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A dynamical model consists of a continuous self-map T : X ! X
of a compact state space X and a continuous observation function
f : X ! R. This paper considers the fitting of a parametrized family
of dynamical models to an observed real-valued stochastic process
using empirical risk minimization. The limiting behavior of the min-
imum risk parameters is studied in a general setting. We establish
a general convergence theorem for minimum risk estimators and er-
godic observations. We then study conditions under which empirical
risk minimization can e↵ectively separate signal from noise in an
additive observational noise model. The key condition in the latter
results is that the family of dynamical models has limited complexity,
which is quantified through a notion of entropy for families of infi-
nite sequences that connects covering number based entropies with
topological entropy studied in dynamical systems. We establish close
connections between entropy and limiting average mean widths for
stationary processes, and discuss several examples of dynamical mod-
els.

1. Introduction. Empirical risk minimization is a common approach
to model fitting and estimation in a variety of parametric and non-parametric
problems. In this paper we investigate the use of empirical risk minimiza-
tion to fit a family of dynamical models to an observed stochastic pro-
cess. Formally, a dynamical model consists of a continuous transformation
T : X ! X on a compact metric space X , and a continuous observation
function f : X ! R. Let T k denote the k-fold composition of T with itself,
and let T 0 be the identity map on X . From each initial state x 2 X the dy-
namical model (T, f) yields a real-valued sequence (f(T k

x))k�0 obtained by
applying the observation function f to the deterministic sequence of states
(trajectory) generated by repeated application of the transformation T to
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2 K. MCGOFF AND A. NOBEL

the initial state x. In general, f need not be injective, so one cannot neces-
sarily recover the underlying state sequence from the values of (f(T k

x))k�0.
In what follows we consider an indexed family D = {(T✓, f✓) : ✓ 2 ⇥}

of dynamical models defined on a common compact metric space X , and
satisfying the following conditions:

(D1) the index set ⇥ is a compact metric space;

(D2) the map (✓, x) 7! T✓(x) from ⇥⇥ X to X is continuous;

(D3) the map (✓, x) 7! f✓(x) from ⇥⇥ X to R is continuous.

Condition (D2) ensures that each transformation T✓ is continuous and that
the action of T✓ is continuous in ✓. Condition (D3) ensures that each ob-
servation function f✓ is continuous and that observations vary continuously
with ✓. In particular, there exists a constant KD > 0 such that |f✓(x)|  KD
for every x 2 X and ✓ 2 ⇥. Examples of families of systems satisfying these
conditions are given in Section 3.

By definition, dynamical models are deterministic: the real-valued se-
quence

�
f(T k

x)
�
k�0

generated by a model (T, f) is fully determined once
the initial condition x 2 X is given. In this paper our primary interest is
in dynamical models that represent low complexity regularities of potential
interest, such as periodicity, multi-periodicity, constrained growth behav-
ior, and hierarchical structure. Fitting a family of dynamical models to an
observed stochastic process is a means of identifying and quantifying the
corresponding low complexity regularities in the observed process. Exam-
ples of model families and references to existing applications are given in
Section 3 below.

Due to the nature of the underlying dynamics and the possible presence
of dynamic or observational noise, the observed process is likely to be com-
plex, and one cannot expect a low-complexity model to capture all features
of the observed process. Accordingly, our results do not assume that the ob-
served process is generated from a model in the family D under study. The
complexity of model families is quantified through a combinatorial notion
of entropy with connections to empirical process theory and ergodic theory
that is defined in Section 2 below.

1.1. Minimum Risk Fitting of Dynamical Models. Let D be a family
of dynamical models that capture some behavior of interest, and let Y =
Y0, Y1, . . . 2 R be an observed stationary ergodic process. Suppose that
we wish to identify regularities in Y by fitting the observed values of the
process with models in D. We do not assume that the observed process Y

is generated by a process in D. Let ` : R⇥R ! [0,1) be a nonnegative loss
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RISK MINIMIZATION AND COMPLEXITY OF DYNAMICAL MODELS 3

function that is jointly lower semicontinuous in its arguments. We require
the following integrability condition:

(C1) E
"

sup
|u|KD

`
�
u, Y0

�
#

< 1,

where KD is an upper bound on {|f✓(x)| : x 2 X , ✓ 2 ⇥}. If the supremum
in (C1) is not measurable, then one may replace the expectation by an outer
expectation. For each n � 0, ✓ 2 ⇥, and x 2 X define

Rn(✓ : x) =
1

n

n�1X

k=0

`

⇣
f✓ � T k

✓ (x), Yk
⌘
,

which is the empirical risk of the model (T✓, f✓) with initial state x relative
to the first n observations of Y. We formalize empirical risk minimization
as follows.

Definition 1.1. A sequence of measurable functions ✓n : Rn ! ⇥,
n � 1, will be called (empirical) minimum risk estimates for D if there exists
a corresponding sequence of measurable functions xn : Rn ! ⇥, n � 1, such
that

(1.1) lim
n

Rn
�
✓̂n, x̂n

�
= lim

n
inf
✓,x

Rn
�
✓, x

�
w.p.1,

where ✓̂n = ✓n(Y0, . . . , Yn�1) and x̂n = xn(Y0, . . . , Yn�1) depend only on the
first n observations. We note that the existence of the limit on the right hand
side of (1.1) follows from Kingman’s subadditive ergodic theorem (under
(C1)), whereas the existence of the limit on the left hand side of (1.1) is
part of the definition.

Remark 1.2. The notion of minimum risk estimates formalizes empir-
ical risk minimization when fitting dynamical models. The key di↵erence
between the definition above and minimum risk estimates in standard, non-
dynamic settings, is the presence of the initial state x 2 X in (1.1). Given
observations Y0, . . . , Yn�1, one selects a parameter ✓̂n 2 ⇥ and an initial
state x̂n 2 X so that (✓̂n, x̂n) is an approximate minimizer of Rn(✓ : x).
Our assumptions on `, X , and ⇥ ensure that an exact minimizer (✓⇤n, x

⇤
n) of

Rn(✓ : x) exists, and further that the pair (✓⇤n, x
⇤
n) may be chosen to depend

measurably on the observations Y0, . . . , Yn�1 [7, Proposition 7.33, p.153].

The definition of minimum risk estimates does not require that (✓̂n, x̂n)
be an exact minimizer of Rn(✓ : x) for each n; it requires only that the
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4 K. MCGOFF AND A. NOBEL

average loss is minimized asymptotically. Our results apply to any sequence
(✓̂n, x̂n) of approximate minimizers. This generalization is important, as ex-
act minimization of Rn(✓ : x) will typically be di�cult in practice. Similar
computational di�culties arise even in simple non-dynamical settings, e.g.,
in the problem of classification where finding the best (minimum error) hy-
perplane separating a set of labeled vectors in Euclidean space is known to
be NP hard.

In practice, it is natural to obtain minimum risk estimates (✓̂n, x̂n) by
minimizing over finite ✏n-coverings of the joint parameter-state space ⇥⇥X ,
where the radius ✏n tends to zero with increasing n. The following proposi-
tion shows that this approach is possible (in principle) under mild continuity
conditions on the loss `. However, the size of the covering sets may grow
rapidly (e.g., exponentially) as a function of n, and therefore this approach
may still be limited by computational power.

In more detail, for each n � 1 define a pseudo-metric on the compact
space ⇥⇥ X by

⇢n

⇣
(✓, x), (✓0, x0)

⌘
= max

0k<n

���f✓ � T k
✓ (x)� f✓0 � T k

✓0(x
0)
���.

Let (✏n)n�1 be a sequence of positive real numbers tending to zero, and for
each n, let Cn ⇢ ⇥ ⇥ X be a finite ✏n-cover of ⇥ ⇥ X with respect to ⇢n.
Compactness of ⇥⇥X ensures that such a finite cover exists. A proof of the
following result appears in the Supplementary Material [47, Appendix B)].

Proposition 1.3. If the loss function ` is uniformly continuous and for
each n � 1,

(✓̂n, x̂n) 2 argmin
(✓,x)2Cn

Rn
�
✓ : x

�
,

then (✓̂n)n�1 is a sequence of minimum risk estimates.

Remark 1.4. Minimum risk estimation involves the identification of an
optimal, or near optimal, parameter-state pair (✓̂n, x̂n). In what follows we
focus on the parameter estimates ✓̂n rather than the initial states x̂n. As the
results here show, under suitable conditions the parameter estimates exhibit
regular limiting behavior. The same cannot be said about the initial states.
For example, the negative results of [31, 32] give general conditions under
which estimation of the initial state of a dynamical system is not possible.

The principal goal of this paper is to understand and characterize the
limiting behavior of minimum risk estimates ✓̂n. Our analysis hinges on the
observation that every dynamical model, and every family of such models, is
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RISK MINIMIZATION AND COMPLEXITY OF DYNAMICAL MODELS 5

associated with a family of stationary processes. We focus on the misspecified
case in which the observed process is not necessarily generated by a model
in the family D under study. Two main results are presented. The first
main result (Theorem 5.2) provides a variational characterization of the
limiting behavior of minimum risk estimates. In particular, we establish
that minimum risk estimates converge to a parameter set determined by the
projection of the observed process onto the family of processes associated
with the models in D, where the projection is with respect to a divergence
measure that depends on the loss. Identifiability of parameters is addressed
automatically, through consideration of their associated processes.

The second main result (Theorem 5.3) provides conditions under which
minimum risk estimation can e↵ectively separate signal from noise in a sim-
ple signal plus noise setting when the model family D has limited complexity.
Complementing the second, positive result, we establish a negative result
(Proposition 5.9) showing that minimum risk estimation can be strongly
inconsistent for complex families of dynamical models.

In establishing the results mentioned above, we study a notion of entropy
that measures the complexity of a family of dynamical models. The entropy
measure is based on the growth rate of `p-covering numbers of finite length
sequences, and we show that it is closely related to the notion of topolog-
ical entropy studied in dynamical systems. Furthermore, we show that the
entropy measure is independent of the exponent p, and we establish a qual-
itative connection between entropy and stochastic mean widths studied in
empirical process theory.

Both the statements and proofs of our results rely on the concept of
joinings, which are stationary couplings of stochastic processes. Joinings,
introduced by Furstenberg [17], have been well-studied in ergodic theory
but have not been widely applied to problems of statistical inference. Our
results show that joinings are intimately connected with minimum risk fitting
of dynamical models. Several tools from the theory of joinings, including
disjointness and relatively independent joinings, play an important role in
our analysis of complexity and separation of signal and noise.

2. Complexity of Dynamical Models. Quantifying the complexity
of a family of models is a key issue in nonparametric inference. Indeed, model
complexity is a key factor in establishing consistency, convergence rates,
and optimality conditions for a variety of common inference procedures.
Although fitting nonlinear dynamical models di↵ers from model fitting for
classification or regression, complexity still plays a central role in the analysis
of minimum risk estimation. In particular, as we demonstrate in Section 5,
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6 K. MCGOFF AND A. NOBEL

model complexity has a close connection with the ability of minimum risk
estimators to separate signal from noise.

We begin this section by reviewing and discussing the notion of topological
entropy for a topological dynamical system. Subsequently, we define and dis-
cuss two related notions of complexity for families of dynamical models that
are used in our principal results. The first is a combinatorial entropy mea-
sure that captures the exponential growth rate of the real-valued sequences
generated by the model family, and is closely related to topological entropy.
The second is a limiting mean width, which arises when using the squared
loss. In establishing consistency or rates of convergence for classification or
regression methods, it is common, and typically necessary, to constrain the
family of models under study by requiring the sub-exponential growth of its
complexity, e.g., by assuming that the VC dimension of the model class is
finite, or by imposing conditions on its covering/bracketing numbers [72].
The complexity conditions used in this paper serve as analogous constraints
for families of dynamical models.

2.1. Topological entropy of a topological dynamical system. Before intro-
ducing our notion of entropy for a family of dynamical models, we discuss the
notion of topological entropy for dynamical systems, originally introduced
in [2]. Topological entropy has served as the central notion of complexity for
dynamical systems for at least fifty years. The theory of topological entropy
is developed in detail in many books, including [26] and [74]. For a thorough
historical account, see [25].

Definition 2.1. Let (X , d) be a compact metric space, and let T : X !
X be continuous. For n � 1, let dn be the metric on X given by

dn(x, y) = max

⇢
d

⇣
T
k
x, T

k
y

⌘
: 0  k  n� 1

�
.

For ✏ > 0, let B(x, n, ✏) denote the ball of radius ✏ around the point x with
respect to the metric dn. Then let C(n, ✏) denote the ✏-covering number of
X with respect to the metric dn, which is the least natural number M such
that there exist points x1, . . . , xM 2 X for which

X ⇢
M[

i=1

B(xi, n, ✏).

Finally, the topological entropy of the system (X , T ) can be defined as

htop(X , T ) = lim
✏&0

lim sup
n!1

1

n
log C(n, ✏).
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RISK MINIMIZATION AND COMPLEXITY OF DYNAMICAL MODELS 7

The topological entropy serves as a quantitative measure of the exponen-
tial growth rate of the number of orbits within the system. A positive value
of entropy is typically taken as an indicator of “chaos”. In smooth systems,
positive entropy is closely related to the existence of positive Lyapunov ex-
ponents (see [6]). Examples of systems with positive entropy include Axiom
A attractors [9] and the classical Lorenz system [49]. There are also many
interesting examples of systems with zero entropy, which have received sub-
stantial recent attention in the dynamics literature, including toral rotations
(see [26]), interval exchange transformations (see [26]), and rational billiards
(see [41]). In Section 3 we discuss some additional examples.

2.2. Entropy of a family of dynamical models. Let us now define the
entropy of a family of dynamical models D, which is assessed through the
covering numbers of the real-valued sequences generated by its constituent
models. Let u = (uk)k�0 and v = (vk)k�0 denote infinite sequences in RN.
For each n � 1 and 1  p  1 define pseudo-metrics dn,p(·, ·) on RN as
follows:

dn,p(u,v) =

8
><

>:

⇣
n
�1Pn�1

k=0 |uk � vk|p
⌘1/p

if 1  p < 1

max0kn�1 |uk � vk| if p = 1.

Let U ✓ RN be a bounded family of infinite sequences, meaning that there
is a K > 0 such that U ⇢ [�K,K]N. For a fixed length n and radius r > 0
we can assess the e↵ective number of initial n-sequences in U at radius r by
the covering number N(U , r, dn,p), which is the minimal number of balls of
radius r under the pseudo-metric dn,p(·, ·) that are required to cover the set
U . In what follows we will be interested in the exponential growth rate of
these covering numbers with increasing n, which is captured by the quantity

hp(U , r) = lim sup
n!1

1

n
logN(U , r, dn,p).

The `p entropy of the family U is defined to be the supremum of these growth
rates over r, obtained by letting r tend to zero,

hp(U) = lim
r&0

hp(U , r).

The definition of hp(U) raises questions about an appropriate choice of p.
From a statistical point of view, it is natural (and common) to consider em-
pirical `2 covering numbers when assessing complexity. On the other hand,
from a dynamical systems point of view, it is common to consider empirical
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8 K. MCGOFF AND A. NOBEL

`1 covering numbers, as is done with topological entropy. In fact, as the next
proposition shows, all the `p entropies coincide. As we were unable to find
this fact in the literature, a proof is given in the Supplementary Material
[47, Appendix C].

Proposition 2.2. The `p entropies hp(U) for 1  p  1 are all equal.

Remark 2.3. Although it is not needed here, we note that Proposition
2.2 holds more generally for sets of sequences U ✓ A

N, where (A, ⇢) is any
compact metric space such that

lim
r&0

r logN(A, r, ⇢) = 0,

and the pseudo metrics dn,p(·, ·) are defined in terms of ⇢.

Definition 2.4 (Entropy of a model family). The entropy h(D) of a
family D of dynamical models is the common value of hp(UD), where

(2.1) UD =

⇢⇣
f✓ � T k

✓ (x)
⌘

k�0
: x 2 X , ✓ 2 ⇥

�
✓ RN

is the set of infinite sequences generated by models in D.

In Lemma 4.2 we establish an equivalent expression for h(D) in terms of
the entropy rates of the processes associated with the model family D.

Remark 2.5. The entropy of a family of dynamical models has close
connections with the notion of topological entropy. Indeed, under our hy-
potheses (conditions (D1)-(D3)), it is straightforward to show that the family
of sequences UD is a compact subset of RN in the product topology. More-
over, if ⌧ : RN ! RN is the left-shift map defined by ⌧(u)k = uk+1 for k � 0,
then it is easy to see that ⌧ is continuous and that ⌧(UD) ✓ UD. Thus (UD, ⌧)
is a topological dynamical system that captures the dynamics of the family
of dynamical models D, and one may show that the entropy h(D) defined
above is equal to the topological entropy htop(UD, ⌧).

The following proposition provides a connection between the entropy of
a family D = {(T✓, f✓) : ✓ 2 ⇥} and the topological entropies of the systems
(X , T✓) in the family. A proof of this result appears in the Supplementary
Material [47, Appendix E.3].

Proposition 2.6. Let D be a family of dynamical models satisfying
(D1)-(D3), and suppose that for each ✓ 2 ⇥, the topological entropy of
(X , T✓) is zero. Then h(D) = 0.
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RISK MINIMIZATION AND COMPLEXITY OF DYNAMICAL MODELS 9

2.3. Mean width. Our analysis of minimum risk estimation under the
squared loss `(x, y) = (x � y)2 leads naturally to another measure of com-
plexity for the family D that is based on the standard notion of mean width.

Definition 2.7. Let D be a family of dynamical models, and let " =
("k)k�0 be an i.i.d. process with mean zero and finite variance. The n-sample
mean width of D relative to " is

(2.2) n(D : ") = E
"
sup
x,✓

n�1X

k=0

f✓ � T k
✓ (x) · "k

#
.

Define the mean width of D relative to " to be the limiting linear growth
rate of the finite sample mean widths,

(2.3) (D : ") = lim
n

1

n
n(D : "),

which exists by subadditivity (see Remark C.2). When "i ⇠ N(0, 1) we
denote (D : ") by G(D) and refer to this quantity as the Gaussian mean
width of the family D.

Finite sample mean widths have been widely studied in machine learning
and empirical process theory, with an emphasis on Rademacher and Gaus-
sian noise processes [8, 33]. As the next result shows, the mean width of D
has connections with the entropy of D. A proof of this result appears in the
Supplementary Material [47, Appendix C].

Theorem 2.8. Let " = (✏k)k�0 be an i.i.d. sequence with mean zero and
finite variance. If h(D) = 0 then (D : ") = 0. Moreover, the Gaussian
mean width G(D) = 0 if and only if h(D) = 0.

Remark 2.9. Theorem 2.8 establishes a qualitative relationship between
asymptotic mean width and entropy: for a given family of dynamical models,
they are either both zero or both positive. In general one cannot expect a
more quantitative relationship between asymptotic mean width and entropy.
While it is possible to provide upper and lower bounds on n(D : ") in
terms of `2 covering numbers (as in the proof of Theorem 2.8), additional
care must be taken when passing to the limits to obtain the mean width and
the entropy. As it turns out, the presence of these limits in the definitions
precludes any more quantitative dependence between these quantities.
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10 K. MCGOFF AND A. NOBEL

3. Examples of Dynamical Models. In this section we discuss sev-
eral families of dynamical models. These families capture di↵erent regular-
ities that may be of interest when studying an observed dynamical system.
These and related families have been fit to data by applied scientists (e.g.
[10, 34, 43, 70]), without any theoretical guarantees of consistency. Each
family described below satisfies assumptions (D1)-(D3) and, under suitable
assumptions, has entropy zero. Thus the results of the next section apply to
minimum risk estimates based on these families.

Example 3.1. (Gene Regulatory Networks) Inference of gene regulatory
networks from observed data is considered an important problem in systems
biology [40]. In recent years, it has become increasingly feasible for exper-
imentalists to assay the abundance of all the genes in a given system with
regular frequency over time. In such cases, one would like to infer the struc-
ture of the underlying network from the observed gene expression dynamics.
Here we present a family of dynamical models studied in [43].

Suppose one would like to investigate the gene regulatory network for
genes g1, . . . , gN . Let xi(t) denote the abundance of mRNA associated with
gene gi at time t. We are interested in modeling the feedback e↵ects of
genes on other genes. When the presence of proteins associated with gene
gi positively a↵ects the rate of production of mRNA for gj , we say that gi

promotes gj . When the presence of proteins associated with gi negatively
a↵ects the rate of production of gene gj , we say that gi inhibits gj . If either
of these relationships holds, then we say that gi controls gj . In order to
constrain the complexity of the model class, we assume that for each gene
gj , there is at most one gene gi that controls gj .

To make the model precise, we parametrize it as follows. If gi activates
gj , we assume that the functions xi, xj satisfy a di↵erential equation of the
following form:

dxj

dt
= A↵(xi(t))� �xj ,

where � > 0 is a degradation rate and A↵(x) is a parametrized nonlinear
“activation” function with parameter ↵. Similarly, if gi inhibits gj , then we
assume that the functions xi, xj satisfy a di↵erential equation of the following
form:

dxj

dt
= I↵(xi(t))� �xj ,

where � > 0 is a degradation rate and I↵(x) is a parameterized nonlinear
“inhibition” function with parameter ↵. We also assume that all parameters
(↵, �) are constrained to lie in a compact set K ⇢ Rp. Note that the entire
system of di↵erential equations governing (xi(t))Ni=1 can be specified by a
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RISK MINIMIZATION AND COMPLEXITY OF DYNAMICAL MODELS 11

compact parameter space ⇥, consisting of the discrete variables indicating
the type of control (activation or inhibition) of each gene, along with all the
associated continuous parameters (↵, �). Let (x✓i (t))

N
i=1 denote the solution

of the system of equations with parameter ✓ at time t.
Observations of the system are assumed to have the following structure:

there is a time step � > 0 such that at times tk = k�, for k = 0, . . . , T ,
the abundance of mRNA associated with each gene gi is observed to be
yi,k. The parameters in the system of di↵erential equations are then fit to
such observations by attempting to minimize the sum of squared di↵erences
between the observations and the integrated solutions of the equations at
the associated time points.

We can place this model class in the general framework of dynamical mod-
els as follows. Under appropriate conditions on the activation and inhibition
functions (boundedness, smoothness, and monotonicity in x), there will ex-
ist a compact set X ⇢ RN such that for all ✓ 2 ⇥, if (x✓1(0), . . . , x

✓
N (0)) 2 X ,

then (x✓1(t), . . . , x
✓
N (t)) 2 X for all time. Let T✓ : X ! X be the time-�

map, defined as follows: given a point x 2 X , let T✓(x) be the solution
(x✓1(�), . . . , x✓N (�)) at time � of the system of equations with parameter ✓
and initial condition (x✓1(0), . . . , x

✓
N (0)) = x.

We remark that the sparsity constraint on the model class (that each gene
be controlled by at most one other gene) ensures that any corresponding
family of dynamical models will have zero entropy [13]. A full proof of this
fact is beyond the scope of the present paper, but an outline can be stated
as follows. First, any directed network with maximal in-degree equal to one
can be decomposed into a collection of disjoint directed cycles, along with
disjoint paths out from the cycles. Then the Poincaré-Bendixon theorem
for monotone cyclic feedback systems [39] implies that the dynamics of any
such system must be severely constrained, and in particular, it must have
zero topological entropy. Finally, by Proposition 2.6, the entire family of
dynamical models must have zero entropy.

Example 3.2. (Subcritical logistic family and ecology) Since at least
the early work of May [42], simple parametric families of dynamical systems
have been used by ecologists as models of the population dynamics of many
species [36]. In many instances, various types of deterministic models have
been fit to ecological data (e.g., [70]).

The prototypical family in this context is the logistic family, which may be
parametrized as follows. Consider the state space X = [0, 1] and the family of
maps Ta : [0, 1] ! [0, 1], where Ta(x) = ax(1�x) for a 2 [0, 4]. If we restrict
a to the region [0, amax], where amax = 1 +

p
5, then each system in the
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12 K. MCGOFF AND A. NOBEL

family has zero topological entropy [24], and therefore any associated family
of dynamical models will have zero entropy by Proposition 2.6. This situation
is thought to occur in many naturally occurring populations (see results and
discussion from [23]). In examples such as these, the state variable x typically
represents the (rescaled) population size. The overall structure of the logistic
family captures the idea that the reproductive rate depends on the density
of the population, taking into account e↵ects such as competition for limited
resources. Given observations of population size over time, researchers are
interested in fitting logistic dynamical models to the observations in order
to identify the parameter a. For examples that involve fitting this family or
similar families, see [23, 70].

Example 3.3. (Symbolic dynamics and quasicrystals) Symbolic dynam-
ical systems, also known as subshifts, are a useful family of models that arise
in the study of dynamical systems through discretization of the state space.
Informally, if T : X ! X is a dynamical system and {A1, . . . , AN} is a
finite partition of X, then the associated symbolic system consists of the
label sequences {(⇡(T k

x))k�0 : x 2 X} under the left shift map, where
⇡ : X ! {1, . . . , N} is defined by the relation x 2 A⇡(x). Symbolic systems
have been widely studied for their own sake [37], for the purpose of un-
derstanding other dynamical systems [9], and for their connections to other
disciplines, e.g., physics [64]. Due to their combinatorial nature, they can
be used to model a variety of regularities in physical systems. For example,
they have been used in communications, coding and information theory to
capture the rules by which binary strings should be encoded on magnetic
tapes and compact discs in order to minimize errors [37].

As another example, symbolic dynamical systems have recently been used
by several researchers [12, 63, 67] as a mathematical model of crystallo-
graphic structures known as quasicrystals, which were discovered by Shecht-
man [66]. Quasicrystals are characterized by the presence of long-range ape-
riodic order, in contrast to crystals, which are characterized by long-range
periodic order. Substitution systems [60] are special cases of symbolic dy-
namical systems that are constructed by enforcing a rigid hierarchical struc-
ture at all scales, and they have been shown to possess long-range aperiodic
order similar to that observed in quasicrystals. As such, substitution systems
have been studied as theoretical models for quasicrystals.

Let us now present detailed definitions of symbolic dynamical systems
and substitution systems. Let A be a finite set, known as the alphabet.
The set AZ is known as the full-shift on A. We endow A with the discrete
topology and AZ with the product topology, making it a compact completely
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metrizable space. We let ⌧ : AZ ! AZ be the left-shift: if a = (ak)k2Z, then
⌧(a)k = ak+1. Note that ⌧ is continuous. A subshift on alphabet A is a
subset X ⇢ AZ such that X is closed and invariant, i.e., ⌧(X ) = X . Note
that if X is a subshift and F ⇢ C(X ) is any compact set of continuous
functions from X to R with respect to the uniform metric on C(X ), then
D = {(⌧, f) : f 2 F} is a continuous family of dynamical models satisfying
(D1)-(D3).

Substitution systems provide interesting examples of subshifts with en-
tropy zero. Let m � 1, and let s : A ! Am. The map s is called the
substitution map. We extend s to words of any length ` by concatenation,
s(a1 . . . an) = s(a`) . . . s(a`). In this way, we may refer to iterates s

k : A !
Akm, defined by induction s

k+1(a) = s(sk(a)). To a substitution map s, one
may associate a subshift X as follows: a sequence a = (ak)k2Z 2 AZ is in
X if for each i < j in Z, there exists a symbol b 2 A and a power k � 1
such that ai . . . aj appears as a subword of sk(b). Under some mild condi-
tions on the substitution map s (see [60]), any sequence a = (ak)k2Z in X
can be uniquely decomposed as . . . s(b�2)s(b�1)s(b0)s(b1)s(b2) . . . for some
sequence b = (bk)k2Z in X . Here the sequence b is interpreted as giving the
structure of a at a larger scale (blocks of length m). As this decomposition
may be repeated with b in the role of a and continued in this way, one
may interpret substitution systems as having a rigid hierarchical structure.
This rigid hierarchical structure leads to low complexity: if X is a substi-
tution system, then it can be shown that X has zero topological entropy
(see [11]). Consequently, any continuous family D of dynamical models on
X will have h(D) = 0 by Proposition 2.6. Such models could then be fit to
a observations of quasicrystals in an e↵ort to identify particular hierarchical
structure. Although this type of fitting has not yet been used in statistical
studies of quasicrystals, our results provide some theoretical grounding for
potential work in that direction.

Example 3.4. (Toral rotations and almost periodicity) Let the state
space X be the d-dimensional torus Td, which is the direct product of d
circles, Td = S

1 ⇥ · · · ⇥ S
1. For a vector ↵ 2 Td, define the transforma-

tion R↵ : Td ! Td to be the rotation of Td by the angle vector ↵, i.e.
R↵(x) = x + ↵ (addition in Td). Then let F ⇢ C(Td) be a compact set of
continuous functions from Td to R (with respect to the topology induced by
the supremum norm). Let ⇥ = Td ⇥ F , and define the family of dynamical
models D = {(R↵, f) : (↵, f) 2 ⇥}.

With these definitions, D is a continuous family of dynamical models
satisfying (D1)-(D3). Furthermore, it is well-known that any toral rotation
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has zero topological entropy (see, e.g., [26]), and therefore h(D) = 0 by
Proposition 2.6.

Fitting this family to an observed process amounts to looking for peri-
odic or “almost periodic” (also known as “quasi-periodic”) structure in the
observations. Intuitively, one is looking for up to d independent “periods”
in a process. A process would have d independent “periods” if there were d

periodic processes with incommensurate periods and the observed process
is a function of all d of these periodic processes. For example, consider the
classical situation in celestial mechanics in which two planets orbit a star
and do not interact with each other. As each planet’s trajectory will form an
ellipse, the natural state space for the combined system is a two-dimensional
torus, and the dynamics may be naturally desribed as a rotation of the torus,
with the vector ↵ being related to the periods of the two planets.

4. Background concepts and notation. This section introduces sev-
eral key concepts, along with associated notation, that will be used in what
follows. We begin by detailing the important connection between dynami-
cal models and stationary processes, and then we establish a relationship
between the entropy of a family and the entropy rates of its associated
processes. We conclude by defining the joining of two stationary processes
and a related, loss-based measure of divergence that will play a key role in
characterizing the limiting behavior of minimum risk estimates.

4.1. Processes associated with dynamical models. Let (T, f) be a dynam-
ical model on a compact metrizable state space X . Recall that a Borel prob-
ability measure µ on X is said to be invariant under T if µ(T�1

A) = µ(A)
for all Borel sets A ✓ X . Let M(X , T ) be the set of Borel measures on X
that are invariant under T , which is nonempty (see [74, p.152]). To each
measure µ 2 M(X , T ) there is an associated real-valued process

U = f(X), f(TX), f(T 2
X), . . .

where X 2 X has distribution µ. The invariance of µ under T ensures
that U is stationary. Here and in what follows we will regard real-valued
processes as measures on the infinite product space RN equipped with its
Borel sigma-field in the standard product topology.

Definition 4.1. Let D = {(T✓, f✓) : ✓ 2 ⇥} be a family of dynamical
models. For each ✓ 2 ⇥ let

Q✓ =
n
U =

�
f✓ � T k

✓ (X)
�
k�0

: X ⇠ µ for some µ 2 M(X , T✓)
o
,
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the set of stationary processes associated with (T✓, f✓). Further, let QD =S
✓2⇥Q✓, the set of processes associated with the entire family of models D.

4.2. Connection between the family of processes QD and the entropy h(D).
The definition of the entropy h(D) of a family of dynamical models is combi-
natorial in nature, and it does not involve measures. Nevertheless, h(D) may
also be characterized in a measure-theoretic way, using the entropy rates of
the stationary processes U 2 QD. Let ⇡ = {A1, . . . , Ak} be a finite Borel
partition of R with k cells, and define ⇡(x) to be the index j of the cell Aj

that contains x. Let U be any stationary process taking values in R. For
notation, let [k] = {1, . . . , k}. Then for n � 1 and b1, . . . , bn 2 [k] define

p(b1, . . . , bn) = P
�
⇡(U1) = b1, . . . ,⇡(Un) 2 bn

�
.

Further define the associated Shannon entropy of the sequence ⇡(U1), . . . ,⇡(Un),

Hn(U : ⇡) = �
X

b1,...,bn

p(b1, . . . , bn) log p(b1, . . . , bn).

The entropy rate of the process (⇡(Ui))i�0 is H(U : ⇡) = limn n
�1

Hn(U,⇡),
where the existence of the limit holds as a result of subadditivity. The en-
tropy rate of the process U is then given by

H(U) = sup
⇡

H(U,⇡).

where the supremum is over all finite Borel partitions of R. The following
lemma, which mirrors and makes use of the standard variational formula
relating topological and measure theoretic entropy for dynamical systems
(see [74, p. 190]), is established in the Supplementary Material [47, Appendix
E.1].

Lemma 4.2. If D is any family of dynamical models satisfying (D1)-
(D3), then

h(D) = sup
U2QD

H(U).

4.3. Joinings and divergence for stationary processes. The statements
and proofs of our principal results rely critically on stationary couplings of
stationary processes, which are known as joinings.

Definition 4.3. A joining of two stationary processes U = (Uk)k�0

and V = (Vk)k�0 is a stationary process W =
�
(Ũk, Ṽk)

�
k�0

such that

imsart-aos ver. 2014/10/16 file: Optimization_Applications_AoS_2019_06_13.tex date: June 13, 2019



16 K. MCGOFF AND A. NOBEL

Ũ = (Ũk)k�0 has the same distribution as U, and Ṽ = (Ṽk)k�0 has the
same distribution as V. Let J (U,V) denote the family of all joinings of U
and V.

By definition, a joining of two stationary processes is a coupling of the
processes that is itself stationary. Note that the family J (U,V) always
contains the the so-called independent joining under which Ũ and Ṽ are
independent copies ofU andV, respectively, defined on the same probability
space. Joinings were introduced by Furstenberg [17] in a general measure
theoretic setting, and they have been widely studied in ergodic theory [14,
18]. For notational convenience, we use [U,V] to denote a joining of U

with V. The joining of three or more stationary processes may be defined
analogously. Several simple, but non-trivial, examples of joinings are given
in the Supplementary Material [47, Appendix A].

Definition 4.4. Let ` : R⇥R ! [0,1) be a nonnegative loss function.
The `-divergence between two stationary processes U and V is the minimum
expected loss of (Ũ0, Ṽ0) over all joinings of U and V,

�`(U,V) = inf
J (U,V)

E
h
`(Ũ0, Ṽ0)

i
.

Remark 4.5. The `-divergence �`(U,V) is nonnegative, and it is sym-
metric whenever ` is symmetric. Furthermore, it also satisfies the triangle
inequality whenever ` does. In the special case that `(u, v) = (u � v)2 is
the standard squared loss, �`(U,V)1/2 is a metric on the space of R-valued
stationary stochastic processes.

Remark 4.6. Joinings were used in an analogous manner by Ornstein
[55, 56, 57] to define the d-distance between finite alphabet stationary pro-
cesses based on the Hamming metric I(u0 6= v0). The d-distance was then
extended by Gray et al. [19] to stationary processes with general alphabets
and to arbitrary metrics ⇢(U0, V0). The divergence �`(·, ·) is simply the gen-
eralization of these distances to nonnegative loss functions `(·, ·) that need
not be metrics.

Remark 4.7. The fact that the infimum defining �`(·, ·) runs over the set
of joinings, rather than the set of couplings, is critical. A minimizing joining
makes the average loss between elements of the process as small as possible
over the entire future of the process. By contrast, a minimizing coupling
would make the processes as close as possible at time zero, without regard
to their behavior in the future. The stationarity assumption constrains the
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set of possible joinings: in some cases (arising in the arguments below) the
only joining of two processes U and V is the independent joining, and the
processes U and V are then said to be disjoint. This phenomenon appears
even in the simple example presented in the Supplementary Material [47,
Appendix A].

5. Convergence of Minimum Risk Estimates. This section is de-
voted to the asymptotic behavior of minimum risk estimates. The analysis
relies on the joining based divergence defined in the previous section. We
begin with a general theorem concerning the convergence of minimum risk
estimators and then specialize, first to the case where the observed process
has a signal plus noise structure, and then further to the case of squared
loss. A key requirement in the signal plus noise setting is that the family D
have entropy zero. In the final subsection we give a counterexample showing
that the zero entropy conditions cannot be dropped.

5.1. General convergence result. As detailed in the previous section, a
family D of dynamical models corresponds to a family QD =

S
✓2⇥Q✓ of

stationary processes. With this correspondence in mind, the problem of fit-
ting models in D to an observed ergodic sequence Y = Y0, Y1, . . . using the
empirical risk Rn(✓ : x) has a population analog in which one seeks pro-
cesses U 2 QD that minimize the divergence �`(U,Y) with the observed
process Y. The solution set of the population problem is the �`-projection
of Y onto QD, and the corresponding set of parameters is a natural limit
set for empirical risk estimators. This leads to the following definition.

Definition 5.1. Let D be a family of dynamical models parametrized
by ✓ 2 ⇥, and let ` : R⇥ R ! [0,1) be a loss function. For any stationary
ergodic process Y, define

⇥`(Y) = argmin
✓2⇥

min
U2Q✓

�`(U,Y),

the set of parameters ✓ such that some process in Q✓ minimizes the diver-
gence with Y.

The following theorem shows that the limiting behavior of minimum risk
estimators is fully characterized by the set ⇥`(Y). The proof, which relies
on results of McGo↵ and Nobel [46], is presented in Section 7.

Theorem 5.2. Let D be a family of dynamical models satisfying (D1)-
(D3), and let ` be a lower semicontinuous loss function. If Y is a station-
ary ergodic process satisfying (C1), then ⇥`(Y) is non-empty and compact.
Moreover,
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18 K. MCGOFF AND A. NOBEL

(a) Any sequence {✓̂n = ✓n(Y0, . . . , Yn�1)} of minimum risk estimates con-
verges almost surely to ⇥`(Y);

(b) For each ✓ 2 ⇥`(Y), there exists a sequence of minimum risk estimates
that converges almost surely to ✓.

Theorem 5.2 reduces the asymptotic analysis of empirical risk minimiza-
tion to the analysis of the parameter set ⇥`(Y), which may not be a single-
ton. The conditions of the theorem place no restrictions on the relationship
between the observation process Y and the family D. The identifiability
of optimal parameters is determined by the divergence �` and the process
families Q✓. We show below how analysis of the limit set ⇥`(Y) yields both
positive results (e.g. consistency) and negative results (inconsistency) in a
signal plus noise setting.

5.2. Signal Plus Noise. In many situations it is natural to assume that
the observed process Y is the componentwise sum of an underlying signal
process V and an i.i.d. noise process ", neither of which is known. In this
setting, one would like to know that the limiting behavior of minimum risk
estimation is determined solely by the structure of the signal process V and
is una↵ected by the presence of the noise process ". In this subsection and
the next we establish su�cient conditions for decoupling of signal and noise.

Assume that for each k � 0 the observation Yk takes the form Yk = Vk+"k

where V = {Vk : k � 0} is a stationary ergodic process and " = {"k : k � 0}
is an i.i.d. zero-mean noise process that is independent of V. As a shorthand,
we will write Y = V + ". It is not assumed that V belongs to the family
QD of processes generated by the model family D. We require the following
integrability conditions:

(C1) E
"

sup
|x|KD

`(x, Y0)

#
< 1;

(C2) E
"

sup
|x|KD

`(x, V0)

#
< 1;

(C3) E `(u, v + "0) < 1 for all u, v 2 R.

Condition (C1) is the same condition that we require in the general setting,
whereas (C2) and (C3) involve only the processes V and ", respectively.
These conditions ensure integrability of the loss with respect to the three
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processes Y, V, and ". If ` is the squared loss and V and " have finite
second moments, then conditions (C1)-(C3) are satisfied.

Let D = {(T✓, f✓) : ✓ 2 ⇥} be a family of dynamical models. Theorem 5.2
ensures that any sequence of minimum risk estimators for D based on obser-
vations of Y = V+ " will converge to the set ⇥`(Y) of optimal parameters
for Y. In this setting, it is reasonable to ask if minimum risk estimation
can recover optimal parameters for the underlying signal process V rather
than the observed process Y. The following result answers this question in
the a�rmative in two di↵erent cases. In the first case the signal process V
is general, but we assume that the loss `(u, v) = DF (v, u) is the Bregman
divergence of a continuously di↵erentiable convex function F : R ! R, that
is, `(u, v) = F (v) � F (u) � (v � u)F 0(u). In this case, we establish that
minimum risk estimators converge to the optimal parameter set ⇥`(V) for
the process V. In the second case, we assume that the signal process V is
generated by a dynamical model in the family D and impose a condition
on the joint behavior of the loss function and the noise. In this case, we
establish that minimum risk estimators converge to the set of parameters ✓
such that the set of processes Q✓ contains V.

Theorem 5.3. Let D be a family of dynamical models satisfying (D1)-
(D3) with entropy h(D) = 0. Let {✓̂n : n � 1} be any sequence of `-minimum
risk estimates for D based on an observed ergodic process Y = V + " satis-
fying (C1)-(C3).

(a) If `(u, v) = DF (v, u) is the Bregman divergence of a continuously dif-
ferentiable convex function then ✓̂n converges almost surely to ⇥`(V).

(b) Suppose that V is an ergodic process in QD and E `(u, v + "0) �
E `(0, "0) for all u, v, with equality if and only if u = v. Then ✓̂n

converges almost surely to {✓ 2 ⇥ : V 2 Q✓}.

Remark 5.4. The loss condition in part (b) of the theorem holds, e.g.,
if `(u, v) = |u� v| is the absolute loss and the distribution of the noise has
a unique median at zero.

Remark 5.5. Recall that dynamical models include arbitrary (e.g., non-
linear) continuous observation functions f✓ : X ! R. In the signal plus
noise setting of the present section, these functions allow one to consider
observation models of the form Y = f(X) + ", where X is the underly-
ing state and " is independent noise. In short, the setting includes gen-
eral observation functions, but the function must be applied before noise is
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added. Nonetheless, we note that Theorem 5.3 remains true if the observa-
tion model has the form Y = F (V + ") where F is linear. Indeed, in this
case F (V + ") = F (V) + F (") = V

0 + "0, and V
0 and "0 can be seen to

satisfy the hypotheses of the theorem. Investigation of more general noise
models is interesting but beyond the scope of the present paper.

Example 5.6. Consider the estimation of a rotational period, as in Ex-
ample 3.4. For concreteness, consider the case d = 1, and consider a set of
angles ⇥ = [0,⇡]. Suppose that there is a single vector h 2 R2 such that the
observation function f✓ is given by f(x) = hx, hi for all ✓. Now suppose that
" is a random variable in R2 with zero mean and finite variance, and sup-
pose that " is an i.i.d. process whose marginals have the same distribution
as ". Finally, suppose that the observation process is given by Y = (Yk)k�0,
where

Yk = f

⇣
R

k
✓0(X) + "k

⌘
,

✓0 2 [0,⇡] is irrational, and X is uniformly distributed on the circle S1 ⇢ R2.
Since f is linear, the previous remark applies, and we conclude that the
hypotheses of Theorem 5.3 (both parts) are satisfied with the squared loss
`(u, v) = (u� v)2. Additionally, one may check that ✓0 is identifiable within
⇥ (i.e., it is the only parameter ✓ such that the signal process is contained in
Q✓). Then we conclude that any sequence (✓n)n�1 of minimum risk estimates
converges almost surely to ✓0.

As the squared loss `2(u, v) = (u�v)2 is a Bregman divergence, minimum
risk fitting of a zero entropy family will converge to the optimal parameter
set for the signal by Theorem 5.3. The next result extends this result to the
more general case in which the mean width of the family is zero.

Theorem 5.7. Let Y = V + ", where V is ergodic and " is an i.i.d.
process with mean zero and finite variance. If the mean width (D : ") =
0, then any sequence of least squares estimates converges almost surely to
⇥`2(V).

In our final result of this section, we establish the consistency of least
squares estimation for a family of transformations on a compact state space
in Rd where each observation function is the identity. Suppose X ⇢ Rd is
compact and {T✓ : ✓ 2 ⇥} is a family of transformations on X such that
⇥ is a compact metric space and (✓, x) 7! T✓(x) is continuous. Further,
suppose that Yk = T

k
✓⇤(X) + "k where X is distributed according to an

ergodic measure µ 2 M(X , T✓⇤), and " = ("k)k�0 is i.i.d. with mean zero
and finite variance and is independent of X.
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Corollary 5.8. If the topological entropy of T✓ is zero for all ✓ 2 ⇥,
then any sequence of least squares estimates converges almost surely to the
set {✓ 2 ⇥ : µ(T✓ = T✓⇤) = 1}.

The limit set in Corollary 5.8 contains the true parameter ✓⇤, and serves
as the natural identifiability class of ✓⇤ in this context.

5.3. A negative result. It is assumed above that the model family D has
zero entropy. The next proposition shows that the zero entropy assumption
is, in general, necessary for consistent estimation. In particular, if h(D) is
positive then least squares estimation can fail to identify the optimal pa-
rameters of the signal process V, even if the signal process is generated
by a dynamical model in the family. The underlying idea is that a family
D with positive entropy is capable of tracking the noise, and consequently
least squares estimates will overfit the observed sequence.

Let us say that a family D is inseparable from Gaussian noise if there
exists an ergodic process V in QD and �0 > 0 such that for every � > �0

the limiting parameter set ⇥`2(Y) of least squares estimates derived from
Y = V+" with "i ⇠ N(0,�2) does not capture V in the sense that V /2 Q✓

for each ✓ 2 ⇥`2(Y).

Proposition 5.9. Let D be a family of dynamical models with entropy
h(D) > 0. If there exists ✓0 2 ⇥ such that h({(T✓0 , f✓0)}) = 0 and Q✓0 \
[✓ 6=✓0Q✓ contains an ergodic process, then D is inseparable from Gaussian
noise.

Remark 5.10. It is relatively easy to construct families D satisfying the
conditions of Proposition 5.9. See the Supplementary Material [47, Example
D.1]. Informally, the inconsistency phenomenon illustrated by this example
can be shown to occur for any family in which there is a parameter ✓0 with
zero entropy, there is a parameter with positive entropy, and the processes
associated to ✓0 are distinct from the processes associated to all parameter
values with positive entropy.

6. Discussion of related work. The results of this paper have points
of overlap with recent work in the statistics and machine learning literature
concerning estimation, forecasting, and prediction from dependent obser-
vations. While some of this work, for example Morvai and Weiss [53, 52],
Nobel [54], and Adams and Nobel [1], is focused on asymptotics for general
ergodic observations, a number of papers provide rates of convergence or
finite sample bounds under more stringent assumptions.
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A complete survey of all recent work on learning from dependent data is
beyond the scope of the present paper, but we nonetheless mention several
recent directions of research in this area. In representative early work, Ar-
cones and Yu [5] prove central limit theorems for empirical and U -processes
of stationary mixing processes. More recently, Modha and Masry [50], Meir
[48], and Alquier and Wintenberger [4] establish oracle inequalities and finite
sample bounds for predicting the next value of a stationary process. Agarwal
and Duchi [3], Kuznetsov and Mohri [28, 30, 29], and Zimin and Lampert
[78] establish finite sample performance bounds on the conditional risk of
online learning algorithms for predicting dependent time series. Each of the
papers cited above imposes mixing conditions (as in [77]) on the observa-
tions, as well as regularity conditions on the loss function and model family
of interest. Shalizi and Kontorovich [65] consider learning mixtures of sta-
tionary processes, while Kontorovich [27] studies statistical estimation using
finite automata with bounded memory. Mohri and Rostamizadeh [51] pro-
vide stability-based generalization bounds from �-mixing and �-mixing pro-
cesses. Hang and Steinwart [20] and Steinwart and Christmann [68] obtain
rates of convergence for empirical risk minimization from ↵-mixing observa-
tions, while Wong et al. [75] establish finite sample bounds for Lasso-based
inference under �-mixing conditions. In another direction, Rakhlin et al.
[62] and Rakhlin and Sridharan [61] have established exponential inequali-
ties for suprema of martingale di↵erence sequences by using and extending
ideas from machine learning, including Rademacher complexity and deter-
ministic regret inequalities. Finally, let us mention that both Dean et al. [15]
and Tu et al. [69] provide finite sample bounds for system estimation in the
context of certain control problems.

As noted in the introduction, the problem of fitting dynamical models
di↵ers from the inference problems above as both the observations and the
models under study can exhibit dynamical behavior and long-range depen-
dence. Moreover, our principal results make no assumptions concerning mix-
ing properties of the observed process Y, mixing properties or stationary
distributions of the dynamical models D, smoothness of the loss `(·, ·) (be-
yond lower semicontinuity), or the relationship between the observed process
and the family of models being fit. This general setting enables us to study
the asymptotic behavior of minimum risk estimation for dynamical models
in a variational framework where the roles of the observed process, the loss,
and (most critically) the model family are clearly delineated.

The results here provide a framework for, and initial progress towards, the
detailed analyses of specific problems and model families that might lead to
rates of convergence, or finite sample performance bounds. It is evident from
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the papers above that stronger results, e.g., rates of convergence, will require
substantially stronger assumptions, including mixing conditions (with geo-
metric or polynomial rates) on the observed process, smoothness (possibly
with convexity) of the loss function, and stronger, covering-based complexity
constraints on the family of dynamical models. If mixing type conditions are
required for the dynamical models themselves, then these conditions would
require even stronger assumptions, as mixing conditions typically hold only
for distinguished invariant measures and observation functions.

A number of the papers cited above make use of exponential probability
bounds, typically Azuma-Hoe↵ding type inequalities, to control error terms
that are sums of martingale di↵erences. Martingale di↵erences do not arise
in the theoretical analysis of this paper, but we note that there are some
uses of reverse martingale methods in the dynamics literature [38]. Investi-
gating martingale approaches to the problems considered here represents an
interesting direction for future research.

Our work is also related to a line of research concerning least squares
estimation of individual sequences from noisy observations, see for example
[59, 71, 76]. Pollard and Radchenko [59] use empirical process theory to
establish consistency and asymptotic normality of least squares estimation
for individual sequences from signal plus noise. In the present work, we
consider sets of individual sequences that arise from a continuous family
of dynamical models, as in (2.1), and we are interested in estimation of a
dynamical invariant parameter (i.e. ✓), rather than the signal sequence itself.

Ornstein and Weiss [58] studied the estimation of a stochastic process
from its samples. They proposed an inference procedure, based on matching
k-block frequencies, and characterize when it produces consistent estimates
of the observed stochastic process in the d-bar metric.

Furstenberg’s original work on joinings [17] includes an application of
joinings to a nonlinear filtering problem. Beyond this application, we are
not aware of other uses of joinings in the literature on statistical inference.

Some of Furstenberg’s original results are extended in recent work of Lev,
Peled, and Peres [35]. Given an infinite sequence equal to a target signal
plus noise, they consider the problem of detecting whether the signal is
non-zero, and the problem of recovering the signal from the given sequence.
Target sequences are assumed to belong to a known family (as in [59]), and
their analysis places no restrictions (beyond measurability) on the detection
and filtering procedures, which can be functions of the entire sequence of
observations.

Finally, we mention that statistical inference in the context of dynamical
systems has been considered in a variety of subject areas; see the survey [45]
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for a broad overview and references. Dynamical systems in the observational
noise setting have been studied in [31, 32, 44], and statistical prediction in
the context of dynamical systems has been considered in [21, 22, 68, 73].

6.1. Generalizations and future work. Generalization of all of the defini-
tions and results of the paper to Rd-valued models and processes is straight-
forward, requiring only minor changes of notation. We omit the details. In a
di↵erent direction, one could analyze families of dynamical models defined on
a non-compact state space X with uniformly bounded observation functions,
requiring only measurability of the maps (✓, x) 7! T✓(x) and (✓, x) 7! f✓(x).
For families D of this more general type, the set UD of associated sequences
would not necessarily be a closed (hence compact) subset of RN, and in this
case one needs to consider the closure of UD in RN, along with all the sta-
tionary processes supported on this set. The analysis here can be carried
out in this more general setting, but the corresponding results are di�cult
to interpret in the context of the original problem.

7. Optimal tracking and proof of Theorem 5.2. In this section we
detail connections between fitting dynamical models and the optimal track-
ing problem studied in [46]. In particular, we construct a single dynamical
system that captures the family D of dynamical models, and we analyze this
system using optimal tracking.

7.1. Optimal tracking. The tracking problem for dynamical systems con-
cerns two systems: a model system consisting of a compact metric space Z
and a continuous map T : Z ! Z, and an observed system consisting of a
complete separable metric space Y and a Borel measurable map S : Y ! Y.
Given the initial segment of a trajectory y, S(y), . . . , Sn�1(y) of the ob-
served system, one seeks a corresponding initial condition zn 2 Z such that
the trajectory zn, T (zn), . . . , Tn�1(zn) from the model system “tracks” the
given trajectory from the observed system. An optimal tracking trajectory
is chosen by minimizing an additive cost functional

n�1X

k=0

c
�
S
k
y, T

k
z
�
,

where c : Y ⇥ Z ! R is a fixed lower semicontinuous cost function.
We will appeal to results from [46] for optimal tracking, which we sum-

marize here for completeness. Suppose that the initial condition y of the
observed trajectory is drawn from an ergodic measure ⌫ 2 M(Y, S), and
that supz |c(y, z)| is bounded above by a function in L

1(⌫). Let ⇥ be a com-
pact metrizable space, and let ' : Z ! ⇥ be a continuous map that is
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invariant with respect under the transformation T , i.e. ' � T = ', so that '
is invariant on trajectories of T . Let V = (Sk(V0))k�0, where V0 ⇠ ⌫. Also,
for ✓ 2 ⇥, let M✓(Z, T ) denote the set of measures µ 2 M(Z, T ) such that
µ('�1{✓}) = 1, i.e., µ is invariant under T and supported on the (closed)
set of z in Z for which '(z) = ✓. Finally, let J (V : ✓) denote the set of all
joinings of the process V with a process U = (T k(U0))k�0, where U0 ⇠ µ

for some µ 2 M✓(Z, T ).

Theorem A ([46]). Let zn : Yn ! Z, n � 1, be Borel measurable
functions. If for ⌫ almost every y 2 Y the sequence ẑn = zn(y, . . . , Sn�1

y)
optimally tracks y, Sy, . . . in the sense that

(7.1) lim
n

1

n

n�1X

k=0

c

⇣
S
k
y, T

k
ẑn

⌘
= lim

n
inf
z2Z

1

n

n�1X

k=0

c

⇣
S
k
y, T

k
z

⌘
,

then ✓̂n = '(ẑn) converges ⌫ almost surely to the non-empty, compact set

(7.2) ⇥min = argmin
✓2⇥

min
J (V:✓)

E
⇥
c(Ṽ0, Ũ0)

⇤
.

Furthermore, for any ✓ 2 ⇥min, there exists ẑn such that (7.1) holds and
✓̂n = '(ẑn) converges to ✓.

7.2. Proof of Theorem 5.2. To begin, we describe how fitting a family
of dynamical models to an observed stochastic process can be cast as a
tracking problem. As a first step, we define a single dynamical system that
encapsulates the family of dynamical models. Consider the state space

Z =

⇢⇣
✓,

�
f✓ � T k

✓ (x)
�
k�0

⌘
: ✓ 2 ⇥, x 2 X

�
✓ ⇥⇥ RN

,

and define the transformation T : Z ! Z by T (✓, (uk)k�0) = (✓, (uk+1)k�0).
The next lemma establishes some basic properties of the dynamical system
(Z, T ). Here and in what follows RN is equipped with the usual product
topology.

Lemma 7.1. The set Z is a compact subset of ⇥⇥RN, and the map T is
continuous. If µ is an ergodic element of M(Z, T ), then there exists ✓ 2 ⇥
and an ergodic process U 2 Q✓ with distribution ⇠ such that µ = �✓ ⌦ ⇠.

Proof. Continuity of the map T follows from continuity of the left shift
⌧ : RN ! RN. As both the parameter space ⇥ and the state space X are
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compact by assumption, the product ⇥ ⇥ X is compact. Define a map ⇡ :
⇥⇥ X ! ⇥⇥ RN by

⇡(✓, x) =
⇣
✓,
�
f✓ � T k

✓ (x)
�
k�0

⌘
.

It is easy to see that Z is the image of ⇥⇥X under ⇡. To establish that Z
is compact, it therefore su�ces to show that ⇡ is continuous.

Let {(✓n, xn)}n�1 be a sequence converging to (✓, x) in ⇥ ⇥ X , and let
K � 1. The continuity conditions (D2) and (D3) imply that for 0  k  K,

lim
n

f✓n � T k
✓n(xn) = f✓ � T k

✓ (x).

As K was arbitrary, it follows that {⇡(✓n, xn)}n�1 converges to ⇡(✓, x) in
⇥⇥ RN with the product topology, and therefore ⇡ is continuous.

For the last statement of the lemma, define the map R : ⇥⇥X ! ⇥⇥X
by the rule R(✓, x) = (✓, T✓(x)), which is known as the skew-product over the
identity in the dynamics literature. By construction, we have ⇡�R = T �⇡. In
the dynamics literature, ⇡ is called a factor map from (⇥⇥X , R) onto (Z, T ).
It is a standard fact [16, p. 19] that the associated map from M(⇥⇥X , R)
to M(Z, T ) defined by ⌘ 7! ⌘ � ⇡�1 is a surjection.

Now let µ 2 M(Z, T ) be ergodic. Since the map from M(⇥ ⇥ X , R) to
M(Z, T ) given by ⌘ 7! ⌘ � ⇡

�1 is a surjection, there exists ⌘ 2 M(⇥ ⇥
X , R) such that ⌘ � ⇡

�1 = µ. As proj⇥ �T = proj⇥, the induced measure
⌘�(proj⇥ �⇡)�1 = µ�proj�1

⇥ on ⇥ must be invariant under the identity map.
Also, it must be ergodic, since µ is ergodic. As the only ergodic measures
for the identity map are the point masses, we see that there exists ✓ 2
⇥ such that ⌘ � (proj⇥ �⇡)�1 = �✓. Then ⌘ = �✓ ⌦ ⇠

0 for some invariant
measure ⇠

0 2 M(X , T✓), and therefore µ = ⌘ � ⇡�1 = �✓ ⌦ ⇠, where ⇠ is the
distribution of a stationary process in Q✓. To see that ⇠ is ergodic, note that
⇠ = µ � (projRN)�1 and µ is ergodic.

We now proceed with the proof of Theorem 5.2. The observed process Y
gives rise to an observed dynamical system in the tracking problem, where
Y = RN, S : Y ! Y is the left shift S((uk)k�0) = (uk+1)k�0, and ⌫ is the
distribution of Y on RN. Define the cost function c : Y ⇥ Z ! R by

c

⇣
v,

�
✓,u

�⌘
= `(u0, v0).

By Lemma 7.1, the hypotheses of Theorem A are satisfied. Then an applica-
tion of Theorem A shows that any sequence of minimum `-risk parameters
(✓̂n)n�1 converges almost surely to the set ⇥min. Additionally, using the
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second sentence of Lemma 7.1 and the variational characterizations of ⇥min

and ⇥`(Y), we see that ⇥min = ⇥`(Y). Furthermore, the conclusions of
Theorem A give that the projection ⇥`(Y) is nonempty and compact, and
the (“converse”) statement in Theorem 5.2 (b) holds. We have thus proved
Theorem 5.2.

8. Proofs for Signal Plus Noise. This section contains the proofs
of Theorems 5.3 and 5.7, and Proposition 5.9 concerning the behavior of
minimum risk estimation in the signal plus noise setting. In addition, we
state and establish several auxiliary results that may be of independent
interest. We begin with a straightforward extension of Theorem A. A proof is
included in the Supplementary Material [47, Appendix E.2] for completeness.

Theorem 8.1. Let U, V, and W be real valued stationary processes
such that H(U) = 0, V is ergodic, and W is i.i.d. If [U,V,W] is any
joining of these three processes such that V and W are independent, then
the joint process [U,V] is independent of W.

The proofs below require the concept of a relatively independent joining,
which is a standard construction in ergodic theory (see [18, p. 126] or [14]).
Let U and W be stationary processes taking values in complete separable
metric spaces U and W, respectively. A measurable map f : U ! W is
said to map U onto W if the process f(U) := (f(Uk))k�0 has the same
distribution as W.

Theorem B (Relatively Independent Joining). Suppose U, V, and W

are stationary processes taking values in (possibly distinct) complete sepa-
rable metric spaces. If there are Borel measurable maps f and g such that
f(U) and g(V) each have the same distribution as W, then there is a joining
[U,V] of U and V such that f(U) = g(V) almost surely.

The joining [U,V] in Theorem B is called the relatively independent
joining of U and V (relative to W).

The following general result establishes the ability of minimum risk esti-
mation to separate signal from noise for zero entropy model families. Sepa-
ration is relative to an auxiliary loss function L that depends on both the
given loss function ` and the noise process.

Proposition 8.2. Let Y = V + " satisfy (C1)-(C3), and let D satisfy
(D1)-(D3). If h(D) = 0, then any sequence of minimum `-risk estimates
converges almost surely to ⇥L(V), where L(u, v) := E `(u, v + "0).
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Remark 8.3. Since `(·, ·) is nonnegative and lower semicontinuous, the
auxiliary loss function L(·, ·) has the same properties (using Fatou’s Lemma
for the lower semicontinuity). If a given process Y can be expressed in two
di↵erent ways as Y = V+" and Y = V

0+"0, then the proof of Proposition
8.2 shows that ⇥L(V) = ⇥L0(V0), where L

0 is defined using "0 in place of ".

Proof. By Theorem 5.2 any sequence of minimal `-risk estimates con-
verges almost surely to ⇥`(Y). It therefore su�ces to show that ⇥`(Y) =
⇥L(V). To this end, let U be any process in QD, and let [U,Y] be a joining
of U and Y that is optimal in the sense that E

⇥
`(U0, Y0)

⇤
= �`(U,Y). It

follows from Lemma 4.2 and the assumption that h(D) = 0 that the entropy
rate H(U) = 0. Let [V, "] be the independent joining of V and ". As Y

and V + ✏ have the same distribution, Theorem B ensures the existence
of a joining [U,Y,V, "] such that Y = V + " almost surely. Projecting
this joining onto its first, third, and fourth coordinates, we obtain a joining
[U,V, "] satisfying the conditions of Theorem 8.1. In particular, [U,V] is
independent of ". By conditioning on [U,V] we find that

E
⇥
`(U0, Y0)

⇤
= E

⇥
`(U0, V0 + "0)

⇤
= E

h
E
⇥
`(u, v + "0) | U0 = u, V0 = v

⇤i

= E
h
L(U0, V0)

i
� �L(U,V),

from which it follows that �`(U,Y) � �L(U,V).
Now let [U,V] be a joining such that E

⇥
L(U0, V0)

⇤
= �L(U,V). Let

[U,V, "] be the independent joining of [U,V] with ", and let Y = V + ".
Then

E
⇥
L(U0, V0)

⇤
= E

h
E
⇥
`(u, v + "0) | U0 = u, V0 = v

⇤i

= E
⇥
`(U0, V0 + "0)

⇤
= E

⇥
`(U0, Y0)

⇤
� �`(U,Y).

Thus �L(U,V) � �`(U,Y), and we conclude that �L(U,V) = �`(U,Y).
As U 2 QD was arbitrary, it follows that ⇥`(Y) = ⇥L(V), and the proof is
complete.

Proof of Theorem 5.3. By Proposition 8.2 any sequence of minimum
risk parameters converges almost surely to ⇥L(V), so it su�ces to examine
this set under the conditions of parts (a) and (b) the theorem.
Part (a): Based on the assumption that E("0) = 0 and `(u, v) = DF (v, u),
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we have

L(u, v) = E`(u, v + "0) = EF (v + "0)� F (u)� (v � u)F 0(u)

= `(u, v) +G(v),

where G(v) = EF (v + "0) � F (v) depends only on v and the distribution
of "0, and is non-negative since F is convex. Thus, for any ✓ 2 ⇥ and any
U 2 Q✓,

�L(U,V) = inf
J (U,V)

EL(U0, V0) = inf
J (U,V)

n
E`(U0, V0) + EG(V0)

o

= �`(U,V) + EG(V0).

It follows that ⇥L(V) = ⇥`(V), which establishes Part (a).

Part (b): Suppose that Y = V+ " where V 2 Q✓0 is ergodic. Let U 2 QD
and let [U,V] be a joining of U and V. The assumption that E `(x, y+"0) �
E `(0, "0) with equality if and only if x = y ensures that

E
⇥
L(U0, V0)

⇤
= E

h
E
⇥
`(u, v + ✏0) | U0 = u, V0 = v

⇤�

� E
⇥
`(0, ✏0)

⇤
,

with equality if and only if U0 = V0 almost surely. As [U,V] is a joining,
and is therefore stationary, U0 = V0 almost surely if and only if U = V al-
most surely. Thus, we have shown that �L(U,V) � E

⇥
`(0, ✏0)

⇤
, with equal-

ity if and only if U = V. Therefore the set of ✓ minimizing the quan-
tity minU2Q✓ �L(U,V) is exactly the set of ✓ such that V 2 Q✓. Hence
⇥L(V) = {✓ 2 ⇥ : V 2 Q✓}, which finishes the proof of Part (b).

⇤

8.1. Least squares estimation. Here we provide proofs of Theorem 5.7
and Corollary 5.8 concerning least squares estimation. It is possible to give
more direct proofs of these results that avoid a direct appeal to Theorem
5.2, at the expense of greater length, but we make use of this general result
in the arguments below.

Proof of Theorem 5.7. By Theorem 5.2, any sequence of least squares
parameters converges almost surely to ⇥`2(Y), so it su�ces to show that
⇥`2(Y) = ⇥`2(V).

Fix a parameter ✓ 2 ⇥ and a process U 2 Q✓. Let [U,Y] be any joining
of U with the observed process Y, and let [V, "] be the independent joining
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of the signal and noise processes. Using Theorem B, let [U,Y,V, "] be the
relatively independent joining of [U,Y] with [V, "] such that Y = V + "
almost surely. Then under this joining

E
h��U0 � Y0

��2
i
= E

h��U0 � (V0 + "0)
��2
i

= E
h��U0 � V0

��2
i
� 2E

⇥
(U0 � V0) · "0

⇤
+ E

h
"
2
0

i
.

As the mean width (D : ") = 0 by assumption, Proposition C.3 ensures
that E[U0 · "0] = 0. Moreover, since V0 is independent of "0 and "0 has zero
mean, E[V0 · "0] = 0. It follows from the previous display that

(8.1) E
h��U0 � Y0

��2
i
= E

h��U0 � V0

��2
i
+ E

h
"
2
0

i
.

Since E[✏20] is a constant that depends only on ✏0 (and not on the joining),
and since U 2 Q✓ was arbitrary, we conclude that

(8.2) min
U2Q✓

�`2(U,Y) � min
U2Q✓

�`2(U,V) + E[✏20].

Now let U0 be any process in Q✓ that minimizes the divergence �`2(U,V),
and let [U0

,V] be a joining that achieves the divergence. Let " be a copy
of the noise process that is independent of [U0

,V], and define Y = V + ".
One may readily show that the paired process (U0

,Y) is in fact a joining.
Moreover, the choices above ensure that

(8.3) E
h��U 0

0 � Y0

��2
i
= E

h��U 0
0 � V0

��2
i
+ E

h
"
2
0

i
= min

U2Q✓

�`2(U,V) + E
h
"
2
0

i
.

Combining displays (8.2) and (8.3), we find that

min
U2Q✓

�`2(U,Y) = min
U2Q✓

�`2(U,V) + E
⇥
"
2
0

⇤
.

Minimizing over ✓, we find that ⇥`2(Y) = argmin✓ minU2Q✓ �`2(U,V), as
was to be shown. ⇤
Proof of Corollary 5.8. By Proposition 2.6, the hypothesis that the
topological entropy htop(X , T✓) = 0, for each ✓ 2 ⇥, gives that h(D) = 0.
Then by Theorem 5.3 any sequence of least squares parameters converges
almost surely to the set {✓ 2 ⇥ : V 2 Q✓}. Now supposeV 2 Q✓. Then there
exists a measure µ0 2 M(X , T✓) such that the process U = (T k

✓ (X))k�0 with
X ⇠ µ0 has the same distribution as V. Hence X has the same distribution
as V0, which is given by µ, and therefore µ = µ0. Furthermore, (X,T✓(X))
must have the same distribution as (V0, V1), which implies that T✓(x) =
T✓⇤(x) for µ almost every x. We have thus shown that {✓ 2 ⇥ : V 2 Q✓} ⇢
{✓ : µ(T✓ = T✓⇤) = 0}. The reverse inclusion is obvious. ⇤
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