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Abstract. Many tissues undergo a steady turnover, where cell divisions are on average balanced with
cell deaths. Cell fate decisions such as stem cell differentiations, proliferations, or differentiated cell
deaths, may be controlled by cell populations through cell-to-cell signaling. Here we examine a class
of mathematical models of turnover in stem cell lineages to understand engineering design principles of
control (feedback) loops, that may operate in such systems. By using ordinary differential equations
that describe the co-dynamics of stem cells and differentiated cells, we study the effect of different types
of mutations that interfere with feedback present within cellular networks. For instance, we find that
mutants that do not participate in feedback are less dangerous in the sense that they will not rise
from low numbers, whereas mutants that do not respond to feedback signals could rise and replace the
wild type population. Additionally, we asked if different feedback networks can have different degrees
of resilience against such mutations. We found that all minimal networks, that is networks consisting
of exactly one feedback loop that is sufficient for homeostatic stability of the wild type population,
are equally vulnerable. Mutants with a weakened/eliminated feedback parameter might expand from
lower numbers and either enter unlimited growth or reach an equilibrium with an increased number
of stem and differentiated cells. Therefore, from an evolutionary view point, it appears advantageous
to combine feedback loops, creating redundant feedback networks. Interestingly, from an engineering
prospective, not all such redundant systems are equally resilient. For some of them, any mutation that
weakens/eliminates one of the loops will lead to a population growth of stem cells. For others, the
population of stem cells can actually shrink as a result of “cutting” one of the loops, thus slowing down
further unwanted transformations.

1 Introduction

Many healthy tissues, such as epithelial tissues, undergo a steady turnover, where cell divisions are on
average at balance with cell deaths. Such tissues are often characterized by a hierarchical structure,
whereby cells differ by their degree of maturity/differentiation. Stem cells, which are the least mature,
undergo the processes of self-renewal and differentiation, giving rise to more differentiated offspring.
Nevertheless the cells of different levels of maturation maintain approximately constant populations. The
functioning of stem cell lineages at homeostasis is thought to be subject to cell-to cell regulation, whereby
different cell fate decisions are made with probabilities that are influenced by the cells’ environment. This
idea was proposed decades ago in the context of “chalones”, which are secreted tissue-specific substances
that inhibit proliferation to keep the organ from over-growing [1, 2].

Identifying the exact nature of the regulatory circuits that can stably maintain tissue homeostasis
is an area of active experimental research. There are several examples of systems where stem cell
(SC) reproduction rates are negatively regulated by the number of differentiated cells (DCs) through
soluble factors. These include bone morphogenetic protein regulating dynamics of hair follicles [3],
myostatin controlling muscle growth by acting upon myoblasts and satellite cells [4], and neutrophil
elastase antagonizing the effect of granulocyte-colony-stimulating factor G-CSF [5, 6].

Several mechanisms have been proposed to describe feedback loops that act in SC lineages to main-
tain homeostasis. In [7], tissue turnover in a range of organisms is discussed, and a particular model
organism, fresh-water planarian Schmidtea mediterranea, is used to study homeostasis regulation. Two
mechanisms of homeostatic regulation are proposed. One assumes that dividing SCs send a signal, which
evokes DC death and enhances SC’s own differentiation, whereby guaranteeing the removal of DCs and
the maintenance of a constant population size. The second mechanism involves dying DCs that send a
signal to SCs to activate their compensatory proliferation. The latter process has also been proposed in

1



the context of Drosophila studies, where it was described in terms of “social control” in cellular dynamics
[8, 9]. In humans, the death of DCs has been shown to trigger cell divisions in bladder cancer, where
a PGE2-mediated wound-healing type response was implicated [10, 11]. Thus, chemotherapy-induced
death of DCs resulted in a positive feedback signal that induced SC proliferation.

Given the evidence of feedback loops acting in SC lineages, tissue turnover in healthy and cancerous
systems has attracted considerable attention of mathematical and computational scientists. Mathemat-
ical models of SC lineages have been created, in particular, in the context of hematopoiesis, see e.g.
[12, 13, 14, 15, 16, 17, 18]. These models consider the dynamics of lineages that contain a number
of compartments that differ by their degree of differentiation, and include cell fate decisions such as
cell self-renewal, differentiation, and death. At the basis of the modeling is often a set of ordinary
differential equations, or integro-differential equations for more sophisticated, continuously structured
models [19]. Different assumptions on the control (feedback) loops acting in the systems have been
investigated, see also [20, 21]. Mutant dynamics in stem cell lineages have often been studied in the
context of leukemias, see also [22, 23, 24, 25, 26]. Other models adopted a spatial approach, which allows
more realism but is more difficult for analysis, see e.g. [27, 28, 29, 30]. These models are aimed at re-
vealing spatial mechanisms of tumor development in the presence of stem and non-stem cell co-dynamics.

In our previous work we built on the tradition of Kimmel and Marciniak-Czochra groups and adopted
an axiomatic approach to studying SC regulation in tissues undergoing turnover. Defining a “control
network” as a network of cellular decisions with specific feedback loops present, in [31] we established
a way to classify all possible such possible networks with the minimal number of feedback loops in
two- and three-compartment systems containing symmetric divisions (resulting in either self-renewal or
differentiation) and death. If the total (and not per-cell rates) are considered, we found that exactly
two feedback loops are necessary in two-compartment models and three loops are required in three-
compartment models. In [32] we applied this theory to experimental data on colonic crypts to deduce
possible feedback mechanisms that are responsible for regulating cell dynamics in the lineages. Note
that as the number of compartments increases, the number of theoretically possible feedback networks
increases dramatically. In [33] we attempted to make sense of this complexity. We used the formalism
of digraphs and established the requirements on the feedback networks (which are locally the Jacobians
of the ODEs and referred to as ‘control networks’ in the paper) that guarantee stability.

A question that came up but was not resolved in previous work is whether all stable networks are
equally “good”. From the engineering prospective, is there the best way to arrange feedback loops such
that the system is stable and is somehow harder to “break”? This is an important issue given that
the feedback loops, like all other protective adaptations, are at risk of being altered or destroyed by
mutations leading to selfish, malignant cell growth. Therefore, there is an evolutionary pressure to solve
the engineering problem of optimizing the resilience of the feedback network.

In the present paper we attempted to tackle this problem by comprehensively studying all the control
networks of a given complexity that are stable within a given system. Our base ODE model contains
only two compartments, but allows for a degree of complexity by including not only self-renewals, differ-
entiations, deaths, but also other processes such as de-differentiation of DCs and asymmetric divisions
of SCs. We introduce a very wide class of mutations that alter different aspects of the system, includ-
ing the way cells signal to other cells, the way cells react to feedback signals, and also other phenotypic
changes. We study both minimal and redundant feedback networks and investigate if they differ by their
resilience properties. For the purposes of the current study, resilience of a feedback network is equiva-
lent to being able to keep the populations as low as possible and avoid large fluctuations in population
size, even in the presence of selfish mutants with altered properties that are fitter than the wild type cells.

This paper is organized as follows. Section 2 presents the modeling framework and exhaustively
finds all the minimal feedback networks, that is, the regulation systems that have the minimum possible
number of feedback loops present. Section 3 introduces different types of mutations and studies the
co-dynamics of wild type and mutant cells; it identifies dangerous types of mutations and compares
the minimal feedback network properties in the presence of mutations. Section 4 studies all the 2-loop
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redundant feedback networks and compares their resilience properties in the presence of mutants. Section
5 contains discussion and conclusions.

2 Framework

Our model uses a very general two-compartment deterministic system with x denoting the number of
stem cells (SCs) and y the number of differentiated cells (DCs). The following processes are included,
see Table 1: SCs can divide and differentiate into two DCs with rate R, divide and self-renew with
rate SSC , divide asymmetrically with rate A, or die with rate DSC , while DCs die with rate DDC , de-
differentiate1 with rate B, or self-renew with rate SDC . Note that the self-renewal rate of DCs has been
added in this description, because the DC compartment may represent a conglomerate compartment
that contains cells that are not fully differentiated (such as transit amplifying cells). Figure 1(a) shows
all the processes schematically, and Table 1 lists the changes occurring in the populations of SCs and
DCs as a result of a single instance of each process. For example, a differentiation of a SC leads to a
decrease in the total number of SCs (∆x = −1) and an addition of two differentiated cells (∆y = 2).

Note that each rate could be affected by the presence, and the level, of SCs and/or DCs, resulting
in determination of cell fate decisions by the cellular populations, see [31]. Since the exact mechanisms
governing cell fate decisions are often unknown, we consider many possible cellular processes and make
no assumptions on functional forms that define feedback parameters. Instead, we use an axiomatic model
to account for the extensive possibilities [34, 35].

Rate Process ∆x ∆y

R Differentiation division of SCs -1 2
A Asymmetric division of SCs 0 1
B De-differentiation of DCs 1 -1
SSC Self-renewal of SCs 1 0
SDC Self-renewal of DCs 0 1
DSC Death of SCs -1 0
DDC Death of DCs 0 -1
S (Combined) self-renewal of SCs, S = SSC −DSC 1 0
D (Combined) death of DCs, D = DDC − SDC 0 -1

Table 1: Cellular processes: per cell rate notation, along with the variable names and resulting changes
in populations of SCs and DCs.

The general ordinary differential equations (ODEs) describing the dynamics are given by

ẋ = −x [R(x, y) + SSC(x, y)−DSC(x, y)] + yB(x, y), (1)

ẏ = x [2R(x, y) +A(x, y)]− y [DDC(x, y) +B(x, y)− SDC(x, y)] . (2)

Let us simplify and denote
S = SSC −DSC , D = DDC − SDC .

In other words, the process of SC death is absorbed in SC proliferation rate by reducing it, and the
process of DC proliferation is absorbed in DC death rate by reducing it. While SCs may die (DSC)
and DCs may self-renew (SDC), these processes are much less common than DC death (DDC) and SC
proliferation (SSC), so going forward we assume combined rates, S and D, are non-negative, unless
otherwise specified. Figure 1(b) shows a schematic of the processes in this model with the concatenated
rates.

1Note that we use symbol B for de-differentiation to signify that DCs are turning ‘back’ into SCs, as symbol D is
already taken by the death rate.
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Figure 1: A schematic showing the kinetic processes included in the (a) full model and (b) after using
the concatenated rates. The SCs and DCs are denoted by x and y circles, and black arrows represent
the kinetic rates that originate at the relevant population. Asymmetric divisions are marked by dashed
lines, and all rates are marked next to the corresponding arrows.

To further simplify the notations, let us assume each rate, R,S,D,A,B, is a function of SCs (x) and
DCs (y), unless otherwise specified, and drop the arguments. The ODE model then becomes

ẋ = x (−R+ S) + yB, (3)

ẏ = x (2R+A)− y (D +B) . (4)

2.1 The healthy equilibrium and the regulation of feedback

System (3-4) describes the dynamics of cell fate decisions in a healthy organ, therefore we will assume
that this system has a positive equilibrium, which we denote by (x̄, ȳ). This equilibrium satisfies

(−R+ S)x̄+Bȳ = 0, (5)

(2R+A)x̄− (D +B)ȳ = 0. (6)

The Jacobian, J0, is given by

J0 =

(
−R+ S + x̄(−Rx + Sx) + ȳBx x̄(−Ry + Sy) +B + ȳBy

2R+A+ x̄(2Rx +Ax)− ȳ(Dx +Bx) x̄(2Ry +Ay)− (D +B)− ȳ(Dy +By)

)
(7)

where subscripts denote partial derivatives, and all rate functions R,S,B,D,A and their derivatives are
evaluated at the equilibrium (x̄, ȳ). The stability conditions are

Tr J0 < 0, Det J0 > 0. (8)

For the rest of this study we assume these stability conditions are satisfied.
The dynamics of the system is then (locally) defined by the values of the partial derivatives evaluated

at the equilibrium:
Rx, Ry, Sx, Sy, Bx, By, Dx, Dy, Ax, Ay. (9)

We will refer to these quantities as “feedback parameters”. The total absence of feedback results in the
linear system (3-4) with constant rates; in this case no positive equilibrium exists.

Note that in this study, the rates R,S,B,D,A are defined per cell. If in the vicinity of the equilibrium,
the rate is a constant (that is, the derivatives with respect to x and y are zero), then we say that the
corresponding process has no feedback from the cell populations. In this case, the process happens with
a constant per cell intensity, and the total intensity is a linear function of the population size (x or y,
depending on which cell population is engaged is this process). We do not consider this dependence of
the total rate on the population as a “feedback parameter”, which is different from the terminology we
used in previous publications [31, 34, 35], where any dependence of total rates on any population was
regarded as “feedback”, or what in those papers was referred to as “control”.

If a per cell rate depends on x only (that is, the derivative with respect to x is nonzero while the
derivative with respect to y is zero in the vicinity of the equilibrium), we say that the process has a
feedback loop depending on x, or is regulated by x. Additionally, we say a feedback loop on the cellular
process Q that is mediated by x is positive (negative), that is x positively (negatively) regulates Q, when
the derivative of Q with respect to x is positive (negative). Similarly, with y, or with both x and y. We
make several assumptions about the equilibrium:
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• If a derivative is zero at equilibrium, then we assume that the function is a constant, at least in
a finite vicinity of the equilibrium. In Appendix A.1 we consider the case where the equilibrium
occurs at a critical point, such that while the derivative is zero at the equilibrium, the derivative
is nonzero everywhere in a (one-sided) vicinity of the equilibrium.

• We also assume that if the process takes place, then its intensity is nonzero at the equilibrium. That
is, if for example B(x, y) = 0 at the equilibrium, then we assume that B is (locally) a constant.
In Appendix A.2 we consider the case where this does not hold, for example, B(x, y) = 0 at
the equilibrium (no de-differentiation at the equilibrium), but there is a positive de-differentiation
intensity on one or both sides of the equilibrium.

2.2 Minimal feedback

A minimal feedback network is a system with the smallest number of nonzero elements in list (9), for
which a positive equilibrium is stable. As mentioned, the total absence of feedback cannot lead to a
stable equilibrium, and thus at least one feedback loop is necessary for stable homeostasis.

In order to find all minimal feedback networks, we consider two cases: (1) B = 0 (no DC de-
differentiation) and (2) B > 0.

(1) In the absence of DC de-differentiation: B = 0. In this case, expressions are particularly
simple. At equilibrium we have

R(x̄, ȳ) = S(x̄, ȳ), (10)

that is, the rate of self-renewals is equal to the rate of differentiation divisions. It follows at least one
of these quantities should be non-constant, because we assume that having two constant rates exactly
equal to each other is a degenerate case. The Jacobian (7) simplifies to

J0 =

(
x̄(−Rx + Sx) x̄(−Ry + Sy)

2R+A+ x̄(2Rx +Ax)− ȳDx x̄(2Ry +Ay)−D − ȳDy

)
.

From the requirement that Det J0 > 0 it again follows that at least one of the quantities Rx, Ry, Sx, Sy
has to be nonzero, that is, self-renewals or differentiations of SCs must be regulated by a feedback loop.
Further, for stability we need R > 0, S > 0 and D > 0.2 The minimal feedback can then be found by
assuming SC self-renewal or differentiation is influenced by either population and then solving for the
feedback parameters that satisfy the stability conditions given in (8). They are as follows:

(i) SCs positively regulate their differentiation divisions : Rx > 0, and no other dependencies
exist, such that Ry = 0, and S,A,D are constants.
In this case, the eigenvalues are real and negative: −x̄Rx,−D.

(ii) DCs positively regulate the differentiation divisions of SCs: 0 < Ry < D/(2x̄), and no other
dependencies exist, such that Rx = 0, and S,A,D are constants.
For this minimal case, we have

Tr(J0)2 − 4Det(J0) = (D − 2x̄Ry)2 − 4x̄Ry(2R+A). (11)

If (11) is negative, the eigenvalues are complex and the system will oscillate around the
equilibrium. Otherwise if (11) is positive, the system will be non-oscillatory. Figures 2 (a)
and (b) show oscillatory and non-oscillatory examples of this minimal feedback network.

(iii) SCs negatively regulate their self-renewal divisions: Sx < 0, and no other dependencies exist,
such that Sy = 0, and R,A,D are constants.
The eigenvalues xSx,−D are real and negative.

2If R ≡ 0 or S ≡ 0, then at equilibrium S (R) must also be zero, and by our previous assumption then both rates are
identically 0, which violates the requirement that at least one of these rates must have feedback. Further, D > 0 at the
equilibrium because equation (6) must be satisfied and (2R + A)x̄ > 0.
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Figure 2: Minimal feedback examples in the absence of de-differentiation, where the system can be
either oscillatory or non-oscillatory. (a) and (b) are examples of minimal feedback network (ii) where
R is positively regulated by y, 0 < Ry < D/(2x̄), and (c) and (d) are examples for minimal feedback
networks (iv) when S is negatively regulated by y, Sy < 0. (a) We take R(y) = 1 − e−0.0001y, S = .5,
D = .4, A = .1, along with initial conditions x(0) = 10 and y(0) = 10. (b) We take the same function
for R(y) along with S = .05, D = .7, A = .4, and the same initial conditions. (c) Here S(y) = 1

0.001y+1 ,

R = .7, D = .1, A = .1, x(0) = 10 and y(0) = 10. (d) Here S(y) is the same as before with R = .05,
D = .7, A = .4 and the same initial conditions.

(iv) DCs negatively regulate the self-renewal divisions of SCs: Sy < 0, and no other dependencies
exist, such that Sx = 0, and R,A,D are constants.
For this minimal case, we have

Tr(J0)2 − 4Det(J0) = D2 + 4x̄Sy(2R+A). (12)

If (12) is negative, the system if oscillatory. Figures 2 (c) and (d) show oscillatory and
non-oscillatory examples in this minimal feedback network.

To summarize, in the absence of de-differentiation, the system can maintain stability through a
positive regulation of SC differentiation or a negative regulation of their self-renewal, by either SC or a
DC populations, that is, increasing either population must result in an increase in differentiations or a
decrease or self-renewals. Note that when de-differentiation is absent, regulation of the DC death rate
D or the rate of asymmetric division A alone are not sufficient for stability. Numerical examples of
oscillatory and non-oscillatory minimal networks for cases (ii) and (iv) are shown in Figure 2.

(2) In the presence of DC de-differentiation: B > 0. Now, when evaluating the Jacobian in (7),
instead of (10), we have inequality

R > S, (13)
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that is, the rate of differentiation divisions is higher than the rate of self-renewals (which increase the
number of SCs along with de-differentiations from the DC compartment). The following identity holds:

x̄

ȳ
=

B

R− S
=

D +B

2R+A
. (14)

In this case, feedback on R and S is also sufficient for stability, except the conditions become slightly
more complicated. In addition, there are several other possibilities, as listed below. In the descriptions
(i-x) below, we implicitly assume that all the kinetic rates are independent of x and y, except the specific
dependencies listed.

(i) SCs positively regulate their differentiation divisions: Rx > 0. This minimal network ad-
ditionally requires that B < D for stability, that is DCs are more likely to die than to
de-differentiate. To prove this inequality, we rearrange the equilibrium equations

x̄(−R(x̄) + S) + ȳB = 0, x̄(2R(x̄) +A)− ȳ(D +B) = 0,

solve both for x̄/ȳ, and set them equal to each other to obtain

0 = R(x̄)(B −D) +AB + SD + SB,

which implies B < D.

(ii) DCs positively regulate differentiation divisions of SCs: 0 < Ry <
x̄(D+B)+ȳB

2x̄2 . As in (i), this
case also requires B < D for stability.

(iii) SCs negatively regulate their self-renewal divisions: Sx < 0.

(iv) DCs negatively regulate self-renewal divisions of SCs: Sy < 0

Note that these are generalizations of the feedback parameters obtained with B = 0, to positive values
of B. Additionally, we have the following new possibilities:

(v) SCs negatively regulate de-differentiation of DCs: Bx < 0.

(vi) SCs negatively regulate de-differentiation of DCs: − x̄(D+B)+ȳB
x̄ȳ < By < 0.

(vii) SCs positively regulate death of DCs: Dx > 0.

(viii) DCs positively regulate death of DCs: Dy > 0.

(ix) SCs negatively regulate the rate of asymmetric SC divisions: Ax < 0.

(x) DCs negatively regulate the rate of asymmetric SC divisions: Ay < 0.

Table 2 presents all the cases of minimum feedback and illustrates them with the corresponding
schematic. Interestingly, in the presence of de-differentiation, stability of an equilibrium can be achieved
through regulation of any rate, by either of the populations. In particular, to stabilize the system, SC
differentiation or DC death should be regulated positively (increase with cell populations), and SC self-
renewals and asymmetric divisions as well as de-differentiations should be regulated negatively (decrease
with cell populations). These results are not too surprising if one uses the following intuition. SC
differentiation decreases the number of SCs, and thus increasing its rate will prevent the system from
uncontrolled growth. DC death can also decrease the number of SCs indirectly, by reducing the flow
of de-differentiating DCs that replenishes the SC pool. Therefore, increasing DC death can prevent
uncontrolled growth, a mechanism that is only possible in the presence of de-differentiation. On the
other hand, SC self-renewals, asymmetric divisions, and DC de-differentiation all directly increase the
number of SCs, and thus these processes must be regulated negatively for homeostasis.

Note that we have assumed the rate of DC cell death is greater than that of DC self-renewal, that is
D > 0. If this assumption is reversed, corresponding to DCs behaving more like SCs, then the minimal
feedback loops above will change. These new minimal feedback loops are described in Appendix A.3.
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Table 2: Minimum feedback cases (i-x). In the diagrams, the SCs and DCs are denoted by x and
y circles, and black arrows represent the kinetic rates. The red positive and negative arrows indicate
feedback loops; they originate at the population that mediates the feedback and point toward the process
whose rate is being regulated.
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2.3 Mutations

Thus far we have modeled healthy tissue in a state of homeostasis and determined that at least one
feedback loop is necessary to maintain that homeostasis. Next, we introduce mutations and investigate
their effect on the network. These mutations will create phenotypically different populations that have
the same basic hierarchical structure (that is, SCs and DCs) as the wild type cells, but do not “play by
the same rules”.

To introduce mutations, we have to adapt our ODE model to formulate a coupled system that
describes the co-dynamics of four sub-populations: (x1, y1, x2, y2). Subscript 1 represents the wild type,
or normal, cells, such that we have wild type SCs (x1) and wild type DCs (y1), and subscript 2 represents
the mutant populations consisting of mutant SCs (x2) and mutant DCs (y2). We will assume that the
sub-populations are separate in the sense that cells of the wild type populations can only give rise to
wild type cells, and cells of the mutant populations can only give rise to mutant cells. No continuous
mutation process is assumed, and the existence of mutants will be investigated by introducing a small
number of such cells as an initial condition. Mutant cells may differ from the wild type cells by their
cellular kinetic rates; below we denote the mutant rates by tildes:

ẋ1 = x1[−R(x1, x2, y1, y2) + S(x1, x2, y1, y2)] + y1B(x1, x2, y1, y2), (15)

ẏ1 = x1[2R(x1, x2, y1, y2) +A(x1, x2, y1, y2)]

−y1[D(x1, x2, y1, y2) +B(x1, x2, y1, y2)], (16)

ẋ2 = x2[−R̃(x1, x2, y1, y2) + S̃(x1, x2, y1, y2)] + y2B̃(x1, x2, y1, y2), (17)

ẏ2 = x2[2R̃(x1, x2, y1, y2) + Ã(x1, x2, y1, y2)]

−y2[D̃(x1, x2, y1, y2) + B̃(x1, x2, y1, y2)], (18)

Further, in the absence of mutants, the first two equations should be identical to Equations (3-4), which
means that we must assume

Q(x1, 0, y1, 0) = Q(x1, y1).

Here Q stands for any of the kinetic rates R, S, etc, the left hand side contains a rate from system
(15-18), and the right hand side contains the corresponding rate from system (3-4). This requirement
guarantees that solution

x1 = x̄, y1 = ȳ, x2 = y2 = 0 (19)

is an equilibrium of system (15-18). While solution (x̄, ȳ) is assumed to be stable in system (3-4), stability
of solution (19) in the 4-component system (15-18) will depend on the rates. In this framework we will
study the stability properties of this equilibria in the presence of mutants under different assumptions
on their properties.

As already mentioned, no de novo mutations are considered here. The concept of linear stability
analysis of solution (19) implies a perturbation, which has the meaning of introducing a small number
of mutants in a system that is mostly comprised of wild type cells at equilibrium. Analysis will reveal
under what conditions mutants have a chance of taking off and replacing the resident wild type cells.

The Jacobian evaluated at equilibrium (19) is given by

J =

(
J0 ∗
0 Jmut

)
,

where J0 is the original Jacobian of the normal cells given in (7) and evaluated at the same equilibrium
(because x2 = y2 = 0), and the star denotes entries that are not important for the stability analysis.
Matrix Jmut is given by

Jmut =

(
−R̃+ S̃ B̃

2R̃+ Ã −D̃ − B̃

)
, (20)

where each rate is evaluated at equilibrium (19). Since matrix J0 is stable (that is, has eigenvalues with
negative real parts), stability of solution (19) is defined by the eigenvalues of matrix Jmut. We have

Tr(Jmut) = −R̃+ S̃ − D̃ − B̃, (21)

Det(Jmut) = (R̃− S̃)(D̃ + B̃)− B̃(2R̃+ Ã), (22)
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evaluated at (19). If Tr(Jmut) < 0 and Det(Jmut) > 0, the homeostatic solution is stable and the mutant
will go extinct. If either of these inequalities reverses, then the corresponding mutant can rise from low
numbers. Note that Tr(Jmut) > 0 implies that

S̃ > R̃+ D̃ + B̃,

but Det(Jmut) < 0 implies that

S̃ > R̃− B̃(2R̃+ Ã)

D̃ + B̃
, (23)

which is a weaker condition. Therefore, a necessary and sufficient condition for instability is inequality
(23). Note that if B̃ = 0, it simplifies to

S̃ > R̃. (24)

Below we introduce several classes of mutants and investigate whether they are “dangerous”, that is,
if they have an ability to invade.

A a note on the methodology. The dynamical system describing lineage regulations is non-linear.
Below we use linear analysis to explore the possibility of initial mutant growth. We also go beyond local
analysis to investigate whether the population will increase or decrease as a result of an outgrowth of
a mutant that enjoys a selective advantage. In this context, we will compare two stable equilibria: the
initial one that corresponds to the system in the absence of mutations, and the mutant equilibrium that
is reached after the mutant is introduced and takes over.

3 Different classes of mutants and their invasion properties

Mutant properties are reflected in two different aspects of system (15-18):

1. The way rates Q depend on their arguments and x2 and y2, and

2. The way the rates Q̃ differ from the corresponding rates of the wild type cells, Q.

The following represents the special case of neutral mutants, whose properties are identical to the
properties of the wild type cells:

Q(x1, x2, y1, y2) = Q(x1 + x2, y1 + y2), Q̃(x1, x2, y1, y2) = Q(x1, x2, y1, y2) ∀Q, Q̃.

This means that all rates depend on total numbers of SCs and DCs, and the mutant rates are the same as
wild type rates. In this case, because of inequality (13), the trace in Equation (21) is negative. Further,
because of identity (14), the determinant in Equation (22) is identically zero, which corresponds to the
neutrality of mutants. In other words, an infinite family of equilibrium solutions exist where

x1 + x2 = x̄, y1 + y2 = ȳ,

for any positive values of the mutant and wild type sub-populations.
Next we examine several cases of mutants whose properties differ from those of the wild type cells.

3.1 Mutants that do not participate in feedback

The first type of mutation that we consider is where the mutant populations do not participate in
regulating one or more rates. Take 0 ≤ αQ ≤ 1 and 0 ≤ βQ ≤ 1 where Q represents the rate functions,
and assume that

Q(x1, x2, y1, y2) = Q̃(x1, x2, y1, y2) = Q(x1 + αQx2, y1 + βQy2).

In other words, referring back to the list of mutant properties at the beginning of Section 3, we can say
that
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1. The rates Q depend on weighted sums of SCs and DCs, instead of the total SC and DC populations,
such that mutants can contribute disproportionately little to the regulation of cell fate processes;

2. The rates Q̃ are not different from the corresponding rates of the wild type cells, Q.

If the mutant does not contribute to the regulation of process Q, then we set αQ = 0 and βQ = 0. Full
contribution of population x2 (y2) corresponds to setting αQ = 1, βQ = 1, resulting in a neutral mutant.
Note that this flexible framework allows for partial loss of contribution (intermediate values of αQ, βQ).

At the equilibrium of interest, Equation (19), we can see that the rates in expressions (21-22) are
given by Q(x̄, ȳ) and thus the same argument holds as used above for neutral mutants, that is, because
of inequality (13), the trace in Equation (21) is negative, and because of identity (14), the determinant
in Equation (22) is identically zero. Note also that as αQ and βQ do not appear in Jmut, even if mutants
were to increase participation in function regulation (αQ > 1 or βQ > 1) there would be no effect on
equilibrium and the solution would remain neutrally stable.

Thus mutants that do not participate in regulating one or more rates do not cause any biological
problems. In a stochastic system, they do not expand but remain drifting, and the system with such
mutants remains at homeostasis. This is consistent with the results reported in [36] for a different class
of models.

3.2 Mutants that lose response to feedback

The previous mutation type where mutants do not participate in one or more feedback loops was non-
harmful, so we consider another type of mutation where the mutant populations lose some or all response
to one or more existing feedback loops. Again referring to the list of mutant properties at the beginning
of Section 3, we assume here that

1. The rates Q depend on the total SC and DC populations, denoted as

x = x1 + x2, y = y1 + y2.

2. For rates Q that are under regulation in the wild-type system, one or more mutant rates, Q̃, are
different from the corresponding rates of the wild type cells in that cell fate decisions are not
regulated to the same degree. Assuming 0 ≤ γQ ≤ 1 and 0 ≤ δQ ≤ 1, we set

Q̃(x, y) = Q(γQx, δQy).

These assumptions result in the following system:

ẋ1 = x1(−R(x, y) + S(x, y)) + y1B(x, y), (25)

ẏ1 = x1(2R(x, y) +A(x, y))− y1(D(x, y) +B(x, y)), (26)

ẋ2 = x2(−R(γRx, δRy) + S(γSx, δSy)) + y2B(γBx, δBy), (27)

ẏ2 = x2(2R(γRx, δRy) +A(γAx, δAy))− y2(D(γDx, δDy) +B(γBx, δBy)). (28)

The mutant rate Q̃’s response to the total SC population x is governed by weight γQ, and its response
to the total DC population y is governed by weight δQ. If the mutant does not respond to any SC
regulation, then γQ = 0, and if the mutant does not respond to any DC regulation, then δQ = 0. If the
mutant’s response to regulation by the population x (y) is unaffected, then γQ = 1 (δQ = 1). Similar to
mutants that do not participate in feedback, this framework allows for the possibility that only partial
regulation of feedback is lost. Additionally, this framework allows for the possibility that regulation is
increased, if we assume γQ > 1 or δQ > 1.

Again we consider the equilibrium of interest, (19). We can see that depending on the shape of the
rate functions and the values of γQ and δQ, we could have different outcomes. If the determinant in
(22) is positive, then this mutated network is non-neutral, the equilibrium of interest is stable, and the
mutant populations will not grow. On the other hand, that is, if condition (23) is satisfied, this system is
no longer stable and the mutant populations may grow. Thus, this type of mutation where mutants lose
response to regulated rates, that is rates influenced by a feedback loop, may result in mutant populations
growing from low numbers.
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3.2.1 Specific Case: No feedback

In the most extreme case, we assume that mutant populations do not obey any of the feedback loops,
so γQ = δQ = 0 for each rate Q. Then the system of ODEs becomes

ẋ1 = x1(−R(x, y) + S(x, y)) + y1B(x, y), (29)

ẏ1 = x1(2R(x, y) +A(x, y))− y1(D(x, y) +B(x, y)), (30)

ẋ2 = x2(−R̄+ S̄) + y2B̄, (31)

ẏ2 = x2(2R̄+ Ā)− y2(D̄ + B̄), (32)

where each mutant rate has argument (0, 0) and is a constant, and we denoted Q(0, 0) ≡ Q̄. The (linear)
equations for the mutant populations decouple from the rest, and we can see that the system behavior is
determined by the matrix (20) with Q̃ = Q̄. The solution tends to infinity if condition (23) is satisfied.
Otherwise, the linear system has a global zero equilibrium, corresponding to mutant extinction. In the
case where B̄ = 0, we have a simpler condition (24) for instability. In other words, mutant SCs must
self-renew faster than they differentiate in order for the mutant populations to grow from low numbers.

3.2.2 Effect of mutation on minimal feedback cases

As shown above, losing response to feedback may or may not result in mutant growth, depending on
the feedback parameters within the network. To obtain more concrete results, let us apply this theory
to the specific minimal feedback networks found in Section 2.2.

Assume we have a minimal feedback network, and a mutation affects the response to the (single)
existing feedback loop. In the case where the loss of response is complete (γQ = 0 or δQ = 0 for the
single regulated rate, Q), results of the previous section apply, and the mutant will enter unbounded
growth.

Next, let us assume that mutants are characterized by partial loss of regulation. For instance, in the
absence of DC de-differentiation (B = 0) the minimal feedback network (i) requires R to be an increasing
function of x, and so if mutants partially lose response to R, (i.e. 0 < γR < 1), then R̄ will be less than
it was pre-mutation and DetJmut will decrease from 0. Thus DetJmut < 0 (condition (24)), and the
system is unstable. In other words, any partial loss of feedback in this situation confers advantage to
the mutant, resulting in the instability of the wild-type homeostatic solution. The system however may
have a different, stable steady state (which we will denote as (0, 0, x̂, ŷ)). This new state is characterized
by a system similar to Equations (5-6), except the function R is evaluated at γRx̂:

(−R(γRx̂) + S)x̂+Bŷ = 0, (33)

(2R(γRx̂) +A)x̂− (D +B)ŷ = 0. (34)

With B = 0, the first equation above (R(γRx̂) = S) allows us to find the new value of the SC population,
which, given Rx > 0 and 0 < γR < 1, is higher than x̄, the old equilibrium. From Equation (34) we can
then see that ŷ > ȳ.

The minimal feedback networks (ii), (iii), and (iv) respond similarly, such that any partial loss of
response breaks stability and results in mutant population growth, and a new stable equilibrium (this
can be shown by an argument almost identical to the one for case (i)). In the presence of DC de-
differentiation (B > 0), for each of the minimal feedback networks (i) - (x) the loss of response to
feedback will again result in DetJmut < 0 (condition (23)), loss of stability of the wild-type equilibrium
(19), and gain of stability of a new, mutant equilibrium with populations (x̂, ŷ). In this case, we can
prove again that x̂ > x̄, ŷ > ȳ (that is, the populations at the new equilibrium are always larger than
those at the original healthy solution). Again, let us use the example of feedback network (i). From
Equations (33-34) we can express

ŷ

x̂
=

R(γRx̂)− S
B

, (35)

ŷ

x̂
=

2R(γRx̂) +A

D +B
. (36)
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Then setting them equal, we can solve for R(γRx̂):

R(γRx̂) =
AB + S(D +B)

D −B
.

On the other hand, at the wild type equilibrium (19), we have

R(x̄) =
AB + S(D +B)

D −B
.

From R(γRx̂) = R(x̄) we obtain x̂ > x̄, and furthermore, from (36) and an equivalent identity at the old
equilibrium,

ȳ

x̄
=

2R(x̄) +A

D +B
,

we conclude that
ŷ

x̂
=
ȳ

x̄
,

and therefore ŷ > ȳ. A very similar proof holds for any other feedback loop (not shown). Thus we must
have both x̂ > x̄ and ŷ > ȳ, that is, the populations at the mutant equilibrium are greater than the wild
type populations at the original equilibrium.

For completeness, we note also that for these minimal networks, if either γQ or δQ is greater than one,
indicating more response to regulation for mutants rather than loss of response to regulation, the sta-
bility conditions are satisfied, and thus solution (19) is stable (i.e. the mutant of this type will go extinct).

To summarize, all the minimal cases are equally easy to “break” by a mutation conferring a total
loss of the existing feedback, resulting in an unbounded growth of mutants. Partial loss of feedback will
always result in an outgrowth of mutants that have an advantage, but the new system will contain a
stable equilibrium. The total populations of mutant SCs and DCs are always larger than the original
wild type populations.

3.3 Other phenotypic changes

So far, we introduced mutation types that changed one or more existing feedback loops. In particular,
in Section 3.1 the dependence of a rate function on the mutant populations was different than the
dependence on the wild type populations, and in Section 3.2, mutants were subject to weaker regulation.
While one was ineffective, the other could result in mutant growth under specific conditions. Next, we
investigate mutations that change kinetic rates, not one or more existing feedback loops. Therefore, we
assume here that

1. As in Section 3.2, mutants contribute equally to feedback, i.e. the rates Q depend on the total SC
and DC populations.

2. We assume that the mutant rate, Q̃, is different from the corresponding wild-type rate, Q, where
Q may or may not be regulated in the original system. In particular, if a certain rate is constant
for the wild type cells, it could become a function of x or y (or become a different constant); if
it is a function of x and/or y for the wild type cells, it could become a different function (or a
constant). More then one such rate could be affected.

Instability (that is, mutants’ ability to grow from small numbers) requires that condition (23) is satisfied,
which can be reformulated as follows:

(R̃− S̃)(D̃ + B̃)− B̃(2R̃+ Ã) < 0, (37)

where the expressions above are evaluated at the equilibrium of interest (19). Let us assume that a
mutation only alters a single kinetic rate. The following changes can satisfy (37):

(1) Decrease SC differentiation, R;
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(2) Increase SC self-renewal, S;

(3) Increase the DC de-differentiation rate, B;

(4) Decrease DC death rate, D;

(5) Increase asymmetric SC divisions, A – but only in the presence of de-differentiations (B > 0).

Mutations of type (4) above may have a different nature depending on whether or not de-differentiation
takes place in the system. If B = 0 (no de-differentiation), decreasing the rate D can only cause insta-
bility if D becomes negative. This results in DCs becoming more likely to self-renew than they are to
die, which would biologically correspond to DCs evolving into more stem-like cells. In the presence of
de-differentiations (B > 0) a change in D may cause instability even if D is still positive.

3.3.1 Minimal networks

Let us assume that the healthy system is regulated by one of the minimum feedback loops (i-x), and
mutants are characterized by a change of type (1-5) above, which affects a single rate. It is convenient
to define the following function:

H(R,S,B,D,A) = (R− S)(D +B)− (2R+A)B. (38)

At the wild type equilibrium, we have

H(R,S,B,D,A)|x̄,ȳ =

[
(R− S)(D +B)− (2R+A)B

]
x̄,ȳ

= 0. (39)

This identity can be obtained by treating the equations at the equilibrium as a linear algebraic system
for x̄ and ȳ, and requiring its degeneracy for a nontrivial solution. This is equivalent to stating that
Det Jw.t. = 0, where Jw.t. is similar to matrix Jmut, expect all the functions correspond to those of wild
type cells. To guarantee that the wild type solution is unstable, we need to require that Det Jmut < 0,
which is identical to the inequality

H(R̃, S̃, B̃, D̃, Ã)|x̄,ȳ =

[
(R̃− S̃)(D̃ + B̃)− (2R̃+ Ã)B̃

]
x̄,ȳ

< 0. (40)

Let us suppose that only one of the rates Q̃ in expression (40) is different from the corresponding
wild type rate, Q. What kind of changes will guarantee the correct sign of inequality (40)? To answer
this question we notice that H is monotonic in all the rates, and (under B > 0)

∂H

∂R
> 0,

∂H

∂S
< 0,

∂H

∂B
< 0,

∂H

∂D
> 0,

∂H

∂A
< 0. (41)

Next recall that minimum feedback loops are characterized by certain signs of the derivatives of the
regulated functions with respect to population sizes, see Table 2 (here we denote by z any variable x
and y):

Rz > 0, Sz < 0, Bz < 0, Dz > 0, Az < 0. (42)

Notice that positive derivative signs are associated with the rates that influence H in a positive way,
and negative signs corresponds to the rates that influence H negatively. Combining these signs of the
derivatives, we obtain that

∂H

∂x
> 0,

∂H

∂y
> 0. (43)

From Inequalities (41), we can see that to decrease H below zero, we can decrease R, increase S,
increase B, decrease D, or increase A. These are exactly the mutation mechanisms (1-5) above.

Suppose that one of these five phenotypic changes have occurred. Note that if the minimal feedback
was altered to be a constant that satisfied (40), then the mutant populations would satisfy a linear
system and undergo unlimited growth. This possibility has already been considered in Section 3.2. In
order to investigate the long term effect of other phenotypic changes, we make the following assumptions:
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1. If the original minimal network is regulated by x (y), then the mutated one is also regulated by
the same population x (y).

2. All the rates are monotonic. In particular, the single minimal feedback loop is a monotonic function,
that is, the inequality satisfied by the derivative holds globally, and not just at the equilibrium.
Also, rates characterizing the mutant network are monotonic.

3. The affected mutant rate satisfies one of the conditions (1-5) above, and the inequalities are global.
For example, if it is rate R that is affected, we require R̃(z) < R(z) for all relevant values of the
variable z (here z stands for x or y).

Given these assumptions, we show that if a new equilibrium exists, and if the minimal feedback net-
work contains a dependence on x (y), then the new SC (DC) population is larger than the corresponding
equilibrium wild type population. In any minimal network, only one of the rates is a function of x or y.
By (43), H is a monotonically increasing function. Let us assume that a new mutant equilibrium exists.
Then it satisfies

H(R̃, S̃, B̃, D̃, Ã)|x̂,ŷ =

[
(R̃− S̃)(D̃ + B̃)− (2R̃+ Ã)B̃

]
x̂,ŷ

= 0. (44)

Let us assume that the minimum feedback loop contains an x-dependence of a rate Q, the rate that is
regulated for the wild type cells. The function H with wild-type rates, H(R,S,B,D,A), is an increasing
function of x, which crosses 0 at x = x̄. The function H with modified (mutant) rates, H(R̃, S̃, B̃, D̃, Ã),
is a function of x that lies below H(R,S,B,D,A) (assumption 3 above). Therefore, if the mutant
function crosses 0, it happens at a value x̂ > x̄. Similarly, one can show that if the dependence is on
y, then ŷ > ȳ. We conclude that if a system with a minimum feedback loop experiences a
mutation and a new equilibrium is reached, the population that mediates the minimum
feedback loop will be larger at the new equilibrium.

Further, if the modified rate coincides with the regulated rate, then it is easy to show that
both populations will increase. For example, if the minimal feedback involves rate Q(x) regulated
by the SCs, and the modified rate is Q̃(x), then comparing (39) and (44) we obtain Q̃(x̂) = Q(x̄), which
in turn gives us that x̂

ŷ = x̄
ȳ . Then inequality x̂ > x̄ that was proven above, implies ŷ > ȳ. The argument

for minimal feedback loops regulated by the DCs is very similar.
If the mutants are characterized by a rate that is different from the rate regulated by the minimal

network, then we can only conclude that in the resulting equilibrium, either x̂ > x̄ or ŷ > ȳ (depending
on whether it is x or y that is involved in the minimal feedback); the other population of mutants at the
new equilibrium may be smaller or larger than the corresponding original wild type population.

3.3.2 Numerical examples

Figure 3 shows examples of dangerous phenotypic changes described above, in the context of minimum
network (i) with B = 0. The original system’s function R(x) and (constant) S are shown in panel (a)
with solid lines, as functions of x. The equilibrium value of x (under B = 0) is given by the intersection
of these two functions.

Mechanism (1) above requires a decrease in R(x). This is implemented in panels (b-1) and (b-2). In
these plots, we show four populations: wild type SCs and DCs (black solid and dashed lines respectively),
and mutant SCs and DCs (red solid and dashed lines respectively). In each plot, we start with the wild
type equilibrium solution (in the absence of mutants, x2 = y2 = 0), and then at time t = 100 introduce
a small amount of mutant cells. In panel (b-1), the mutants are characterized by rate R given by the
dashed line in (a). Since the mutant’s rate R̃(x) still has an intersection with S, a new equilibrium is
reached, as we can see from the behavior of the red lines in panel (b-1). As expected, the new equilibrium
population levels are larger than the wild type equilibrium ones. In panel (b-2), we study a phenotypic
change of the same type, but the new function R(x) is given by the dotted line in panel (a) and does
not contain an intersection with S. In this case, the mutants take off and enter unbounded growth.

Mechanism (2) is characterized by an increase in self-renewal and is presented in panels (c-1) (S̃ = 0.7)
and (c-2) (S̃ = 1.1), see the dashed and dotted horizontal lines in panel (a). In the former case, an
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Figure 3: Examples of mutations described in Section 3.3, that can grow from low numbers, using
minimum network (i) with R(x) = 0.1 + 0.9(1 − e−0.001x), S = 0.5, A = 0.1, D = 0.4, B = 0, with wild
type steady state x̄1 = 587.8, ȳ1 = 1616.4. (a) Rates R(x) and a constant S are shown as functions
of x by solid lines. Changes in these functions are depicted as dashed (R̃(x) = 0.9(1 − e−0.001x),
S̃ = 0.7) and dotted (R̃(x) = 0.1 + 0.35(1 − e−0.001x), S̃ = 1.1) lines. (b-e) The rest of the panels
show the ODE simulations of the wild type (black) and mutant (red) populations of SCs (solid) and
DCs (dashed). Starting from the wild-type equilibrium in the absence of mutants, a small amount of
mutants are introduced at t = 100. The mutants are characterized by (b-1) R̃(x) = 0.9(1 − e−0.001x),
(b-2) R̃(x) = 0.1 + 0.35(1− e−0.001x), (c-1) S̃ = 0.7, (c-2) S̃ = 1.1, (d) D̃ = −0.01, (e-1) B̃ = 0.01, (e-2)
B̃ = 0.2.
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intersection with R(x) exists, and the mutant populations grow from low numbers and reach a new
equilibrium. In the latter case, R(x) does not intersect S̃, and the mutants grow to infinity.

Mechanism (3) is demonstrated in panels (e-1) and (e-2) of Figure 3, where mutants engage in
de-differentiations, B̃ > 0. Again, the two examples show mutant growth to a new equilibrium and
unbounded growth, depending on whether or not an equilibrium solution under for mutant rates.

Mechanism (4) is characterized by a decrease in the rate D, and in the absence of B, it must
become negative to create instability, which corresponds to mutant DCs regaining a degree of stemness:
SDC > DDC . This is demonstrated in Figure 3(d). In this case, mutant DCs grow without bounds,
while other populations remain finite.

Finally, mechanism (5) requires de-differentiations of wild types and is not presented here.

4 Redundant Networks

In Section 2.2 we discussed that in order to maintain homeostasis, a single feedback loop is enough. We
have listed all 10 such minimal feedback loops, and shown in Sections 3.2.2 and 3.3.1, which types of
mutations were required to “break” such a minimal network. We can “break” the network by causing
lessened response to the existing feedback, or through five other phenotypic changes ((1-5) in Section
3.3). We saw that minimal feedback networks are not resilient in that they can be “broken” by a single
mutation. Logically, a biological network will likely have redundant feedback loops so as to be more
resilient to mutations. Thus it is useful to investigate redundant networks.

In this section, we assume that two minimal feedback loops are in effect, and a mutant appears
that “breaks” one of the feedback loops, as found in Section 3.2.2 (the influence of other phenotypic
changes described in Section 3.3 is studied in Appendix B). Such mutants will start growing from low
numbers, but since a second feedback loop is still intact in the system, a new equilibrium may be reached,
preventing unlimited growth.

For the analysis below, we will make some simplifying assumptions. First, we again assume that the
local conditions on the rate functions stated in (i-x) of Section 2.2 hold globally. For example, minimum
feedback loop (i) requires that ∂R

∂x |x=x̄ > 0; here we will require that ∂R
∂x > 0 for all x. Further, we

assume that all the non-constant regulated rates are functions of the total populations, x = x1 + x2 and
y = y1 + y2. Finally, we will assume that the mutations lead to a complete or partial loss of one of the
existing feedback loops, as described in Section 3.2.

4.1 General analysis of redundant networks

At an equilibrium,
y

x
=

2R+A

D +B
=
R− S
B

. (45)

(Note that in the case of B = 0, this is restricted to the first equality). We will use the notation

µ =
y

x
, µ̄ =

ȳ

x̄
, µ̂ =

ŷ

x̂
.

Taking the derivative of µ in (45) with respect to all the rates we obtain that

∂µ

∂R
> 0,

∂µ

∂S
< 0,

∂µ

∂B
< 0,

∂µ

∂D
< 0,

∂µ

∂A
> 0. (46)

Using Inequalities (46) and the information on the signs of stable feedback parameters, Inequalities (42),
we can see how each of the feedback loops affect the fraction µ. For each minimal feedback loop, we can
calculate the signs of the change in µ as the relevant population increases (again, z here is either x or
y):

∂µ

∂R
Rz > 0,

∂µ

∂S
Sz > 0,

∂µ

∂B
Bz > 0,

∂µ

∂D
Dz < 0,

∂µ

∂A
Az < 0. (47)

These inequalities are important for distinguishing two classes of feedback. We can see that the first
three quantities in (47) are positive. This means that regulation of R,S, and B increase µ, which is DC
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to SC ratio. To explain this, note that for stability, a feedback loop must increase differentiations R as
a reaction to population growth, which results in an increase of DCs and an increase of µ. Similarly, S
(self-renewals) and B (de-differentiations) must decrease resulting in a decrease in SCs and an increase
in µ. On the other hand, the last two quantities in (47) are negative, that is, regulation of D and A
decrease µ. Indeed, for stability, an increase in the population must result in an increase in D or a
decrease in A (increased DC death or decreased asymmetric divisions will reduce the DC pool, slow
the total rate of de-differentiations and thus reduce the SC population). This change alone acts as to
decrease y and thus decrease µ.

Below we show that at least one of the populations will be larger at the mutant equilibrium
compared to the wild type equilibrium, and also derive some useful inequalities. We consider
two cases: in the first one, the redundant network contains a single rate regulated by two different
populations, and in the second one, there are two different rates regulated by the same or different
populations.

The redundant network is characterized by a single rate, regulated by two populations.
Let us denote this rate by Q(x, y), where both partial derivatives of function Q are nonzero, and H in
(38) is a function of two variables, x and y, through rate Q. At the wild type equilibrium, the function H
in (38) is evaluated at Q(x̄, ȳ); we will denote this quantity H̄, where H̄ = 0. At the mutant equilibrium,
it is evaluated at Q(γx̂, δŷ), where one of the quantities γ and δ is in the interval [0, 1) and the other
is 1. We will denote the corresponding quantity Ĥ, where again Ĥ = 0, since this is an equilibrium.
Note that because of Inequalities (43), lowering one of the arguments of the function H will require an
increase in the other argument, if the equality H = 0 were to be kept. It follows that for redundant
networks that involve a single rate regulated by two populations, one of the following inequalities must
hold:

If feedback by x is weakened, γx̂ < x̄, ŷ > ȳ or γx̂ > x̄, ŷ < ȳ, (48)

If feedback by y is weakened, δŷ < ȳ, x̂ > x̄ or δŷ > ȳ, x̂ < x̄. (49)

In particular, it is easy to see that we cannot have simultaneously x̂ < x̄ and ŷ < ȳ. This is because if
these two inequalities were true simultaneously, then we would have γx̂ < x̄ and δŷ < ȳ. This implies
Ĥ < H̄, which contradicts the fact that both of these quantities are equal to 0.

The redundant network is characterized by two distinct rates regulated by the same or
different populations. Before we perform the analysis, we notice that there is a general pattern of
rates’ dependencies that will be useful in the analysis below. Recall that for function H in (38) at an
equilibrium, the equation H = 0 holds. From this equation, any rate can be expressed in terms of the
remaining four rates. Let us make the following notations:

w1 = R, w2 = 1/(1 + S), w3 = 1/(1 +B), w4 = D, w5 = 1/(1 +A). (50)

Note that in this definition, the rates appear in the denominator whenever the rate is a decreasing
function of the population in a minimal feedback parameter, see (42). We have

∂H

∂wi
> 0, (wi)z > 0, 1 ≤ i ≤ 5. (51)

Let us solve equation H = 0 for each of wi, obtaining

w1 = W1(w2, w3, w4, w5), . . . , w5 = W5(w1, w2, w3, w4).

One can show that
∂Wi

∂wj
< 0, i 6= j, (52)

whenever Wi > 0. Intuitively, since the function H increases with each wi, increasing one of the wi’s
will lead to a decrease in another, as long as H = 0 holds.
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Suppose that the feedback network consists of feedback on rates Q1 and Q2, and that the rates
Q1 and Q2 are different. Without loss of generality, we assume that it is regulation of Q1 that is
subsequently eliminated/weakened by a mutation. Rate Q1 may be regulated by x or y, and rate Q2

can be regulated by x or y. Again, to make the description more concrete, let us suppose that Q1 is
regulated by population z1 and rate Q2 is regulated by population z2, where z1 and z2 may be the same
or different populations.

Let us switch to the description given in (50), refer to the obtained functions as q1 and q2, and only
keep the explicit dependence on these rates (because the other ones are constant).3 We have at the wild
type and mutant equilibria respectively,

H(q1(z̄1), q2(z̄2)) = 0, H(q1(εẑ1), q2(ẑ2)) = 0,

where again, the quantity ε < 1 represents γ or δ and measures the degree of reduction of the feedback.
Solving for q2, we obtain:

q2(z̄2) = Q2(q1(z̄1)), q2(ẑ2) = Q2(q1(εẑ1)).

Suppose that εẑ1 < z̄1. According to the second inequality in (51), we have q1(z̄1) > q1(εẑ1). Then,
according to (52), Q2(q1(z̄1)) < Q2(q1(εẑ1)), and consequently, q2(z̄2) < q2(ẑ2). Thus, by the second
inequality in (51), this implies that ẑ2 > z̄2.

If, on the other hand, εẑ1 > z̄1, then through a similar chain of inequalities, we obtain that ẑ2 < z̄2.
In the case where z1 = z2, that is, if both rates are regulated by the same population, the second

case is impossible, because it suggests that, for example, γx̂ > x̄ (which implies x̂ > x̄), and x̂ < x̄.
These results are summarized in Table 3.

Q2(x) Q2(y)
Q1(x) γx̂ < x̄, x̂ > x̄ γx̂ < x̄, ŷ > ȳ or γx̂ > x̄, ŷ < ȳ
Q1(y) δŷ < ȳ, x̂ > x̄ or δŷ > ȳ, x̂ < x̄ δŷ < ȳ, ŷ > ȳ

Table 3: Possible inequalities for the equilibrium populations in the case where the redundant network
contains two distinct rates, Q1 and Q2, and the regulation of Q1 is weakened by the mutation.

Note that again, we cannot have simultaneously x̂ < x̄ and ŷ < ȳ. We conclude that in all cases,
that is, if the redundant feedback network contains one or two rates regulated by one or
both populations, at least one of the populations will increase as a result of reaching a
mutant equilibrium.

The results summarized in Inequalities (48-49) and Table 3 have an important consequence for the
case of complete loss of feedback. In this case we have γ = 0 or δ = 0, and the appropriate inequalities
are guaranteed:

γx̂ < x̄ or δŷ < ȳ. (53)

This means that if a single rate or two different rates are involved in a redundant network,
and if one of the feedback loops is completely lost by a mutation, then the population
mediating the feedback loop that remains intact will be higher at the mutant equilibrium,
compared to the wild type equilibrium.

In the analysis below, we will split all the two-loop networks into several classes and compare the
population sizes at the mutant equilibrium to those at the wild type equilibrium. In what follows, in the
context of the population x or y (or their fraction, µ), if we say that this quantity “does not change,”
this means that it is the same for the wild type and the mutant equilibrium. If we say it “increases”
(“decreases”), this means that this population is larger (smaller) at the mutant equilibrium compared
to the wild type equilibrium.

3Please note that functions wi are related to particular rates, as defined by definition (50). Functions q1 and q2 can
refer to any rates, as long as those rates correspond to the rates Q1 and Q2 that are involved in the feedback network. In
other words, q1 and q2 do not necessarily correspond to w1 and w2 of (50).
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4.2 The fraction y/x does not change, µ̂ = µ̄

From expressions for the fraction µ (45), we can see that if rates R, S, and B are not regulated (that is,
they are constant), then µ does not change. Similarly, if rates R, A, D, and B are not regulated, then µ
does not change. These situations correspond to the redundant networks where the two feedback loops
affect (a) only S, (b) only D, (c) only A, (d) both A and D.

There are two separate cases that one can distinguish.

[1 ] The regulated rates are A and D, and the dependence of both feedback loops is on
the same population. This can happen only if two different rates are regulated, which in this
case are A and D; both can be functions of x only or of y only. Let us suppose that both are
functions of x. Let us compare H evaluated at Q1(x), Q2(x) and H evaluated at Q1(γx), Q2(x)
(where γ < 1; we will refer to this function as Hγ). The wild type equilibrium value of x, x̄, is
given by the intersection of H with the constant 0. The mutant equilibrium x̂ is given by the
intersection of Hγ with 0. Function Hγ is strictly smaller than H, and thus its intersection with
the constant 0 occurs at a larger value of x, which means that x̂ > x̄. Since the ratio µ is preserved
in the present case, we also have ŷ > ȳ, that is, both populations increase in this case. The proof
when both rates depend on y is similar. We conclude that both populations will increase.

[2 ] The regulated rates are (a) only S, (b) only D, (c) only A, (d) both A and D, and the
dependence is on different populations. In this case, the rates Q1 and Q2 that are regulated
may be the same or different. Let us first suppose that it is the feedback mediated by population
x that is weakened by the mutation. According to Inequalities (48) for a single rate, and the top
right cell in Table 3 for two different rates, there are two possibilities:

◦ γx̂ > x̄, ŷ < ȳ. Since γ < 1 it follows that x̂ > x̄, which contradicts the fact that µ̂ = µ̄. This
case is impossible.

◦ γx̂ < x̄, ŷ > ȳ. There is no contradiction in the case, and from µ̂ = µ̄ we obtain that x̂ > x̄.

Next, suppose that the mutation weakens the feedback on y. By Inequalities (49) for a single rate
and the lower left entry of Table 3, there are again two possibilities:

◦ x̂ < x̄, δŷ > ȳ. Since δ < 1 it follows that ŷ > ȳ, which contradicts the fact that µ̂ = µ̄. This
case is impossible.

◦ x̂ > x̄, δŷ < ȳ. There is no contradiction in the case, and from µ̂ = µ̄ we obtain that ŷ > ȳ.

To conclude, in this case like in the previous one, both populations will increase.

It turns out that apart from the cases that correspond to all the rates in one of the expressions in (45)
being constants, there is an additional situation where the fraction µ is preserved. This happens when
only a single rate is regulated (by both x and y). While rates S, D, or A are considered above, we
discuss rates R and B next:

[3 ] A single rate R or B is regulated by x and y. In this case, since H̄ = Ĥ = 0, and the first
inequality in (51) holds, we must have Q(x̄, ȳ) = Q(γx̂, δŷ) (where only one of constants γ and δ is
< 1). Therefore, µ̂ = µ̄. The argument from case [2] applies here, resulting in the same conclusion:
both populations will increase.

These results are summarized in Figure 4. In these tables, the notation Qz indicates regulation of rate
Q by population z; the rows correspond to the feedback that is weakened or lost by the mutation, and
columns to the remaining feedback. The cases presented here are located near the diagonal and are
marked with “=”, that is, quantity µ stays constant.

4.3 The fraction y/x is different under the mutant and under the wild type
equilibria, µ̂ 6= µ̄

Dependence on a single population. Consider function H, definition (38). Suppose the two dif-
ferent rates are functions of x (Q1(x) and Q2(x) for the wild type function H(x)), and one of these
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dependencies becomes weakened by a mutation (Q1(γx), Q2(x) for the “mutant” function Hγ(x)). We
observe that weakening the dependence of rates R and D decreases them (see Inequalities (42)) and
consequently decreases H. Weakening the dependence of rates S,B,A increases them (again by (42))
and consequently decreases H, leading to the inequality Hγ(x) < H(x). Since dH/dx > 0, the solution
x̂ of Hγ(x) = 0 is larger than the solution x̄ of H(x) = 0. Therefore, in the case where the rates depend
on x only, we have x̂ > x̄. Similarly, one can show that in the case of the dependence on y, we have
ŷ > ȳ. That is, if both feedback loops are mediated by a single population, this population
will increase as a result of weakening of one of those feedback loops.

Next, we notice that H(x̄) = Hγ(x̂) = 0. There are two differences between these two quantities. On
the one hand, rate Q2 is evaluated at x̄ and at x̂ in the two functions H and Hγ respectively. On the
other hand, Q1 is evaluated at x̄ and at γx̂. Since x̂ > x̄, the former difference leads to an increase of
the mutant function Hγ with respect to the wild type H. Because both of them must be equal to 0, the
second difference must lead to a decrease of the mutant Hγ . This implies that γx̂ < x̄. A similar result
can be derived in the case of y dependence. To summarize, we have for x-dependent rates,

x̂ > x̄, γx̂ < x̄, (54)

and for y-dependent rates,
ŷ > ȳ, δŷ < ȳ. (55)

Consider pairs Q1, Q2, where for the wild types, both rates are functions of the same variable, and
the first rate is weakened by the mutation. We can determine the change in the quantity µ from the wild
type to the mutant equilibrium. Below we denote by z any variable, x or y, because the calculations are
identical for both.

• Suppose that Q1 is R or B and Q2 = S. We can use the first expression for µ in (45), which does
not contain S, and write, e.g. for Q1 = R,

µ̂ =
2R(γẑ) +A

D +B
<

2R(z̄) +A

D +B
= µ̄,

in other words, µ decreases after the mutation. The result is the same for Q1 = B and follows
from the fact that µ increases with the populations size by (47), and the fact that γẑ < z̄.

• If Q1 = R,Q2 = B or Q1 = B,Q2 = R, both expressions for µ contain both rates, and while
Q1(γẑ) decreases µ, Q2(ẑ) increases it, such that we could have µ̂ greater or smaller than µ̄.

• Next we consider Q1 = S, and Q2 given by R or B. The first expression in (45) does not contain S,
and thus we can determine the change in µ by looking at its dependence on Q2. Since µ increases
with Q2 (47), and ẑ > z̄, we obtain µ̂ > µ̄. For example, in the case of Q2 = R, we have

µ̂ =
2R(ẑ) +A

D +B
>

2R(z̄) +A

D +B
= µ̄.

• If Q1 is one of the rates R, S, B, and Q2 is given by D or A, we can use the second expression
in (45), which only depends on Q1. µ increases with z through Q1 (Inequalities (47)), and the
argument of Q1 is γẑ < z̄, which implies that µ̂ < µ̄.

• If Q1 is D or A, and Q2 is R, S, or B, we again use the second expression in (45), which now
depends on Q2. µ increases with z through Q2 (Inequalities (47)), whose argument is ẑ > z̄, which
implies that µ̂ > µ̄.

• Finally, if Q1 = A,Q2 = D or Q2 = A,Q1 = D, we are back to a case considered in the previous
section, where µ remains constant. This is the consequence of the fact that the second expression
in (45) does not contain Q1 or Q2.
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(a) Partial loss of feedback.

(b) Complete loss of feedback.

Figure 4: Population trends for mutant equilibria compared to wild type equilibria. The rows indicate
the feedback that becomes weakened/removed by a mutation, and the columns are the feedback that
remains intact. The arrows indicate whether the fraction y/x will increase, decrease, or remain the same.
A question mark means that the fraction could increase or decrease. Red means that both populations
will increase, yellow that SCs must increase, blue that DCs must increase, and green that at least one
population must increase. (a) Mutation weakens the feedback. (b) Mutation eliminates the feedback.
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These results on the behavior of µ are summarized in Figure 4, by using upward arrows if µ̂ > µ̄, down-
ward arrows if µ̂ < µ̄, “=” if µ̂ = µ̄, and the question mark if the inequality can be either way.

Given the behavior of the fraction µ, we can determine the trends in the population sizes of SCs and
DCs. Note that

µ̂ > µ̄⇒ ŷ

ȳ
>
x̂

x̄
, µ̂ < µ̄⇒ ŷ

ȳ
<
x̂

x̄
. (56)

If the system is x-dependent, then x̂ > x̄, and µ̂ > µ̄ implies

ŷ

ȳ
>
x̂

x̄
> 1,

i.e. both populations will increase. A decrease in µ means that no additional inequalities exist for y.
Similarly, in the y-dependent system, µ̂ < µ̄ implies that both populations increase, and the opposite
inequality does not give a condition for x. Table (a) in Figure 4 shows the trends in the populations by
color-coding the four possible outcomes.

Dependence on two populations. Next we assume that Q1 and Q2 are regulated by different
populations, and as before, the regulation on Q1 is weakened by the mutation. This case is different
from the one considered above in that we cannot necessarily assume that a given population will increase
(although we know that at least one population will increase). Instead, we have the following possibilities.
If the regulation of x is weakened by the mutation, then we have by the top right entry of Table 3,

(1) γx̂ > x̄, ŷ < ȳ or (2) γx̂ < x̄, ŷ > ȳ. (57)

Similarly, if the regulation of y is weakened, we have by the left bottom entry of Table 3,

(1) δŷ > ȳ, x̂ < x̄ or (2) δŷ < ȳ, x̂ > x̄. (58)

Using these options and Inequalities (54-55), we proceed to group the redundant feedback loops in several
classes.

• Suppose Q1 is given by R or B and Q2 = S. We will use the first expression in (45) which depends
on Q1 only. If regulation by x is weakened, by Inequalities (57), we obtain in case (1) that µ̂ > µ̄,
which by (56) implies x̂ < x̄, which in turn is in contradiction with γx̂ > x̄. Thus case (1) is
impossible. On the other hand, in case (2) of (57), we obtain µ̂ < µ̄ and thus by (56), x̂ > x̄. We
conclude that both populations will increase.

Next, let us assume that regulation by y is weakened. We can see that for both cases in (58), we
arrive at inequalities that provide no additional information on the growth of x. For example, in
case (1), we get ŷ/ȳ > x̂/x̄, but x̂/x̄ < 1, so y could increase or decrease. A similar argument
applies in case (2). We conclude that for mutations affecting regulation by y, we only have the
most basic condition that at least one of the populations must grow.

• If Q1 = R,Q2 = B or Q1 = B,Q2 = R, both expressions for µ contain both rates, and thus x or
y might decrease, as long as at least one of them increases.

• If Q1 = S and Q2 is given by R or B, first we consider the case where regulation of x is weak-
ened/lost. In case (1) of (57), we obtain ŷ/ȳ < x̂/x̄ together with ŷ/ȳ < 1, which means that x
could increase or decrease. In case (2), y grows, and x again can increase or decrease.

If on the other hand we assume that regulation by y is weakened/lost, we can see that case (1) in
(58) is impossible, and case (2) implies that both populations grow.

• Next we turn to the group of networks where Q1 is one of the rates R, S, B, and Q2 is given by
D or A. We will use the second expression in (45), which only depends on Q1. The results are
exactly the same as in the very first case considered here, that is, under the weakened x regulation,
both populations will increase, and under the weakened y regulation, at least one population must
increase.
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• If Q1 is D or A, and Q2 is R, S, or B, we again use the second expression in (45), which now
depends on Q2. If x-dependence is disrupted, we obtain no definite result on the growth of the
populations, apart from the usual condition that at least one population must increase. If y-
dependence is weakened by the mutation, in case (1) of (58) we get ŷ/ȳ < x̂/x̄ < 1, which is
impossible (at least one of the populations must grow). In case (2), we have ŷ/ȳ > x̂/x̄ > 1, i.e.
both populations must grow.

• The last case Q1 = A,Q2 = D or Q2 = A,Q1 = D corresponds to µ that does not change, and
has already been considered.

These results are summarized in Table (a) of Figure 4. Interestingly, if we assume that γ = 0 or δ = 0,
that is, if feedback loops are completely lost, we have more restrictive conditions. Indeed, in such cases,
Inequalities (53) are guaranteed, and we have a stronger result summarized after conditions (53). The
implications for all the cases are shown in Table (b) of Figure 4.

4.4 Numerical examples

Figure 5 shows examples of two different redundant networks found in Section 4.3, where a mutation
weakens one of the feedback loops and causes the system to reach a new equilibrium. The interesting
feature of these examples is that at the new, mutant equilibrium, the number of SCs is smaller than that
at the original, wild type equilibrium, that is, x̂ < x̄. Both examples are quite simple, as they are set in
the absence of de-differentiation (B = 0).

The first example uses a redundant network that depends on a single population, and involves
feedback loops (iv) and (ii). Here, the rate of SC self-renewal is regulated by DCs (S(y), blue solid line
in Figure 5(a)), and its regulation is significantly reduced by a mutation with δS = 0.01 (the dashed
blue line in Figure 5(a)). The rate of SC differentiation, R(y), is also regulated by DCs and is presented
by the yellow line in the same panel. This rate remains unaffected by the mutation. In panel (c) of
Figure 5 we plot the population sizes before and after a mutant is introduced at time 100. We observe
that the mutants rise (the red lines), displace the original population (the black lines), and after some
oscillations settle to a new equilibrium characterized by an increase in DCs (the red dashed line) and a
decrease in SCs (the solid red line).

The second example uses feedback loops (iii) and (ii), that is, the rate of SC self-renewal is regulated
by SCs, while the rate of SC differentiations is regulated by DCs. It utilizes he same function R(y), and
the function S(x) is given by the solid line in panel (b) of Figure 5. It is slightly weakened by a mutation
(γS = 0.9), see the dashed line in panel (b). Panel (d) presents the population dynamics caused by
this mutation. Again, the mutants rise from low numbers, drive the wild type population extinct, and
establish a new equilibrium characterized by a decreased SC population.

5 Discussion and conclusions

In this paper, we study the turnover dynamics of SC lineages where cell fate decisions, modeled as per
cell rates, are influenced by the current cell population via cell-to-cell signaling. We formulate a general
two-compartment, deterministic model that consists of SCs and DCs and which includes the following
processes: SC symmetric differentiation divisions, SC symmetric self-renewal divisions, SC asymmetric
divisions, DC death, and DC de-differentiation, as well as SC death and DC self-renewal.

We first establish that for stability (that is, to be able to maintain homeostasis), a SC-DC system
must involve at least one feedback loop, that is, at least one of the rates has to be regulated by one
of the populations. We call the networks with exactly one feedback loop “minimal feedback networks”.
In the absence of DC de-differentiation, there are exactly four such minimum feedback networks. Two
of these minimal networks involve the positive regulation of SC differentiations by either the SC or DC
population, and the other two involve the negative regulation of SC self-renewals by either SCs or DCs;
regulation of DC death or SC asymmetric divisions alone is not enough for stability. In the presence
of DC de-differentiations, the class of minimal feedback networks is larger. It contains 10 minimum
networks, adding regulation of asymmetric SC divisions, DC deaths, and DC de-differentiation by either
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(a) (b)

(c) (d)

Figure 5: Examples of redundant networks found in Section 4.3, where two minimal feedback loops are
in effect and one of them is weakened by a mutation. Each redundant network results in x̂ < x̄ and
µ̂ > µ̄. The system in panel (c) is regulated by the redundant network consisting of minimal feedback

loops (ii) and (iv) with R(y) = 1− e−0.001y + 2×(10y)10

1+(0.001y)10 and S(y) = 3.1− 0.0044y, shown in panel (a)

by solid lines; feedback on S(y) is weakened by δS = 0.01, shown in (a) as the dashed line. The other
rates are A = 0.01, B = 0, and D = 0.2. Panel (d) uses the redundant network consisting of minimal
feedback loops (ii) and (iii) with the same rate of differentiation R(y), and S(x) = 100

x2 shown in panel
(b) by the solid line; feedback on S(x) is weakened using γS = 0.9, pictured by the dashed line in (b).
The other rates A = 0, B = 0, and D = 0.022. In (c) and (d), the mutants are introduced at time 100.
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of the populations to the list of possible minimum feedback networks. A summary of all the minimal
feedback networks is given in Table 2.

The focus of this paper is to investigate the resilience of various feedback networks with respect
to mutant populations. Such knowledge is necessary to improve our understanding of the effectiveness
of feedback loops in healthy tissues, as well as the pathways to cancer that may take place in real
biological systems. Three types of mutants are considered: (1) mutants whose participation in feedback
signaling is altered; (2) mutants whose response to feedback is altered; (3) mutants characterized by
other phenotypic changes.

We find that mutants that do not participate in signaling will not grow from low numbers (consis-
tent with [36]). In the ODE (deterministic) system, homeostatic equilibrium is neutrally stable with
respect to a perturbation comprised of adding such a mutant population; in a stochastic system, this
corresponds to neutral drift. On the other hand, mutants that do not respond to a feedback loop, or
are characterized by a weaker response to that feedback, can rise from low numbers and take over the
system, displacing the wild type populations. These are “dangerous” mutants that can be thought of
as representing malignant or pre-malignant change. Finally, mutations that do not alter the regulated
rates, but affect other aspects of the cell dynamics (or alter the regulated rate in a manner other than
a weakened response), can also be advantageous and rise from low numbers. These mutations are those
that decrease the differentiation rate, increase the self-renewal rate, increase the asymmetric division
rate, decrease the DC death rate, or increase the DC de-differentiation rate.

The first question we ask is whether, among the 10 minimal feedback systems, any particular choice
is “better” than others in a sense of being able to “resist” mutant invasion, or being more difficult to
“break”. Our analysis shows that for all 10 minimal feedback networks, a mutant that is characterized
by a weakened or non-existent response to the feedback will rise from low numbers and take over, leading
to either a larger population at an equilibrium (if a degree of regulation remains) or unlimited growth if
the feedback is absent in the mutants. In other words, if only a single feedback loop is used, there is no
better or worse way to choose this feedback loop in terms of evolutionary advantage.

Interestingly, if we expand the types of mutations under consideration, then we find that not all
minimal feedback loops are created equal. For all 10 minimal feedback networks, a mutant that alters a
non-regulated rate will rise from low numbers and either lead to unlimited mutant growth, or to a new
equilibrium where only the regulating population must be larger, while the non-regulating population
may increase or decrease. Thus, the five minimal networks regulated by DCs can result in a new equilib-
rium under this type of mutation with a depleted SC population, potentially giving them an advantage
in that the smaller SC population may slow down further evolution.

Next, we combine two different minimal feedback loops to create all possible two-loop redundant
feedback networks (45 networks in total). We investigate the dynamics in the presence of potentially
dangerous mutants. We focus on the mutations that confer advantage to the affected cells by weakening
or completely eliminating the effect of one of the existing feedback loops. Interestingly, while cells con-
taining this type of mutation always grow from low numbers, not all of the redundant networks behave
in the same way. As a measure of resilience we decided to track equilibrium population numbers of SCs
and DCs, corresponding to the wild-type (homeostatic, healthy) equilibrium, and to the new, mutant
equilibrium that is reached after one of the feedback loops is severed by a mutation. The following
patterns are observed.

First, let us consider the DC to SC ratio, µ, see Figure 4, where the trends are indicated by arrows; a
decrease in µ means SC enrichment, see [37] for analysis of enrichment correlates in healthy tissues and
tumors. In the present setting, we can see that the DC to SC ratio remains constant if only a single rate
is involved in the two-loop feedback network (and it is regulated by both SC and DC populations). If
one of the feedback loops is diminished, the mutant population will grow, but the proportion of SCs will
stay the same. The same result is observed if the only feedback in the system comes from the regulation
of DC death rates and the regulation of asymmetric SC divisions.

To explain the next result, it is useful to separate all the rates into two groups. Group I contains
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symmetric SC divisions (self-renewal and differentiation divisions) and DC de-differentiations. Group II
contains asymmetric divisions and DC deaths:

Group I rates: R,S,B.

Group II rates: D,A.

If a redundant feedback loop contains regulation of a rate from group I and a rate from group II, and
if the regulation of the Group I rate is weakened by a mutation, then the proportion of SCs will likely
increase. On the other hand, if the regulation of the Group II rate is weakened, then the proportion of
SCs will likely decrease.4

Next we examine the change in the numbers of cells in the individual populations, the SCs and DCs.
In the tables of Figure 4, red cells represent cases where both populations will always increase, yellow
(blue) when SCs (DCs) will always increase, and green when at least one of the populations must increase
while the other could increase or decrease. There are two types of redundant networks for which the
number of SCs will always increase as a result of a weakening of one of the feedback loops. First, if both
regulations of the feedback come from Group II, then the numbers of both SCs and DCs will increase.
Further, if one regulated rate is from Group I and the other is from Group II, and the Group I rate is
regulated by the SCs, then the SCs will always increase.

These results are hardly surprising, as weakening or eliminating a feedback loop (which is there to
keep the population from growing) seems to be directly associated with an increase in a population size.
Partially, this intuition is correct: weakening or removing a feedback loop will always lead to an increase
in at least one of the populations. There are however cases where one of the populations may decrease
as a result of mutant invasion, and it may even happen that it is the number of SCs that decreases.
For example, if one of the regulated rates comes from Group II (and this is the rate affected by the
mutation), and the other rate comes from Group I and it is regulated by DCs, then it is possible that
as a result of weakening/removing the first feedback loop, the population of SCs decreases compared
to the homeostatic equilibrium. In a way, we can say that such a redundant feedback network has an
advantageous design, because, if a mutation hits the “right” feedback (the group II feedback), then the
pool of mutant SCs may shrink, delaying further evolution. For comparison, under feedback networks
with both regulations from Group II, a mutation weakening one of the feedback loops will always result
in the population growth for both SCs and DCs, expanding the mutant population and making further
dangerous changes more likely. Another good design “idea” is to combine two different rates from Group
I, such that one of them is R or B, regulated by the DCs. Then if this regulation remains intact, the
population of SCs could shrink after a mutation weakens/destroys the other feedback loop. There is
even a redundant network (the one consisting of R and B rates both regulated by DCs) such that no
mater which of the feedback loops is damaged, the number of SCs could decrease.

These results show that a single feedback loop, even if it is enough to keep a stable equilibrium, is
vulnerable to mutations. For example, mutants with a weakened/eliminated feedback will expand from
low numbers and either enter unlimited growth or reach an equilibrium with an increased number of
SCs and DCs. Therefore, from an evolutionary viewpoint, it appears advantageous to combine multiple
feedback loops, creating redundant feedback networks. Interestingly, from an engineering prospective,
not all such redundant systems are equally resilient to mutations. For some of them, any mutation that
weakens/eliminates one of the loops will lead to a population growth of SCs. For others, the population
of SCs can actually shrink as a result of “cutting” one of the loops, thus slowing down further unwanted
transformations. Similar results could be demonstrated for a wider class of mutations that e.g. affect
non-regulated rates of the system.

The framework adopted for this study is necessarily limited. While the number of cell fate decisions
allowed in the model is relatively large, and the functional forms for all the dependencies are kept
completely general, we only considered a two-compartment, non-spatial, deterministic system. Including

4This rule holds in all cases except when the Group I rate is regulated by DCs and the Group II rate is regulated by
SCs, in which case the SC proportion could increase or decrease.
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longer lineages (such as allowing for intermediate cell types, e.g. transit amplifying cells) is the next
logical step. Formulating this problem in a spatial, stochastic setting is also subject of future work.

Another limitation of the model is that it does not include any effects of the immune system. At
present, we assume that if a homeostatic equilibrium exhibits linear instability in the presence of a
mutant, this means that mutants can expand in the face of (implicit) actions of the immune system.
Conversely, if the homeostatic equilibrium is stable, this corresponds to the mutants’ inability to expand,
which may be a consequence of the immune system killing the mutants, as well as the mutants’ genetic
deficiencies. The present description could be a stepping stone for further, more detailed analyses that
include more realism, such as the co-dynamics with immune cells.

While the exact biological mechanisms regulating cell fate decisions remain largely unknown, there
are some examples of factors that have been shown to play an important role in cell fate decisions. Notch
signaling, which requires cellular contact, is believed to be integral in cellular decision making, and may
explain how cells combine information from neighboring cells as well as their extracellular environment
[38, 39]. The Wnt signaling pathway is another important player. An investigation of hair follicle
stem cell lineage found evidence that Wnt signaling may be responsible for SC maintenance, activation
and proliferation, and transitioning from proliferation to differentiation [40]. Cell fate decisions are
further influenced by other factors such as metabolism, reactive oxygen species, intracellular pH, and cell
morphology [41]. The role of the immune system in determining cell fate decisions has also been recently
highlighted [42]. While further data and analysis are still required, biological evidence of this kind
combined with mathematical analysis may help us determine which feedback mechanisms are present in
specific tissue. This in turn would give insights on how these mechanisms can be overcome by mutations
and eventually may help determine treatment strategies to counter these mutations, given knowledge
about the cellular behavior they cause.
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A Generalizations of the analysis: equilibria and minimal feed-
back

A.1 The equilibrium occurs at a critical point

Under the blanket of minimal feedback in a healthy, wild type network where we consider the least number
of feedback loops necessary to achieve an initially stably system, we now consider the situation where
the equilibrium occurs at a critical point, so a derivative of zero does not guarantee that the function is
(locally) a constant. For example, the rate R is regulated only by x in the vicinity of the equilibrium,
but Rx = 0 at equilibrium and Rx 6= 0 everywhere in a (one-sided) vicinity of the equilibrium, that is
while Rx = 0, Rxx 6= 0 at equilibrium. Continuing the assumption that D > 0, we are able to find exact
solutions to only a few of the differential equations. We take (x̄, ȳ) to be the point of equilibrium, and
perturb the system by some unknown (x0(t), y0(t)) so that x(t) = x̄+ x0(t) and y(t) = ȳ + y0(t). Then
stability requires the perturbations x0(t) and y0(t) to approach a constant or approach zero. We split
the analysis into two cases, (1) in the absence of DC de-differentiation (B = 0) and (2) in the presence
of DC de-differentiation (B > 0). In each case, only the described rate is regulated while all others are
constants. We get the following results.
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(1) In the absence of DC de-differentiation: B = 0.

(i) SCs regulate their differentiation divisions, equilibrium occurs at a local minimum: Rxx > 0.
The system of differential equations for the perturbations at (x̄, ȳ) are:

ẋ0 = − x̄
2
Rxxx

2
0,

ẏ0 = (2R+A)x0 + x̄Rxxx
2
0 −Dy0.

It is clear that if Rxx < 0, then x0 will grow, and so stability requires the critical point be a
local minimum. This system is solvable with solution:

x0(t) =
2x0(0)

2 + (x̄x0(0)Rxx)t
,

y0(t) =
−4x0(0)

2 + x̄x0(0)Rxxt
+ (2x0(0) + y0(0))e−Dt +

+
2(2R+ 2D +A)Exp[−D(t+ 2

x̄x0(0)Rxx
)]

x̄Rxx

[
Ei

(
D(t+

2

x̄x0(0)Rxx
)

)
− Ei

(
2D

x̄x0(0)Rxx

)]
,

where Ei(z) = −
∞∫
−z

e−p

p dp. We prove that both x0(t) and y0(t) go to 0 as t→∞.

Proof: Since this analysis is at the local equilibrium point, Rxx is a constant. Clearly

lim
t→∞

x0(t) = lim
t→∞

2x0(0)
2+(x̄x0(0)Rxx)t = 0. Similarly,

lim
t→∞

−4x0(0)

2 + x̄0Rxxt
+ (2x0(0) + y0(0))e−Dt = 0.

Since Ei
(

2D
x̄x0(0)Rxx

)
is a constant, then

lim
t→∞

Exp

[
−D(t+

2

x̄x0(0)Rxx
)

]
Ei

(
2D

x̄x0(0)Rxx

)
= 0.

We now evaluate lim
t→∞

Exp
[
−D(t+ 2

x̄x0(0)Rxx
)
]
Ei
(
D(t+ 2

x̄x0(0)Rxx
)
)

. Taking a = D and

b = 2
x̄x0(0)Rxx

, by L’Hospital’s Rule we have

lim
t→∞

Exp [−a(t+ b)]Ei (a(t+ b)) = lim
t→∞

 ∞∫
−a(t+b)

e−p

p
dp

 / (Exp [a(t+ b)])

= lim
t→∞

(
Exp[a(t+ b)]

−a(t+ b)

)
/ (aExp [a(t+ b)])

= lim
t→∞

1

−a2(t+ b)

= 0.

Thus lim
t→∞

x0(t) and lim
t→∞

y0(t) = 0.

(ii) DCs regulate differentiation divisions, equilibrium occurs at a local minimum: Ryy > 0.
The system of differential equations for the perturbations are:

ẋ0 = − x̄
2
Ryyy

2
0 ,

ẏ0 = (2R+A)x0 + x̄Ryyy
2
0 −Dy0.
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While this system is not easily solved symbolically, if Ryy < 0 then x0 will grow. If Ryy > 0
and if we can assume x0 → 0, then the second equation becomes

ẏ0 = x̄Ryyy
2
0 −Dy0,

which has the solution

y0(t) =
De−Dt

x̄Ryye−Dt + D
y0(0) − x̄Ryy

.

Note that as long as D
y0(0) 6= x̄Ryy, then y0 → 0 as t→∞.

(iii) SCs regulate their self-renewal, equilibrium occurs at a local maximum: Sxx < 0.
The perturbations are described by:

ẋ0 =
x̄

2
Sxxx

2
0,

ẏ0 = (2R+A)x0 −Dy0.

This system has the solution:

x0(t) =
−2x0(0)

−2 + (x̄x0(0)Sxx)t

y0(t) =
e−Dt

x̄Sxx

[
−2(2R+A)e

2D
x̄x0(0)Sxx

[
Ei

(
D(t− 2

x̄x0(0)Sxx
)

)
− Ei

(
−2D

x̄x0(0)Sxx

)]
+ x̄y0(0)Sxx

]
where x0(t) and y0(t) both go to 0 as t→∞. The proof is similar to the proof given in (i).

(iv) DCs regulate SC self-renewal, equilibrium occurs at a local maximum: Syy < 0.
The system of differential equations for the perturbations are:

ẋ0 =
x̄

2
Syyy

2
0 ,

ẏ0 = (2R+A)x0 −Dy0.

Similarly to (ii), this system is not easily solved symbolically, however if Syy > 0 then x0

will grow. On the other hand, if Syy < 0 and x0 → 0, then the second equation becomes
ẏ0 = −Dy0, which has solution

y0(t) = y0(0)e−Dt.

It would then follow that y0 → 0 as t→∞.

(2) In the presence of DC de-differentiation: B > 0. Here, since B > 0, the equations become
much more complex, and thus only some cases have conclusive results. If the network is stable, then the
perturbed system evaluated at the equilibrium point of (0, 0) must be stable or neutrally stable, so we
analyze the stability of x0(t), y0(t) at (0, 0) by first ignoring every squared term. The perturbed system
of differential equations for each of the ten cases below then becomes

ẋ0 = (−R+ S)x0 +By0,

ẏ0 = (2R+A)x0 − (D +B)y0,

and at equilibrium this is neutrally stable since

R− S +D +B > 0, (59)

(R− S)(D +B)−B(2R+A) = 0. (60)
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Then adding the squared term back into the system of differential equations, we may be able to determine
the sign of the second derivative and thus whether a minimal network is stable if the equilibrium occurs
at a local extrema. We find that when R or B is regulated and the equilibrium occurs at a critical
point, the critical point cannot be classified as a local maximum or minimum, while regulation of S or
A results in an equilibrium which occurs at a local maximum, and regulation of D at a local minimum.
We discuss each case below.

(i) SCs regulate their differentiation divisions, equilibrium occurs at a critical point: Unclassified.
The system of differential equations for the perturbations are:

ẋ0 = (−R+ S)x0 +By0 −
x̄

2
Rxxx

2
0,

ẏ0 = (2R+A)x0 − (D +B)y0 +
x̄

2
Rxxx

2
0.

Due to the different signs of the Rxxx
2
0 terms in the two equations, we are unable to determine

whether stability requires Rxx > 0 or Rxx < 0. If Rxx > 0, then the population x0 would
decrease but the population y0 would increase, and if Rxx < 0 then vice versa. Thus this
critical point remains unclassified.

(ii) DCs regulate SC differentiation divisions, equilibrium occurs at a critical point: Unclassified.
The system of differential equations are the same as in (i) where Rxxx

2
0 becomes Ryyy

2
0 , and

thus by the same reasoning this critical point also remains unclassified.

(iii) SCs regulate their self-renewal, equilibrium occurs at a local maximum: Sxx < 0.
The system of differential equations for the perturbations are:

ẋ0 = (−R+ S)x0 +By0 +
x̄

2
Sxxx

2
0,

ẏ0 = (2R+A)x0 − (D +B)y0.

If Sxx > 0, then the population x0 and then y0 to grow from small numbers. Thus in order
to be stable, we require Sxx < 0, and the critical point is a local maximum.

(iv) DCs regulate SC self-renewal, equilibrium occurs at a local maximum: Syy < 0.
The differential equations are given in case (iii) where Sxxx

2
0 is replaced by Syyy

2
0 , and the

results are the same.

(v) SCs regulate DC de-differentiation, equilibrium occurs at a critical point: Unclassified.
The differential equations are the same as in (i) where x̄

2Rxxx
2
0 is replaced by − ȳ2Bxxx

2
0. Then

by similar reasoning as (i), this critical point also remains unclassified.

(vi) DCs regulate their de-differentiation, equilibrium occurs at a critical point: Unclassified.
The system is the same as in (i), except x̄

2Rxxx
2
0 is replaced by − ȳ2Byyy

2
0 , and by similar

reasoning the critical point is unclassified.

(vii) SCs regulate DC death, equilibrium occurs at a local minimum: Dxx > 0.
The system of differential equations at the perturbations are:

ẋ0 = (−R+ S)x0 +By0,

ẏ0 = (2R+A)x0 − (D +B)y0 −
ȳ

2
Dxxx

2
0.

By reasoning similar to that in case (iii), the critical point is a local minimum for stability.

(viii) DCs regulate their death, equilibrium occurs at a local minimum: Dyy > 0.
The system of differential equations is the same as in (vii) with Dxxx

2
0 replaced by Dyyy

2
0 ,

and the same reasoning results in a local minimum for stability.
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(ix) SCs regulate asymmetric divisions, equilibrium occurs at a local maximum: Axx < 0.
The differential equations are the same as in case (vii) except ȳ

2Dxxx
2
0 is replaced by − x̄2Axxx

2
0.

Thus by similar reasoning, we have a local maximum.

(x) DCs regulate asymmetric divisions, equilibrium occurs at a local maximum: Ayy < 0.
The system of differential equations are the same as in case (vii), except ȳ

2Dxxx
2
0 is replaced

by − x̄2Ayyy
2
0 , and thus the critical point is a local maximum for stability.

A.2 Relaxing the assumption of nonzero intensity at equilibrium

Still looking at minimal feedback for the original network of wild type cells, here we consider the situation
where f(x, y) = 0 at equilibrium, but f(x, y) > 0 on one or both sides of the equilibrium. For example,
we could have R(x) = 0 but Rx 6= 0 at equilibrium. The only feedback loops affected are those where
the regulated rate appears as part of the inequality required for feedback. Thus, the only case affected
is when SCs negatively regulate de-differentiation of DCs, in which case the inequality simplifies to
−Dȳ < By < 0.

A.3 Relaxing the assumption of the positivity of D

We consider the unlikely event that D < 0 as it applies to the minimal feedback necessary for stability
of the original wild type network, that is we assume the proliferation rate of DCs is greater than the
death rate of DCs. This corresponds to DCs that have stem-like characteristics. If we again assume
B = 0, then stability requires D > 0 for all four possible minimal feedback loops, so we restrict to the
case B > 0. We have

(i) − x̄(D+B)+ȳB
x̄2 < Rx < 0.

(ii) Ry < 0 and Ry <
x̄(D+B)+ȳB

2x̄2 .

(iii) If D +B > 0, we have Sx < 0. Otherwise, that is if D +B < 0, we require

0 < Sx <
x̄(D +B) + ȳB

x̄2
.

(iv) If D+B > 0, then Sy < 0. Otherwise if D+B < 0, we have both Sy > 0 and x̄(D+B)+ȳB >
0.

For cases involving feedback of de-differentiation (B), the assumptions change to

(v) 0 < Bx <
x̄(D+B)+ȳB

x̄ȳ .

(vi) By > 0 and By > − x̄(D+B)+ȳB
x̄ȳ .

For the additional possibilities (vii) - (x), the assumptions remain the same but additional assumptions
are needed. We have

(vii) Dx > 0 and x̄(D +B) + ȳB > 0.

(viii) Dy > 0 and Dy > − x̄(D+B)+ȳB
x̄ȳ .

(ix) Ax < 0 and x̄(D +B) + ȳB > 0.

(x) Ay < 0 and Ay <
x̄(D+B)+ȳB

x̄2 .
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B Redundant networks, further analysis

In Section 4 we considered redundant networks where mutations attack the existing feedback such that
mutants had a weakened response to that feedback. In Section 3.3, we found five additional mechanisms
that alter the network phenotype and allow mutant cells to grow from low numbers. Thus we want to
do similar analysis of redundant networks under these five mechanistic changes.

We assume two minimal feedback loops found in 2.2 are in effect, and a mutant appears that has a
decreased rate of SC differentiation (R) or DC death (D), or an increased rate of SC self-renewal (S), DC
de-differentiation (B), or asymmetric SC divisions (A). While the mutant population will grow initially,
since feedback loops may still be intact, a new equilibrium may be reached, preventing unlimited growth.

For the analysis below, we make several simplifying assumptions.

1. The local conditions on the two minimal feedback loops stated in (i-x) of Section 2.2 hold globally.
For example, minimal feedback loop (i) becomes Rx > 0 for all x instead of just at the equilibrium
(x̄, ȳ).

2. All the non-constant rates regulated by feedback are functions of the total populations, x = x1 +x2

and y = y1 + y2.

3. The affected mutant rate satisfies one of the five phenotypic changes described above and in
Section 3.3, and the inequalities are global. For example, if R is the affected rate, then we require
R̃(x, y) < R(x, y) for all relevant values of x and y.

Let us consider the function H(R,S,B,D,A) defined in (38), which as seen in (39) is zero at
the wild type equilibrium. Under one of the five alterations, the inequality in (40) holds, that is
H(R̃, S̃, B̃, D̃, Ã)|x̄,ȳ < 0. If a new equilibrium is reached, then it will satisfy (44). However, since
H(R,S,B,D,A) is an increasing function of x and y by (43), and H at the mutated rates lies be-
low H at the original rates by (40) and assumption 3, then a new equilibrium cannot have both
populations decrease. That is, it is not possible that both x̂ < x̄ and ŷ < ȳ.

Similar to Section 4, we can determine information about the population sizes at a new mutant
equilibrium to those at the wild type equilibrium. Now however, the mutated rate does not have to
match one of the regulated rates. We take H̄ = H(R,S,B,D,A)|x̄,ȳ, Ĥ = H(R̃, S̃, B̃, D̃, Ã)|x̂,ŷ, and
the expression for µ in (45) where µ̂ = ŷ/x̂, and µ̄ = ȳ/x̄. Let us denote Q1 and Q2 as the minimally
regulated rates if they are different, Q as the minimally reguated rate if both populations regulate Q,
and Ṽ as the altered rate that satisfies one of the five phenotypic changes. Consider the following general
scenarios.

• The redundant network is characterized by a single rate regulated by both populations, and
the mutated rate is the same as the regulated rate. That is, Q = V . Then at the two
equilibria we have H̄ = Ĥ = 0, and rearranging results in Q̃|x̂,ŷ = Q̄(x̄, ȳ). Thus we have that
µ̂ = µ̄, and since one population must increase, then both populations must increase.

• The regulated wild type and altered mutant rates are functions of the same variable.
Without loss of generality, let us assume the network is dependent on x only. Then, by previous
analysis, since H(R̃, S̃, B̃, D̃, Ã) lies below H(R,S,B,D,A) and both are functions on x, we will
have x̂ > x̄. The result is similar if the network is y-dependent. Thus, if both feedback loops are
mediated by a single population and the altered mutant feedback loop is also mediated by this
same population, then the regulating population will increase as a result of the alteration
of the mutant rate.

• The regulated rates and the altered mutant rate are any combination of A and D. For
example, both regulations can be of asymmetric division while the altered rate is the DC death
rate (Q = A(x, y) and V = D), or both A and D are regulated by either population while D is the
altered rate (Q1 = A, Q2 = D, and V = D). No matter the combination, neither A or D appear
in the second definition of µ in (45), and so µ̂ = µ̄. This means that since at least one population
must increase, we have that both populations will increase.
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The rest must be done case by case. As there are 45 possible redundant networks in the presence
of de-differentiation and each can undergo five possible phenotypic alterations to cause initial mutant
growth, we limit this analysis to the redundant networks possible in the absence of de-differentiation.
That is, the rest of our analysis assumes B = 0.

B.1 Redundant networks under other phenotypic changes in the absence of
de-differentiation, B = 0

There are now only four minimal feedback loops possible, and thus we have 6 possible redundant net-
works. Recall that altering A is only an effective mutation in the presence of de-differentiation, and so
there are only four alterations for each redundant network. Let us use the same numbering as in Section
3.3 for these changes:

(1) decrease SC differentiation R,

(2) increase SC self-renewal S,

(3) increase the DC de-differentiation rate from 0 (B),

(4) decrease the DC death rate D such that it becomes negative at the equilibrium.

Note that these alterations may change functions into constants, constants into functions, or keep con-
stants as constants or functions as functions. Additionally, we use only the first equality for µ in (45),
so µ = 2R+A

D+B and we do not divide by zero.

For alteration (4), if D̃ < 0 for all x, y, then the mutant population of DCs will grow to infinity
while the other populations remain finite, and a new equilibrium will never be reached. Let us instead
make the global assumption that D̃ < D for all x, y, and only require D̃|x̄,ȳ < 0. Then we use the same
assumptions made at the beginning of this section, and consider case each separately.

For the case-by-case analysis, we will use the fact that both populations cannot decrease. If µ̂ = µ̄,
then both populations must increase. If µ̂ > µ̄, we cannot have ŷ < ȳ as that will make x̂ < x̄ as well,
however x can increase or decrease. Similarly, if µ̂ < µ̄ we cannot have x̂ < x̄, but y can increase or
decrease.

Rx, Ry: Minimal feedback loops (i) and (ii). Here we assume that R is positively regulated by
both populations. We consider the four possible alterations below.

(1) Here the mutant rate of differentiation is smaller than the wild type rate, R̃ < R(x, y) for all
x, y. In this case, Q = V and so the result is already described above. We have µ̂ = µ̄ and both
populations increase.

(2) SC self-renewal is increased so that S̃ > S for all x, y. Then since S is a constant,

R(x̄, ȳ) = S < S̃|x̂,ŷ = R(x̂, ŷ),

so we have µ̂ > µ̄. Since both populations cannot decrease, we must have ŷ > ȳ, while x can
increase or decrease.

(3) De-differentiation increases from 0 so that B̃ > 0 for all x, y. Rearranging the equations at
equilibrium gives S = R(x̄, ȳ) = R(x̂, ŷ) − µ̂B̃, and thus we know R(x̄, ȳ) < R(x̂, ŷ). However,
since B̃ > B = 0, R(x̂, ŷ) increases µ but B̃ decreases µ, and so µ can increase or decrease.
Additionally that means we know only that both populations cannot decrease.

(4) DC death decreases such that D̃|x̄,ȳ < 0. If D̃ ≥ 0 for some x, y and D̃ < D for all x, y, then the

network can reach a new equilibrium. In this case, S = R(x̄, ȳ) = R(x̂, ŷ), so since D̃ < D then
µ̂ > µ̄. Thus ŷ > ȳ, and x could increase or decrease.
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Sx, Sy: Minimal feedback loops (iii) and (iv). Here we assume that S is negatively regulated by
both populations. We consider the four possible alterations below.

(1) Here the mutant rate of differentiation is smaller than the wild type rate, R̃ < R for all x, y. Then
µ̂ < µ̄, and so x must increase whereas y can increase or decrease.

(2) SC self-renewal is increased so that S̃ > S(x, y) for all x, y. In this case, Q = V and so the result
is already described above. We have µ̂ = µ̄ and both populations increase.

(3) De-differentiation increases from 0 so that B̃ > 0 for all x, y. Since R is a constant, then µ̂ < µ̄.
Thus x must increase whereas y can increase or decrease.

(4) DC death decreases such that D̃|x̄,ȳ < 0. If D̃ ≥ 0 for some x, y and D̃ < D for all x, y, then the
network can reach a new equilibrium. In this case, since R is a constant, µ̂ > µ̄, so y must increase
and x can increase or decrease.

Rx, Sy: Minimal feedback loops (i) and (iv). Here we assume that differentiation is positively
regulated by SCs and SC self-renewal is negatively regulated by DCs. We consider the four possible
alterations below.

(1) Differentiation is decreased for mutants such that R̃ < R(x) for all x, y. Assume y decreases such
that ŷ < ȳ. Then, since S is a decreasing function of y, we have

R(x̄) = S(ȳ) < S(ŷ) = R̃|x̂,ŷ < R(x̂).

Since since R is an increasing function of x, then we must also have that x̂ > x̄. Since R(x̄) < R̃|x̂,ŷ,
then µ̂ > µ̄. However, this is not possible if ŷ < ȳ and x̂ > x̄, so there is a contradiction and
we have ŷ > ȳ. Then R(x̄) > R̃|x̂,ŷ gives µ̂ < µ̄, and so we must also have x̂ > x̄. Thus both
populations increase.

(2) SC self-renewal is increased so that S̃ > S(y) for all x, y. Similarly to (1), x̂ < x̄ leads to ŷ > ȳ
and µ̂ < µ̄, which is a contradiction. Thus x̂ > x̄. Then R(x̂) > R(x̄) and so µ̂ > µ̄, which gives
that ŷ > ȳ. Thus both populations increase.

(3) De-differentiation increases from 0 so that B̃ > 0 for all x, y. Rearranging the equations at
equilibrium gives R(x̄) = S(ȳ) and R(ŷ) = µ̂B̃ + S(ŷ). If x̂ < x̄, then R(x̄) > R(x̂) and so
S(ȳ) > S(ŷ). Since S is a decreasing function, then ŷ > ȳ. However, R(x̄) > R(x̂) and B̃ > 0
also give us that µ̂ < µ̄. This contradicts the fact that x̂ < x̄ and ŷ > ȳ, so instead we must have
x̂ > x̄. This means that µ can increase or decrease, and thus y can increase or decrease.

(4) DC death decreases such that D̃|x̄,ȳ < 0. If D̃ ≥ 0 for some x, y and D̃ < D for all x, y, then
the network can reach a new equilibrium. In this case, since R is an increasing function, S is a
decreasing function, if x̂ > x̄ then ŷ < ȳ. This also means that R(x̂) > R(x̄), and so µ̂ > µ̄.
However, this is a contradiction with the fact that x̂ > x̄ and ŷ < ȳ. Thus we must have x̂ < x̄
and ŷ > ȳ. This also gives us that µ̂ > µ̄.

Ry, Sx: Minimal feedback loops (ii) and (iii). Here we assume that differentiation is positively
regulated by DCs and SC self-renewal is negatively regulated by SCs. We consider the four possible
alterations below.

(1) Differentiation is decreased for mutants such that R̃ < R(y) for all x, y. In this case, an increase
in either population results in the other population either increasing or decreasing, and so we have
only the most basic requirement that both populations cannot decrease.

(2) SC self-renewal is increased so that S̃ > S(x) for all x, y. Similarly to (1), we have only the most
basic requirement that both populations cannot decrease.
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(3) De-differentiation increases from 0 so that B̃ > 0 for all x, y. Similar rearranging as the other
redundant networks gives two possibilities: (a) if ŷ < ȳ, then x̂ > x̄ and µ̂ < µ̄, and (b) if ŷ > ȳ
then x̂ < x̄ and µ̂ > µ̄. Thus, µ could increase or decrease, and we have only that both populations
cannot decrease.

(4) DC death decreases such that D̃|x̄,ȳ < 0. If D̃ ≥ 0 for some x, y and D̃ < D for all x, y, then
the network can reach a new equilibrium. Similarly to (3), we get the same two cases, and thus µ
could increase or decrease and we have only that both populations cannot decrease.

Rx, Sx: Minimal feedback loops (i) and (iii). Here we assume that differentiation is positively
regulated by SCs and SC self-renewal is negatively regulated by SCs. We consider the four possible
alterations below.

(1) Differentiation is decreased for mutants such that R̃ < R(x) for all x, y. Assume x decreases such
that x̂ < x̄. Then, since S is a decreasing function of x, we have

R(x̄) = S(x̄) < S(x̂) = R̃|x̂,ŷ < R(x̂).

However, since R is an increasing function of x, then we have that x must be increasing, so there
is a contradiction and we have x̂ > x̄. Thus the equality above changes and we have R(x̄) > R̃|x̂,ŷ,
so µ̂ < µ̄, and y can increase or decrease.

(2) SC self-renewal is increased so that S̃ > S(x) for all x, y. Similarly to (1), if x̂ < x̄ then

S(x̄) = R(x̄) > R(x̂) = S̃|x̂,ŷ > S(x̂)

leads to a contradiction. So x̂ > x̄. Thus R(x̄) < R(x̂) gives µ̂ > µ̄, and so we must also have
ŷ > ȳ. Thus both populations increase.

(3) De-differentiation increases from 0 so that B̃ > 0 for all x, y. Rearranging the equations at
equilibrium gives R(x̄) = S(x̄) and R(x̂) = µ̂B̃ + S(x̂). If x̂ < x̄, then S(x̄) < S(x̂) and

S(x̄) = R(x̄) > R(x̂) = µ̂B̃ + S(x̂)

leads to a contradiction, since µ̂B̃ > 0. Thus x̂ > x̄. However, this gives that µ can increase or
decrease, and thus y can increase or decrease.

(4) DC death decreases such that D̃|x̄,ȳ < 0. If D̃ ≥ 0 for some x, y and D̃ < D for all x, y, then
the network can reach a new equilibrium. In this case, since R is an increasing function, S is a
decreasing function, R(x̄) = S(x̄) and R(x̂) = S(x̂), then x̂ = x̄. Then µ̂ > µ̄, and so ŷ > ȳ.

Ry, Sy: Minimal feedback loops (ii) and (iv). Here we assume that differentiation is positively
regulated by DCs and SC self-renewal is negatively regulated by DCs. We consider the four possible
alterations below.

(1) Differentiation is decreased for mutants such that R̃ < R(y) for all x, y. Similar to the redundant
network consisting of minimal feedback loops (i) and (iii), since S is a decreasing function, if y
decreases it will lead to a contradiction. Thus ŷ > ȳ. Then R(ȳ) > R̃|x̂,ŷ, so µ̂ < µ̄. This gives
that x̂ > x̄, and thus both populations increase.

(2) SC self-renewal is increased so that S̃ > S(x) for all x, y. Similarly to redundant network (i) and
(iii), as well as case (1), ŷ < ȳ leads to a contradiction, so we have ŷ > ȳ. Then R(ŷ) > R(ȳ), and
so µ̂ > µ̄. Thus, while y must increase, x can increase or decrease.

(3) De-differentiation increases from 0 so that B̃ > 0 for all x, y. Rearranging the equilibria and using a
similar argument as in case (2) of redundant network (i) and (iii), if ŷ < ȳ there is a contradiction.
Rather we have ŷ > ȳ, and µ can increase or decrease. Thus x can also increase or decrease.
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Figure 6: Population trends for mutant equilibria compared to wild type equilibria for redundant net-
works in the absence of de-differentiation (B = 0) where the phenotype is altered one of four ways. Note
that if the regulated rate coincides with the altered rate, then it is a different change than a weakened
response to feedback. The rows represent which feedback loops are present while the columns show
which rate is altered. The arrows indicate whether the fraction y/x will increase, decrease, or remain
the same. A question mark means that the fraction could increase or decrease. Red means that both
populations will increase, yellow that SCs must increase, light blue that DCs must increase, and green
that at least one population cannot decrease. For the light blue and yellow cells, one population must
increase while the other can increase or decrease, however the dark blue indicates that the DCs must
increase and the SCs must decrease. The white indicates that the SCs remain the same while the DCs
increase, and the purple that the DCs remain the same while the SCs decrease.

(4) DC death decreases such that D̃|x̄,ȳ < 0. If D̃ ≥ 0 for some x, y and D̃ < D for all x, y, then the
network can reach a new equilibrium. Similarly to (4) in redundant network (i) and (iii), since R is
an increasing function and S is a decreasing function, then we must have ŷ = ȳ. Then µ̂ > µ̄, and
x must decrease. Note that while both populations do not decrease, neither population increases.
This is this only case where one population remains the same, while the other decreases.

Each redundant network behaves differently. For instance, in redundant network Rx, Sy, we only
know the most basic result that both populations cannot be decreasing for each mutation, whereas for
redundant network Sx, Sy we know exactly which population must be decreasing for each mutation.
For mutation type (1) where R decreases, five redundant networks must have SCs increase. On the
other hand, for mutation type (2) where S increases, five redundant networks must have DCs increase.
Mutation type (3), B increases from zero, half of the redundant networks result in an increase of SCs,
only must result in an increase of DCs, while the other two cannot have both populations decrease but
either could be non-decreasing.

Mutation type (4) is much more varied than the other mutations, and gives unique results. For
instance, redundant network Rx, Sy mutated in this manner requires SCs to decrease, and it is the only
mutation type and redundant network with this result. When both rates are regulated by SCs, that
is Rx and Sx are regulated, we have the unique result that the SC population remains the same while
the DCs increase, and when both rates are regulated by DCs, that is Ry and Sy are regulated, the DCs
remain the same while the SCs actually decrease. That is, under this mutation, both rates regulated by
the same population leads to one population remaining the same, and DCs as the regulating population
is the only case where neither population increases.

These population trends can be clearly seen in Figure 6. We compare the populations at the new
mutant equilibrium to the original wild type equilibrium, where a population increases if it is larger at
the new equilibrium. The arrows and colors have the same meanings as in Figure 4, with three additional
colors: the dark blue is the case where the SCs must decrease, the white is the case when the SCs stay
the same while the DCs increase, and the purple is the only case where neither population increases.
We can clearly see that not all redundant networks behave the same way.
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