Type III, it contains a30

symbol uc
2 A1. Note that uc is a coding word for C.31

For the remainder of the proof, we do not distinguish between whether32

C is Type I or Type III.33

Then let34

B0 = {a 2 ⌃M(C) : Nuc(a) < 1 or Nua(a) < 1},

and let B = ��1(B0). (Note that B0 and B are invariant.)35
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To establish (1), let (x, a) 2 Pre(Z(C)). Then there exists N such1

that for each n � N , we have x 2 I�n(a) \ P . Since ua is an avoiding2

word, we see that Nua(a) < 1. It follows that a 2 B0, and therefore3

(x, a) 2 B.4

Now we establish (2). Let Y ⇢ ⌃M be the SFT obtained by for-5

bidding uc and ua. Since ⌃M(C) is irreducible, it is entropy minimal.6

Then htop(Y, �|Y ) < htop(⌃M(C), �M |⌃M (C)), as Y is a strict subsys-7

tem of ⌃M(C). Suppose µ is an ergodic measure on ⌃M(C) such that8

µ(B0) = 1. As µ is ergodic and the words uc and ua appear only9

finitely for points in B0, we must have µ([uc]) = µ([ua]) = 0, and10

therefore µ(Y ) = 1. Then by the variational principle, we see that11

h(µ)  htop(Y, �|Y ). Taking the supremum over all such µ, we ob-12

tain that hprob(B0)  htop(Y, �|Y ) < htop(⌃M(C), �M |⌃M (C)). Further-13

more, since � preserves the entropy of ergodic measures (by Proposition14

5.6), we obtain that hprob(B) = hprob(B0) < htop(⌃M(C), �M |⌃M (C)) =15

htop(V (C), �V |V (C)).16

To show that � is injective on V (C) \ B, let (x, a) 2 V (C) \ B, and17

suppose (y, a) 2 V (C) \ B. Then a /2 B0, and in fact �n(a) /2 B0 for18

all n � 0. Let n � 0. Then �n(a) contains the word uc infinitely many19

times, and therefore I�n(a) is a singleton (since uc is a coding word).20

Since we must have both xn 2 I�n(a) and yn 2 I�n(a), we conclude that21

xn = yn. As n � 0 was arbitrary, we have shown that � is injective on22

V (C) \B.23

To show that ⇡ is injective on V (C) \B, let (x, a), (x,b) 2 V (C) \B.24

Let T = {m � 0 : �m(a) 2 [ua]}. For each m 2 T , we have that25

xm 2 I�m(a) ⇢ [0, 1] \ P (since ua is an avoiding word). Since (x, a) 226

V (C) \ B, the set T must be infinite. Let n � 0. Since T is infinite,27

there exists m > n such that m 2 T . Then xm /2 P . By Lemma 4.5,28

we see that an = bn. As n � 0 was arbitrary, we conclude that ⇡ is29

injective on V (C) \B. ⇤30

6.4. Constructing the bad sets: Type II. We don’t have to re-31

move any bad sets from Type II components. Indeed, the following32

proposition establishes that ⇡ and � are injective on the union of all33

Type II components.34

Proposition 6.4. Let F be in F , and let35

VP =
[

C of Type II

V (C).

Then ⇡ and � are injective on VP .36
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Proof. Suppose (x, a), (x,b) 2 VP . Then an, bn 2 A2 for all n � 0,1

and we must have G(an) = {(xn, xn+1)} = G(bn) for all n. Therefore2

an = bn for all n � 0, and ⇡ is injective on VP .3

Suppose that (x, a), (y, a) 2 VP . Then D(an) is a singleton for each4

n, and we must have {xn} = D(an) = {yn} for all n. Therefore xn = yn5

for all n � 0, and � is injective on VP . ⇤6

7. Proof of the main result7

Now that we have constructed the bad sets for each type of irre-8

ducible component, we are ready to prove our main result on Borel9

entropy conjugacy.10

Proof of Theorem 1.1. Let F be in F with associated trajectory11

space X and SFT ⌃M . Furthermore, let V be the associated joint12

space, as in Definition 5.1, and let � : V ! ⌃M and ⇡ : V ! X be the13

maps defined in Definitions 5.3 and 5.7, respectively.14

Since F 2 F , we have that ⌃M has positive entropy. Enumerate15

the irreducible components with positive entropy: C1, . . . , CJ . For each16

Cj of Type I or Type III, let Bj ⇢ V (Cj) be the bad set given by17

Proposition 6.3. For each Cj of Type II, let Bj = ?. Furthermore, let18

B0 = ��1

 
⌃M \

 
J[

j=1

⌃M(Cj)

!!
.

Then let19

B =
J[

j=0

Bj.

For each j = 1, . . . , J , let Aj = V (Cj) \Bj. Note that20

(7.1) V \B =
J[

j=1

Aj.

Proposition 7.1. ⇡ is injective on V \B.21

Proof. Suppose that (x, a), (x,b) 2 V \ B. By (7.1), there exists i, j22

such that (x, a) 2 Ai and (x,b) 2 Aj. If xn /2 P for infinitely many n,23

then a = b by Lemma 4.5.24

Now suppose that xn 2 P for all by finitely many n. Then there25

exists N such that �N(x) 2 XP . Hence (x, a), (x,b) 2 Pre(Z), and26

therefore Ci and Cj must be of Type II (since Ak \Z = ? whenever Ck27

is of Type I or Type III). Since ⇡ is injective on VP , we conclude that28

a = b. ⇤29
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Proposition 7.2. � is injective on V \B.1

Proof. Suppose that (x, a), (y, a) 2 V \ B. By (7.1), there exists i, j2

such that (x, a) 2 Ai and (y, a) 2 Aj. Then a 2 ⌃M(Ci) \ ⌃M(Cj).3

Since distinct irreducible components are disjoint, we see that i = j.4

Since � is injective on Ai, we conclude that x = y. ⇤5

Lemma 7.3. htop(X, �X) = htop(V, �V ).6

Proof. First, by Proposition 5.8, we have that ⇡ is a factor map. Since7

entropy cannot increase under a factor map, htop(X, �X)  htop(V, �V ).8

Now fix Ci such that htop(V, �V ) = htop(V (Ci), �|V (Ci)), and let µ9

be an ergodic measure on V (Ci) such that h(µ) = htop(V (Ci), �|V (Ci))10

(which exists ⌃M(Ci) has a measure of maximal entropy and � pre-11

serves entropy). Since hprob(Bi) < htop(V (Ci), �|V (Ci)) = h(µ), we must12

have that µ(Bi) = 0. Then ⇡ is injective a set of full µ-measure, and13

therefore ⇡ is an isomorphism from µ to ⇡µ = µ � ⇡�1. In particu-14

lar, htop(V, �|V ) = htop(V (Ci), �|V (Ci)) = h(µ) = h(⇡µ)  htop(X, �|X),15

where the last inequality follows from the Variational Principle. We16

have now shown that htop(X, �X) = htop(V, �V ). ⇤17

Let AX = ⇡(V \B) and A⌃ = �(V \B).18

Proposition 7.4. AX is Borel, �(AX) = AX , and hprob(X \ AX) <19

htop(X, �|X).20

Proof. Consider Ai. First suppose that Ci is of Type II. Then Ai =21

V (Ci), which is compact. Thus ⇡(Ai) is also compact. In particular,22

⇡(Ai) is closed and hence Borel.23

Now suppose that Ci is of Type I or Type III. Then there exist words24

u and v in L(Ci) (in particular, a coding word and any avoiding word)25

such that26

Ai =
\

N

" 
[

n�N

��n[u]

!
\

 
[

n�N

��n[v]

!#
.

Note that for each n, the sets [u] and [v] are compact. Hence ⇡[u] and27

⇡[v] are compact and in particular closed. Then28

⇡(Ai) =
\

N

" 
[

n�N

��n⇡[u]

!
\

 
[

n�N

��n⇡[v]

!#
,

which shows that ⇡(Ai) is Borel. Finally, since AX = [i⇡(Ai), we29

conclude that AX is Borel.30

For eachAi, we have �(Ai) = Ai, and therefore �(⇡(Ai)) = ⇡(�(Ai)) =31

⇡(Ai). As AX = ti⇡(Ai), we see that �(AX) = AX .32
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Let ⌫ be an ergodic invariant measure on X such that ⌫(X\AX) > 0.1

Since AX is invariant and ⌫ is ergodic, we have that ⌫(X \ AX) = 1,2

and therefore ⌫(AX) = 0. Also, ⌫ is supported on some set of the form3

⇡(Bi), with 1  i  J . Let µ be an ergodic measure on V such that4

⇡µ = ⌫. Then µ(A)  µ(⇡�1⇡(A)) = ⌫(AX) = 0, and µ(V (Ci)) =5

1. Therefore µ(Bi) = 1. Finally, we observe that h(⌫)  h(µ) 6

hprob(Bi)  maxi hprob(Bi). Since the right hand side is strictly less7

than htop(V, �V ), which equals htop(X, �X) by Lemma 7.3, we conclude8

that hprob(X \ AX) < htop(X, �|X). ⇤9

The following proposition may be quite easily deduced from the def-10

initions, and we omit its proof.11

Proposition 7.5. A⌃ is Borel, �(A⌃) = A⌃, and hprob(⌃M \ A⌃) <12

hprob(⌃M).13

Now define  = ⇡|V \B � �|�1
V \B : A⌃ ! AX , which will serve as our14

Borel entropy conjugacy map.15

Proposition 7.6.  is bijective, bi-measurable, and commutes with the16

left shift.17

Proof. Taken together, Propositions 7.1 and 7.2 yield that  is bijective.18

Let E ⇢ AX be Borel. Then ⇡�1(E) \ (V \ B) is Borel. Also, since19

�|V \B is an injective continuous map on the Borel set V \ B, it maps20

Borel sets to Borel sets. Therefore  �1(E) = �|V \B(⇡�1(E) \ (V \B))21

is Borel measurable. Therefore  is Borel measurable. An analogous22

argument shows that ��1 is also Borel measurable. Finally, since ⇡ and23

� commute with the left shift,  also commutes with the left shift. ⇤24

By the previous propositions, we conclude that  is the desired Borel25

entropy conjugacy between X and ⌃M . ⇤26

8. Sufficient conditions for F to be in F27

Now that we have proved Theorem 1.1, we wish to highlight its utility28

by establishing some straightforward conditions that are su�cient for a29

Markov multi-map F to be in the family F . We focus on the case where30

there is an irreducible component C that contains all of A0. For single-31

valued functions, this condition amounts to the topological transitivity32

of the system.33

Definition 8.1. Suppose C is an irreducible component. We say that34

F codes for points on C if35

lim sup
n

max {` (Ia0···an) : a 2 ⌃M(C)} = 0.
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Lemma 8.2. Suppose C is an irreducible component with A0 ⇢ C. If1

F codes for points on C, then C has a coding word and an avoiding2

word.3

Proof. Since F codes for points on C, by definition, we must have that4

Ia is a singleton for all a 2 ⌃M(C). Therefore every word in L(C) is a5

coding word. To see that C also has an avoiding word, we consider two6

cases.7

Case 1: Suppose A0 is a strict subset of C. Then C must be a Type8

III component, and we showed in the proof of Proposition 6.3 that9

every Type III component has an avoiding word.10

Case 2: Suppose A0 = C. We have shown that C has a coding word,11

so there must exist a, b 2 A0 such that ab 2 L(A0) and Iab is a strict12

subset of Ia = D(a). This would imply that D(b) is a strict subset of13

R(a).14

By the definition of a Markov multi-map, D(b) is an interval between15

adjacent elements of the partition P . It follows that P partitions R(a)16

into at least two intervals, so there exist distinct elements pi, pj 2 P17

such that [pi, pi+1] [ [pj, pj+1] ✓ R(a). Then there must be b1, b2 2 A018

such that D(b1) = [pi, pi+1] and D(b2) = [pj, pj+1].19

The interval Iab1 is a strict subset of Ia, so it contains at most one20

endpoint of D(a). Since A0 is irreducible, there exists u 2 L(A0)21

such that ab1ua 2 L(A0). The interval Iab1ua is contained in Iab1 , so22

it contains at most one endpoint of Ia. Then Iab1uab1 and Iab1uab2 are23

non-overlapping, so at least one of them is disjoint from P . Therefore24

A0 has an avoiding word. ⇤25

Next we define what it means for F to be uniformly expanding on C,26

and we show that if that is the case, then F codes for points on C. Recall27

that for each a 2 A, we have a well-defined function f�1
a : R(a) ! D(a),28

and if u = u0 · · · un 2 L, then we define f�1
u = f�1

u0
� · · · � f�1

un
.29

Definition 8.3. Suppose C is an irreducible component and F is a30

Markov multi-map such that fa is a di↵eomorphism for each a 2 A0.31

We say that F is uniformly expanding on C if there exists N 2 N such32

that33

sup
���(f�1

u )0(x)
�� : u 2 LN(C) \ (A0)

N , x 2 D(uN)
 
< 1.

Lemma 8.4. Let C be an irreducible component. If F is uniformly34

expanding on C, then F codes for points on C.35

Proof. Let 0 < � < 1 such that |(f�1
u )0(x)| < � for all u = a0 · · · aN�1 236

LN(C) and x 2 R(aN�1). Then `(Iu)  �`(R(aN�1))  �. It follows37

that for all k � 1 and u 2 LkN(C), we have `(Iu) < �k. Therefore F38

codes for points on C. ⇤39
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By combining these results, we arrive at the following su�cient con-1

dition for F to be in F .2

Corollary 8.5. Let F be a properly parametrized Markov multi-map3

with associated SFT ⌃M . Suppose that htop(⌃M , �M) > 0, and fur-4

thermore there is an irreducible component C with A0 ⇢ C. If F is5

uniformly expanding on C, then F 2 F , and hence (X, �X) is entropy6

conjugate to (⌃M , �M).7

Proof. By Lemma 8.4 and Lemma 8.2, the component C has a coding8

word and an avoiding word. Since A0 ⇢ C, no irreducible component9

(except possibly C) could be contained in A0, so F has a complete set10

of coding words and a complete set of avoiding words. Thus F 2 F , so11

by Theorem 1.1, (X, �X) is entropy conjugate to (⌃M , �M). ⇤12

9. Realization of entropies13

We now prove Theorem 1.5, which we restate here.14

Theorem 1.5. The set H(F) is equal to the set of all positive rational15

multiples of logarithms of Perron numbers.16

Proof. It su�ces to show that for any irreducible SFT with positive17

entropy, there is a Markov multi-map in F with the same entropy.18

Let ⌃M be an irreducible SFT with positive entropy associated with19

the n ⇥ n matrix M . Since ⌃M has positive entropy, there is one row20

of M with (at least) two ones. After possibly permuting the alphabet,21

suppose the first row has a one in columns k and k + 1.22

Now we define a Markov multi-map F on the interval [1, n + 2] in23

terms of its graph. (To illustrate our construction, we give a specific24

matrixM in Example 9.1, and we show that graph of the corresponding25

multi-map in Figure 2.)26

Let27

P =

⇢
1, 1 +

1

2
, 2, 2 +

1

2
, . . . , n, n+

1

2
, n+ 1, n+

3

2
, n+ 2

�
.

For each i, j 2 {1, . . . , n}, we associate the rectangle [i, i+1/2]⇥ [j, j+28

1/2] with the matrix entry M(i, j). If M(i, j) = 1, we include (in the29

graph of F ) a straight line connecting the bottom left corner (i, j) to30

the top right corner (i+1/2, j+1/2), and if M(i, j) = 0, we leave that31

rectangle empty. There is one exception to this rule however. We have32

assumed that M(1, k) = M(1, k+1) = 1, and instead of including two33

separate graphs in those two rectangles, we include one line connecting34

(1, k) to (1 + 1/2, k + 3/2).35
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In this way we would have the graph of a multi-map with domain1 Sn
i=1[i, i + 1/2]. We need F to be defined on all of [1, n + 2], so we2

next define the graph in each rectangle of the form [i + 1/2, i + 1] ⇥3

[n+3/2, n+2], where i 2 {1, . . . , n}. In these rectangles, we include a4

straight line connecting the points (i+1/2, n+3/2) and (i+1, n+2).5

Then finally, in each of the rectangles [n+1, n+3/2]⇥ [n+3/2, n+2]6

and [n+3/2, n+2]⇥[n+3/2, n+2], we include a straight line connecting7

the bottom left corner to the top right corner.8

We have described the graph of F , but in order to show it is a Markov9

multi-map in F we should specify the indexing set A and identify a10

coding word and an avoiding word. Let C0 be a labeling of all of the11

straight lines that correspond to ones in the matrix M . (Recall that12

the cardinality of C0 will be one less than the number of ones in M ,13

because the ones in the (1, k) and (1, k + 1) entries correspond to just14

one straight line in the graph.) Then let B0 be the additional straight15

lines whose ranges were all [n+ 3/2, n+ 2], and define A0 = C0 [ B0.16

Each of the straight lines we considered have a bottom left endpoint17

and a top right endpoint. Let C2 and B2 be the collections of these18

left and right endpoints, respectively, and let A2 = C2 [B2. Finally let19

A1 = ?.20

Then C0 is a Type I irreducible component whose corresponding SFT21

has the same entropy as ⌃M . To complete the proof, we show that if22

⌃(A) and ⌃(C0) are the SFTs associated with A and C0 respectively,23

then htop(⌃(A)) = htop(⌃(C0)). Towards this end, we show that the24

symbols in B0, C2, and B2 do not increase the entropy.25

Let b0 2 B0 represent the straight line in [n + 3/2, n + 2] ⇥ [n +26

3/2, n + 2], then any b 2 B0 can only be followed by b0. This means27

hprob(⌃(A0)) = hprob(⌃(C0)). Now we consider C2 and B2. Each of28

these individually follows nearly the same pattern as A0 with only one29

di↵erence. Let a⇤ 2 A0 correspond to the straight line in [1, 1/2] ⇥30

[k, k + 3/2], and let c⇤ 2 C2 and b⇤ 2 B2 correspond to the respective31

endpoints of this line. The symbol a⇤ can be followed by any symbol32

whose domain is [k, k + 1/2] or [k + 1, k + 3/2]. On the other hand33

c⇤ can only be followed by points whose first coordinate is k, and b⇤34

can only be followed by points whose first coordinate is k + 3/2. The35

SFTs corresponding to C2 and B2 are disjoint from one another and are36

invariant. It follows that the entropy contributed by these sets is less37

than or equal to the entropy from C0.38

All of this shows that F is a Markov multi-map whose associated SFT39

has the same entropy as (⌃M , �M). It only remains to show that F 2 F .40

The only irreducible component in A0 with positive entropy is C0. We41

must show it has a coding word and an avoiding word. Once again let42
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Figure 2. Markov multi-map from Example 9.1

a⇤ 2 A0 correspond to the straight line in [1, 1/2] ⇥ [k, k + 3/2]. The1

range R(a⇤) is partitioned by P into three non-overlapping intervals,2

so every occurrence of a⇤ in a word u decreases the length of Iu by a3

factor of 3. It follows that a⇤ is a coding word.4

We can also use a⇤ to construct an avoiding word. Let u = u1 · · · um 25

L(C0) be any word such that a⇤ua⇤ 2 L(C0). The interval Ia⇤u is a strict6

subset of [1, 1 + 1/2], so it contains at most one point of P . There is7

then an element b 2 C0 such that Ia⇤ua⇤b is disjoint from P and hence8

an avoiding word. Therefore F 2 F . ⇤9

Example 9.1. Consider the 3⇥ 3 matrix10

M =

0

@
0 1 1
1 0 0
1 1 0

1

A

.

Using the method outlined in the proof of Theorem 1.5, this matrix11

would yield the graph pictured in Figure 2. Recall we stipulated that12

there must be at least two adjacent 1s in the first row of the matrix.13

These appear in the second and third columns of M . This gives us a14

line in the graph connecting the points (1, 2) and (1.5, 3.5).15

For the rest of the graph, note that if we rotate the matrix counter-16

clockwise ninety degrees, then the pattern of 1s in the matrix matches17

the pattern of lines in the lower portion of the graph.18

19
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10. Examples1

We show various examples demonstrating the utility of our results.2

We begin by showing that Theorem 1.1 generalizes the well-known3

result for the case that F is single-valued.4

Example 10.1. Suppose F is any uniformly expanding (single-valued)5

Markov map. Then Corollary 8.5 recovers the well-known fact that F6

is entropy conjugate to its combinatorial SFT.7

Next we give an example of a Markov multi-map that is not uniformly8

expanding but still satisfies the hypotheses of Theorem 1.1.9

Example 10.2. Let P = {0, 1/3, 2/3, 1}, A0 = {1, 2, 3, 4}, A1 = ;, and10

A2 = {5, . . . , 10}. Let11

D(1) = [0, 1/3]

D(2) = [1/3, 2/3]

D(3) = [1/3, 2/3]

D(4) = [2/3, 1]

R(1) = [1/3, 2/3]

R(2) = [0, 2/3]

R(3) = [2/3, 1]

R(4) = [1/3, 2/3].

12

For each a 2 {1, 2, 3}, let G(a) be a straight line from the bottom13

left corner to the top right corner of D(a) ⇥ R(a), and let G(4) be a14

straight line from the top left to the bottom right of D(4)⇥R(4). Then15

we define G(5) = {(0, 1/3)}, G(6) = {(1/3, 2/3)}, G(7) = {(2/3, 1)},16

G(8) = {(1/3, 0)}, G(9) = {(2/3, 1/3)}, G(10) = {(1, 1/3)} (all of the17

endpoints of G(1), . . . , G(4)). This defines a Markov multi-map whose18

graph is pictured in Figure 3.19

Then A0 and A2 are both irreducible components with A0 (a Type20

I component) having greater entropy. The graph G(3) has slope 2,21

but the rest of the graphs G(1), G(2), and G(4) have slope 1, so F is22

not uniformly expanding on A0. However, 3 2 L1 is a coding word,23

because each time the symbol 3 appears in a word u 2 L, the length24

of the interval Iu is divided in half. Also 331 2 L3 is an avoiding word,25

because I331 = [3/6, 7/12]. Thus F 2 F , so by Theorem 1.1 (X, �X) is26

entropy conjugate to (⌃M , �M).27

28

Next we show an example with a Type III irreducible component.29

Example 10.3. Let P = {0, 1/2, 1}, A0 = {1, 2}, A1 = {3, 4}, and30

A2 = {5, 6, 7, 8, 9}. Let31
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Figure 3. Markov multi-maps from Example 10.2 (left)
and Example 10.3 (right)

D(1) = [0, 1/2]

D(2) = [1/2, 1]

R(1) = [0, 1]

R(2) = [0, 1/2]1

Let G(1) be the straight line connecting (0, 0) and (1/2, 1), and let2

G(2) be the straight line connecting (1/2, 0) and (1, 1/2). Then let G(3)3

and G(4) be the vertical lines {1/2}⇥ [0, 1/2] and {1/2}⇥ [1/2, 1] re-4

spectively. Finally, define G(5), . . . , G(9) so that they are the endpoints5

of the graphs of G(1), . . . , G(4). The graph of this Markov multi-map6

is pictured in Figure 3.7

In this case, two symbols from A2 represent the points {(0, 0)} and8

{(1/2, 0)}. For simplicity, say these are G(8) and G(9). Then C =9

{1, . . . , 7} is a Type III irreducible component which means it must10

have a coding and an avoiding word. In this case, we can use u = 13 211

L2 as both a coding and an avoiding word, because I13 = {1/4}. Since12

there is no Type I component, we automatically have F 2 F .13

Finally we give an example that does not satisfy our hypotheses, and14

for which htop(⌃M , �M) is strictly greater than htop(X, �X).15

Example 10.4. Define a Markov multi-map as follows. Let P = {0, 1},16

A0 = {1, 2}, A1 = ?, and A2 = {3, 4}. Let D(1) = D(2) = R(1) =17

R(2) = [0, 1]. Let f1, f2 : [0, 1] ! [0, 1] be defined by f1(x) = x2 and18

f2(x) = x3. Let G(3) = {(0, 0)}, and G(4) = {(1, 1)}.19
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Then the only non-trivial irreducible component is A0 = {1, 2}, and1

⌃M(A0) is the full shift on two symbols, which has entropy log 2. How-2

ever, the only non-wandering points of (X, �X) are the fixed points3

(0, 0, . . .) and (1, 1, . . .), so htop(X, �X) = 0.4

Note that Iu = [0, 1] for all u 2 A0, so this multi-map has neither5

coding words nor avoiding words. Thus F /2 F , and Theorem 1.1 does6

not apply.7
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Appendix A. Proof of Proposition 5.622

Here we aim to prove Proposition 5.6. First, we recall the result of23

Katok [16] relating the measure-theoretic entropy of an ergodic mea-24

sure to Bowen balls. Consider a compact metric space (X , d) and a25

continuous transformation T : X ! X . For n � 1, define the metric26

dn on X by setting27

dn(x, y) = max
�
d
�
T k(x), T k(y)

�
: k = 0, . . . , n� 1

 
.

For ✏ > 0, an (n, ✏)-ball is a ball of radius ✏ with respect to the metric28

dn. Now let µ be in Me(X , T ). For ↵ 2 (0, 1), ✏ > 0, and n � 1, let29

s(T, n, ✏,↵) denote the minimal cardinality of a collection of (n, ✏)-balls30

whose union has µ-measure at least ↵. Katok showed that31

h(µ) = lim
✏!0+

lim sup
n

1

n
log s(T, n, ✏,↵).

Let us now prove that the factor map � : V ! ⌃M preserves the32

entropy of all ergodic measures.33

Proof of Proposition 5.6. As entropy cannot increase under factor34

maps, we have h(⌫)  h(µ). To complete the proof, we establish the35

reverse inequality. Fix ↵ 2 (0, 1). For n � 1, let r(n,↵) denote the36
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minimal cardinality of a set of words W ⇢ Ln such that1

(A.1) ⌫

✓ [

w2W

[w]

◆
� ↵.

Let ✏ > 0. For n � 1, let s(n, ✏,↵) denote the minimal cardinality of a2

collection U of (n, ✏) balls in V such that3

µ

✓[

U2U

U

◆
� ↵.

Now let n � 1. Select a setW = {w1, . . . , wK} ⇢ Ln with cardinality4

K = r(n,↵) and satisfying (A.1). By the construction given in the5

proof of [2, Theorem 4.1], for each k, there exists a collection Uk of6

(n, ✏) balls in V such that7

��1([wk]) ⇢
[

U2Uk

U,

and8

|Uk|  (n+ 1)

✓⇠
1

✏

⇡
+ 1

◆
.

Let U = [kUk. Note that9

µ

✓[

U2U

◆
� µ

✓ K[

k=1

��1([wk])

◆
= ⌫

✓ K[

k=1

[wk]

◆
� ↵,

and furthermore10

|U| 

KX

k=1

|Uk|  (n+ 1)

✓⇠
1

✏

⇡
+ 1

◆
r(n,↵).

Hence11

s(n, ✏,↵)  |U|  (n+ 1)

✓⇠
1

✏

⇡
+ 1

◆
r(n,↵).

Taking the limit supremum of this inequality as n tends to infinity12

yields13

lim sup
n

1

n
log s(n, ✏,↵)  lim sup

n

1

n
log r(n,↵).

By Katok [16], as we let ✏ tend to 0, we obtain14

h(µ)  h(⌫).

⇤15
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