Annu. Rev. Entomol. 2021.66:61-79. Downloaded from www.annualreviews.org

Access provided by University of Florida - Smathers Lib - Gainesville on 01/11/21. For personal use only.

"\ ANNUAL
f\ ¥ REVIEWS

Annu. Rev. Entomol. 2021. 66:61-79

The Annual Review of Entomology is online at
ento.annualreviews.org

https://doi.org/10.1146/annurev-ento-033020-
090410

Copyright © 2021 by Annual Reviews.
All rights reserved

siieis CONNECT

www.annualreviews.org

* Download figures

* Navigate cited references

* Keyword search

* Explore related articles

* Share via email or social media

Annual Review of Entomology

Bryony C. Bonning! and Maria-Carla Saleh?
! Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611,
USA; email: bbonning@ufl.edu

2Viruses and RNA Interference Unit, Institut Pasteur, CNRS UMR 3569, 75724 Paris CEDEX
15, France; email: carla.saleh@pasteur.fr

Keywords

RNAI pathways, antiviral immunity, endogenous viral elements, viral
suppressors of RINAi

Abstract

As an overarching immune mechanism, RNA interference (RNAi) displays
pathogen specificity and memory via different pathways. The small inter-
fering RNA (siRNA) pathway is the primary antiviral defense mechanism
against RINA viruses of insects and plays a lesser role in defense against
DNA viruses. Reflecting the pivotal role of the siRNA pathway in virus
selection, different virus families have independently evolved unique
strategies to counter this host response, including protein-mediated, decoy
RNA-based, and microRINA-based strategies. In this review, we outline the
interplay between insect viruses and the different pathways of the RNAi
antiviral response; describe practical application of these interactions for
improved expression systems and for pest and disease management; and
highlight research avenues for advancement of the field.
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siRINA pathway: small
interfering RNAs of
approximately 20-22
base pairs processed
from long dsRNA by
Dicer-2; this pathway
is mainly antiviral

RNA interference
(RNAI): comprised of
three pathways;
mechanism for
sequence-specific
gene, virus, or
transposon silencing
based on sSRNA
production

Virus-induced gene
silencing (VIGS):

use of a virus vector to
deliver silencing RNAs
to silence a target gene

piRINA pathway:
PIWI-interacting
RNAs of
approximately 26-32
nucleotides that
primarily function to
silence transposons in
the germline

Dicer-2 (Dcr2):
RNase III nuclease
that cleaves dsRNA
into siRNAs

Argonaute-2 (Ago2):
primary RISC
component of the
siRNA pathway
mediating target
recognition and
cleavage of viral
genome and
transcripts
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INTRODUCTION

Like all organisms, insects are subject to infection by viruses, but only with the advent of next-
generation sequencing have the abundance and diversity of insect-associated viruses been revealed
(7, 63). The course and outcomes of viral infections rely on complex molecular host-virus inter-
actions. Viruses hijack host cellular factors for infection and replication, while the host counters
by restricting access to key factors and/or by mounting an antiviral immune response. A major
player in the invertebrate antiviral immune response is the highly conserved small interfering
RINA (siRNA) pathway of the RNA interference (RINAi) response (117). The siRNA pathway is
the primary antiviral defense mechanism against insect viruses with RINA genomes (86) but also
functions in defense against insect viruses with DNA genomes. Virus-derived double-stranded
RINA (dsRNA) triggers the antiviral siRNA pathway in host cells, which can completely block
virus replication.

Study of the interplay between viruses and the siRNA pathway has resulted in several tools,
including methods for detection of covert viruses in insect cell lines (13, 14), optimized baculovirus
expression systems (17, 101), and the potential use of virus-induced gene silencing (VIGS) for pest
and disease management (106). The (re)emergence of insect vector-borne viruses such as dengue,
Chikungunya, and Zika viruses highlights the importance of understanding insect-virus molecular
interactions for providing solutions for global health.

INSECT RNAi-DEPENDENT IMMUNE MECHANISMS
AGAINST VIRAL INFECTIONS

The three primary small RNA (sRINA)-directed RNA silencing pathways in insects are the siRINA,
microRNA (miRNA), and PTWI-interacting RNA (piRNA) pathways (139). While all three path-
ways center around the silencing of target RNA by Argonaute family proteins, which themselves
are directed by the sRINAs in a sequence-specific manner, they are differentiated by the length
and origin of the guiding sRNAs, enzymatic requirements, and functional outcomes.

The siRNA Pathway

RINAI directed by siRINAs is a potent antiviral mechanism against both RNA and DNA virusesin a
wide variety of eukaryotic organisms. This pathway begins with the recognition of dsRNA of viral
origin in the cytoplasm by the RNase-III enzyme Dicer-2 (Dcr2) (5) (Figure 1). dsRNA is then
cleaved by Der2 into approximately 21-nucleotide (nt) siRNA duplexes (109) containing 19 base-
paired nts flanked by 2-nt 3" overhangs (23). One strand of the siRNA duplex, known as the guide
strand, is incorporated into the RNA-induced silencing complex (RISC), while the other strand
(the passenger strand) is degraded (72, 105). The guide strand is subsequently 2’-O-methylated at
the 3’ end by DmHen1 methyltransferase to form a mature RISC (28).

Argonaute-2 (Ago2) is the catalytic core of the RISC. Ago2 stably binds the guide strand within
the protein complex through interactions between the 3’ and 5’ ends of the guide strand and
the Ago2 PAZ and MID domains, respectively (15). siRINAs bound to Ago2 guide the RISC to
complementary RNAs in the cytoplasm in a sequence-specific manner through Watson-Crick
base pairing. Following target recognition, Ago2 catalyzes cleavage of target RNAs between nts
10 and 11 as measured from the 5’ end of the guiding siRNA (24, 104). RINA molecules cleaved
by Ago2 are then rapidly degraded through the activity of the XRN1 exoribonuclease and the
exosome (94). Cleavage by Ago2 is sequence specific and requires perfect base pairing between
nts 2-21 of the guide strand (70).

Single-stranded RNA (ssRNA), dsRNA, single-stranded DNA, and double-stranded DNA
viruses are all targeted by siRNAs in insects (9, 85, 97, 128, 138). During the infection cycles
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Figure 1

The antiviral small RNA pathways. While the antiviral role of the small interfering RNA (siRNA) pathway is
well established, direct evidence for a role of the PIWI-interacting RNA (piRINA) pathway in antiviral
immunity is lacking. We propose that the interaction of endogenous viral elements (EVEs) with exogenous
cognate viruses could generate viral piRINAs with an antiviral role. These EVEs could originate from the
integration of viral DNA forms of RNA viruses produced during viral infection in insects. In this way, there
may be crosstalk between the two pathways to maintain host fitness during viral infection.

of RNA viruses, dsRNA is formed from the genomes of dsRINA viruses or by replication inter-
mediates of ssSRNA viruses (113). DNA viruses are thought to produce dsRNA by convergent
transcription. For both DNA and RNA viruses, secondary structure within single-stranded viral
RNA or transcripts can serve as a source of dsRINA (113). Notably, siRNAs can also be produced
from endogenous sources of dsRNA (endo-siRNAs), and these are implicated in gene regulation
and repression of transposable elements (TEs) (33).

Interaction between viral RNA and the siRNA pathway is indicated by the Dcr2-dependent
accumulation of approximately 21-nt virus-derived siRNAs during virus infection in insects. The
antiviral nature of the siRNA pathway is clearly demonstrated by the finding that knockout of
Decr2 or Ago2 results in enhanced virus replication and increased host mortality in a variety of
systems (1, 52, 110, 128). This is further supported by the observation that both DNA and RNA
viruses encode suppressors of siRINA-based RINAi (detailed below).

The miRNA Pathway

Unlike siRNAs, which are usually produced from exogenous sources of dsRINA, the precursors
of miRNAs are transcribed from endogenous loci by RNA polymerase II (63). These transcripts,
known as primary miRNAs, are highly structured molecules that are cleaved by Drosha into
approximately 60-nt hairpins known as precursor miRNAs (62). Precursor miRNAs are exported
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to the cytoplasm, where they are recognized and cleaved by Dicer-1 to form a miRNA duplex (64,
69). One strand of the miRINA duplex is then loaded onto Argonaute-1 (Agol) within the miRNA
induced silencing complex (28). Mature miRINAs are approximately 22 nt, and in insects, they
typically direct silencing of endogenous target RNAs through imperfect base pairing (3). Like
Ago2, the endonuclease activity of Agol requires perfect base pairing along the guide miRNA
(3). Because miRINA target recognition relies on imperfect base pairing, miRNA-directed RNA
silencing usually involves translational repression through Agol-mediated deadenylation and
decapping (48). Relatively little work has explored the antiviral potential of miRNAs in insects. In
mammals, miRNAs are known to exert antiviral effects by directing transcriptional changes that
result in an unfavorable state for virus replication. More infrequently, mammalian miRNAs can
directly target viral RNA (19). While virus infection in insects is known to alter the abundance of
some host miRNAs in a temporal and tissue-specific manner, the effects that such changes might
have on virus replication are unclear (81).

The piRINA Pathway

The most recently discovered sSRINA-based silencing pathway, the piRINA pathway, is the primary
mechanism of TE repression in the animal germline (20). Insect piRINA pathway details are most
clearly understood in Drosophila melanogaster, but the general mechanisms of piRINA biogenesis are
conserved in most animals (30). piRNA biogenesis is classically divided into the primary and sec-
ondary pathways (7). In the D. melanogaster primary piRNA pathway, discrete genomic loci (piRNA
clusters) give rise to long piRNA precursor transcripts, which are exported to the cytoplasm and
fragmented by Zucchini endonuclease (Zuc) into precursor piRNAs (7, 91). Precursor piRNAs are
then loaded onto Piwi or Aubergine (Aub), and their 3’ ends are trimmed and 2’-O-methylated,
resulting in 26-32-nt mature primary piRNAs (28, 41). Because Zuc cleavage preferentally oc-
curs just upstream from uracil residues, and because the MID domains of PIWI-clade Argonaute
proteins favor interactions with uracil residues, primary piRNNAs have a strong bias for uracil as
the fifth nt (1U bias) (18, 91). piRINA clusters contain a high density of TE-derived sequences (7).
Thus, the primary piRINA pool contains an abundance of piRNAs specific to TEs.

The secondary piRINA pathway, also known as the ping-pong cycle, involves recognition of
complementary RNA by Aub-bound primary piRNAs via nearly perfect Watson-Crick base pair-
ing (7, 44). Like Ago2, Aub catalyzes the cleavage of target RNA between nts 10 and 11 with
respect to the 5’ end of the guiding primary piRINA (7). Cleaved target RNA with a 5" end defined
by Aub cleavage is then loaded onto Argonaute-3 (Ago3) and processed into a 26-32-nt secondary
piRNA with a 2’-O-methylated 3’ end defined by Zuc cleavage or exonucleolytic degradation of
cleaved RNA by nibbler (7, 36, 39, 41, 78, 132). Secondary piRINAs have a strong bias for ade-
nine as the 10th nt (10A bias) and are antisense to the primary piRINA that directed the cleavage
event resulting in their formation (7). Ago3-bound secondary piRNAs direct cleavage of com-
plementary RNA targets, which are subsequently processed into Aub- or Piwi-bound primary
piRNAs (7). Thus, the ping-pong cycle is a series of reciprocal cleavage events that serves as a
post-transcriptional silencing mechanism and amplifies the piRINA-based response against active
TEs (7, 20). piRNAs are distinguished from other types of sSRNAs by their size (26-32 nt), and
ping-pong-dependent piRNAs can be identified by 1U and 10A biases, as well as by a distance of
10 nt between the 5’ ends of complementary piRNAs.

Interestingly, virus-derived, ping-pong-dependent piRNAs (vpiRNAs) are present during in-
tection of Aedes aegypti and Aedes albopictus mosquitoes with several different ssRNA viruses (77), as
well as in cell lines derived from these species. vpiRNAs derived from a single-stranded DNA virus
were also observed during infection of A. zegypti—derived Aag?2 cells (97). Unlike D. melanogaster,
which expresses only three PIWI-clade Argonaute proteins (Aub, Ago3, and Piwi), A. zegypti and
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A. albopictus express eight PIWI-clade Argonaute proteins (Ago3 and Piwil-7) (12, 65). In Aag?
cells, Piwi5 and Ago3, but none of the other PIWI-clade Argonaute proteins, are required for
biogenesis of vpiRINAs (76). In contrast, production of TE-derived piRINAs relies on a more di-
verse set of PIWI proteins (76). This suggests that the novel PIWI-clade Argonaute proteins in
mosquitoes have undergone functional diversification to produce piRNAs from a variety of RNA
sources. vpiRINAs are not produced during RNA or DNA virus infection in D. melanogaster and
have not yet been observed outside of mosquitoes (98).

Despite their essential roles for vpiRINA biogenesis, knockdown of Piwi5 and Ago3 does not
lead to enhanced virus replication in Aag? cells (76, 111, 124, 129). Knockdown of Piwi4 does
not significantly impact vpiRNA abundance in Aag? cells or 4. aegypti mosquitoes but does lead
to increased replication of several RINA viruses in Aag2 cells, as well as increased replication of
dengue virus in vivo in 4. aegypti (76, 111, 124, 129, 130). While intriguing, the links among PIWI
protein expression, vpiRNA abundance, and virus replication in mosquitoes are not yet clear, and
direct evidence of an antiviral role for the piRNA pathway is lacking.

Immune Memory

A characteristic feature of the antiviral response in jawed vertebrates is the maintenance of long-
lasting protection against future infections with the same virus (immune memory). Because insects
lack antibodies, they have generally been considered incapable of preserving a functional record
of prior infections. However, this view has been challenged by recent results demonstrating that
DNA forms of RNA virus sequences are produced during viral infections, serve as sources of
siRNAs, and are maintained even after clearance of the infection (34, 35, 79, 100, 123, 124). We
are only beginning to understand the mechanisms underlying this immune memory or immune
priming in insects.

The reverse transcriptases encoded by endogenous retrotransposons can reverse transcribe vi-
ral RNA in insects, resulting in the formation of chimeric viral DNAs (vDNAs) consisting partly
of virus sequence and partly of TE sequence (34, 35, 100). Importantly, vDNAs are transcribed and
serve as a source of the siRNAs that modulate virus infection (34, 35, 100, 123) (Figure 1). The
prevention of vVDNA formation during virus infection of D. melanogaster or A. albopictus decreases
virus-specific siRNA abundance and increases insect mortality (34, 35). Remarkably, vDNAs gen-
erated from RINA viruses taken up by hemocytes in D. melanogaster give rise to virus-specific
siRINAs that are secreted in exosome-like vesicles capable of priming an antiviral response in un-
infected cells (123). Similarly, vDNAs purified from D. melanogaster—derived S2 cells infected with
Flock house virus (FHV) confer virus-specific protective immunity following injection into naive
D. melanogaster flies, raising the possibility that vVDINA may serve as a biologically relevant source
of long-lasting and sequence-specific nucleic acid-based memory (100). Most studies of insect
antiviral mechanisms have employed intrathoracic injection of virions, which generally results in
death of the host or the development of a lifelong persistent infection (79). The persistent state in
D. melanogaster and A. albopictus requires the formation of vDNA, highlighting its importance for
long-term immune processes (34, 35). Because infections initiated by intrathoracic injection are
not typically cleared, the potential role of vDNA in priming a protective response against future
infections is difficult to assess.

vDNAs are episomal molecules produced during the course of virus infection (100). In contrast,
the sequences of endogenous viral elements (EVEs) derive from full or partial integrations of
viral sequence into the host genome (43, 51). EVEs from both DNA and RNA viruses have been
described in a wide variety of eukaryotes (43, 51, 125). Nonretroviral RNA virus sequences within
host genomes are surprising because these viruses do not undergo a DNA stage during replication.
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While the mechanisms of EVE generation are unclear, it is tempting to speculate that vVDNAs are
precursors of EVEs.

There are several well-known examples of EVEs being co-opted and playing important roles
in the biology of the host (27, 75). Since their discovery, EVEs have been speculated to play an
antiviral role (58) (Figure 1). In support of their antiviral potential, many EVEs are transcribed
and contain uninterrupted open reading frames (ORFs). However, few reports have presented ex-
perimental evidence (29, 121). In honey bees, 30% of wild populations harbored an EVE derived
from Israeli acute paralysis virus (IAPV) encoding a protein capable of cross-reacting with an an-
tibody specific for the corresponding IAPV capsid protein (71). In vivo, individuals carrying this
EVE exhibited reduced mortality following injection of IAPV compared to individuals without
the EVE.

Given that nucleic acid-based defense mechanisms represent the primary antiviral strategy in
arthropods, and that vDNA is capable of inducing immune priming via siRNAs, it is hypothesized
that EVEs might similarly provide the specificity determinants of a long-lasting and heritable nu-
cleic acid-based silencing system. In support of this, EVEs in A. aegypti and A. albopictus were found
to be enriched within piRNA clusters and give rise to piRINAs (95, 135) (Figure 1). This finding
was extended to arthropods in general by an analysis of the EVEs present within arthropods with
sequenced genomes that have corresponding publicly available sSRNA data sets (125).

So far, experiments on the antiviral potential of EVE-derived piRNAs have been limited to
Aag? cells (124, 135). An EVE derived from Phasi Charoen-like virus (PCLV) gives rise to a single
piRNA mapping antisense to the PCLV genome (135). In Aag2 cells persistently infected with
PCLV, the 5’ end of this piRNA was separated by 10 nt from a piRNA mapping to the opposite
strand, and knockdown of Piwi4 led to an approximately twofold increase in PCLV RNA levels
(135). The Aag2 genome also contains EVEs derived from Cell fusing agent virus (CFAV) (124,135).
Aag? cells persistently infected with CFAV show increased CFAV RNA levels, and knockdown of
Piwi4 or Ago3 reduced CFAV-derived piRNA abundance (124). Although this evidence supports
an antiviral role for these proteins, it is difficult to confirm an antiviral role for EVE-derived
piRNAs based on CFAV-derived piRNA abundance without more detailed sSRNA mapping pro-
files. Intriguingly, insertion of sequences corresponding to piRNA-producing EVEs within the
Sindbis virus 3' UTR leads to diminished replication of the recombinant viruses in Aag2 cells
following Piwi4 knockdown (124). The sRNA profiles during infection with such recombinant
viruses should be the subject of future investigation.

VIRAL COUNTER-DEFENSE MECHANISMS
Viral Suppressors of siRNA-Based RNAi

Both RNA and DNA viruses encode viral suppressors of RINAi (VSRs) to counter the negative
impact of the siRNA pathway on virus replication. VSRs from different virus families lack sequence
or structural similarity, indicating independent evolution of different mechanisms to counter the
siRNA pathway. VSRs act via four primary mechanisms: (#) binding to long dsRINA to prevent
Dcr2-mediated cleavage, (b) binding to siRNA to prevent siRNA loading into RISC, (¢) interfering
with Dcr2 or Ago2 function, and (d) degrading siRNAs. Some VSRs combine multiple modes of
action (Table 1).

The VSRs of viruses that infect D. melanogaster are particularly well studied. While homologous
at the genetic level, the two dicistroviruses Cricket paralysis virus (CrPV) and Drosophila C virus
(DCV) exhibit distinct virulence characteristics in wild-type Drosophila. CrPV results in paralytic,
lethal (acute) infection, while DCV causes persistent, nonlethal (chronic) infection. The VSRs of
CrPV and DCV map to the 1A protein at the N terminus of the ORF1 polypeptide but have
low sequence similarity (approximately 9%) and lack homology to other proteins (89, 128, 133).
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Expression of CrPV 1A or DCV 1A in Drosophila S2 cells blocked the siRNA pathway, increasing
cell susceptibility to virus infection (89, 128). The pathogenicity traits of CrPV and DCV are
reflected in the different efficacies of their respective VSRs in suppressing the siRNA pathway:
The 166-amino-acid CrPV 1A prevents the Ago2 RISC from targeting RNA (134), while the 97-
amino-acid DCV 1A binds to dsRNA, preventing processing by Dcr2 (128). Introduction of CrPV
1A into a recombinant Sindbis virus markedly increased virulence, while introduction of DCV 1A
resulted in only a modest increase in virulence (89). Two elements within CrPV 1A that bind
specific host proteins confer dual functionality in suppression of the siRNA pathway. In addition
to acting as a competitive inhibitor to block Ago2, a BC box domain mediates ubiquitination of
Ago2, thereby targeting Ago? for degradation (90).

Stress granules form in the cytoplasm following inhibition of translation. They appear to func-
tion as a cellular antiviral response by sequestering viral proteins or RNA. Some viruses have
evolved measures to counter stress granule formation. For example, CrPV and DCV, which in-
hibit S2 cell translation, do not result in formation of stress granules. CrPV 1A disrupts stress
granule formation by a mechanism independent of its VSR function (56).

The 106-amino-acid B2 protein of FHV is a VSR that binds to dsRNA and siRNAs, inhibit-
ing the siRINA pathway by sequestering siRNAs and preventing processing of dsRNA (2, 16, 66).
B2 also binds to dsRNA regions in FHV RNA2 to prevent movement into cytoplasmic granules
(which differ from stress granules) where translation is silenced. Deletion of B2 thus impairs trans-
lation of the capsid protein from RNA2 (99). FHV B2 is arguably the best studied of the insect
virus VSRs due to the early availability of an infectious replicon that allows for strong genetic
evidence. Indeed, other insect VSRs have been tested for their ability to rescue the FHV AB2
replicon (25). Transgenic Drosophila (6) show that, in addition to blocking antiviral defense, B2
and CrPV 1A also interfere with transposon silencing in somatic tissues by endo-siRNAs.

The Nora virus VP1 and Nora-like virus VP1 proteins function as VSRs by interacting with
Ago2 and blocking cleavage of target sequences (127). As VSRs provide counter-defense against
host antiviral RNAi, both VSRs and their targets in the siRNA pathway (Dcr2, R2D2, and Ago2)
evolve rapidly (93). This rapid evolution can result in VSRs that are host specific. For example, the
Nora-like virus VP1 binds Drosophila immigrans Ago2 but not D. melanogaster Ago2 (127). This
observation highlights the importance of studying VSR activity in a relevant host species, rather
than using a more tractable model species.

In addition to serving as hosts for mosquito-specific viruses, some mosquitoes also vector
viruses (arthropod-borne viruses, or arboviruses) of medical and veterinary importance. VSRs have
been identified from arboviruses in the genera Alphanodavirus (Nodaviridae) (120) and Flavivirus
(Flaviridae) (50). Nodamura virus (Nodaviridae) is a mosquito-transmitted arbovirus that, similar to
FHYV, encodes a B2 VSR protein that binds dsRNA and siRNAs (120). Dengue virus nonstructural
protein 4B (NS4B) is reported to function as a VSR, although the mechanism is unclear (50).

Three VSRs have been identified in insect DNA viruses. Heliothis virescens ascovirus encodes an
RNase III that degrades siRNAs (45). Invertebrate iridescent virus 6 (IIV-6) encodes a VSR, 340R,
that binds siRNAs and dsRNA. This VSR rescues FHV lacking its VSR, confirming the ability of
this protein to antagonize antiviral RNAi (8). IIV-6 completely masks the impact of the siRNA
pathway in Drosophila (10). The inhibitor of apoptosis, P35, derived from the baculovirus Auto-
grapha californica multiple nucleopolybedrovirus (AcMNPV) also functions as a VSR acting down-
stream of cleavage by Der2 (74).

Decoy RINAs

West Nile virus (WNV) and Dengue virus are mosquito-transmitted flaviviruses. These viruses pro-
duce noncoding subgenomic flavivirus RINAs (sfRNAs) as a result of incomplete degradation of
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genomic RNA (112). The stem-loop structures of these sSfRNAs may act as competitors or decoys
for Der2 activity, thereby decreasing the efficiency of the antiviral RNAi response. Similarly, hot
spots in the genome that were more frequently targeted were identified based on siRNA profiles
of two mosquito cell lines following infection with the alphavirus Sem/iki Forest virus. These areas
may serve as decoy RNA sequences, reducing the efficacy of the antiviral response by providing
regions that are more susceptible to siRNA-mediated RNAI based on structure, but less damag-
ing to the replicating virus (118). This phenomenon was also noted for the phlebovirus Rif Valley
fever virus, whose defective interfering particle and S segment were heavily targeted for siRNA
production but were not stabilized for Ago2 loading (108). This putative decoy strategy repre-
sents an alternative mechanism for evasion of RNAi-based antiviral defense.

Viral miRNA-Based Manipulation of the Host Genome

miRINAs can also influence the outcome of virus infection (82). Some viruses encode miRNAs that
target host or viral mRNA with proviral consequences. Viral miRNAs that target viral mRNA
can modulate the timing of viral replication or gene expression. For example, Heliothis virescens
ascovirus miR-1 reduces viral replication, thus delaying viral replication and promoting long-term
virus production (46). Similarly, AcCMINPV miR-1 targets multiple viral proteins, including ODV-
E25, to reduce budded virus production (140, 141), and Bombya mori nucleopolybedrovirus (BmINPV)
miR-3 reduces late gene expression to avoid early detection by the host (115).

Viral miRNAs that regulate host gene function include WNV kun-miR-1, which targets and
upregulates GATA4 to the benefit of the virus (47). BmNPV miR-1 impacts miRNA biogene-
sis, resulting in increased virus replication by targeting the host gene Ran that functions in ex-
port of pre-miRNAs from the nucleus into the cytoplasm (116). The reduced miRNAs seen in
D. melanogaster infection with DCV could result from a similar impact on miRINA biogenesis (83).

PRACTICAL APPLICATIONS AND IMPLICATIONS
Practical Applications for Viral Suppressors of RNA

Knowledge of molecular factors contributing to insect virus—RNAI interactions provide oppor-
tunities for novel applications. VSRs such as CrPV 1A and FHV B2 can be used ectopically for
suppression of the siRNA pathway to reveal latent infections in cell lines (13, 14) or to promote
replication of other RNA or DNA viruses (57). VSRs also provide tools to investigate the molec-
ular mechanisms of antiviral RNAi: A single-molecule approach has been employed to elucidate
how VSRs discriminate between viral and cellular RNA (25). VSRs can also be used to track
dsRNA in live cells (84).

RNAI for Optimization of Baculovirus Expression

RNAI can be used to optimize protein expression from insect virus—based vectors such as the bac-
ulovirus expression system (17, 101). For example, insect cell lines stably transformed to downreg-
ulate caspase-1 by siRNA-based RINAi had prolonged resistance to apoptosis following baculovirus
infection, thereby increasing the duration of protein expression (131). Similarly, siRINA-based
RNAI has been used to restrict baculovirus gp64 production, reducing the number of baculovirus
budded virus contaminants present in candidate vaccines (61), and to improve glycosylation of
baculovirus-expressed therapeutic proteins (87). Although investigation of insect virus—derived
VSRs is relatively young (42), the potential value of VSRs for improved baculovirus expression of
recombinant proteins was demonstrated by use of plant virus—derived VSRs (21, 67).
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Virus-Induced Gene Silencing

The efficacy of dsRINA for gene silencing in insect pests can be severely restricted by nucleases in
the saliva or gut that degrade dsRINA. As the sRNA viruses of insects have evolved to overcome
this enzymatic challenge, the viral particle could have potential use as an enzyme-resistant dsSRNA
delivery system. VIGS is the delivery of silencing RNAs from a virus. The use of insect virus—
based VIGS vectors in pest management is in its infancy, largely due to the limited number of
infectious clones of insect RNA viruses. However, multiple plant virus-based VIGS vectors have
been developed, and some have been employed to silence essential genes in crop pests (106). In
this system, the plant virus produces silencing RNAs in the host plant that are ingested by insects
feeding on the plant, so-called host-induced gene silencing. For example, on infection of Nicotiana
benthamiana, a Tobacco rattle virus VIGS vector produced silencing RNAs targeting three Manduca
sexta gut cytochrome P450 genes (59). A Citrus tristeza virus vector was used to target the abnormal
wing disc gene of the Asian citrus psyllid, Diaphorina citri (38); a Tobacco mosaic virus vector was
used to target genes in the potato psyllid, Bactericera cockerelli, and citrus mealybug, Planococcus citri
(55, 136); and a Potato virus X vector was used to silence genes in the cotton mealybug, Phenacoccus
solenopsis (54).

NEEDS FOR FUTURE RESEARCH
Natural Pathosystems

Studies of antiviral mechanisms in insects have traditionally relied on a small number of model
insects such as D. melanogaster and A. aegypti. These investigations have often focused on viruses
with direct relevance to human health or agriculture, and in many cases, the viruses under study are
not natural pathogens of the experimental host. Furthermore, most studies have delivered viruses
via intrathoracic injection, bypassing the hosts’ natural barriers to viral infection. While these
approaches have revealed a wealth of knowledge regarding host-virus interactions, they provide
an incomplete and biased picture. Indeed, several recent studies have highlighted the importance
of the route of infection for the outcome of infection (4, 37, 73, 79). Different routes of infection
are also known to trigger different immune responses. For example, the Toll pathway is required
for resistance to oral infection with DCV, CrPV, or FHV in D. melanogaster but does not appear
to play a role during systemic infections (26). The observation that D. melanogaster flies can clear
DCYV infection independent of RNAi underscores the fact that different antiviral mechanisms
are required to control virus infection following different routes of exposure (79). More work is
needed to understand both the antiviral responses triggered by different routes of infection and
the mechanisms by which these responses restrict virus replication.

Natural host-pathogen systems are shaped by coevolution, and natural pathogens can be sub-
ject to more structured and effective immune responses (26, 73). Susceptibility to virus infection
also varies among different strains of the same insect species; thus, results obtained from com-
mon laboratory strains may not necessarily reflect the situation in nature (96). Such differences
highlight the importance of studying host-virus interactions in a more natural context to provide
more robust and relevant biological data.

Antiviral RNAi: Inducible or Constitutive?

A core feature of immune mechanisms is the recognition of pathogen-associated molecular
patterns (PAMPs) by pattern recognition receptors, resulting in the induction of innate immune
responses. Several cell signaling pathways, including the JAK-STAT;, Toll, and Imd pathways,
are induced upon pathogen recognition as part of the insect immune system. dsRINA is known
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to serve as a potent PAMP in insects, and administration of dsRINA, regardless of the sequence,
induces the activation of an antiviral response (11, 22, 68). In some cases, recognition of dsSRINA
has been attributed to the DExD/H-box helicase of Dcr2, suggesting a possible link between
components of the siRINA pathway and non-RNAi-based antiviral responses (22). Despite the
central role of RNAI in controlling virus infections in insects, relatively little is known about
the regulation of the core components of RNAi. The expression of Dcr2 and Ago2 mRNAs
was recently shown to be upregulated in a sequence-independent manner by dsRNA in a va-
riety of systems, and a similar increase in Ago2 and Dcr2 expression was observed upon viral
infection in B. terrestris, Apis mellifera, and D. melanogaster 31, 32, 40, 68, 92, 137). Intriguingly,
injection of heat-inactivated Zika virus also upregulates the expression of RNAi components in
D. melanogaster (40). Together, these results suggest that virus presence may be sensed by insects
independent of viral replication, and that RNAI is regulated as part of a response that is not virus
specific. D. melanogaster flies constitutively expressing an active form of dFOXO exhibit elevated
expression of Dcr2 and Ago2, establishing a link between stress response signaling and RNAi
and providing further support for the inducible nature of RNAi (119). Despite these advances,
our understanding of RINAi regulation remains limited. Future studies should address whether
the route of infection alters the regulation of RNAi components and whether such regulation
takes place at the transcriptional or translational levels. Finally, given the central role of RINAi
in controlling virus infections, it will be important to determine whether RNAI is differentially
regulated among different insect strains or during infection with different viruses.

Long-Term Immune Memory Against Viruses

As discussed above, traces of RNA viral genomes persist in DNA form following clearance of orally
acquired viral infections in D. melanogaster (79). While similar vDINAs are known to serve as potent
sources of siRNAs and are required for the establishment of persistent infections in D. melanogaster
and A. albopictus, it is unknown whether vDNAs play a role in immune priming during responses
to previously encountered viruses (34, 79, 80). Future investigations should seek to clarify the
role of vDNAs in immune priming, as well as how the routes of prior infections influence suscep-
tibility to subsequent infection via the same or alternate routes.

Another key question is the duration of immune priming following initial pathogen exposure.
Does transgenerational immune priming or even heritable immune priming occur? If so, what
is the nature of the archived pathogen specificity determinant, and do the mechanisms of its
mobilization in subsequent generations differ from those in the generation actually exposed to
the pathogen?

While many questions remain regarding the ability of vDNAs to mediate immune memory, it
is now clear that vDNAs play a central role in RNAi-based antiviral responses. Recent results indi-
cate that the majority of vDNAs are derived from reverse transcription of defective viral genomes
(DVGs), i.e., truncated or rearranged viral genomes produced during viral replication (100). Mod-
ulation of DVG production alters the antiviral response in D. melanogaster, with higher levels of
DVGs being associated with increased vDNA synthesis and an enhanced antiviral response (100).
Thus, future studies should examine the dynamics of DVG production during infection, with a
particular focus on whether manipulation of DVGs plays a role in long-term immune processes.

Reprogramming Endogenous Viral Elements as Antivirals

Additional studies are needed to evaluate the role of EVEs in antiviral immune responses, as
well as the mechanisms of EVE generation. While genomic integration of vDNAs is a likely
scenario for the endogenization of virus sequences, this has yet to be experimentally demon-
strated. Furthermore, it is conceivable that different types of viruses (DNA versus RNA) may
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become endogenized by one or more alternative mechanisms, and the route of endogenization
may influence the functionality of integrated virus sequences. Beyond the mechanisms of EVE
generation, the role of EVEs in antiviral responses is still unclear. Given the potential for EVEs
to serve as heritable markers of pathogen specificity, it is important to clarify their role during
infection with cognate viruses. If it is indeed possible for EVEs to mediate antiviral responses,
then their heritable nature provides a potentially valuable means of manipulating insect genomes
to modulate susceptibility to virus infection.

Infectious Clones

While infectious clones for FHV and Sindbis virus have proven to be valuable research tools, their
extensive host ranges preclude their use as VIGS vectors for pest management. Indeed, the first
demonstration in a proof of concept study was for the use of an FHV-based vector in Drosophila
(122). Infectious clones available for bona fide insect viruses include those for CrPV (53), which
has a broad host range, and Deformed wing virus of honey bees (60, 107). The lack of insect virus
infectious clones results in part from the lack of virus-free cell lines derived from key crop pests
that would support replication of candidate viruses of interest. The development of infectious
clones for the mosquito-specific flaviviruses Niénokoué virus (49) and Eilat virus (88) may ultimately
allow for their use in combatting mosquito-borne disease (including flaviviruses dengue and Zika)
or reducing mosquito populations through antiviral RNAi-mediated targeting.

CONCLUSION

While significant progress has been made toward increased understanding of the interplay be-
tween insect viruses and the host immune response, significant challenges remain to be addressed,
not only from the mechanistic point of view (how virus infection is recognized, how the host nutri-
tional status and stress affect the antiviral RNAi-mediated response), but also from a translational
perspective for future application of this knowledge in the control of agricultural pests and vec-
tors of diseases, as well as the protection of beneficial insects. There is tremendous potential for
powerful biotechnological applications to result from research on insect RNAi pathways.

1. The host siRNA pathway and, possibly, the piRINA pathway are involved in antiviral
defense against insect viruses.

2. Both DNA and RNA viruses have evolved suppressors of the siRNA pathway. These
suppressors are most important for RINA virus replication, reflecting the primary role of
the siRINA pathway in antiviral defense against RNA viruses.

3. Asanucleic acid-based immune system, the siRINA pathway confers long-term immune
memory against the same pathogen. This memory may be inherited by the progeny.

4. Virus-derived decoy RNAs may provide an alternative mechanism for evasion of siRINA-
based antiviral defense.

5. Virus-derived miRNA can manipulate the host genome to benefit virus replication.

6. Virus-derived DNA sequence, from which transcripts feed into the siRINA pathway, pro-
vides insects with immune memory.
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7. Virus-derived DNA sequences that are integrated into host genomes, inherited, and
retained as endogenous viral elements produce piRNAs that may function in antiviral
immunity.

8. The interplay between insect viruses and RNAi has been exploited for practical purposes,
including optimization of the baculovirus expression vector system and use of VSRs to
detect covert viruses in insect cell lines.

9. Infectious clones of insect viruses have proven invaluable for the study of virus-host
molecular interactions and may have future utility for VIGS-based suppression of insect
pests and arboviral disease.
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