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While resistance mutations are often implicated in the failure of cancer therapy, lack of response also
occurs without such mutants. In bladder cancer mouse xenografts, repeated chemotherapy cycles have
resulted in cancer stem cell (CSC) enrichment, and consequent loss of therapy response due to the
reduced susceptibility of CSCs to drugs. A particular feedback loop present in the xenografts has been
shown to promote CSC enrichment in this system. Yet, many other regulatory loops might also be oper-
ational and might promote CSC enrichment. Their identification is central to improving therapy response.
Here, we perform a comprehensive mathematical analysis to define what types of regulatory feedback
loops can and cannot contribute to CSC enrichment, providing guidance to the experimental identifica-
tion of feedback molecules. We derive a formula that reveals whether or not the cell population experi-
ences CSC enrichment over time, based on the properties of the feedback. We find that negative feedback
on the CSC division rate or positive feedback on differentiated cell death rate can lead to CSC enrichment.
Further, the feedback mediators that achieve CSC enrichment can be secreted by either CSCs or by more
differentiated cells. The extent of enrichment is determined by the CSC death rate, the CSC self-renewal
probability, and by feedback strength. Defining these general characteristics of feedback loops can guide
the experimental screening for and identification of feedback mediators that can promote CSC enrich-
ment in bladder cancer and potentially other tumors. This can help understand and overcome the phe-
nomenon of CSC-based therapy resistance.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Tumor stem cells are thought to be important for the initiation
and maintenance of cancers. In addition, it is becoming clear that
tumor stem cells can also contribute to a reduced response to
treatments, especially if the fraction of the stem cells in the tumor
is high (Dean et al., 2005). Cancer stem cells (CSCs) are intrinsically
less responsive to drug treatment (Batlle and Clevers, 2017; Brooks
et al., 2015; Shibue and Weinberg, 2017) due to protective proper-
ties they share with normal stem cells, including higher expression
of drug-efflux pumps (Dean et al., 2005), better DNA-repair capac-
ity (Bao et al., 2006), and enhanced protection against reactive oxy-
gen species (Diehn et al., 2009). High CSC fractions can therefore
give rise to poor a response to therapy even in the absence of
resistance-inducing mutations.
CSC-based resistance falls in the more general category of non-
genetic drug resistance. There is strong evidence that tumors con-
tain non-genetic, heritable variation, and that this contributes to
clonal evolutionary processes (Brock et al., 2009). The importance
of the interplay between genetic and non-genetic heterogeneity
for clonal evolutionary processes has been demonstrated with
mathematical models, especially in the context of therapeutic
interventions (Hamis et al., 2018; Stiehl et al., 2014).

The importance of stem cell-based resistance in vivo has been
established in patient-derived bladder cancer mouse xenografts
(Kurtova et al., 2015), and this biological system is the basis for
our analysis. Our results can be used as a guide to define the pro-
cess of stem cell enrichment in bladder cancer in more detail
experimentally. The basic biological properties of this system are
summarized as follows. In clinically realistic chemotherapy
regimes, it has been demonstrated that stem cell fractions
increased during successive treatment cycles, and that this
increase in the stem cell fractions correlated with a reduced
umors:
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response to chemotherapy during the next therapy cycle. Experi-
ments identified a positive feedback loop that operates within
the tumor as an important component of stem cell enrichment
during the treatment phase (Kurtova et al., 2015).
Chemotherapy-induced death of more differentiated cells resulted
in a wound healing type response that is mediated by PGE2 and
that resulted in the activation and proliferation of CSCs during
treatment. A mathematical model of these treatment dynamics
confirmed that this wound-healing response could contribute to
the amplification of the CSC population during chemotherapy
(Rodriguez-Brenes et al., 2017). At the same time, however, the
model showed that this CSC enrichment was not maintained fol-
lowing cessation of therapy. Instead, CSC fractions were predicted
to return to pre-treatment levels after treatment cessation. In other
words, the positive feedback wound-healing response alone could
not account for a pronounced reduction in the response to
chemotherapy during the next cycle following an off-therapy
phase. This situation changed when we added negative feedback
from differentiated cells onto the division rate of stem cells in
the mathematical model (Rodriguez-Brenes et al., 2017). We found
that in this case, the enriched stem cell fractions were predicted to
be maintained in the long term during the off-treatment phase. The
model with the negative feedback loop could thus reproduce the
experimentally observed result that CSC enrichment during a
round of chemotherapy could reduce the response to a subsequent
chemotherapy cycle.

The notion that regulatory feedback loops originating from
healthy tissue remain partially active in tumors is not well-
established, nor is the notion that they determine the disease
course or the response to therapy. The PGE2-based wound healing
response in bladder cancer xeografts is the best experimental sup-
port for these ideas. Negative feedback loops have so far not been
experimentally implicated in a similar way, but there is clear evi-
dence that negative feedback regulation likely plays and important
role in healthy tissue dynamics, e.g., in the olfactory epithelium,
where GDF11 and Activin bB negatively regulate self-renewal rates
in progenitor and stem cells (Gokoffski et al., 2011; Lander et al.,
2009). Some of this negative feedback regulation could thus very
well continue to be operational to a certain extent in tumors, and
indeed the analysis of tumor growth data has found patterns that
are difficult to account for in the absence of negative feedback reg-
ulation (Rodriguez-Brenes et al., 2013a; Youssefpour et al., 2012).

While our previous modeling showed that one particular nega-
tive feedback loop could lead to sustained CSC enrichment follow-
ing chemotherapy of bladder cancer xenografts, many other
regulatory feedback loops can potentially be present within the
tumor. Some of these might also be able to contribute to sustained
CSC enrichment and to a loss of therapy response, while others
might not contribute to this phenomenon. A targeted experimental
search for feedback factors that promote loss of treatment
responses in bladder cancer requires us to know which types of
feedback mechanisms intrinsic to the cell population can in princi-
ple promote sustained CSC enrichment. The aim of this paper is to
identify such candidate feedback loops, based on the analysis of
mathematical models, thus providing a theoretical basis for the
experimental identification of relevant, specific feedback
molecules.

We focus on two basic scenarios. First, we assume that partial
breakage of feedback regulation results in temporary cell growth
towards a new equilibrium, characterized by an overall larger
number of cells. This could correspond to a single step in step-
wise tumor progression. We investigate the conditions required
for the stem cell fraction to be larger at the new compared to the
old equilibrium. In particular we study how remaining feedback
loops determine the stem cell fraction. Second, we consider
unbounded tumor growth and investigate how different feedback
2

mechanisms that remain in a growing tumor cell population can
determine whether or not CSC enrichment occurs during growth.
Much of this work is done using ordinary differential equations.
In the context of unbounded tumor growth, the effect of spatial
growth patterns on stem cell enrichment is explored using a
stochastic agent-based model and an analytical approximation.

The present study provides a solid theoretical basis for implicat-
ing the presence of feedback regulatory loops as a determinant of
responses to cancer therapy. This adds to the mathematical litera-
ture quantifying the role of feedback regulation for tissue and
tumor dynamics (Arino and Kimmel, 1986; Komarova, 2013;
Komarova and van den Driessche, 2018; Konstorum et al., 2016;
Kunche et al., 2016; Lander et al., 2009; Rodriguez-Brenes et al.,
2011, 2013b, 2017; Stiehl et al., 2018; Yang et al., 2015;
Youssefpour et al., 2012), and builds upon the wider mathematical
literature concerned with the dynamics of hierarchically struc-
tured cell populations, e.g. (Enderling et al., 2013; Glauche et al.,
2007; Marciniak-Czochra et al., 2009; Michor, 2008; Roeder and
Loeffler, 2002; Stiehl and Marciniak-Czochra, 2011; Werner et al.,
2011) and stem cell fractions (Enderling, 2014). Two major
approaches can be mentioned as most relevant in the present con-
text. One approach uses spatial, agent-based or hybrid models to
investigate SC dynamics, including questions of SC enrichment.
Reference (Enderling, 2014) provides an excellent review of the
relevant literature. In particular, a versatile model of CSC and
non-SCs has been developed (Enderling et al., 2009a, 2009b),
where the cellular expansion and competition dynamics could be
explored. It was found that an increased proliferation capacity of
non-stem cells results in encapsulation of SCs and tumor dor-
mancy, while an increase in migration may lead to ‘‘liberation”
and expansion of SCs. In (Enderling et al., 2009a) it was demon-
strated that the CSC fraction of a tumor population can vary by
multiple orders of magnitude as a function of the generational life
span of the non- stem cancer cells. In (Enderling et al., 2013), the
time-dependent SC fraction was studied in the context of a similar
model, and it was further found that spontaneous cell death yields
a higher SC fraction; Reference (Sottoriva et al., 2010) studied
dynamics and localization of SCs by using a hybrid model.

The second approach is non-spatial, where the dynamics of SCs
and their differentiation are represented by using ODEs with or
without feedback. For example, in (Arino and Kimmel, 1986), a sys-
tematic analysis of feedback is performed by using delay differen-
tial equations. Reference (Stiehl et al., 2014) considers a two-
compartment, multi-clone model with a specific type of negative
feedback on SC self-renewal, and shows that clonal evolution
selects for fast reproducing and highly self-renewing cells at pri-
mary diagnosis, while relapse following therapy-induced remission
is associated with highly self-renewing but slowly proliferating
cells. A multicompartment model of differentiation was introduced
axiomatically in (Marciniak-Czochra et al., 2009; Nakata et al.,
2012; Stiehl and Marciniak-Czochra, 2011) and the steady states
were studied, both for general functional forms and for a particular
case of regulatory feedback functions. In (Stiehl and Marciniak-
Czochra, 2012), a similar model was used to compare cellular prop-
erties of leukemic stem cells to those of their benign counterparts,
by deriving conditions for expansion of malignant cell clones. Ref-
erence (Stiehl et al., 2018) investigated the impact of feedback loops
and their breakage on cancer progression. While questions of SC
enrichment were not directly addressed in the above studies, refer-
ence (Weekes et al., 2014) presented a hierarchical model of cell
growth and differentiation, and showed that in exponential growth
(and in the absence of any control loops) the fraction of SCs reaches
a steady state level, which is a decreasing function of the number of
compartments and an increasing function of SC proliferation rate.

While a wealth of results of SC fraction dynamics have been
obtained in the spatial (agent based and hybrid) models, analytical



Table 1
Mathematical symbols and the definitions of variables.

Notation Definition

L Division rate of SCs
D, d Death rate of DCs and SCs, respectively
x1 and x2 Wild type and mutant SCs
y1 and y2 Wild type and mutant DCs

ðx�; y�Þ The equilibrium values of the wild type cells

ðx�; y�Þ The mutant equilibrium values
m Ratio SCs/DCs
P Probability of SCs self-renewal for wild type cells
P2 Probability of SCs self-renewal for mutant cells
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understanding or generalizations are more difficult in the context
of these models; also feedback factors were not usually considered
explicitly. On the other hand, a high level of analytical understand-
ing has been reached in ODE models, but SC enrichment dynamics
has not been specifically studied, except in the simpler cases in the
absence of feedback loops. In the present study, we develop an
axiomatic model of SC dynamics where feedback loops are
included explicitly, and the functional form of the controls (which
remains unknown) is kept as general as possible. We investigate
conditions that lead to SC enrichment under different types of
growth dynamics, and define what types of regulatory feedback
loops can and cannot contribute to CSC enrichment, providing
guidance to further experimental inquiries into specific signaling
mechanisms.

2. The basic mathematical modeling approach

An ordinary differential equation model has been used to
describe tissue hierarchy dynamics in a healthy tissue (Kunche
et al., 2016; Lander et al., 2009), and the models presented here
build on these approaches. While cell lineages consist of stem cells,
transit amplifying cells, and terminally differentiated cells, our
models make a simplification and take into account only stem cells
(which encompass all the proliferating cells) and differentiated
cells. Denoting stem cells (SC) by x and differentiated cells (DC)
by y, the model is given by:

dx
dt ¼ Lx 2P � 1ð Þ
dy
dt ¼ Lx 2P � 1ð Þ � Dy

Stem cells divide with a rate L. With a probability P, the division
results in two daughter stem cells (self-renewal), and with a prob-
ability (1�P), the division results in two daughter differentiated
cells (differentiating division). Differentiated cells are assumed to
die with a rate D. This model captures a probabilistic model of tis-
sue control, which occurs on the population level if about half of
the symmetric divisions result in two daughter stem cells and
the other half result in two daughter differentiated cells. In addi-
tion to symmetric divisions, asymmetric divisions may play a role
in tissue renewal. With asymmetric cell division, a stem cell gives
rise to one stem cell and one differentiated cell, thus maintaining a
constant population of stem cells. In the current model, even
though such divisions do not appear explicitly, it is possible to
show that they are included implicitly, see Section 1.2 of SI. It is
proven that a model that considers both symmetric and asymmet-
ric divisions is mathematically identical to the one studied here.

The basic model shown above contains no feedback loops.
Hence, the rates L and D and probability P are constants that are
independent of x or y. This system is only characterized by a neu-
trally stable family of nontrivial equilibria if P = 0.5. If P > 0.5, infi-
nite growth is observed. If P < 0.5, the cell population goes extinct.

It has been shown that introduction of negative feedback loops
can result in more realistic behavior, where a stable equilibrium is
attained for P > 0.5 (Lander et al., 2009). This was shown in the con-
text of two specific feedback loops, and subsequently generalized
to comprehensively list all possible (positive and negative) feed-
back loops compatible with stability (Komarova, 2013; Komarova
and van den Driessche, 2017; Yang et al., 2017). Here, we also
use a general model to assume different kinds of feedback on the
rate of cell division, L, the rate of cell death, D, and the probability
of self-renewal, P. We also add the possibility that stem cells die
with a rate d (which can also be subject to feedback). In the context
of our model, feedback is equivalent to a dependence of rates and
probabilities on the population sizes, x and/or y. Hence, the model
is given by the following ODEs:
3

dx
dt ¼ L x; yð Þx 2P x; yð Þ � 1ð Þ � d x; yð Þx
dy
dt ¼ 2L x; yð Þx 1� P x; yð Þð Þ � D x; yð Þy ð1Þ

The division rate L, the death rates, D and d, and the probability
of self-renewal, P, are now functions of either the number of stem
cells, x, or the number of differentiated cells, y, or both. This formu-
lation can capture a wide variety of different feedback mecha-
nisms, including the most basic one, which is given by logistic
density dependence of division probability.

Evolution can result in the generation of mutant cell popula-
tions that are characterized by a higher self renewal probability,
given by P2, which can be viewed as an early step towards carcino-
genesis. Hence, we now have two stem and differentiated cell pop-
ulations denoted by subscripts 1 and 2 for wild type and mutant
types, respectively. The equations are thus given by

dx1
dt ¼ L ¼ x; yð Þx1 2P x; yð Þ � 1ð Þd x; yð Þx1
dy1
dt ¼ 2L ¼ x; yð Þx1 1� P x; yð Þð Þ � D x; yð Þy1
dx2
dt ¼ L x; yð Þx2 2P2 x; yð Þ � 1ð Þ � d x; yð Þx2
dy2
dt ¼ 2L x; yð Þx2 1� P2 x; yð Þð Þ � D x; yð Þy2

ð2Þ

where x = x1 + x2 and y = y1 + y2. The two cell populations are in
competition with each other, mediated by the feedback factors that
are shared between the two populations. Table 1 summarizes all the
variables used in this paper (both in this section and in the later sec-
tions). These equations are structurally similar to previously pub-
lished models that were explored in different contexts (Stiehl and
Marciniak-Czochra, 2012).

Note that we only consider mutants with a higher self-renewal
probability, because these are the only mutant types that can grow
from low numbers and invade in this type of model. Mutants in
other parameters fail to grow and will die out, as described in a dif-
ferent context in reference (Rodriguez-Brenes et al., 2011). Accord-
ing to this mathematical framework, such mutants would
therefore not be expected to drive tumor development and are
not considered in the paper. In principle, it is possible that a muta-
tion causes a simultaneous change in more than one parameter,
which, however, does not lead to a change in conclusion and is
not pursued further.

We further note that besides mutations, similar changes might
be brought about by epigenetic mechanisms (Esteller, 2008) (that
may also be reversible), but this level of detail is not taken into
account in our models.

3. Cell growth towards a new equilibrium

The first important scenario happens when the mutant cell pop-
ulation gains a selective advantage, outcompetes the original,
healthy cell population, and grows towards a new and higher equi-
librium level. This is achieved by assuming that P2 > P, along with
other conditions on the rate functions that are specified in Section 1
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of SI We examine the conditions under which the stem cell fraction
at the new equilibrium is increased compared to that at the origi-
nal equilibrium. In terms of the model notation, we are interested
in the quantity v(x,y) = x/y, i.e. the ratio of stem to differentiated
cells. We investigate how different combinations of feedback loops
that remain in the mutant cell population impact stem cell
enrichment.

In the following we assume that the division and death rates in
the above models are monotonic functions of the number of stem
and/or differentiated cells. We further assume that in the absence
of mutants, the system is at equilibrium, characterized by the pair

x
�
; y
�� �

, which satisfies:

P x
�
; y
�� �

¼ 1
2

1þ
d x

�
; y
�� �

L x
�
; y
�� �

0
@

1
A

At this equilibrium, the fraction of stem to differentiated cells is
given by

v
� � x

�

y
� ¼

D x
�
; y
�� �

L x
�
; y
�� �

� d x
�
; y
�� � :

We assume that the mutant cell population can invade from
low numbers and displace the original cell population. This occurs
if P2(x,y) > P(x,y) (this is a sufficient condition). Assuming that a
new equilibrium is reached, it is characterized by

P x; yð Þ ¼ 1
2 1þ d x� ;y�ð Þ

L x� ;y�ð Þ

� �
;

and the new fraction of stem cells is given by

v� � x�
y�

¼ D x�; y�ð Þ
L x�; y�ð Þ � d x�; y�ð Þ :

We examine under what conditions m� > m, i.e. when the stem
cell ratio at the newly obtained mutant equilibrium exceeds that
at the original equilibrium.

We observe two qualitatively distinct outcomes, see Sections 2
and 3 of SI or the detailed analysis. (i) The fraction of stem cells
increases compared to the previous equilibrium state. We call this
stem cell enrichment. This occurs if the ratios L/D and/or L/d are
decreasing functions of the cell population. This happens when lar-
ger cell population sizes result in negative feedback on cell expan-
sion parameters and/or positive feedback on death. For example, if
the per cell division rate decreases and/or the death rate increases
with population size. (ii) The fraction of stem cells decreases com-
pared to the previous equilibrium state. We call this stem cell
depletion. This occurs if the ratios L/D or L/d are increasing func-
tions of the cell population. In this scenario, larger populations pro-
mote cell expansion kinetics, e.g. by decreasing the death rate of
cells or increasing their division rate. This would correspond to a
positive feedback loop on cell division and/or a negative feedback
loop on death rate. We note that mutant emergence generally
changes the stem cell fraction, unless the division and death rates
(L, D, and d) are constant and hence not affected by feedback.

We will illustrate these points by using some specific examples.
Note that all examples used here correspond to wild type systems
that are capable of maintaining homeostasis (that is, have a stable
equilibrium) in the absence of malignant mutations. The first
example is of SC enrichment. Consider a system where d = 0, the
self renewal probabilities P and P2 are given by decreasing func-
tions of y (see solid lines in Fig. 1(a)), and the division rate L is also
a function of y, solid line in Fig. 1(b). The cell dynamics and control
loops corresponding to this system are schematically shown in
Fig. 2(a). In this and other such diagrams, blue arrows correspond
to cellular processes (characterized by kinetic rates, such as L and
D), and cell fate decisions, which are probabilities (P or P2). The
4

red negative arrows originating in the DC circle represent a nega-
tive dependence of both functions L and P on y (the number of
DCs). In this first example, SC enrichment is predicted to occur.
Fig. 2(b) shows the cell dynamics, once a mutant is introduced at
100 time units. While the wild type population goes extinct, the
mutants rise to a new equilibrium characterized by a significantly
higher ratio x/y compared to the original equilibrium.

The second example is SC depletion. It is given by a system with
rate functions defined in Fig. 1(c,d), with d = 0 and the division rate
positively controlled by the SC population. The controls are
schematically shown in Fig. 2(c). The resulting dynamics are pre-
sented in Fig. 2(d), where the proportion of SCs at the new, mutant
equilibrium is smaller than the original proportion. Note however
that the dependence of x/y on time is non-monotonic and a tempo-
rary phase of SC enrichment is experienced before the ratio x/y
lowers to its long-term level.

These two examples illustrated in Fig. 2 show that the propor-
tion of SCs can either increase (SC enrichment) or decrease (SC
depletion), once mutants with altered (increased) self-renewal
probability take over the cell population. We refer to Section 2 of
SI for the detailed analysis of the scenario where all the rates and
functions are controlled either by SCs or by DCs, but not both. Sec-
tion 3 of SI extends this to the more general case where the rate
functions depend both on x and y.

Next, we examine the factors that affect the magnitude of the
change. In Fig. 3 we take the basic model of Fig. 2(a) and modify
it in three different ways, each of which leads to a decrease in
the amount of SC enrichment, compared to the situation in Fig. 2
(a). First, we consider the death rate of the stem cells, d. The
amount of enrichment is smaller for nonzero stem cell death rates,
compared to the case of d = 0. In Fig. 3(b) we can see that in the
presence of SC death, the increase in the enrichment parameter,
x/y, is more modest than that of Fig. 2(b).

The second modification is a smaller self-renewal probability,
P2, of the mutant cell population, Fig. 3(c). The self- renewal prob-
ability P2 of the mutant cells is that given by the dashed line in
Fig. 1(a). Again, this results in a more modest increase in the stem
cell fraction compared to Fig. 2(b).

The third modification is a less pronounced feedback on the
division rate. The result is that the SC enrichment becomes smaller.
In Fig. 3(d) we use a flatter division rate function, L, than that in
Fig. 2(a) (compare the dashed line in Fig. 1(b) with the solid line).
This results in a smaller SC enrichment, as shown by a smaller
increase of x/y in Fig. 3(d) compared to Fig. 2(b). A detailed analysis
of all these scenarios is presented in Section 2 of SI.
4. Stem cell enrichment in non-equilibrium situations

Next, we study the scenarios where the mutant population
grows from low numbers and does not reach a new equilibrium,
but instead, continues to grow indefinitely. This would correspond
to unbounded tumor growth far from carrying capacity, which typ-
ically happens as the tumors progress. The definition of enrich-
ment in this context and the relevant methodology will be
somewhat different in this case. We will consider the mutant pop-
ulation alone, and study the growth of x2 and y2, in order to find the
dynamics of the quantity m = x2/y2. We will say that stem cell
enrichment occurs if the quantity m increases during population
growth, either infinitely, or temporarily. For simplicity we will
assume that the cancer stem cell (CSC) population does not die
(d = 0). We further assume that the probability of self-renewal of
mutants, P2, is a monotonic function of the population size (stem
cells or differentiated cells) that satisfies P2 > 1/2, and that in the

limit of large populations, it approaches a limiting value, P
�
> 1/2.



Fig. 1. Examples of functional dependencies leading to SC enrichment (a,b) and depletion (c,d) at a new equilibrium. (a) Self renewal probability functions, P(y)=(1 + 0.001
y)�1 and P2(y)=(1 + 0.001 y)1/2P(y) (the solid lines). An example of a smaller self renewal probability of mutants is given by P2(y) = (1 + 0.005y)1/2P(y) (the dashed line). (b) An
example of a negatively controlled division rate is given by L(y) = 2 � 51�0.001y (solid line). A flatter division rate is given by L(y) = 22�0.001y (dashed line). (c) Self renewal
probability functions, P(x) = (1 + 0.02 x)�1 and P2(x) = (1 + 0.015 x)1/2P(x). (d) An example of a positively controlled division rate is given by L(x) = 401(1 � e�0.0001x).
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When we consider the mutant dynamics, we will drop the sub-
script 2, and simply study the equations:
dx
dt ¼ xLðx; yÞð2 P

�
�1Þ;

dy
dt ¼ 2xLðx; yÞð1� P

�
Þ � yDðx; yÞ:

If we assume that both D and L depend on a single population,
that is, L = L(x), D = D(x), or L = L(y), D = D(y), the following approx-
imations can be derived (see Section 4 of SI). As the cell population
expands, the DC population behaves as
y � 2 1� P
�� �

� L
D
; ð3Þ

(this holds if D/L� 1) and ratio of stem to differentiated cells, m,
in the limit of large times is given by:
v �
2 P

�
�1

� �
þ D=L

2 1� P
�� � : ð4Þ

Eq. (4) states that the long-term dynamics of the SC fraction, v,
is defined by the behavior of the ratio D/L, the per cell death rate of
the DCs and per cell division rate of SCs. If either or both of these
quantities are controlled by the population size, the ratio will
change as the tumor grows. If the behavior of the death rate and
division rates are known, formula (4) predicts the dynamics of
the SC fraction in tumor growth. Three scenarios are possible.
5

4.1. Unlimited SC enrichment

One relevant scenario occurs if the ratio D/L grows indefinitely
as the population size increases; this corresponds to either a neg-
ative feedback on L (such that L approaches zero as population size
increases), and/or a positive feedback on D. If an increase in cell
population sizes results in an unbounded increase in D/L, then
the stem cell fraction, m, will continuously rise towards infinity.
Therefore, as the tumor cell population grows, the fraction of SCs
increases, and at very large tumor sizes, the tumor is practically
only made up of CSCs. This scenario is illustrated in Figs. 4(a,b)
and 5(a,b), where negative feedback on L results in an increase in
the ratio D/L, mediated by differentiated cells (panels (a)) and stem
cells (panels (b)). Figs. 4(a) and 5(a) explore negative feedback on L
by DCs. It depicts a system similar to that of Fig. 2(a), except the
self-renewal probability of the mutants is a constant, resulting in
an unlimited growth of mutants. The fraction x/y in this case expe-
riences unlimited growth, as shown by the inset in panel 5(a). In
Figs. 4(b) and 5(b), we replace control of L by DCs with control
by SCs; again, an unlimited growth of x/y is observed, see the inset
in panel 5(b).
4.2. Saturated SC enrichment

The second type of behavior is observed if an increase in the
number of cells results in a saturated growth in D and/or a decay
of L to a nonzero level, such that the ratio D/L is a growing and sat-
urating function as the cell population increases. In this case, the



Fig. 2. Dynamics of enrichment when a new equilibrium is reached by mutants. The left panels (a, b) illustrate SC enrichment, and the right panels (c,d) SC depletion. In the
top panels, the dynamics and the control loops are presented schematically. SCs (the leftmost circle) divide at rate L, such that the decision of whether to self renew or to
differentiate (denoted by a question mark) is governed by probability P. Control loops are depicted by red arrows (positive or negative) directed from the population
mediating the control to the rate/probability that is being controlled. In the bottom panels, the time series are shown, where functions for wild type cells, x1(t) and y1(t), are
plotted in black, and functions for mutant cells, x2(t) and y2(t), are plotted in red. SCs are depicted by solid and DCs by dashed lines. Initially, the system is at the original
equilibrium, x

�
; y
�
;0; 0

� �
. At t = 100, mutant stem cells are introduced at a low level, resulting in the extinction of wild type cells, and convergence to a new equilibrium, (0,0,x*,

y*). In the insets, the SC fraction, x/y=(x1 + x2)/(y1 + y2), is depicted as a function of time. (a,b) Negative control by DCs, resulting in SC enrichment: the functions L, P, and P2 are
given by the solid lines in Fig. 1(a,b). (c,d) Positive control by SCs, resulting in SC depletion: the functions L, P, and P2 are specified in Fig. 1(c,d). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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ratio m will increase and reach a constant level, as the tumor size
grows beyond a given size. In other words, once the tumor size
has reached a critical threshold, the stem cell fraction is predicted
to remain constant as the tumor grows further. This scenario is
illustrated in Fig. 5(c,d), where populations x and y grow indefi-
nitely, but the ratio x/y first increases and then reaches a constant
level (see the inset). The only difference in simulations of panel 5
(c) compared to those of panel 5(a) is the fact that the division rate,
L, no longer decreases to zero, but reaches a small but nonzero con-
stant level, as the cell population grows. Panel 5(d) depicts the two
functions, L(y), that are used in the simulation (the solid line for
panel 5(a) and the saturating, dashed line for panel 5(c)).

4.3. SC depletion

The third and final scenario that is possible corresponds to the
case where function D/L decreases as the population size increases.
This can happen if the division rate is positively controlled and/or
when the death rate is negatively controlled by the cell popula-
tions. This type of dynamics is illustrated in figures Figs. 4(c, d)
and 6(a,b). In these simulations, positive feedback on L was medi-
ated either by SCs (Figs. 4(c) and 6(a)) or by differentiated cells
(Figs. 4(d) and 6(b)). In this case, a temporary reduction in the ratio
m can be observed during tumor growth, until m converges to a con-
stant. In other words, we observe a reduction in the CSC fraction
6

over time, until it reaches a limiting value. Note that the SC fraction

can never decrease to zero, the minimum fraction is given by 2 P
�
�1

2 1�P
�� �.

To summarize, the following three types of SC fraction dynam-
ics are predicted: (1) If L is subject to negative feedback and decays
to zero and/or D is subject to positive feedback and increases with-
out bound, then we have unlimited SC enrichment, such that the
content of SCs grows to 100% in the long run. (2) If L is subject to
negative feedback but never decreases to zero and/or D is subject
to positive feedback and increases within bounds, then we have
limited SC enrichment, where the SC fraction increases and then
remains constant. (3) If L is subject to positive feedback and/or D
is subject to negative feedback, then we have SC depletion, and
the SC fraction decreases to a nonzero level.

Note that if L and D are subject to the same type of feedback,
then the resulting behavior would be determined by the overall
behavior of L/D. For example, if L and D are both subject to positive
feedback and increase within bounds, but the feedback on L is
greater than the feedback on D such that L/D is increasing with
the population size, then this would correspond to type (3) and
result in depletion.

However, if the feedback on D is (effectively) greater such that
L/D is decreasing and bounded above 0, then this would correspond
to type (2) and result in limited SC enrichment, where SC fraction
grows and saturates below 100%.



Fig. 3. Parameter dependence of the SC enrichment magnitude. (a) The basic model, whose 3 aspects are modified. SCs (the leftmost circle) divide at rate L, such that the
decision of whether to self renew or to differentiate (denoted by a question mark) is governed by probability P. Control loops are depicted by red arrows (positive or negative)
directed from the population mediating the control to the rate/probability that is being controlled. (b) SC death: same parameters as in Fig. 2(a), except d = 0.03. (c) Smaller P2:
same parameters as in Fig. 2(b) except P2 is given by the dashed line in Fig. 1(a). (d) Shallower L: same parameters as in Fig. 2(b), except the division rate L is given by the
dashed line in Fig. 1(b). We observe that the SC enrichment is (b-d) is less pronounced compared to Fig. 2(b). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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5. SC enrichment in spatially structured populations

According to the above results, stem cell enrichment during
growth requires certain feedback mechanism to be present in the
tumor cell population, such that the ratio L/D is reduced as the pop-
ulation size is increased. Typically such feedback can occur through
signaling factors that are secreted from stem or differentiated cells.
Another way to achieve a similar result can be spatially restricted
reproduction of cells. In such scenarios, cells experience range
expansion in two dimensions, or grow as expanding sphere-like
structures in 3D. Inside the expanding population, divisions must
be balanced with deaths because free space is limited. In a way this
works similarly to control loops affecting division and/or death
rates, which were discussed earlier in the paper; in the case of spa-
tially restricted growth, control is essentially competition for
space, which leads to slower divisions/higher death as the density
increases. We note that this is an intrinsic feature of the spatial
population structure and not mediated by specific feedback factors
that are secreted from cells.

To explore this, we first considered a two-dimensional stochas-
tic agent-based model that describes spatially restricted cell
growth. The model assumes a 2-dimensional grid consisting of
nxn spots. A spot can either be empty, contain a stem cell, or con-
tain a differentiated cell. At each time step, the grid is sampled N
times, where N is the number of cells currently present in the grid.
If the sampled spot contains a stem cell, it divides with a probabil-
ity L0, and dies with a probability d0. If the division event is chosen,
one of the eight nearest neighboring spots is randomly picked as a
7

target for one of the daughter cells. If the chosen spot is already
filled, the division event is aborted, otherwise it proceeds. If divi-
sion proceeds, both daughter cells will be stem cells with a proba-
bility P0 (self-renewal). With probability 1- P0, both daughter cells
will be differentiated cells. If the sampled spot contains a differen-
tiated cell, death occurs with a probability D0. No explicit feedback
processes were included in the model. The simulation was started
with 9 stem cells (and no differentiated cells). Assuming that stem
cells do not die, the resulting average growth curve is shown in
Fig. 7(a). While initially, the differentiated cells grow to be more
abundant than the stem cells, the stem cell population enriches
over time and eventually becomes dominant as the cell population
grows. Fig. 7(b) shows the same kind of simulation, but assuming
that stem cells die with a rate that is smaller than the death rate
of differentiated cells. Consistent with the results obtained for
explicit feedback mechanisms, we find that the degree of stem cell
enrichment is reduced in the presence of stem cell death (higher
rates of stem cell death lead to less enrichment).

A simple mean-field model that takes account of the space lim-
itations inside an expanding population can explain these results
(see Section 5 of SI). Indeed, the system in the interim of the
expanding globe reaches a dynamic equilibrium state where the
density of SCs and DCs is dictated by the balance of division and
death rates. Fig. 8 shows theoretical predictions for the densities
of SCs and the DCs in the colony’s interim; the solid lines depict
theoretical predictions and points correspond to numerical
simulations of the agent based model. The figure also provides typ-
ical images for two parameter combinations; blue dots represent



Fig. 4. Four types of control used in Fig. 5 to study unbounded growth. SCs (the leftmost circle) divide at rate L, such that the decision of whether to self renew or to
differentiate (denoted by a question mark) is governed by probability P. Control loops are depicted by red arrows (positive or negative) directed from the population
mediating the control to the rate/probability that is being controlled. (a) Negative control by DCs; (b) Negative control by SCs; (c) Positive control by DCs; Positive control by
SCs; (d) Positive control by SCs. Unlike in Fig. 2(a,c), the mutant self-renewal probability is assumed to be constant (and thus the control loop is completely severed in
mutants), leading to unlimited growth. The 2 top panels correspond to Fig. 5(a,b); the 2 bottom panels correspond to Fig. 6 (a,b). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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SCs and yellow dots DCs. As expected, under higher DC death the
proportion of DCs decreases.

Using the mean-field model, we have also calculated the degree
of SC enrichment. The higher the SC death rate, the lower the over-
all density and the higher the fraction of DCs in the population. As
time increases, the fraction of SCs reaches the value given by

v ¼ D0 2P0 � 1ð Þ
2d0 1� P0ð Þ

In particular, in the absence of SC death (d0 = 0), the equilibrium
value of v is infinity, which means that SCs exclude DCs every-
where in the core of the expanding range, such that DCs only con-
centrate in the exterior part of the colony. This corresponds to
unlimited SC enrichment.

Agent-based simulations were repeated assuming a 3-
dimensional space, where offspring cells could be placed into one
of the 27 nearest neighboring spots (Fig. 7(c,d)). Because there
are more neighbors in three dimensions, the system is more mixed,
and the extent of stem cell enrichment is generally lower. This can
be seen e.g. from the more modest increase in the SC fraction in the
inset of Fig. 7(c) compared to that of Fig. 7(a). (As mentioned in the
beginning of this paper, no stem cell enrichment occurs in a per-
fectly mixed system in the absence of explicit feedback mecha-
nisms). Dimensionality has been previously shown to play an
important role in spatial cell growth in many contexts, see e.g.
(Komarova et al., 2014).
6. Discussion and conclusions

The experimental observation in patient-derived bladder cancer
mouse xenografts showing that a wound-healing type mechanism
can modulate the extent of stem cell enrichment and the
8

responsiveness of the tumor to chemotherapy (Kurtova et al.,
2015) is to our knowledge the first clear case where a specific feed-
back loop has been implicated in these processes. At the same time,
however, this interesting observation has brought up a number of
questions that can best be answered by using mathematical mod-
els to interpret the data. Mathematical modeling (Rodriguez-
Brenes et al., 2017) suggested that the wound-healing response
alone cannot result in CSC enrichment that is sustained beyond
the treatment phase, and hence cannot explain the loss of therapy
response during subsequent treatment cycles. The mathematical
model predicted, however, that inclusion of a particular negative
feedback loop from differentiated cells onto the rate of CSC division
can result in sustained CSC enrichment and in a loss of therapy
response in successive treatment cycles. Many different negative
and positive feedback loops, however, might be operational in
bladder cancer, and so far we did not know which types of feed-
back mechanisms can in principle contribute sustained CSC enrich-
ment (and a loss of treatment response), and which types cannot
contribute to this phenomenon. This limits the experimental
search for particular feedback factors that drive the response of
bladder cancer to chemotherapy. The analysis presented here uses
mathematical approaches to clearly define which types of feedback
loops can and cannot contribute to sustained CSC enrichment, and
this forms an important guide for the search of specific feedback
factors in bladder cancer, and also potentially in other tumors in
which CSC-based resistance turns out to be important. Knowing
the types of feedback loops that can contribute to stem cell enrich-
ment narrows down the potentially very large number of candi-
date factors that one needs to experimentally screen for.

We found that whether or not stem cell enrichment is observed
in the system depends on how the ratio D/L (deaths to divisions)
changes with the population size. If it rises as the population size
increases, which corresponds to either a negative feedback on L



Fig. 5. Dynamics of unbounded growth under negative control on SC divisions. Notations are as in Fig. 2(b,d). The purple line in each panel plots the approximation for y
(formula (3)), and in the insets the approximation for x/y (formula (4)). (a) Negative control by DCs: parameters are as in Fig. 2(b) except P2 = P

�
= 0.6. (b) Negative control by

SCs: similar to (a), except the rate functions depend on SCs: L(x) = 2*5 (1 � x/50), P(x) = (1 + 0.02x)�1, and P2 = P
�
= 0.6. In both panes, unlimited SC enrichment is observed. (c)

Saturated SC enrichment: same as (a), except the division rate decreases to a constant: L(y) = 0.05 + 2*51�0.001y. (d) The two division rates are plotted on a logarithmic scale as
functions of DC populations. The solid line depicts the function used in panel (a) and the dashed line the function used in panel (c). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Dynamics of unbounded growth under positive control on SC divisions. Notations are as in Fig. 2(b,d). The purple line in each panel plots the approximation for y
(formula (3)), and in the insets the approximation for x/y (formula (4)). (a) Positive control by SCs: corresponds to parameters of Fig. 2(d), except P2 = P

�
= 0.505. (b) Positive

control by DCs: similar to (a), except the rate functions depend on DCs: L(y) = 21(1 � e�0.0001y), P(y) = (1 + 0.001y)�1, P2 = P
�
= 0.505. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)
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or a positive feedback on D, exerted either by stem or by
differentiated cells, then SC enrichment is observed. On the other
hand, if the ratio D/L decreases as the population grows, then no
stem cell enrichment is predicted, and in fact SC depletion can be
observed. A simple analytical approximation is derived for the
long-term behavior of the expected fraction of SCs in the popula-
tion, which is novel and useful for data interpretation. Further,
according to the model, three separate factors can decrease and
9

even altogether prevent SC enrichment. One is the presence of SC
death; the second is a very weak feedback (or no feedback) on SC
divisions remaining in the mutant populations, and the third is a
relatively low self-renewal probability of mutant cells.

These insights are not obvious absent the analysis of mathemat-
ical models. The potentially crucial role of feedback loops as deter-
minants of stem cell enrichment and responsiveness to therapy is
so far not well established in the cancer research literature. The



Fig. 7. Effect of spatially restricted cell division on CSC enrichment, according to the 2-dimensional (A,B) and 3-dimensional (C,D) implementation of the agent-based model.
Stem cells are shown in blue, differentiated cells in green. The insets show the stem cell fraction over time. (A) 2D dynamics in the absence of stem cell death, d0 = 0. (B) Same,
but for a non-zero stem cell death rate, i.e. d0 = 0.005. (C) 3D dynamics with d0 = 0. (D) 3D dynamics with d0 = 0.005. Other parameters were chosen as follows: L0 = 0.95,
P0 = 0.6, D0 = 0.01, n � n = 15002 for 2D and n � n � n = 8003. In each case, 8 simulations were run, and the mean is shown as a solid line while the mean ± standard error are
shown by dashed lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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results obtained from our analysis can guide experiments to specif-
ically identify relevant feedback factors, which can also lead to the
parameterization of these models in the context of a specific bio-
logical system.

In contrast to previous approaches, we employed axiomatic
modeling techniques, where model parameters such as the divi-
sion rate, death rate, and self-renewal probability of cells were
general functions of the number of stem and differentiated cells,
which can potentially secrete feedback factors. We have thus con-
sidered a class of mathematical models that incorporate a large
variety of possible feedback loops that regulate cell fate decisions
in lineages. The models have the flexibility as to which cell popu-
lations exert the feedback signals, and whether feedback loops
are positive or negative. The (unknown) exact details of the feed-
back functions remain unspecified. This is an important innovation
when mathematically modeling complex stem cell dynamics with
feedback regulation. When considering a specific model, as has
been done in much of the literature so far, results can depend on
the particular mathematical formulation of feedback interactions.
These particular formulations are typically arbitrary, and the same
biological processes can often be described by somewhat different
mathematical terms, which can impact model predictions and thus
lead to robustness issues. The axiomatic modeling approach per-
formed here does not suffer from this problem.

The spatial models considered here have shown that in the
presence of spatially restricted cell division, CSC enrichment can
10
occur even in the absence of explicit feedback loops mediated
by signaling molecules. It is the nature of spatially restricted cell
spread that cells in the inside of an expanding population com-
pete for space, such that their reproduction rate declines with
population size and/or their death rate increases. This has the
same effect on the dynamics as the presence of explicit feedback
loops. Whether this represents a physiologically important mech-
anism that drives CSC enrichment remains to be explored further.
The presence of cell migration can destroy the reported effect
(because cell migration essentially leads to a higher degree of cell
mixing). Since cell migration occurs even in spatially structured
tumors, it is likely that explicit feedback regulatory loops have
to be invoked to explain the loss of treatment response in bladder
cancer.

We note that while the current analysis did not model stem cell
dynamics during therapies, the analysis nevertheless has strong
implications for our understanding of stem cell-based therapy
resistance, in particular stem cell-based chemoresistance in blad-
der cancer. Stem cell enrichment is likely to occur during the
tumor development and growth processes, which were subject of
our models in this paper. Understanding the processes that pro-
mote stem cell enrichment can be beneficial for the development
of interventions that reverse enrichment, thus making the tumor
more responsive to treatments. This type of therapy resistance is
thus an example of a mechanism in which the resistance pheno-
type of a tumor is reversible (Easwaran et al., 2014).



Fig. 8. Agent based model simulations and theory. The fractions of SCs and DCs are shown for different values of parameter D0. Theoretical predictions from mean field
modeling are given by solid lines and agent based model simulation results by points. Typical simulation results are presented for two of the parameter combinations. Gray is
empty spots, blue SCs and yellow DCs. The rest of the parameters are: L0 = 0.95, P0 = 0.6, d0 = 0.005. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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All modeling approaches contain simplifying assumptions, and
the models presented here are no exception. The ODE modeling
approach has the weakness of being non-spatial and deterministic
(but provides the strength of being amenable to analysis in full
generality). The agent-based model is spatial and stochastic, but
in the present paper we only provided the first step of developing
these ideas in space. A full investigation of the behavior of the spa-
tial system is the subject of a sequel paper. We further note that to
gain analytical insights, we reduced the complexity of the lineage
differentiation pathway to include only stem cells and differenti-
ated cells, ignoring intermediate transit amplifying cell
populations with limited self-renewal capacity. Our previous work
included models that explicitly took into account transit amplify-
ing cells (Rodriguez-Brenes et al., 2017), and the relationship
between the presence of negative feedback on stem cell division
and the occurrence of stem cell enrichment remained qualitatively
the same (Rodriguez-Brenes et al., 2015). Other modeling
11
approaches have treated the cell differentiation pathway as a con-
tinuous process using partial differential equations, rather than
considering discrete cell sub-populations (Doumic et al., 2011).
Future work is required to determine to what extent the dynamics
explored here remain robust in those types of models.

It is further important to note that the models discussed here
are based on a set of core assumptions that we consider critical
when addressing the particular questions that were the focus of
this investigation. Further complexities can be included in future
work when studying more advanced questions. An important
example is additional tumor heterogeneity that is certainly present
in bladder caners as well as in most other tumors. Variation is
likely to occur in division rates, death rates, and the ability to
secrete or respond to feedback signals; it will be important to
extend the models with this in mind. Furthermore, while we con-
centrated on feedback signals that originate from tumor cells
themselves, it is likely that regulatory signals originating from
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the microenvironment play a role in shaping cell renewal and dif-
ferentiation dynamics. Thus, there is indication that in bladder can-
cer, interactions between the tumor cells and the extracellular
matrix are important for pathogenesis and treatment (Brooks
et al., 2016). These interactions are worth exploring mathemati-
cally in their own right, and would go beyond the scope of the cur-
rent paper.
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