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The haematopoietic system has a highly regulated and complex structure in
which cells are organized to successfully create and maintain new blood
cells. It is known that feedback regulation is crucial to tightly control this
system, but the specific mechanisms by which control is exerted are not
completely understood. In this work, we aim to uncover the underlying
mechanisms in haematopoiesis by conducting perturbation experiments,
where animal subjects are exposed to an external agent in order to observe
the system response and evolution. We have developed a novel Bayesian
hierarchical framework for optimal design of perturbation experiments
and proper analysis of the data collected. We use a deterministic model
that accounts for feedback and feedforward regulation on cell division
rates and self-renewal probabilities. A significant obstacle is that the exper-
imental data are not longitudinal, rather each data point corresponds to a
different animal. We overcome this difficulty by modelling the unobserved
cellular levels as latent variables. We then use principles of Bayesian
experimental design to optimally distribute time points at which the haema-
topoietic cells are quantified. We evaluate our approach using synthetic and
real experimental data and show that an optimal design can lead to better
estimates of model parameters.
1. Introduction
The haematopoietic system produces billions of mature myeloid and lymphoid
blood cells from self-renewing haematopoietic stem cells (HSCs) and multi-
potent progenitors (MPPs) on a daily basis and facilitates massive cell increases
in response to pathological stresses [1]. This system must have in place a tightly
regulated feedback control mechanism at multiple levels to ensure an appropri-
ate proportion of HSCs, MPPs, and mature cells. However, we do not yet have a
good understanding of the nature of the feedback regulation and how it plays a
role in cell maintenance. There has been a long-standing effort to use mathemat-
ical models in order to understand haematopoiesis under normal and diseased
conditions, e.g. see [2–6]. These include ordinary differential equation (ODE)
models that describe the dynamics of simplified systems (e.g. [7–12]), models
that account for more realistic numbers of different cell types and branching
processes [13], as well as models that account for stochasticity [14–19] and
spatial dynamics in the bone marrow [20]. In many cases, models were fitted
using equilibrium cell counts, or limited dynamic data, which yield point esti-
mates for the parameters. In a few cases, uncertainties in parameter inference
were considered using Bayesian methods [21–23].

With improved ability to measure cell counts, haematopoiesis researchers
need guidance when designing experiments to produce such measurements.
This guidance can be obtained by using established statistical tools of optimal
experimental design that aim at maximizing information gain about model
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parameters of interest. Within the field of systems biology,
Bayesian approaches to experimental design are especially
appealing since sparse data often require using prior information
about some subset of model parameters [24,25]. Examples of
such approaches include studies of biochemical networks, gene
regulation networks and signaling pathways [26–30].

In this work, we follow the best practices of Bayesian
experimental design within a new statistical framework for
modelling the haematopoiesis system with feedback control
and regulation. Our approach provides a rigorous hierarchical
Bayesian methodology for fitting mechanistic mathematical
models to empirical data. Because of their ability to account
for prior information and multiple sources of uncertainty,
Bayesian methods have been used increasingly for parameter
inference, model selection and experimental design for
complex systems in the physical and biological sciences
[24,31–35]. To model the haematopoietic dynamics, we use a
nonlinear ODE model that incorporates self-renewal, cell div-
ision, feedback and feedforward regulation. In particular, we
track only stem and MPP cells. Nevertheless, the model is flex-
ible enough to describe the response to external perturbations
and the subsequent return to steady state. We apply our model
to empirical data obtained from perturbation experiments in
mice subjected to low dose radiation.Wemeasure the numbers
of HSCs and MPPs at different times in the bone marrow to
investigate the recovery dynamics and infer model parameters
and feedback mechanisms.

Note that the mice can not be tracked longitudinally by
taking repeated measurements of cell numbers; rather, each
mouse provides a single observation point because the
mouse is sacrificed to extract the bone marrow. This creates a
statistical challenge for quantifying the system response since
each data point belongs to a different subject, for whom we
do not have the baseline measurements prior to exposure to
the agent; that is, the number of cells is not known initially or
at any other time prior to the measurement time and thus the
corresponding cell numbers are latent. To address this issue,
we use a hierarchical Bayesian model where the initial cellular
counts for all the subjects are treated as latent variables to be
inferred and theODEmodel is used to interpolate the cell num-
bers until the observation times. The main advantage of this
approach is that it allows us to appropriately integrate and
align data frommultiple subjects in a coherent, statistically rig-
orous manner. However, the parameter inference can be
sensitive to the choice of experimental design.

Determining time points to accurately and efficiently
sample biological processes is a fundamental and challeng-
ing problem. Recent progress in this area has focused on
machine-learning approaches, e.g. [36–38]. These general
methods have been applied to analyse time series of genomic,
transcriptomic and molecular data using interpolation, func-
tional data analysis and optimization to determine sampling
rates. Here, we take a complementary approach where we use
a mechanistic model to fill in missing data points. This should
not only enhance our understanding of the biological system,
themodel should also enable us to accurately extrapolate results
beyond the dataset used for training.

Focusing on perturbation experiments of the haematopoie-
tic system, we determine the timing of the measurements
and the number of subjects per observation time to
maximize the information gain for the parameters of our ODE
model. Using the Bayesian utility theory approach, we quantify
information gain about the model parameters over the space of
all possible experimental designs using the Kullback–Leibler
(KL) divergence utility to quantify the difference between the
prior and posterior distributions of the parameters [39]. Similar
approaches have been used in other areas [40–42]. This way, we
are able identify the design that provides the highest expected
utility, e.g. maximum information gain [27,43–51], which we
call the optimal design.

To evaluate our proposed approach,we first apply it to syn-
thetic data and show that we can identify the ODE model
parameters. Next, we analyse real data from a bone marrow
perturbation experiment. Investigating a finite set of exper-
imental designs, we find that the designs with a higher
number of observation times and possibly fewer subject repli-
cates can provide better parameter estimates compared to the
designs with fewer observation times even if we use a higher
number of subject replicates. Also, we show that how we allo-
cate the subjects over time matters. For example, designs with
more observations at later times can provide better estimates
on feedback gains, whereas designs with more observations
at earlier times improve identification of cell division rates.
2. Material and methods
2.1. Experimental set-up
We consider an experimental set up where the haematopoietic
system is perturbed and the results of the perturbation are
observed by measuring the numbers of the cell types of interest.
We primarily consider HSCs and MPPs, but other known cell
types like lymphoid and myeloid progenitors (CLPs, CMPs) or
mature lymphoid and myeloid cells can also be quantified exper-
imentally. Throughout this paper, we will use simulated and real
data based on the following experiment. We start with M geneti-
cally identical mice that are kept under the same laboratory
conditions. Each mouse is exposed to an external perturbation,
e.g. a light dose (50 cGy) of radiation, with the purpose of
decreasing the number of HSCs (e.g.[52]). These mice are sacri-
ficed at different times after irradiation and the counts of HSCs
and MPPs are obtained from the bone marrow of each individual
mice using flow cytometry. More information about the exper-
imental materials and methods can be found in the electronic
supplementary material.

2.2. Data generation process
We postulate that at time t0, HSC and MPP counts come from
some distribution that encapsulates normal biological variation
among mice. For mathematical convenience, we assume that this
distribution is lognormal, or equivalently, that log-transformed
unobserved true HSC and MMP counts come from two indepen-
dent normal distributions with means log (μHSC) and log (μMPP),
respectively, and with the same variance σb. Denoting these
latent log-transformed counts with a bivariate vector ui and their
means with a vector log (μ) for each mouse i ¼ 1, . . . , M, we can
write our initial condition assumption as

ui � N( log (m), s2
b � I), i ¼ 1, . . . , M: (2:1)

We are now ready to specify the distribution of observed HSC and
MPP counts. First, we order mice in such a way that mice indexed
by 1, . . . , k correspond to animals, whose bonemarrow is sampled
immediately post perturbation. We assume that conditionally
on the true log-counts of HSCs and MPPs, the observed log-
transformed counts yi ¼ log (y�i ), where y�i represents the raw
counts, are normally distributed, with the mean being equal to
the true counts and variance s2

t that represents technical variation
that arises due to the measurement error/noise.
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Figure 1. Illustration of the proposed latent variables approach and mechanistic model. (a) Description of the proposed latent variables approach. Each mouse’s cell
counts are observed only once at the time of the mouse sacrifice and bone marrow extraction. Cell counts before perturbation (e.g. low dose radiation) are allowed
to be different among mice due to normal biological variation. We model this by assuming each data point at time t0 to be subject to technical and biological
variability. At times greater than t0, we assume each data point has a latent trajectory subject to technical variability (shown in dashed). These latent trajectories are
modelled using our mechanistic ODE model subject to these initial conditions. (b) The ODE lineage model consisting of HSC and MPP compartments. HSCs and MPPs
have the ability to self-renew with probabilities p�0 and p1 and divide at rates η1 and h

�
2 , where the stars indicate that the corresponding parameters are subject to

feedback regulation. The HSCs self-renewal probabilities are negatively regulated by the MPPs and the MPPs division rates are negatively regulated by the HSCs.
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For the mice that are sacrificed right after the perturba-
tion experiment, this assumption translates into the following
conditional distribution:

yi(t0) j ui � N(ui, s2
t � I), i ¼ 1, . . . , k: (2:2)

The unconditional distribution for the HSC and MPP counts
at the initial time t0 is derived from equations (2.1) and (2.2) as

yi(t0) � N( log (m), (s2
t þ s2

b) � I), i ¼ 1, . . . , k: (2:3)

To model cell counts measured at time points after the initial
time t0, we assume that the cellular population levels in each
mouse start from latent initial conditions and follow determinis-
tic latent trajectories according to a mechanistic process model.
The latent population trajectories evolve for all times 0 < t≤ tj
until the moment tj when the mouse is harvested and the cell
counts are measured (with noise) (figure 1a). The conditional dis-
tribution of the observed HSC and MPP cell counts after the
initial time given latent initial conditions is

y j(t j) j u j � N( log (x(u j, u, t j)), s2
t � I), j ¼ k þ 1, . . . , M, (2:4)

where x(uj, θ, tj) is a bivariate vector of HSC and MPP counts for
mouse j that started with latent counts uj and evolved according
to some process with parameters θ up to time tj. Note that
equation (2.4) does not include the biological noise term
explicitly since it is already included in the model for initial
cell counts. This approach implies that the HSC and MPP trajec-
tories are latent and can be observed cross-sectionally only once,
in contrast to typical longitudinal studies, where repeated
measures are taken from a cohort of animals/subjects followed
over time.

2.3. Mechanistic model of the mean process
The dynamical model for latent trajectories is based on classic
cell lineage models for describing the growth of hierarchically
organized tissues [8,53,54] where cells are arranged in a lineage
starting with HSCs that are followed by more differentiated
cells downstream. Although there are many cell types in the
branched lineage that describes the haematopoietic system (e.g.
[55,56]), we focus here only on the least differentiated types:
the HSCs and MPPs that have the simple hierarchical relation-
ship shown in figure 1b. This is because the experiments
suggest that the cell compartments downstream are largely unaf-
fected by irradiation (data not shown) and thus we assume that
the downstream cells do not significantly influence the HSC
and MPP dynamics. Furthermore, for simplicity, we do not dis-
tinguish between the different types of HSC and MPP cells,
which eliminates the need for considering branching. Of
course, the model can easily be extended to include more cell
types and branching (e.g. [13,20]) although this would require
more data for proper parameter estimation.

In the mathematical model (figure 1b), we assume that the
HSCs and MPPs have the ability to divide at the rates η1 and
h�
2, respectively, and to undergo self-renewal with probabilities

p�0 and p1, where the stars denote that the corresponding par-
ameters are subject to feedback regulation. Let xHSC and xMPP

be the numbers of HSCs and MPPs, respectively, then their
dynamics can be modelled using a system of ODE

x0HSC ¼ (2p�0 � 1)h1xHSC

and x0MPP ¼ 2(1� p�0)h1xHSC þ (2p1 � 1)h�
2xMPP,

9=; (2:5)

where 0 = d/dt. The factor 2 in the first equation and in the
first term in the second equation arises from the fact that p�0
of HSCs remain HSCs after division, while (1� p�0) of HSCs
differentiate and produce two MPP cells. Similarly, in the second
equation, the fraction (1− p1) of MPPs also produce two more
specialized cells but they are not included in the model here
since the more differentiated cells are largely unaffected by
radiation. This model is a simplified version of a general model
of lineage progression under feedback regulation introduced
in [53,57].

The self-renewal probabilities and division rates should be
subject to feedback regulation. Single cell RNA sequencing
data (scRNA-seq) can be used to identify putative feedback
loops and sender and receiver cells. We re-analysed data from
a scRNA-seq study of normal haematopoiesis that identified
many interesting cell clusters whose transcriptomes suggested
pairwise combinations of cells expressing feedback ligands and
their receptors [58]. Although the study did not cleanly separate
out different kinds of early stem/progenitor cells, the early stem/
progenitors did cluster into two groups, perhaps representing
HSCs and MPPs. In these two groups, we were able to recognize
several ligands and receptors (such as ANGPT1 and CCL3 and
their receptors), although we could not be certain about the
sender and receiver cell types.

Following [59], we hypothesized that ANGPT1 is secreted
by HSCs and negatively regulates MPP division rates and that
CCL3 is produced by MPPs and negatively regulates HSC self-
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renewal [60]. These hypotheses will be tested in future work. The
feedback on HSC self-renewal can be modelled using a simple
Hill function

p�0 ¼
p0

1þ g1xMPP
, (2:6)

where p0 is the unregulated self-renewal probability and γ1
is the feedback gain. Note that we have implicitly assumed
that the concentration of the negatively regulating biomole-
cule (e.g. CCL3) is proportional to the cell population. This
approximation assumes that spatial variation of the biomolecule
can be neglected and is similar to the those used in [8,13,53].
Although the HSC division rate η1 could be subject to similar
feedback as p�0 [53], we assume for simplicity that this rate
is constant.

The negative feedforward loop on MPP division rates can be
modelled as

h�
2 ¼

h2

1þ g2xHSC
, (2:7)

whereh2 is the unregulatedMPPdivision rate and γ2 is the feedfor-
ward gain. In principle, theMPP self-renewal probability p1 should
also be subject to feedback regulation. Assuming this regulation
arises from more differentiated cell types (e.g. [8,13,53]), we can
assume that p1 is constant because the number of differentiated
cells is roughly constant, as mentioned above. Further, p1 < 0.5
since the MPP should not be able to fully self-renew. Therefore,
we may rewrite the system in equation (2.5) as

x0HSC ¼ (2p�0 � 1)h1xHSC
and x0MPP ¼ 2(1� p�0)h1xHSC � h�

2xMPP,

�
(2:8)

where

h�
2 ¼

h2

(1þ g2xHSC)
, (2:9)

and h2 ¼ (1� 2p1)h2. Note that p1 and h2 can not be identified
simultaneously, thereforewe focus instead on the combined rate η2.

The nonlinear feedback and feedforward loops in the
above model enable the tight control of growth, the establish-
ment of equilibria that are robust to large changes in parameter
values and rapid regeneration of equilibia after perturbations
by external stimuli (e.g. [8,53]), although the regeneration
dynamics can exhibit oscillatory behaviour. Finally, all the
ODE model parameters can be grouped in the vector θ = ( p0,
η1, η2, γ1, γ2).
2.4. Hierarchical Bayesian framework
The goal of our statistical framework is to link the dynamic math-
ematical model with empirical data. We use a latent variables
approach where the ODE model allows us to interpolate all the
latent trajectories for the measurements that are missing before
a mouse is harvested. According to the assumed data generation
process described above, equations (2.3) and (2.4) define the like-
lihood function as the product of normal densities at time zero
and at later times

p(y j Q) ¼
Yk

i¼1
N(yi j log m, s2

t þ s2
b)

�
YM

j¼kþ1
N(y j j log x(u j, u, t j), s2

t ),
(2:10)

where the vector Q ¼ (u, ukþ1:M, s2
b , s

2
t , m)

t includes all the
parameters and latent variables of the hierarchical model, and
uk+1 :M is a vector of latent initial cell counts of mice that are sacri-
ficed after t0. Using a Bayesian approach, we provide measures of
uncertainty to all model parameters by calculating the posterior
distribution of all the parameters

p(Q j y)/ p(y j Q)p(Q): (2:11)
We assume a priori independence among themodel parameters,
resulting in the following prior distribution decomposition:

p(Q) ¼ p(u) � p(u) � p(m) � p(s2
b) � p(s2

t ): (2:12)

Each of the parameters θi∈ θ has a lognormal prior:
log ui � N(mui , s

2
ui
), with the exception of p0 that requires a logit

transformation: logit(( p0 � (1=2))2) � N(mp0 , s
2
p0 ), since it is

constrained between 0.5 and 1. Here, p(u) represents the mice
initial conditions according to equation (2.1), and p(μ) represents
the prior on the mean of the initial conditions. Finally, p(s2

b)
and p(s2

t ) represent the prior distributions on the biological
and technical noises correspondingly. We describe how we
approximate the posterior distribution in equation (2.11) via
Markov chain Monte Carlo (MCMC) in the Computational
Implementation section below.
2.5. Experimental design
In the laboratory, there are multiple variables that can be modi-
fied when an experiment is performed. Each combination of
these variables defines an experimental design, which belongs
to the set of all possible designs, D. The optimal experimental
design goal is to discriminate between all the possible designs
by using a suitable utility metric U(y, d ) that quantifies the
amount of information gain about the model parameters for a
dataset y collected under the design d∈D. The optimal design
is determined by comparing the expected utility, where the
expectation is taken over all datasets, y, and model parameters,
Θ, for the design d:

u(d) ¼ EQ,y[U(y, d)] ¼
Z
y

Z
Q

U(y, d)p(yjQ, d)p(Q)dQdy: (2:13)

For the utilitymetricU(y, d), we use theKLdivergence function
that quantifies the information gain as the difference between the
prior and posterior distributions of the model parameters:

U(y, d) ¼
Z
Q

log
p(Qjy, d)
p(Q)

� �
p(Qjy, d)dQ: (2:14)

This utility has its origin in information theory and it is
equivalent to the mutual information gain [26,29]. We take a
similar approach to calculate the marginal expected utility for
each parameter θj∈Θ individually

Uj(y, d) ¼
Z
u j

log
p j(u jjy, d)

p(u j)

� �
p(u jjy, d)du j: (2:15)

Alternative utility functions have also been proposed in recent
years including the inverse of the determinant of the posterior
covariance [47], the quadratic loss for obtaining point estimates
of the parameters [25], and the total separation utility for model
discrimination [61]. Some of these utilities avoid the calculation
of the evidence or marginal likelihood, p(y|d ), which is computa-
tionally challenging and it is required in equations (2.14), (2.15).
However, we are able to use a thermodynamics integration
method for the estimation of the marginal likelihood from pos-
terior samples, known as bridge sampling [62], allowing us to
overcome this computational obstacle. Therefore, in this work,
we focus in the KL divergence due to its rigorous justification,
computational feasibility and intuitive interpretation.
2.6. Computational implementation
2.6.1. Estimating p(Θ|y)
We approximate the posterior distribution in equation (2.11)
using the No U-Turn sampler (NUTS) algorithm implemented
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in a statistical computing software platform called Stan [63–65].
NUTS is a generalization of Hamiltonian Monte Carlo (HMC),
which explores the parameter space by solving a Hamiltonian
system involving the parameters of interest (defining the poten-
tial energy of the system) and a set of auxiliary (fictitious)
momentum variables (defining the kinetic energy of the
system). At each iteration of the MCMC simulation, the solution
of this system generates a new proposal sample from the pos-
terior distribution, which is then subject to a Metropolis
accept/reject decision to ensure the sampler converges to the
right target distribution. The speed of convergence depends on
a set of tuning parameters including the step size, ϵ, and the
number of steps, L, to obtain the numerical solution of Hamil-
tonian dynamics. NUTS automatically finds a combination of ϵ
and L for faster convergence of HMC. It is especially useful in
the case when parameters dependencies creates a complex geo-
metry that makes the posterior sampling difficult. For our
hierarchical model, we show in §3 that we can successfully
obtain samples from the posterior distribution (2.11).
face
18:20200729
2.6.2. Estimating U(y, d )
Each design d∈D specifies the timing of the measurements and
the number of mice replicates in a haematopoiesis experiment.
When the design is fixed, we can simulate data by first sampling
one set of true parameters from their corresponding prior distri-
butions, and then sampling a synthetic dataset, y, that contains
the cellular population records for HSCs and MPPs according
to the assumed data generating model. At the initial time t0,
the initial conditions for the latent trajectories are determined
by sampling from two independent normal distributions with
means log (μHSC) and log (μMPP) and equal variances s2

b þ s2
t .

From the initial conditions, the ODE model (2.8) is forward-
solved until the time when a trajectory is observed (mouse is
sacrificed and the cell counts are observed). Then a random
bivariate vector is generated from the normal distribution with
the mean equal to the ODE solution and variance–covariance
matrix s2

t I. This process is repeated for all the latent trajectories
to obtain the dataset y.

Given a generated dataset, we obtainMCMC samples from the
posterior distribution. The posterior samples are used to compute
the value of the KL utility function in equation (2.13) by Monte
Carlo integration using all the MCMC iterations i = 1, …, n:

U(y, d) � bU(y, d) ¼ 1
n

Xn

i¼1
log

p(Q(i)jy, d)
p(Q(i))

 !

¼ 1
n

Xn

i¼1
log

p(yjQ(i), d)p(Q(i))
p(yjd)

 !
� log p(Q(i))

¼ 1
n

Xn

i¼1
log p(yjQ(i), d)� log p(yjd),

(2:16)

whereΘ(i) is the ith sample from the posterior distributionwhich is
evaluated at the prior and posterior densities. Note that the KL
ratio in equation (2.16) requires an estimate of the marginal likeli-
hood p(y|d), which we obtain by Bridge Sampling. The marginal
KL utility value for each parameter θj is also approximated via
Monte Carlo

Uj(y, d) � bUj(y, d) ¼ 1
n

Xn

i¼1
log

bp(u(i)j jy, d)
p(u(i)j )

 !
, (2:17)

where bp(u jjy, d) is an approximation for the true marginal pos-
terior density and it is estimated by a Gaussian kernel density
estimator using the posterior samples [66,67]. This step is required
since the analytical marginal posterior density is generally not
available. Note that the kernel density estimation can only be
applied to the marginal utility calculation since this approach is
known to provide poor approximations for multiple-dimensional
problems as in the case of the joint utility calculation.

2.6.3. Estimating u(d )
The overall mean utility in equation (2.13) is approximated by
averaging dataset-specific utilities over N simulated data

u(d) � bu(d) ¼ 1
N

XN
k¼1

bU(yk, d), (2:18)

where the utility bU(yk, d) is approximated using equation (2.16).
For individual parameters, the mean utility value is computed
similarly

u j(d) � bu j(d) ¼ 1
N

XN
k¼1

bUj(yk, d), (2:19)

where bUj(yk, d) is estimated using equation (2.17).

2.6.4. Finding the optimal design
We consider a finite grid of designs d1, d2, . . . , dM that are relevant
for the haematopoiesis experiment. The optimal experimental
design is determined by computing the expected utilities (2.18)
and (2.19) for all the designs and finding a design with the maxi-
mum utility. We illustrate the optimal design process in figure 2.

2.6.5. Computational implementation
The software developed for this project and an illustrative dem-
onstration notebook can be found on the repository https://
github.com/luisdm1/BayesOptimalDesign.
3. Results
3.1. Successful parameter identification
Because our proposed mechanistic model is complex, we first
need to ensure that the parameters in the model are identifi-
able. This is illustrated in figure 3 using synthetic data. Here,
we have generated a dataset, where the HSCs and MPPs are
observed at 7 consecutive days with seven replicates for each
day (49 mice in total). We have estimated the five ODE par-
ameters, (p0, η1,η2,γ1, γ2), the two initial conditions, (μHSC

and μMPP), the two error terms, (σt and σb), and the 84
latent trajectories (93 parameters in total). For this, we have
used Stan [64,65] to obtain the posterior distribution of the
model parameters. As we can see in figure 3, there are signifi-
cant changes from prior to posterior distributions.
Furthermore, we are able to recover the true parameter
values within the 95% posterior probability intervals.

To show that parameter identification is achieved under
this design (7 days × 7 replicates), we have generated 60
synthetic datasets and obtained the posterior distribution
for the model parameters. Using these results, we examine
the coverage of the model parameters by calculating the
percentage of the times the true parameter values are included
in the 95% credible intervals (electronic supplementary
material, equation (A-4)). Additionally, we use the width of
these intervals as a metric for the model precision (electronic
supplementary material, equation (A-6)). We determine the
relative bias for the MCMC simulations by using the posterior
medians as point estimates and calculate the normalized
residuals using the true parameter values (electronic sup-
plementary material, equation (A-3)). The estimated mean
relative bias, mean relative width, and coverage of the 95%

https://github.com/luisdm1/BayesOptimalDesign
https://github.com/luisdm1/BayesOptimalDesign
https://github.com/luisdm1/BayesOptimalDesign
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Figure 3. Parameter identification for a synthetic dataset. Sampling from our prior distributions (see text), we generate a synthetic dataset from our ODE solution
(top left). Solid curves correspond to ODE solutions for MPPs (blue) and HSCs (black). Symbols (data) correspond to HSC and MPP cell numbers from the ODEs but
with the addition of technical and biological noise following our latent variables framework (e.g. equations (2.3) and (2.4)). The data correspond to observations on
7 consecutive days with seven mice replicates per day. Using this synthetic data, in the remaining graphs we show the prior (orange) and posterior (blue) dis-
tributions for the ODE parameters and the latent HSC and MPP initial cell numbers together with the exact parameters and initial conditions used in the ODE model
(green). The ODE parameters, prior distributions and 95% credible intervals are shown in electronic supplementary material table A-2.
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credible intervals for all the parameters in the 7 days × 7
replicates design are shown in table 1.

As we can see, most model parameters have good cover-
age probabilities. Also, except for γ2 and σb, the mean relative
bias tends to be small.

Tables A-3 and A-4 in the electronic supplementary
material provide more simulation results based on other
designs illustrated in figure 2. In general, our results show
that the true model parameters are included within the 95%
credible intervals. We also observe that designs with more
data points allow for narrower posteriors, as quantified
by the mean relative width, but higher bias is observed in
some parameters.
Next, we focus on quantifying information gain using the
Bayesian utility theory described in the previous section. In
particular, we are interested in finding the optimal experimen-
tal set-up that provides the highest information gain for
inferring the model parameters.
3.1.1. Low dose radiation targets HSCs for cell death
As a proof of concept, we use our hierarchical model to fit and
obtain posterior distributions from preliminary data from a
bone marrow perturbation experiment targeting stem cells.

In this experiment, low dose radiation (50 cGy)was applied
to a number of mice following [68] where it was claimed that
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(bands). Remaining graphs. Plots of the prior and posterior distributions for the fitted ODE parameters and the mean of the latent HSC and MPP initial conditions.
Additional details on the priors and posterior distributions can be found on electronic supplementary material, table A-1.

Table 1. Metrics for 60 simulations using seven mice replicates during 7 days. The relative bias, relative width and coverage are calculated according to
equations (A-3), (A-6) and (A-4) shown in the electronic supplementary material.

7 × 7 design p0 η1 η2 γ1 γ2 σt σb μ1 μ2

mean relative bias 0.00 0.10 0.05 −0.08 −0.47 0.07 −0.31 −0.03 0.05

mean relative width 0.04 0.60 0.72 1.34 2.52 0.36 1.98 0.10 0.11

coverage 0.97 0.94 0.94 1.00 0.89 1.00 1.00 0.94 0.86
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low dose radiation decreases HSC numbers. This is consistent
with what we observed as well, see figure A-2 in the electronic
supplementary material. To observe the system dynamics in
response to this perturbation, the HSC and MPP cell numbers
were obtained shortly after irradiation and at two other time
points (days 0, 2 and 6). At each time point, some of the mice
were sacrificed, their bone marrows were extracted and
sorted, and the cell numbers were determined by flow cytome-
try (see ExperimentalMethods in the electronic supplementary
material). While there were 13 mice in total, seven mice were
sacrificed at day 0, four were sacrificed on day 2 and two
were sacrificed on day 6. Note the large variability in the
data, particularly in theMPP numbers on figure A-1, electronic
supplementary material. The data suggest that the HSCs and
MPPs return to equilibrium within one week.

Figure 4 (top left) shows the fits of the mechanistic model
to the data for HSCs (black) and MPPs (blue). In particular,
the medians (dashed) of the posterior distribution of the
ODE solutions are shown together with the 95% Bayesian
credible regions [69] (shaded). The ODE fit seems reasonable
based on the small amount of experimental data. However,
only the HSCs initial conditions comparing experiment
versus control data (electronic supplementary material,
figure A-1) showed a significant shift between the prior and
posterior distributions (electronic supplementary material,
figure A-2). All the other parameters did not show a substan-
tial shift in the posterior distributions compared to the priors
(figure 4; electronic supplementary material, table A-1, figure
A-3), suggesting there is little information gained from this
data. Moreover, the Bayes Factor (e.g. [69]) between a
model with feedback (equation (2.8)) compared to the same
model without feedback regulation (equation (2.8) with γ1
and γ2 identically zero) is equal to BF = 1.18, which indicates
that there is no strong evidence in favour of the model with
feedback according to this limited dataset.
3.1.2. Utility grid search
Since we know that the model parameters are identifiable
using a sufficient amount of synthetic data, the results in
the previous section highlight the importance of finding a
proper experimental design to maximize information gain
in the radiation experiment. To this end, we explore different
experimental set-ups by varying the number of mice collected
per day and the timing of the measurements. That is, each
design represents some number of mice observed at some
sampling frequency. We consider a finite number of exper-
imental designs (70) to include a varying amount of mice
over different observation days. Our design space is defined
as the following. The first observation day starts at day 0
right after radiation, and more times are added until day 6
since it was shown in our preliminary perturbation exper-
iment that the system returns to equilibrium in less than a
week. We also assume that the number of mice observed
per day could be 3, 4, 5, 6 or 7.

Exploring this finite experimental design space requires
calculating the expected utilities for which we use 60 different
synthetic datasets per design (2.18), (2.19). As shown in
figure 5, the expected utilities show an increasing trend when
the number of replicates and the frequency of sampling
increase. The values in this figure correspond to a fold
changewith respect to the baseline design, threemice observed
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at day 0 and 6, with minimum utility. To better understand the
scale, we choose several designs (boxed), compare their mean
utilities, and plot the corresponding ODE credible regions.
The plots provide a visual explanation on how higher infor-
mation gain, as quantified by the mean utility values,
correspond to designs with higher number of data points,
which in turn provide narrower credible regions (figure 5).
Note that higher mean utillity can be interpreted as lower
uncertainty regarding the system dynamics.
3.1.3. Parameter utility
The expected utility provides an overall metric for information
gain by averaging over all model parameters. Alternatively,
to quantify the amount of information provided by the
observed data with respect to a specific model parameter, we
can use the individual parameter utilities. This way, we can
better understand how data affects identification of certain
model parameters.

Additionally, obtaining individual parameter utilities
allows us to find a specific design that is more informative
for a parameter of interest. For example, if we focus on SC
division (η1), the estimated parameter utilities suggest that
more observations should be allocated to earlier days. Look-
ing at the top four design rows for η1 in figure 6, the marginal
mean utility value does not change even though we are
adding more mice and more observation days. This shows
that for η1, the main contribution to information gain is
coming from days 0 to 3. Similarly, if we focus on the HSC
self-renewal probability feedback parameter, γ1, we observe
that adding data points at later times will lead to higher uti-
lities. For the same parameter, we observe a lower marginal
mean utility for designs where day 6 is not included. We
also note that only a small amount of data is needed to ident-
ify the initial conditions, μ1 and μ2. For the full set of
parameter utilities, please refer to figure A-5 in the electronic
supplementary material.
As an example on how to use the parameter utilities for
decision making, we can assume we have been given a finite
budget of 20 mice for our perturbation experiment. Looking at
the boxed b, c and d marginal mean utilities in figure 6, we can
compare how the allocation of 20 mice could affect information
gain for η1 and γ1. As mentioned previously, designs with more
data points near the initial condition provide higher utilities for
η1 but lower utilities on γ1. Design C provides a reasonable com-
promise between these two alternatives. For the full set of plots
comparing prior and posterior distributions, please refer to
figure A-9 in the electronic supplementary material. In general,
we have found that given a fixed number of mice, designs
with fewer mice at more time points tend to provide better
results. Furthermore, as we obtain more data, we see to
reach a point of saturation, see figure A-6 in the electronic
supplementary material for more design comparisons.
4. Discussion
We have presented a new method to find the optimal
experimental design for inferring parameters in complex,
mechanistic mathematical models where the experimental
data are temporal but not longitudinal. That is, each data
point in time corresponds to a different experimental subject.
Our method incorporates Bayesian utility theory in a hierarch-
ical latent variables frameworkwhere the mechanistic model is
used to predict the unobserved temporal dynamics. We quan-
tified the amount of information gained from a specific
experimental design as the difference between the prior
and posterior distributions of model parameters using a
utility metric based on the KL divergence function [24,39].
Furthermore, by calculating marginal utilities, our proposed
framework also allows us to identify the information gained
for each parameter from a specific design. By searching over
the space of possible experimental designs, the best design
is the one that maximizes the expected information gain
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subject to specific constraints, e.g. fixing the total number of
experimental subjects or the total number of observations.
Our method can be applied to a wide range of problems in
systems biology and life sciences where multiple indivi-
duals are tracked over time and it is important to distinguish
between subject to subject variation and measurement error.
Also, our latent variable formulation can be used in any
experiment where the data source is lost after it is measured,
but a mathematical model is available to interpolate the
missing trajectories.

We applied this framework to infer parameters in math-
ematical models of haematopoiesis in mice that incorporate
feedback and feedforward regulation of self-renewal and div-
ision rates of HSC and MPP cells using experimental data
on cell counts collected in mice. To obtain a cell count, each
mouse had to be sacrificed and the bone marrow extracted
and analysed. In the experiments, mice were subjected to
low doses of radiation, which decreased the number of
HSCs in the bone marrow. After about 7 days, the HSC
and MPP cell counts returned to normal.

We considered a finite grid of possible designs relevant for
the radiation experiments where the control parameters were
the number of mice observed at each time point and the time
points at which the cell counts were obtained. Generally,
we found that for designs with a fixed number of subjects,
having more observation times with fewer mice replicates
leads to higher information gainmeasured by the expected uti-
lity values. Additionally, we found that the amount of
information gain from a specific design can vary significantly
across parameters. For example, division rates are better
informed by designs that include more measurements at
early times, right after the radiation was applied, but the feed-
back parameters are better identified by designs that havemore
measurements at later times closer to the equilibrium.



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20200729

10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 A

pr
il 

20
21

 

As illustrated in this paper, by using MCMC simulation,
Bridge Sampling, and Monte Carlo approximation, we have
been able to compute the required expected utilities for
our optimal experimental design task. For more complex
models, however, these methods might require a significant
amount of time and computational resources for their
implementation. Faster sampling methods [70–73], efficient
numerical solvers for differential equations [74,75], and a
more efficient exploration of the design space [48,76] can
provide a significant reduction in computation time.

From the modelling perspective, our framework can be
extended to stochastic formulations of the haematopoietic
system with explicit feedback terms that generalize well-
known branching process models [23]. Incorporating such an
approach would enable us to model the cellular stochasticities
and the heterogeneity of the system components directly. How-
ever, fitting stochastic models tends to be difficult since the
likelihood function is generally not available and approximate
Bayesian methods have to be used. Future research directions
could involve developing better implementations of stochastic
process models for this problem. Our method could also
be extended to incorporate data on more differentiated cell
types in order to provide insight into the response dynamics
for more realistic models of the haematopoietic system
with additional feedback mechanisms. To this end, we can
include new perturbations, such as the depletion of specific
differentiated cells, into our approach to experimental design.

Our approach can be extended to incorporate richer sources
of data such as serially sampled barcoded single cells, which
allows for lineage tracking and fate determination. Also, if
the destruction of the data source can be avoided, repeated
measurements of covariates and cell counts can provide a
better understanding of marginal and population-level
responses of haematopoiesis regulation by allowing the
model parameters to change across individuals [77].

The hierarchical framework presented in this paper can sig-
nificantly improve mathematical modelling of haematopoiesis
by determining the required experiments tovalidate theoretical
predictions and to obtain measures of uncertainty of model
components. In particular, our approach can be used for testing
more complex feedback regulation and control mechanisms.
Finally, our work can motivate new collaborations between
biologists, data scientists andmathematicians to develop a uni-
fied framework for hypothesis generation, modelling and
experimental validation [78].
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