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An automated application, CoForm, was used for predicting the

outcomes of attempted co-crystallizations between two active

pharmaceutical ingredients, loratadine and desloratadine, and 41

potential co-formers from the general interest (OGI) list. The

predictive abilities of the app were compared to structure-

informatics tools based on hydrogen-bond propensity (HBP) and

molecular complementarity (MC). The results indicate that

CoForm delivered a success rate of 78% for both loratadine and

desloratadine compared to 76% and 54%, respectively (HBP), and

39% and 22%, respectively (MC).

Introduction

Pharmaceutical companies invest vast resources for research
and development of new and more effective drugs.1–3 The
challenges of delivering a viable product are considerable and
in addition to possessing optimal biological properties, a
successful candidate must also present appropriate
physicochemical/pharmacological properties such as
solubility, stability, dissolution rate, bioavailability, and shelf
life.4–6 A majority of compounds that are eliminated in this
process fail due to sub-par physicochemical properties rather
than to unacceptable toxicity.7 Solubility is one of the major
issues in orally administrated drugs as inadequate aqueous
solubility or dissolution rate lead to lower therapeutic effect.
Many different approaches have been utilized to address this
issue, such as nanocrystal formation, amorphization, salt
formation, co-crystallization, and polymorph screens.8

In the last two decades, co-crystallization technologies
have emerged as an area of research involving high value
organic crystalline solids. A pharmaceutical co-crystal is the
result of a successful combination of an active
pharmaceutical ingredient (API) and an appropriate
molecular partner, the co-former. Unfortunately, finding
molecules that can act as co-formers for a specific drug is
generally based on combinatorial and extensive experimental
co-crystal screens, which are time-consuming and expensive.9

One of the reasons why co-crystal synthesis has not yet
transitioned into a widely utilized technology is partly due to
challenges associated with finding molecules that are likely
to form a new solid crystalline form with the API.
Consequently, there is a need for cheaper, faster, and more
reliable methods for predicting when a pair of molecules will
form a co-crystal, and when they will not.

There are a handful of predictive methods for co-crystal
formation in the literature. However, some of these methods
are very complex and require in-depth knowledge of theoretical
chemistry and quantum mechanical methods.10–13 Such
methods also tend to be computationally expensive and less
suitable for systematic screens. Other methods have employed
combinations of data mining and structure-informatics, taking
advantage of over a million crystal structures of small molecules
in the Cambridge Structural Database (CSD).14–16 Thanks to the
presence of reliable and properly curated data in the CSD,
various structure-informatics methods such as hydrogen-bond
propensity,9,17 hydrogen-bond coordination,18 and molecular
complementarity19 developed by the Cambridge
Crystallographic Data Centre (CCDC) have been applied to co-
crystal prediction. One inherent problem with building a
predictive tool on existing crystal structures is that only positive
co-crystallization results are included, failed co-crystallizations
can by definition not be included in any training data set. With
this in mind, access to a new approach for accurately predicting
the outcome of co-crystallization reactions based on both
positive and negative experimental results could be of interest
to a broad spectrum of the organic solid-state community.
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The CoForm application

In order to address the wide-ranging needs for versatile
protocols for co-crystal synthesis, we have developed an
automated application for predicting the outcome of attempted
co-crystallizations. The work was motivated by a need to
streamline expensive and time-consuming experimental
processes for finding a suitable co-former candidate for any
given small-molecule API.

CoForm is based on a mathematical model that compares
the number of hydrogen-bond donors and acceptors of the
target of interest with the number of hydrogen-bond donors
and acceptors of a set of known compounds. Each target is
associated with a list of co-formers with which it forms co-
crystals (positive partners), and a list of co-formers with which
it does not form co-crystals (negative partners). See ESI† Fig. S1
for a detailed description of the algorithm. The database for
the known compounds is based on the outcome (as
determined using infrared spectroscopy) of approximately 2000
attempted co-crystallizations.20–23 The quality of the predictions
using CoForm is dependent on the compounds present in the
database, however, the app can be customized to work with
databases that are directly tailored to the type of target
compounds and co-formers that a prospective user is
specifically interested in. The automated algorithm is very fast
and accessible through an easy-to-use desktop application.
Moreover, users with relatively limited technical knowledge will
be able to use the app and interpret the results. The current
version of CoForm is based on a database that comprises 41
co-formers that are of general interest (OGI) for pharmaceutical
co-crystals and an additional 50 co-formers, which are
conventionally used in co-crystallization experiments (see ESI†
Table S1).

CoForm is built using the Groovy programming
language.24 Groovy was chosen because it is platform-
independent and, therefore, the app can be used on all three
major operating systems, i.e., Windows, Linux, and Mac OSX.
Moreover, Groovy is a scripting language that allows quick
prototyping of software.

CoForm requires two inputs from the user:
1. Number of hydrogen-bond donors (donor: molecule or

molecular fragment X–H in which X is an electronegative
atom such as N, O, and F).

2. Number of hydrogen-bond acceptors (acceptor: an
electronegative element such as N, and O).

The name of the target for which co-crystals need to be
predicted can also be incorporated to facilitate usability. The
target name is simply providing a label/tag for the search but
does not have any scientific meaning.

CoForm ranks the co-formers as ‘highly likely’, ‘likely’,
and ‘least likely’ to produce a co-crystal with a specific target.
The output is in the form of tables that can be exported as .
csv files. The most likely and least likely lists, as the names
suggest, correspond to the co-formers with the highest and
lowest probability of forming a co-crystal, respectively. The
likely lists consist of co-formers which were found to form

co-crystals with compounds in the database in some cases
and did not form in other cases. Since the co-crystallization
outcomes are binary, we assigned the likely list of co-formers
a ‘YES’ to co-crystallization. Although this will generate some
false positives, this is more preferable than predictions of
false negatives in the context of co-crystallization screens.

Validation study

In order to examine the accuracy of CoForm and its potential
limitations in predicting co-crystallization outcomes, we
carried out a systematic study where we matched the
predicted results with the experimental co-crystallization
outcomes for two known antihistamine drugs, loratadine,
and desloratadine, Fig. 1. The targets were chosen as they
have similar molecular backbone, but they present different
hydrogen-bond donor acceptor ratios. The experimental part
of the validation study involved attempted co-crystallizations,
using solvent-assisted grinding, of both APIs against 41 co-
formers on the OGI list (see ESI† Table S1).

CoForm is a data-driven predictive application based on
experimental data from attempted co-crystallization
experiments which include both successful and unsuccessful
reactions. In contrast, other structure-informatics analytical
tools such as hydrogen-bond propensity (HBP)25 and molecular
complementarity (MC)19 rely exclusively on existing
crystallographic data, but both methods can be used for
predicting co-crystallization outcomes (see ESI† Table S2). A
comparison of the prediction outcomes of CoForm, HBP and
MC methods was carried out on the same two molecules,
loratadine and desloratadine. The accuracy of each method was
determined by calculating the success rate, which is the number
of predictions that match the experimental results over the total
number of predictions (see ESI† S3–S6 for experimental and
predicted co-crystallization screening outcomes).

The three methods gave the following success rate for
predicting the outcome of 41 attempted co-crystallizations of
loratadine: CoForm, 78%, HBP, 76%, and MC 39%. A summary
of the results is displayed in a confusion matrix, Fig. 2.

30 of the 41 attempted co-crystallizations with loratadine
produced a positive result and CoForm, HBP, and MC
predicted these correctly at a success rate of 78%, 86%, and
26%, respectively. For the 11 reactions that did not produce a
co-crystal, the three methods correctly predicted this with a
success rate of 72% (CoForm), 45% (HBP), and 63% (MC).

Fig. 1 Molecular structures of a) loratadine; b) desloratadine.
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A similar analysis of the predictions for co-crystallizations
on desloratadine (again, 41 reactions were attempted) is
given in Fig. 3.

CoForm displays 89%, HBP 50%, and MC 16% prediction
accuracy for successful co-crystallization outcomes, and for
the failed attempts CoForm could not predict any of the five
instances correctly, while HBP and MC both predicted 3/5
instances correctly.

Overall for both loratadine and desloratadine, CoForm
produced higher success rates for the positive co-
crystallization experiments. When comparing the ratio of
successful to failed co-crystallization cases in our database,
we found that there is a total of 1136 successful co-crystals
and 649 failed co-crystals results. The positive outcomes
account for 68% of the total number of attempted reactions
which can help to explain why CoForm shows an imbalance
for predicting positive versus negative outcomes. In Table 1,
the overall success rates for the co-crystal predictions of
loratadine and desloratadine are listed.

Conclusions

The potential for using co-crystallization technology to alter
physical properties such as solubility and stability of various

high-value organic solid-state materials is gaining traction. A
key challenge is to be able to predict a priori which co-formers
are most likely to produce new solid forms of the target
compound. Therefore, we attempted to develop a fast and user-
friendly software application to facilitate co-crystallization
screening experiments. This app accurately predicted the
outcome 78% for loratadine and 78% for desloratadine
whereas HBP produced a success rate of 76% and 54% for
loratadine and desloratadine, respectively. Finally, MC
delivered a success rate of 39% and 22%, respectively.

We hope this tool will be further tested, refined, and
utilized by users interested in the crystalline solid-state,
especially in the context of improving physical properties.26

In addition, the app is a customizable tool and will produce
the most reliable outcomes, if the unknown target is a close
match (similar molecular weight, rotatable bonds, functional
groups) to the known targets in the database. Therefore,
having a user-specific database will undoubtedly increase the
predictive abilities of the app. We believe that the
customizability of CoForm can extend its usability to
hydrogen-bonded solids across areas such as pharmaceutics,
agrochemicals, and energetic materials.
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Fig. 2 Correlation between the experimental and predicted outcomes for loratadine.

Fig. 3 Correlation between the experimental and predicted outcomes for desloratadine.

Table 1 Success rates for predicting the co-crystal formation

Compounds Method Success rate

Loratadine CoForm 32/41 = 78%
HBP 31/41 = 76%
MC 16/41 = 39%

Desloratadine CoForm 32/41 = 78%
HBP 22/41 = 54%
MC 9/41 = 22%
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