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Here we provide a physical and mathematical framework for the description of flow-driven oscillators.
These oscillators, differently from frequency-driven harmonic systems, are based on countercurrent mass
flows and thermal-energy exchange. We describe this class of oscillators through two countercurrent fluids
separated by a heated conductive medium. We show how this configuration embeds the essential elements
of harmonic oscillators, such as resonance condition, periodic orbits, and quality factor or decay time. The
key advantage of recognizing flow-driven systems as oscillators lies in the possibility to engineer them
according to the properties of resonant systems and utilize them to control their temperature, maximize the
stored energy, or coupling them in networks. We report examples of simple configurations at their resonant
condition, enhancing both thermal energy and decay time by factors larger than 10. We finally show
two flow-driven oscillators coupled in series, featuring a reconfigurable internal temperature distribution,
depending on the selected resonant condition.
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I. INTRODUCTION

Oscillations can be described as temporal evolutions of
quantities, whose values repeat periodically [1]. Periodic
phenomena are ubiquitous in nature, from planets rotation
and revolution [2], to heartbeats of vertebrates and cir-
cadian rhythms [3], to brainwaves [4] or electromagnetic
fields [5]. Among oscillating systems, driven oscillators
are of particular interest as their resonant behavior can be
externally controlled for many applications, such as reso-
nant circuits [6], optical resonances [7], or micromechani-
cal resonators [8]. Resonant systems are usually driven by
frequency-dependent inputs but, recently, flow-rate-based
thermal resonators have also been proposed [9]. How-
ever, a formal description of such resonant heat transfer
is lacking. Here we show how flow-driven systems can be
formally described as oscillating units.

Oscillating systems can be visualized as state variables
generating spiral trajectories or closed loops in the phase
plane [10]. Such state variables can represent many dif-
ferent phenomena: amplitude and velocity for a simple
pendulum [11], prey and predators in species fluctua-
tions [12], and even interpersonal feelings in complex
love stories [13,14]. Oscillations identified by two state
variables (v1 and v2) can be characterized through the
properties of the associated two-dimensional dynamical
system that, if linear, can be studied by analyzing the
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coupled equations [10]:

(
v̇1
v̇2

)
=
(

a b
c d

)(
v1
v2

)
. (1)

This system has eigenvalues λ1,2 = (ζ ±
√

ζ 2 − 4�
)
/2

with ζ = λ1 + λ2 = a + d and � = λ1λ2 = ad − bc, and
its qualitative behavior can be inferred from � and ζ

values. In particular, if � > 0, ζ < 0 and ζ 2 − 4� <

0 the eigenvalues are complex, the trajectories are spi-
rals with period T = 2π/ω0 and angular frequency ω0 =(√

4� − ζ 2
)
/2 and the equilibrium point (v1 = 0, v2 = 0)

is stable. One classical example is a RLC circuit [see
Fig. 1(a)] where an oscillating input voltage, Vin(ω), drives
the system by inducing its energy to oscillate between the
inductor and the capacitor with resonance at ω0 ∼= 1/

√
LC.

The concept applies to many systems, such as, for
instance, metallic nanoparticles [Fig. 1(a)], where conduc-
tive electrons can be driven by the electric field, Ein(ω),
of an electromagnetic wave. For spherical particles in vac-
uum, the amplitude of electron oscillation is maximized
at ω0 ∼= ωp/

√
3, where ωp is the plasma frequency of the

metal [15]. Radiation and dissipation losses are captured,
by damping terms, �rad and �diss, respectively.

These two examples share many similarities and, in fact,
metallic nanostructures can sometimes be approximated
by LC circuits [16]. Importantly, in both cases, the exter-
nal driving input is a frequency-dependent signal and the
stored energy alternates between physical quantities such
as electric and magnetic fields.
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II. FREQUENCY VERSUS FLOW-DRIVEN
OSCILLATORS

Here we introduce another class of oscillators, which,
differently from time and frequency inputs, are controlled
by fluid flow rates. To illustrate the concept, we choose
a prototypical system [see Fig. 1(b)] composed of two
fluids in countercurrent configuration with opposite flow
rates, Q0 and Qin, separated by a thin conductive medium
heating both fluids with power intensity Is. The input ther-
mal energy can be lost through the flow outlets (�out)
or released towards the environment (�env). We let Qin
and Is be easily controllable, thus representing external
drivers, while we assume Q0 and the rest of the geometri-
cal and material parameters are fixed. The power intensity
is, therefore, ultimately controlled by the flow rate Is(Qin).

We demonstrate how this thermofluidic system exhibits
oscillatory behaviors and resonant conditions by tuning the
flow-rate controlled external input Is(Qin). We show how
thermal advection and conduction are at the base of the
oscillating mechanism where heat fluxes are periodically
exchanged between the two flows, storing thermal energy
in the fluids and reaching a maximum for Qin ∼ Q0, as in a
resonant condition. More details on the analogy among the
examples of Fig. 1 are reported in Appendix A.

Heat transfer between fluids in similar systems has
been previously studied for many applications, such as
heat exchangers [17–21] or membrane distillation [22–
24]. However, the oscillating behavior has been so far
overlooked probably because, in more common applica-
tions, the regions where fluids are heated (energy input)
and interact (energy exchange) are usually separated in
space and/or time. However, applications with colocalized
power input and heat exchange are also of major interest
[25,26]. One example is nanoparticle-assisted solar-driven

membrane distillation, where nanoparticles act as efficient
light-heat converters [27–29] and transfer heat in parallel
to the desalination process [30,31]. In fact, resonant heat
transfer has been recently proposed as a thermal-energy
recovery method to boost the efficiency of light-driven
desalination [9] but a comprehensive formal framework
was not provided.

III. HEAT TRANSFER DYNAMICS IN
FLOW-DRIVEN OSCILLATORS

A. Periodic oscillations and resonances

To provide a general context to flow-driven thermal
oscillators, we examine the system introduced in Fig. 1,
as shown in Fig. 2(a). Two thermally insulated parallel
countercurrent streams, Q1 and Q2, (entering the system
at temperature Tamb), flow in channels 1 and 2 (length
L, thickness w, and width D) with homogeneous veloc-
ities u1 = Q1/A and u2 = Q2/A (with A = wD the cross
section of the channels). The flows are separated by a thin
nonpermeable conductive layer and are heated by a con-
stant heat source of intensity Is. The channels exchange
heat fluxes, I21 and I12, depending on their relative tem-
perature difference, Iji = h�Tji, and the fluid streams leave
the system through the channel outlets. The parameter h is
a heat-transfer coefficient, which, for simplicity, includes
the thermal properties of both the conductive layer and the
fluids.

We assume that advection occurs only in the direc-
tion parallel to the channels (x) and that temperature
is homogenous along the thickness of the channels (y).
This simplified problem reduces to two one-dimensional
(1D) systems and, applying the continuity equation (see

(a) (b)

FIG. 1. Examples of frequency-driven and flow-driven oscillators. (a) A parallel RLC circuit and a plasmonic metallic nanoparticle.
The RLC circuit is driven by an oscillating electric potential, Vin(ω); the metallic nanoparticles by an oscillating electric field, Ein(ω)

(of an electromagnetic wave with wave vector k). (b) A thermofluidic system, prototype of flow-driven thermal oscillators; the ther-
mofluidic system (represented by a flow rate Q0) is driven by a countercurrent heated flow rate, Is(Qin). Losses are represented by a
resistance, R; internal dissipation, �diss; reirradiation, �rad; flow outlets, �out; and environmental heat exchanges, �env, for the three
systems, respectively.
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(a) (b)

(c)(d)

FIG. 2. (a) Scheme of a flow-driven oscillator composed of
two coupled fluidic channels of length L and thickness w. Two
countercurrent fluids (1 and 2), with density ρ and specific heat c,
enter the system along the x direction with homogeneous veloc-
ity u1 and u2, respectively. The channels are separated by a thin
layer acting as a common heating source Is = 50 W/m2 charac-
terized by a generalized heat-transfer coefficient h. The channels
exchange heat across the interfacial layer through I21 and I12
for x < 0 and x > 0, respectively. (b) System average temper-
ature increase (left axis) and decay time (right axis) depending
on (u2/u1) for different h = 1, 100, 200 W/(m2 K) from light to
dark gray color, respectively. ηres as from Eq. (7) is shown by red
arrows. (c) Average transferred heat fluxes I12 and I21 normalized
to Is, in channels 1 (solid) and 2 (dashed) depending on (u2/u1)

for different h = 1, 100, 200 W/(m2 K) from light to dark gray
color, respectively. The system has L = 0.5 m and w = 1 mm.
(d) Scheme of the interacting channels where the velocity field
u(y) (blue thin arrows) has a linear triangular shape. The rate of
change of heat fluxes, ẋ and ẏ, along x and y, respectively, are
symbolized by black thin arrows.

Appendix B), we obtain

∂T1(x)
∂x

= 1
ϕ|u1|

[− h�T(x) + Is
]
,

∂T2(x)
∂x

= 1
ϕ|u2|

[
h�T(x) + Is

]
,

(2)

with �T(x) = T1(x) − T2(x), T1(−L/2) = T2(L/2) =
Tamb = 20 ◦C, and ϕ = ρcw, with ρ, c the density and the
specific heat of the fluid. The closed form analytical solu-
tions of Eq. (2) and the temperature profiles are reported in
Appendices C and D.

In Fig. 2(b) we plot the average system tem-
perature increase, �T̃ = (1/2L)

{ ∫ L/2
−L/2

[
T1(x) + T2(x) −

2Tamb
]

dx
}

, (left axis) of the system depending on the ratio,
u2/u1, for different values of h, with water as fluid. A peak

in temperature increase, and thus a maximum in the stored
thermal energy H ∝ ρcT̃, is reached for matched veloci-
ties and large heat-transfer coefficients. This is explained
by considering the average heat fluxes defined as I12 =
−(2/L)

∫ L/2
0 h�T(x) dx and I21 = (2/L)

∫ 0
−L/2 h�T(x) dx

exchanged between the channels, from 1 to 2 if x > 0 and
from 2 to 1 if x < 0. Similarly to temperature maxima, the
exchanged heat fluxes, with opposite signs, exhibit a peak
for u2/u1 ∼ 1 and large h as shown in Fig. 2(c).

To visualize the oscillating behavior, we consider the
overall heat dynamics within the coupled channels.

To model the heat dynamics, we reintroduce the y coor-
dinate to indicate the heat transfer across the channels and
we seek the conditions such that the heat trajectories in the
x-y plane are represented by circular paths and spirals, fin-
gerprints of periodic (oscillating) solutions. To this end,
we consider a probe in our system dragged by a vector
field (ẋ, ẏ), proportional to the magnitude of heat fluxes.
Coherently with previous assumptions (advection along x
and conduction along y) we can write [see Fig. 2(d)]

⎧⎪⎨
⎪⎩

ẋ =
{

ρcu1T1(x), y > 0
−ρcu2T2(x), y < 0

ẏ = −h�T(x).

(3)

The trajectories for u2 > u1, u2 ∼ u1, and u2 < u1 are
shown in Figs. 3(a)–3(c), superimposed to the heat vector
field and system geometry. At matched velocities, u2 ∼ u1,
the heat is confined within the system for a longer time, as
expressed by the more compact trajectories.

We then examine the linearized version of the system
of Eq. (3) for u2 ∼ u1, to adopt the matrix representa-
tion introduced in Eq. (1), from which we can obtain the
parameters typical of periodic systems (see Appendices E
and F):

(
ẋ
ẏ

)
=

⎡
⎢⎢⎣

0
IsL
w2

(
hL
ϕu

+ 2
)

−h
2Is

ϕu
0

⎤
⎥⎥⎦
(

x
y

)
. (4)

The linearized system is formally equivalent to Eq. (1)
with coefficients a = 0, b = (IsL/w2)

(
hL/ϕu + 2

)
, c =

−h(2Is/ϕu), d = 0 and with ζ = 0, � = h(2I 2
s L/ϕu)

(1/w2)
(
hL/ϕu + 2

)
. Therefore, the eigenvalues are purely

imaginary:

λ1,2 = ±iω0 = ±i
Is

w

√
2hL
ϕu

(
hL
ϕu

+ 2
)

(5)

and the system dynamics is described by closed orbits.
The equilibrium point, (0, 0), is a center and the trajec-
tories are periodic with period T = 2π/ω0 as shown in
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. (a)–(d) Time trajectory of a massless probe, dragged
by the heat-flux field, starting at x0 = L/8 and y0 = w/10 (dark
yellow circle) until an arbitrary time, t = 40 μs (green circle) for
u2 = 1.07u1 (a); u2 ∼ u1 (b); u2 ∼ 0.7u1 (c). Panel (d) illustrates
the linearized system shown in (b). (e) Value of the coordi-
nate y(t) over time for the case u2 ∼ u1 in the linearized (solid)
and nonlinear (dashed) model. (f) Value of the coordinate y(t)
over time for the case u2 ∼ u1 in the linearized model for dif-
ferent h = 1, 20, 200 W/(m2 K), green, blue, and magenta lines,
respectively.

Fig. 3(d). Overall, ω0 expresses the frequency of heat oscil-
lation per unit of energy density and is expressed in [J/(s
m3)] or [W/m3]. In Fig. 3(e) we plot the vertical heat-
flux trajectory y(t) versus time for both the linearized
and the complete nonlinear system. Since no dissipation
is considered in the linearized case (ζ = a + d = 0), heat
is exchanged indefinitely and the trajectory is confined
relatively close to the origin. In the nonlinear case, the
trajectories are ruled by Eq. (3): the unstable spirals pull
the probe from the origin [Figs. 3(a)–3(c)] towards the
outlets and the oscillation amplitude increases with time
[Fig. 3(e), dotted line]. More details in Appendix G. The
proximity of heat fluxes to the outlets increases advection
losses (heat is carried out of the system by the flows) and
limits thermal-energy accumulation, ensuring the stability
of the system. See Appendix H for further details on the
effect of system perturbations. The role of the heat-transfer
coefficient is shown in Fig. 3(f) for the linearized case. The
oscillation frequency, ω0, increases for larger h: 1, 20 and
200 W/(m2K), in accordance to the eigenvalues of Eq. (5).

B. Thermal-energy accumulation and decay time

To quantify the resonant effect, we introduce the aver-
age permanence time, τ , of thermal-energy increase in
the whole system defined as �H = ρcw

∫ L/2
−L/2

[
T1(x) +

T2(x) − 2Tamb
]

dx. In steady state, input power equals
losses and τ = �H/(I0L). τ relates to the decay time and
to the quality factor of a resonator, Qf , as τ ∝ Qf . By
evaluating τ at resonance, τres, we find

τres = 1
IsL

lim
Q1→Q2

�H = L
u

(
1 + hL

3ϕu

)
. (6)

τres is composed of two terms: a dwell time (L/u) and
an interaction (hL2/3ϕu2) time. The dwell time, τ0 =
τres|h→0 = L/u, indicates the average time it takes the fluid
to go through the channel. The interaction time is due to
the interaction between the channels and effectively pre-
vents heat “escaping” from the system. We can define a
time-decay enhancement, η = τ/τ0, which at resonance
becomes

ηres = τres

τ0
= 1 + τ0

h
3ϕ

. (7)

The calculated η is plotted against u1/u2 in Fig. 2(b) (right
axis), consistently with the curves of �T̃. While Eq. (7)
is accurate only when external losses and further nonlin-
ear effects can be neglected, it provides a roadmap for
the design of thermofluidic resonators. The comparison
between η and ηres is shown by the red arrows in Fig. 2(b).
Thermal energy can be enhanced up to 10 times in our
example. ηres well matches η curves when u1/u2 ∼ 1, espe-
cially for large h where the resonance condition becomes
closer to u1/u2 ∼ 1, for which the expression of ηres is
obtained. The impact of losses and fluid thermal conductiv-
ity for a more realistic system are reported in Appendices I
and J. The comparison between water and a liquid metal
(e.g., Galinstan) as candidates for the flowing fluids in
the system is also reported (Appendix K). The analytical
expressions currently employed in the theoretical model
neglect diffusive heat transport within the channels (x
direction). This simplification works well for fluids with
a relatively small thermal conductivity. The case of more
conductive fluids can be treated numerically.

IV. COUPLED FLOW-DRIVEN RESONATORS

By recognizing these thermofluidic systems as oscil-
lators, we can exploit the concept of resonant condition
between two channels, Q1/Q2 ∼ 1, to control the spatial
temperature map across multiple oscillators. This paves the
way for the design and optimization of relatively complex
systems with desired properties, by using such oscillators
as building blocks. Let us present this idea on a relatively
simple design where we introduce a horizontal thermal bar-
rier in a channel to screen the vertical heat flux and alter the
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(d)

(e)

(f)

(a)

(b)

(c)

FIG. 4. Series of oscillators. (a) Two oscillators (oscillator 1,
blue; oscillator 2, red) of length L/2, width w input velocities u1
and u2 are positioned in series. Oscillator 2 features an insulating
layer at distance δ from the interface heating both channels with
intensity Is. The boundaries of the insulating layers feature slip-
boundary conditions. The blue and red circles show the center
of each oscillator. (b) Thermal map (colors) and heat-flux vector
field (black arrow heads) for the case δ = w/2 and u1 ∼ u2. (c)
Same as (b) with u1 ∼ 2u2. (d) Temperature increase in the oscil-
lator centers depending on the top channel velocities u1 when
u2 = 5 mm/s and w = 1 mm for δ = 200 μm. (e),(f) Same as (d)
with δ = 300 μm and δ = 400 μm, respectively. Oscillators are
assumed to be insulated from the environment.

resonant condition. We report a numerical example of such
a configuration in Fig. 4(a) for two oscillators (1 and 2 of
width w) in series where oscillator 2 features an ideal zero-
thickness insulating layer at a distance δ from the interface.
By fixing the flow velocity in channel 2, u2, in Figs. 4(b)
and 4(c) we show the temperature maps (colors) and heat-
flux vector field (arrowheads) when δ = w/2 with u1 = u2
(top) and u1 = 2u2 (bottom). The peak temperature and
the spiral-like heat-flux pattern shift from left (oscillator
1) to right (oscillator 2) according to the resonant condition
u1 = u2 for oscillator 1 and u1 = 2u2 for oscillator 2 (as the
transported heat flux in channel 1 is halved by the thermal
barrier). In Figs. 4(d)–4(f) we report the maximum temper-
ature increase dependence on u1 for both oscillators in the
case of different thermal-barrier positions. It is now clear
why, in Fig. 1, we define the general input of thermoflu-
idic systems as Is(Qin): Is establishes the amplitude of the
maximum reached temperature and Qin controls the reso-
nant condition, upon matching with the opposite channel
effective flow rate.

V. CONCLUSIONS

In conclusions, we introduce a class of thermofluidic
devices, which can be regarded as thermal oscillators. Sim-
ilarly to other well-known resonant systems, flow-driven
oscillators feature resonant conditions and a time decay
of the stored energy, which is maximized at resonance.
One of the simplest configurations consists of two coun-
tercurrent flows separated by a heat source, but networks
of such oscillators can be conceived. While oscillators
can be found almost in any field of science and engineer-
ing, thermofluidic resonators are of extreme importance
because they can be externally controlled through input
heat sources and flow rates. One example of application
is resonant heat transfer for solar water desalination and
it is discussed in Appendix L. The resonant thermal condi-
tion is not confined to conductive heat transfer, but it can be
applied to any type of heat transfer, which can be combined
with convective (advective) transport. We expect the con-
cept of resonant thermofluidic systems to find applications
wherever the control of temperature plays a major role,
from microfluidic devices to chemical reactor chambers.
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APPENDIX A: COMPARISON BETWEEN
FREQUENCY AND FLOW-DRIVEN SYSTEMS

To provide a more detailed comparison between flow-
driven and frequency-driven oscillators, in Table I below,
we report their comparison in terms of input signal, reso-
nant condition, stored energy and loss mechanisms.

APPENDIX B: SIMPLIFIED CONTINUITY
EQUATION

We start by considering the change of internal energy for
a Newtonian fluid [32] (described by a fluid velocity field,
u, density ρ, and specific heat c at constant pressure):

ρcp

(
∂T
∂t

)
= −ρc (u · ∇) T − (∇ · q) − τ : ∇u

− p (∇ · u) + S. (B1)

The rate of increase of internal energy per unit volume
(with ρ density and c specific heat at constant pressure) is
separated into its components: convective transport, heat
conduction, viscous dissipation, compression and external
sources, from left to right, respectively. We now assume (i)
a fluid where heat transfer by advection is dominant over
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TABLE I. Comparison among the different oscillating systems in terms of their external input, resonant condition, stored energy, and
dissipation (losses).

RLC circuit Plasmonic nanoparticle Thermofluidic system

INPUT Voltage: Vin(ω) Electric field: Ein(ω) Heating flow rate: IS(Qin)

RESONANCE ωres ≈
√

1
LC

ωres ≈ ωp√
3

Qres ≈ Q0

STORED ENERGY EEl+Mag = 1
2

(
LI 2 + q2

C

)
EEM = 1

2

∫
ε0E2dr EThermal = ∫ ρcTdr

ENERGY LOSS RATE � = 1
RC

� = �rad + �diss � = �out + �env

diffusion (large Peclet number, Pe = Re · Pr 	 1, where
Re and Pr are Reynolds and Prandtl numbers, respec-
tively), i.e., |∇ · q| 
 ∣∣ρCp (u · ∇) T

∣∣. This condition is
satisfied even in relatively slow fluids. For example, water
flowing at ambient pressure, close to ambient tempera-
ture, in approximately mm size channels at approximately
cm/s velocities has 10 < Re < 100 [31] and 10 < Pr <

100 [33]; (ii) we neglect viscous dissipation as we do
not consider large velocity gradients nor polymeric or
highly viscous fluids [32] and (iii) we consider incom-
pressible fluids. The rate of internal energy increase, then,
simplifies to

ρcp

[
∂T
∂t

+ (u · ∇) T
]

= S. (B2)

This continuity equation is assumed throughout the
manuscript and is at the base of the system of Eq. (2). In
Eq. (2), the flow rates are implicitly considered countercur-
rent and the | | symbols are introduced to avoid confusion
about signs, even if both u1 and u2 are considered posi-
tive throughout this work. This choice allows us to write
T1(x) and T2(x) solutions in more compact terms (see
Appendix C).

APPENDIX C: ANALYTICAL SOLUTIONS FOR
TEMPERATURE PROFILES

The analytical solutions for the temperature profiles,
T1(x), T2(x), in the two channels are

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T1 (x) =
e− α(L+2x)

2 IS

{
2hLu2 − he− α(L−2x)

2
[
eαLu2 (L − 2x) + u1 (L + 2x)

]− φu2�
(

e
α(L+2x)

2 − 1
)}

φh�
(
u2 − u1e−αL

) ,

T2 (x) =
e− α(L+2x)

2 IS

{
hu2e

α(L+2x)
2 (L − 2x) − u2 (2hL + φ�) + e− α(L−2x)

2 u1 [h (L + 2x) + φ�]
}

φh�
(
u2 − u1e−αL

) .

(C1)

With α = (u2 − u1)/(φu1u2), � = u1 + u2, � = u2 − u1,
φ = cwρ, Tamb = 0

At resonance, u1 = u2 = u, we have
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T1,u (x) = IS (L + 2x) [h (L − 2x) + 2uφ]
4u2φ2

T2,u (x) = IS (L − 2x) [h (L + 2x) + 2uφ]
4u2φ2

�Tu (x) = 2IS

φu
x

(C2)

APPENDIX D: TEMPERATURE-PROFILE
DEPENDENCE ON HEAT-TRANSFER

COEFFICIENT

The scheme of the coupled 1D systems is shown in
Fig. 5. Quasisymmetric temperature profiles T1(x) and

FIG. 5. System generalized as two coupled 1D systems. Flow
inlets (1 and 2) are at the same fixed temperature Tamb. Flow
outlet temperatures, Te1 and Te2, depend on the system parame-
ters. The space-dependent heat exchanged between the channels
I21(x) and I12(x) depend on the temperature profiles of the
channels T1(x) and T2 (x).
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(a)

(b)

(c)

(d)

FIG. 6. (a) Temperature profiles T1(x) and T2(x) of channels 1
(solid) and 2 (dashed), respectively, for three different configura-
tions: u2 ∼ 2u1 (blue), u2 ∼ u1 (black), and u2 ∼ 0.5u1 (red). (b)
Temperature difference between the channels �T (x) = T1 (x) −
T2(x) for three different configurations: u2 ∼ 2u1 (blue), u2 ∼ u1
(black), and u2 ∼ 0.5u1 (red). ρ = ρw = 1000 kg/m3, c = cw =
4.18 kJ/kg, Is = 50 W/m2, L = 0.5 m, w = 1 mm, u1 = 0.83
mm/s, and h = 200 W/(m2 K). (c) Temperature profiles T1(x)
and T2(x) of channels 1 (solid) and 2 (dashed), respectively, for
u2 ∼ u1 with h = 1, 100, 200 W/(m2 K) from light to dark gray
color. (d) Temperature difference profile �T(x) with u2 ∼ u1
with h = 1, 100, 200 W/(m2 K). All cases overlap. ρ = ρw =
1000 kg/m3, c = cw = 4.18 kJ/kg, Is = 50 W/m2, L = 0.5 m,
w = 1 mm, u1 = 0.83 mm/s, and h = 200 W/(m2 K).

T2(x), can be obtained when u1 ∼ u2, as shown in
Fig. 6(a). Absolute temperature profiles and their differ-
ence �T (x) = T1 (x) − T2(x) [Fig. 6(b)] can be tuned
varying the relative velocity of the flows. Interestingly, the
condition u1 ∼ u2 generates a linear �T (x) with a change

of sign at the origin, a critical ingredient of the oscilla-
tory behavior under investigation. The dependence of the
absolute temperatures evaluated at u1 ∼ u2 = u, T1,u (x)
and T2,u (x) on the heat-transfer coefficient h is shown in
Fig. 6(c). We notice that (i) T1,u (x) and T2,u (x) depend on
h and reach their maximum at x = 0, however their differ-
ence, Tu (x) = (2IS/φu)x, is independent of h [Fig. 6(d)]
where all lines overlap. (ii) Increasing heat-transfer coef-
ficient h changes the temperature profiles from linear to
parabolic functions. This trend is reported in Fig. 6(c)
where temperatures shift from straight lines to parabolas
for increasing h values.

APPENDIX E: SYSTEM LINEARIZATION AND
JACOBIAN MATRIX

Restricting our analysis to the case u2 ∼ u1 = u, we
notice that the equation for ẏ is already linear [�Tu (x) =
(2IS/φu)x], while the expression for ẋ needs to be sim-
plified. First, we linearize the velocity across the interface
between the channels by assuming a linear but realistic
dependance [34] of u(y) on y [see blue arrows in Fig. 2(d)].
In the case of a thin (w 
 D) and long (w 
 L) rectangular
duct centered at y = 0, the velocity along x can be written
as u(y)/umax ≈ [1 − (2y/w)n] [34], where umax is the max-
imum velocity in the duct. By shifting the y axis (in our
case y = 0 is at the interface between the channels) and
approximating the y dependence to the first order (n = 1),
we can linearize, close to y = 0, the y dependence of
the velocity with a continuous function: u (y) = 4u (y/w).
These assumptions are not restrictive for our analysis, as
we consider the system dynamics close to the origin, which
is an equilibrium point for both the nonlinear and linear
systems, being ẋ = f (x) y and ẏ = const × y. The lin-
earized system at the equilibrium point (0,0) can be finally
obtained from

J =

⎛
⎜⎜⎝

∂ ẋ
∂x

∂ ẋ
∂y

∂ ẏ
∂x

∂ ẏ
∂y

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎨
⎪⎩

4ρcu
∂

∂x
[
T1,u (x)

]
y/w, y > 0

4ρcu
∂

∂x
[
T2,u (x)

]
y/w, y < 0

{
4ρcuT1,u (x) /w, y > 0
4ρcuT2,u (x) /w, y < 0

−heff
2IS

φu
0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (E1)

By considering the Jacobian matrix, J , of the system eval-
uated at the equilibrium point (0,0) and u (y) = 4u (y/w),
we have

(
ẋ
ẏ

)
= J(0,0)

(
x
y

)
, (E2)

with

J(0,0) =

⎡
⎢⎢⎣

0
ISL
w2

(
hL
φu

+ 2
)

−h
2IS

φu
0

⎤
⎥⎥⎦ . (E3)
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APPENDIX F: COMPARISON WITH HARMONIC
SYSTEMS

From linearized system we extract the complex eigen-
values:

λ1,2 = ±iω0 = ±i
Is

w

√
2hL
φu

(
hL
φu

+ 2
)

(F1)

and by normalizing to IS/w and if hL/φu 	 2 we also have

|ω0| ∝
√

2
φ

h
L
u

∝ hτ0 (F2)

with τ0 = L/u. ω0 goes to zero, consistently with ηres
approaching one [Eq. (7)], for either vanishing h or τ0. By
considering the general equation of a harmonic oscillator,
our system satisfies the equation:

1
b

ẍ − cx = 0, (F3)

with b = (ISL/w2) (hL/φu + 2) and c = −h(2IS/φu).
From this perspective 1/b represents the inertial term (pro-
portional to φ = ρcw, and nonzero even when the channels
do not interact, h = 0) and c the pulling term (proportional
to h). Differently from more conventional driven oscilla-
tors, here the driving term is naturally embedded in the
system itself through Is and u but, importantly, both Is and
u can be controlled and used as external drivers.

APPENDIX G: INCREASING OSCILLATION
AMPLITUDE FOR THE NONLINEAR SYSTEM

The physical reason why the oscillation amplitude
increases is the following: referring to Fig. 6(c), we
observe that T1(x) and T2(x) are similar but slightly shifted
along x and, in fact, they give rise to the temperature dif-
ference �T1,2 = T1 − T2 shown in Fig. 6(d). Importantly,
when the heat probe switches channel (1 → 2 or 2 → 1)
the temperature of the next channel is always lower than
the channel of origin. Therefore, ẋ decreases at each switch
while ẏ stays the same as it only depends on �T1,2, which
is constant along y [see Eq. (3)]. As a consequence, at each
switch, the overall velocity vector becomes more paral-
lel to y and pulls the probe away from the origin, which
becomes unstable. The linearized system, being evalu-
ated at the origin, shares the same temperature along y as
T1 (0) = T2(0), and the amplitude is constant.

APPENDIX H: IMPACT OF THERMAL INERTIA
AND TIME-DEPENDENT PERTURBATIONS

Flow-driven systems at resonance exhibit a large per-
manence time τ as shown in the main text [see Eqs. (6)

−

(ℎ)

FIG. 7. Thermalization dynamics at beginning of operation.
Q1 = Q2 = 5 ml/min. Input intensity Is = 50 W/m2. The value
of the other parameters are detailed in Appendix I with mloss =
0.001.

and (7)]. This property (enhanced thermal inertia) trans-
lates in both an enhanced time duration of stored thermal
energy (once the input power is turned off) and a longer
“charging” time when the device starts its operation at
room temperature. In Fig. 7 we report the average temper-
ature increase in the water channels (Tavg − Tamb) versus
time once the input power (Is = 50 W/m2) is turned on
at t = 0. The relatively long stabilization time, ts, reflects
the thermal-energy accumulation dynamics, which is max-
imized at the resonant condition (Q1 = Q2 = 5 ml/min).
The accumulation lasts for about 5 h, which is consistent
with τ ≈ 60 min of Fig. 9(d) (case mloss = 0.001), being
ts ≈ 5τ .

A relatively large τ also implies a relatively high robust-
ness to fast perturbations as the device takes times of the
order of τ to adapt to external stimuli. Figs. 8(a) and 8(b)
show the average temperature increase versus time of a
stabilized [t = 0 of Fig. 8(a) corresponds to the station-
ary solution of the system in Fig. 7, i.e., t 	 ts] resonant
flow-driven system affected by three thermal perturbations,
of equal intensity Ip = 10 × Is = 500 W/m2 but differ-
ent duration tp = 0.1, 1, 10 min and applied at the same
time, 1 h after the beginning of the simulation [Fig. 8(c)].
Closer views of the three individual perturbations can be
observed more clearly in Figs. 8(d)–8(f). Perturbations
increase the average temperatures by approximately 25
K (tp = 10 min), approximately 3 K (tp = 1 min), and
approximately 0.5 K (tp = 0.1 min) from the stationary
baseline (approximately 20.5 K). In fact, τ is indepen-
dent of Is and any perturbation with duration tp 
 τ does
not have time to stabilize. A constant input intensity of
500 W/m2 leads to temperatures larger than 500 K in the
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(a) (b)

(c) (d)

(e) (f)

Δ = 0.1

= 1 = 10

−
(
)

/
2

/
2

FIG. 8. Effect of perturbations on a resonant flow-driven system. (a) Average temperature increase for a stabilized system affected
by a perturbation of intensity 500 W/m2 at t = 60 min of different durations: 0.1 min (blue), 1 min (black), and 10 min (red). (b)
Close-up view of (a). (c) Time-dependent intensity profile of the system power input. The baseline refers to Is = 50 W/m2, the thin
rectangular regions show the magnitude of the perturbation Ip = 500 W/m2. (d)–(f) Close-up views of the individual perturbations.

current system (if one assumes a sufficient mechanical sta-
bility at increased pressures to avoid boiling) but that takes
a time approximately ts. If perturbations last for shorter

times (e.g., tp 
 ts as shown here) their impact on the
short-term temperature increase and long-term effects are
limited.
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APPENDIX I: IMPACT OF LOSSES IN REALISTIC
SYSTEMS

To demonstrate the validity of the presented analytical
approach, we employ 2D numerical calculations for the
realistic representation of a resonant thermofluidic system
[Fig. 9(a)]. In line with the coupled channels analyzed
so far, we consider the system shown in Fig. 5 where
water channels are now separated by a tHX = 100 μm
thick conductive layer with thermal conductivity kHX =
400 W/(m K). The layer is assumed to be light absorbing
with an absorption coefficient α ∼= 5.81 × 104 m−1. These
optothermal properties are consistent, for example, with
carbon black nanoparticles placed on a surface. An inci-
dent electromagnetic radiation is assumed to be vertically
dissipated along y, according to a typical Lambert-Beer

profile, Is(y). Additional environmental losses, �env (con-
duction + convection and thermal radiation), are taken
into account through a combined heat-transfer coefficient
h = 5 W/(m2 K) and a black-body emissivity εrad = 1. The
thermal problem is coupled with Navier-Stokes equations,
assuming a laminar fluid. Water temperature-dependent
thermal parameters are taken into account and utilized
values can be found in Ref. [35]. Similarly to Fig. 2(b),
in Fig. 9(b) we report the average temperature increase
in the system by varying the flow-rate ratio Q2/Q1. We
observe that the trend obtained analytically is well recov-
ered, especially when external losses are low (a multiplica-
tive factor mloss has been introduced for hcoeff and εrad).
When Q2/Q1 ∼ 1, the previously introduced resonant con-
dition is achieved. We also report the heat-probe trajectory,

( )

− /2

2

1

(a)

No-slip

No-slip

(c)

10-210-3 10-1 1

1 = 2 (
2.5

5

10

(d)

0

(m
in
)

10−3

10−2

10−1

1

(K)(b)

101
1/ 2

/2

Γ : ℎ ,

Γ : ℎ ,

FIG. 9. (a) Realistic representation of the same system of Fig. 2(a) taking now into account: a nonzero thickness, tHX = 100 μm,
of the separation layer (heat exchanger, HX) between the channels characterized by a thermal conductivity kHX = 400 W/(m K).
Input heat source is assumed to decay exponentially along y with an absorption coefficient of 5.81 × 104 m−1. Temperature-dependent
density, ρ(T), specific heat, c(T), and fluid thermal conductivity, k(T), of water are considered. No-slip boundary conditions are applied
at the HX and outer boundaries of the channels. External heat-transfer coefficient, hcoeff = 5 W/(m2 K), and black-body emissivity,
ε = 1, are imposed at the channels’ boundaries to account for combined conductive and convective and radiative losses, respectively.
L = 0.5 m, w = 1 mm, Q1 = 5 ml/min. Channels are assumed to be d = 4 in ∼= 10.1 cm wide [u1 = Q1/(dw)]. Ambient temperature
is 20 ◦C. (b) Maximum temperature increase in the system for varying Q2/Q1 ratio and different loss coefficients, mloss, from 1 to 10−3

in scale of reds. (c) Temperature map (color) and probe trajectory (magenta) dragged by heat-flux vector field (black arrowheads) for
Q2/Q1 ∼ 1. Dark yellow and green circles represent the initial and final coordinates of the probe at t = 0 and upon leaving the system,
respectively. (d) Average thermal energy increases permanence time dependence on losses at different values of Q1 = Q2: 2.5 ml/min
(blue), 5 ml/min (red), and 10 ml/min (black) in the case of interacting (conductive interface, solid line) and noninteracting channels
(insulating interface, dotted line).
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in Fig. 9(c), for Q2/Q1 ∼ 1 and mloss = 1 × 10−3, show-
ing an outward spiral, as expected. The decay time, τ ,
is numerically extracted from the temperature maps. In
Fig. 9(d) we report τres vs mloss for three different matched
flow rates, both when the channels interact [kHX = 400
W/(m K), solid lines] and when they are almost indepen-
dent [kHX = 4 × 10−4 W/(m K), dotted lines]. The decay
time enhancement is clearly observed, particularly for low
losses, consistently with our theoretical analysis.

APPENDIX J: IMPACT OF FLUID THERMAL
CONDUCTIVITY

Larger fluid thermal conductivities increase the heat
transfer between the channels but also facilitate the vertical
and horizontal diffusive heat propagation within and along
the channels, respectively. Both these extra diffusive terms
increase losses, pulling heat fluxes closer to the external
boundaries (where heat can be exchanged with the environ-
ment) and outlets (where heat can directly exit the system).
Overall, an optimal thermal conductivity, which maxi-
mizes the stored thermal energy may exist. To illustrate
the concept, in Fig. 10 we show, for the system considered
in this work at resonance (Q1 = Q2 = 5 ml/min), the aver-
age temperature rise for increasing thermal conductivities
of the liquid filling the channels (the other thermophys-
ical properties are kept constant and equal to the water
ones). A maximum exists at around approximately 2.4
W/(m K). Thermal conductivities of water and a liquid
metal (Galinstan) are highlighted.

FIG. 10. Effect of fluid thermal conductivity. Average steady-
state temperature increase for the system as Fig. 9 (steady-state
unperturbed case) versus thermal conductivity of the fluids. The
case of water [k ∼ 0.6 W/(m K)] and a liquid metal Galinstan
[k ∼ 16.5 W/(m K)] are shown. All thermophysical properties
except thermal conductivity are the same as water.

APPENDIX K: WATER AND GALINSTAN CASES

Liquid metals, besides thermal conductivity, may have
different thermophysical properties from water (in partic-
ular, density, specific heat, and dynamic viscosity) and
could be potential candidates for thermal-storage applica-
tions based on flow-driven resonant systems. In Fig. 11 we
show the maximum temperature increase in the resonant
system versus increasing matched fluid flows for the case
of water (blue) and Galinstan (red). Two extreme loss coef-
ficients are considered [mloss = 1 (solid) and mloss = 0.001
(dashed)]. The same numerical calculations are performed
for the case of a system of length 0.5 m [Fig. 11(a)] and 2.5
m [Fig. 11(b)]. In Fig. 11(a) we see that for small fluid flow
rates there is not a big advantage of a fluid over the other, in
terms of temperature increase (and thus thermal storage).
However, if we consider larger devices the properties of

(a)

(b)

FIG. 11. Water and Galinstan case. Maximum temperature
increase in the system (same parameters as Fig. 10) versus
matched fluid flows in the case of water (blue) and Galinstan
(red) for different loss coefficients mloss = 1 (solid) and mloss =
0.001 (dashed). For Galinstan, the following parameters have
been considered: density 6.44 g/cm3, dynamic viscosity 0.0024
Pa s, specific heat 296 J/(kg K), thermal conductivity 16.5 W/(m
K). Scales are logarithmic.
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liquid metals could be advantageous. Figure 11(b) shows
the maximum temperature increase for a 2.5 m system.
At larger flow rates Galinstan performs better, especially
for small losses. More importantly, for slower flows, the
boiling point of water would be easily reached in the
case of mloss = 0.001, hindering the mechanical stability

of the device if room pressure operation is sought. How-
ever, Galinstan has a high boiling point (> 1300 ◦C), and
thus one can think of storing thermal energy by realizing
larger systems and feeding them with slower flow rates
without risking reaching the boiling point of the utilized
fluid.

Solar Hea�ng
HX

Vapor flux
Fluxes

Conduc�ve heat power
Condensa�on heat power

(a)

(b) (c)

(d) (e)

,

,

Fnet

FIG. 12. Application to solar water desalination. (a) Saline feed water (QF ) and distilled water (QD) flow in the top and bottom
channel, respectively, upon entering the resonant system at ambient temperature, Tamb. Channels are separated by a thermal conductor
(first half, left) and a light-absorbing nanoparticle-coated hydrophobic membrane (second half, right). Input intensity is 269 W/m2. (b)
Fresh-water flux (blue, left axis) across the membrane and heat fluxes (right axis) from top to bottom, PT→B, (solid, red) and bottom to
top, PB→T, (dashed, red) versus distillate flow rate. Feed flow is fixed at 10 ml/min. (c) Heat-flux vector fields (arrows) and temperature
map (colors) when the flow rates are matched for a lossless case. (d),(e) Same as (b),(c), but in the case of external environmental losses
(PT→B case shown only in red): conduction+convection [hcoeff = 5 W/(m2 K)] and thermal radiation (ε = 1) are applied to the top and
bottom boundaries of feed and distillate channels.
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APPENDIX L: EXAMPLE OF APPLICATION:
SOLAR THERMAL DESALINATION

One application of flow-driven resonant systems is solar
desalination and resonant energy transfer for thermal mem-
brane distillation has been recently demonstrated [9]. In
nanoparticle- (NP) driven solar membrane desalination
[31], two water channels, feed (saline) and distillate (fresh
water), flow in countercurrent configuration, separated by
a hydrophobic membrane (100 μm thick) which allows
water vapor but not liquid water to go through. Such a
membrane can be coated, on the feed side, with efficient
light-absorbing nanoparticles (e.g., carbon black NPs),
which absorb more than 99% in about 10 μm thickness.
The heat generated in the NPs induces a vapor-pressure
difference across the membrane, pushing salt-free water
vapor from the feed side of the membrane to the distillate
one.

The key idea is to recognize that the latent heat of con-
densation carried by water vapor across the membrane can
represent the downward heat flux (I12 in the main text),
which can be recovered by placing a thermal conductor
(acting as heat exchanger, HX) in line with the mem-
brane [see Fig. 12(a)]. The conductive heat recovered with
the HX is then reused to further increase the feed water
temperature and increase even more the vapor-pressure
difference. The process at this point is limited only by the
thermal losses of the system and by the boiling temperature
of water (if water starts boiling the pressure can increase
and the membrane can wet, hindering the mechanical sta-
bility of the system and the water impermeability between
the channels). In Fig. 12(b) we show the fresh-water flux
rate (blue line) versus distillate flow rate when the feed
flow is fixed at 10 ml/min for the case of a L = 0.6 m mem-
brane in line with an aluminum HX of the same length,
without environmental losses (i.e., convection and thermal
radiation). Incident intensity is 269 W/m2 (approximately
0.27 Suns). The heat fluxes from top to bottom (solid, red)
and bottom to top (solid, dashed) are also shown. All the
curves exhibit a clear peak when flows are matched, con-
sistently with the theoretical model explained in this work.
The heat-flux vector field is reported in Fig. 12(c) and well
matches the trajectories explained in the main text (e.g.,
Fig. 3). The peak temperature is larger than water boil-
ing point but here, for simplicity, we neglect its effects
since this lossless example is presented only to illustrate
the concept of resonant heat transfer in the ideal loss-
less case. The impact of losses is shown in Figs. 12(d)
and 12(e). When external conduction+convection [com-
bined heat transfer coefficient hcoeff = 5 W/(m2 K)] and
thermal radiation (ε = 1) are added at the top and bot-
tom boundaries of the channels, the performance (and the
peak temperature) decreases quite steeply and the vector
field is deformed. This result suggests the critical impor-
tance of the choice of materials, which should provide a

maximum insulation to ensure loss minimization. Aero-
gels and infrared mirrors can be utilized, for instance, to
decrease convection and radiation losses.

ADDITIONAL INFORMATION

A provisional patent application has been submitted in
relation to the research.
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