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Epithelial-to-mesenchymal transition (EMT) plays an important role in many biological
processes during development and cancer. The advent of single-cell transcriptome
sequencing techniques allows the dissection of dynamical details underlying EMT with
unprecedented resolution. Despite several single-cell data analysis on EMT, how cell
communicates and regulates dynamics along the EMT trajectory remains elusive. Using
single-cell transcriptomic datasets, here we infer the cell–cell communications and the
multilayer gene–gene regulation networks to analyze and visualize the complex cellular
crosstalk and the underlying gene regulatory dynamics along EMT. Combining with
trajectory analysis, our approach reveals the existence of multiple intermediate cell states
(ICSs) with hybrid epithelial and mesenchymal features. Analyses on the time-series
datasets from cancer cell lines with different inducing factors show that the induced
EMTs are context-specific: the EMT induced by transforming growth factor B1 (TGFB1)
is synchronous, whereas the EMTs induced by epidermal growth factor and tumor
necrosis factor are asynchronous, and the responses of TGF-β pathway in terms of gene
expression regulations are heterogeneous under different treatments or among various
cell states. Meanwhile, network topology analysis suggests that the ICSs during EMT
serve as the signaling in cellular communication under different conditions. Interestingly,
our analysis of a mouse skin squamous cell carcinoma dataset also suggests regardless
of the significant discrepancy in concrete genes between in vitro and in vivo EMT
systems, the ICSs play dominant role in the TGF-β signaling crosstalk. Overall, our
approach reveals the multiscale mechanisms coupling cell–cell communications and
gene–gene regulations responsible for complex cell-state transitions.

Keywords: single-cell RNA sequencing, trajectory inference, gene regulatory network, cell fate decision, cell–cell
communication, multi-scale analysis
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INTRODUCTION

Epithelial-to-mesenchymal transition (EMT) is a biological
process where epithelial cells lose cell–cell adhesion and gain
some mesenchymal traits of migration and invasion (Kalluri
and Weinberg, 2009; Jolly et al., 2018). EMT not only
occurs widely during normal embryonic development, organ
fibrosis, and wound healing, but also plays an important
role in tumor progression with metastasis (Nieto et al., 2016;
Lambert et al., 2017).

Recent studies have underscored that EMT is not a binary
process, but instead exists on a spectrum with various hybrid
states ranging from epithelial-to-mesenchymal phenotypes
(Nieto et al., 2016). Cells undergoing EMT can display mixed
epithelial and mesenchymal features and are considered
in the intermediate cell states (ICSs; Jolly et al., 2015; Sha
et al., 2019; Jia D. et al., 2019). In the context of cancer
progression, these ICSs have been proposed as the main drivers
of metastasis because of their ability to undergo collective
cell migration as highly metastatic multicellular clusters (Jolly
et al., 2015). Therefore, understanding the features and role
of ICSs during EMT could potentially unlock novel clinical
strategies. With the unprecedented opportunities brought
by single-cell RNA sequencing (scRNA-seq), the existence
of multiple ICSs and their transcriptomic profiles has been
observed and analyzed via pseudotemporal ordering or energy
landscapes (Qiu et al., 2017; Jin et al., 2018; Li and Balazsi,
2018; Pastushenko et al., 2018; An et al., 2019; Chen et al.,
2019). Very recently, specially designed methods have also
been proposed to infer EMT trajectories or transition paths
from the single-cell transcriptomic (Sha et al., 2020) or
imaging data (Wang W. et al., 2020). The integrative analysis
combining unsupervised learning of single-cell transcriptomic
data and computational modeling of EMT in cancer and
embryogenesis successfully uncovered the novel roles of ICSs
on adaption, noise attenuation, and transition efficiency (Sha
et al., 2020). While these methods have provided insights
into the dynamics of EMT from a single-cell perspective,
the role of intercellular communication in EMT remains
largely unknown.

Indeed, EMT is not necessarily a cell autonomous process.
Cells secrete and in turn respond to various growth and
differentiation signaling factors secreted by other cells in
the extracellular environment, including transforming growth
factor β (TGF-β), WNT, and Notch proteins (Moustakas
and Heldin, 2007; Xu et al., 2009; Boareto et al., 2016;
Bocci et al., 2018). Among them, the well-characterized
TGF-β pathway has received much attention as a major
inducer of EMT during embryogenesis, cancer progression,
and fibrosis (Wendt et al., 2009; Xu et al., 2009). The TGF-
β pathway can also crosstalk with other pathways such as
WNT and SHH (Zhang et al., 2016), forming the complex
response of signaling. In addition, signaling in cell–cell
communications has also been found important in the formation
and regulation of ICSs (e.g., through Notch pathway; Bocci
et al., 2020). This intercellular communication has been shown

to play significant roles in regulating gene expression dynamics
within individual cells, through analysis of scRNA-seq datasets
from several development and cancer systems (Camp et al.,
2017; Puram et al., 2017; Zepp et al., 2017; Kumar et al.,
2018; Wang S. et al., 2020). Computational methods have
been developed to infer cell–cell communication networks
based on ligand–receptor interactions (Wang S. et al., 2019;
Wang Y. et al., 2019; Cabello-Aguilar et al., 2020; Jin et al.,
2020) and elucidate how cell–cell communications propagate
to downstream target genes through transcription factors
(Browaeys et al., 2020). While methods have been developed
to infer EMT gene regulatory network (GRN) from RNA-
seq single-cell data (Ramirez et al., 2020), the role of cell–
cell communications on gene regulation dynamics along EMT
trajectory is poorly understood.

Through both experimental and mathematical
modeling studies, the key circuits of EMT involving few
epithelial/mesenchymal markers, transcription factors, and
signaling molecules have been summarized (Hong et al.,
2015; Li et al., 2016; Fazilaty et al., 2019; Kang et al., 2019;
Xing and Tian, 2019; Tripathi et al., 2020; Yang et al.,
2020). Because of different roles of nodes, the circuits can
be modeled as a multilayer network (Kivelä et al., 2014)
with hierarchical structures (Browaeys et al., 2020). In the
multilayer network, cells communicate with each other and
the environment via signal transduction pathways (Layer
1), which directly targets the downstream factors or genes
(Layer 2), that subsequently regulate the expression of
marker genes of various cell states (Layer 3). In addition,
there may be dynamical changes of network structure
during EMT, where the temporal (or pseudotemporal)
information constitutes another independent dimension of
the layer sets. The complex interactions among nodes may
exist within the same layers or across different layers, in
controlling EMT.

Here we study the time-series scRNA-seq datasets of
OVCA420 cancer cell line exposed to various EMT-inducing
factors (Cook and Vanderhyden, 2020). We first delineate
the underlying transition details at individual cell resolution
with a recently developed method, QuanTC. For the cancer
cell lines undergoing EMT under three different treatments,
we quantify the ICS-regulated trajectories and detect the
driver genes in EMT for each case, respectively. While
cells undergo TGFb1-driven EMT in a highly synchronized
fashion, EMT guided by epidermal growth factor (EGF)
and tumor necrosis factor (TNF) is asynchronous. Next,
we develop a multilayer network approach to infer and
visualize the hierarchical interactions that combine cell–
cell communications through the TGF-β pathway, signal
transductions, and GRNs from single-cell transcriptomic data.
After trajectory inference, we then utilize the multilayer network
approach to decipher the role of TGF-β pathway in regulating
EMT dynamics with different inducing factors. We also compare
the results of in vitro cancer cell lines with further analysis
of in vivo mouse skin squamous cell carcinoma (SCC) dataset
(Pastushenko et al., 2018).
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RESULTS

Synchronous EMT With Two ICSs
Induced by TGFB1
We analyzed the published datasets (Cook and Vanderhyden,
2020) with ovarian OVCA420 cancer cell line capable of
undergoing EMT. This cell line, which normally shows an
epithelial morphology, was exposed to known EMT-inducing
factors: TGFB1, EGF, and TNF, respectively, to promote EMT.
We used the samples collected at five distinct time points from
day 0 to day 7 after the treatment.

To compare the process of EMT under three treatments,
we used QuanTC (Sha et al., 2020) to perform the clustering
and transition trajectory reconstruction. QuanTC estimates the
optimal number of clusters by analyzing the sorted eigenvalues
of symmetric normalized graph Laplacian (Supplementary
Figure 1A). Four clusters were identified in EMT induced by
TGFB1 (Figure 1A). A first cluster (C3) was mostly composed
by cell subpopulations collected at day 0 and 8 h after induction
(Figure 1B) and expressed relatively high levels of epithelial
markers CDH1 (Supplementary Figure 1B). Conversely, a
second cluster (C2) consisted of cells collected at days 3
and 7 (Figures 1A,B) and expressed relatively high levels
of mesenchymal markers FN1 and SNAI2 (Supplementary
Figure 1C). Furthermore, cells in these clusters had a low Cell
Plasticity Index (CPI). CPI employs an entropy-based approach
to estimate cell plasticity, so that a higher index implies a
higher probability of transition between clusters (see section
“Materials and Methods”). Based on the CPI values, QuanTC
predicted that clusters C2 and C3 have lower percentages of
transition cells (TCs; Figures 1C,D), thus suggesting that they
are the beginning or end of the trajectory. Based on these
observations, we identified cluster C3 as the E state and cluster
C2 as the M state.

After choosing the E state, C3, as the beginning of the
transition, QuanTC computed the most probable transition
trajectory, C3–C4–C1–C2, consisting of 67% of the total cell
population (Figure 1E). The cluster C4 and C1 were thus
identified as ICSs I1 and I2, respectively. The marker genes
of each state and the transition genes marking the transition
between states along the transition trajectory were inferred
by QuanTC (Supplementary Figure 1D). To characterize
the two ICSs, I1 and I2, we performed a Gene Ontology
(GO) biological processes analysis (The Gene and Ontology
Consortium, 2019) of the top 50 marker genes of each
state (Supplementary Figure 1E). Both ICSs shared similar
biological processes including signaling and localization.
Furthermore, I2 also related to adhesion and locomotion. This
suggested that the cells in ICSs displayed both epithelial and
mesenchymal features and communications with other cells
through cell signaling.

Finally, we inspected the population dynamics during
TGFB1-driven EMT by considering the pseudotime distribution.
Pseudotime quantifies the position of a given cell along
the transition trajectory predicted by QuanTC and therefore
does not necessarily correlate with the experiment’s physical

time. In this time series, however, most cells at t = 0 days
were characterized by a low pseudotime (i.e., they were
positioned toward the beginning of the transition trajectory),
whereas cells at later time points exhibited progressively higher
pseudotime values (Figure 1F). In other words, OVCA420
cells started from the E state and progressively transitioned
throughout the 7 days of EMT induced by TGFB1 in a nearly
synchronous fashion.

Asynchronous EMT Induced by EGF and
TNF
Applying QuanTC to the OVCA420 dataset where EMT was
induced by EGF, four clusters were also identified based on the
biggest eigenvalue gap after the first two eigenvalues because
we want to investigate the ICSs during EMT (Supplementary
Figure 2A and Figure 2A). Differently from TGFB1-driven
EMT, however, cells collected at different time points colocalized
within the same clusters, and no group of cells at any given
time point dominated any cluster (Figure 2B). Based on the
CPI values, the two clusters (C2 and C3) were considered
as the E and M states based on the fewer TCs around
them (Figures 2C,D). Specifically, C2 was then identified
as the E state according to the relatively high expression
levels of epithelial markers CDH1 (Supplementary Figure 2B),
and C3 was identified as the M state because of higher
expressions of mesenchymal markers FOXC2 and SNAI2
(Supplementary Figure 2C).

The most probable transition trajectory was inferred after
choosing cluster C2 as the starting state (Figure 2E). The two
remaining clusters (C1 and C4) between E and M along the
transition trajectory had more TCs around them and were
identified as I1 and I2, respectively. According to the GO analysis
of the top marker genes (Supplementary Figure 2D), the I2 state
displayed biological processes including adhesion, locomotion,
and signaling, showing mixed feature of both epithelial and
mesenchymal cells (Supplementary Figure 2E).

The average pseudotime values slightly increased along
collection time points, hence demonstrating that the EGF
stimulus induces an EMT response. Compared to TGFB1-driven
EMT, however, pseudotime distribution within each time point
had a high variance, thus indicating that the EMT induced by
EGF was more asynchronous (Figure 2F).

We applied a similar analysis to EMT induced by TNF
and also identified four clusters with two ICSs (Supplementary
Figure 3A and Figure 3A). Similar to the case of EGF
induction, cells collected at different time points were mixed
up in different clusters (Figure 3B). After selecting cluster C3
as the E state based on fewer TCs around (Figures 3C,D)
and expression levels of canonical epithelial and mesenchymal
marker genes (Supplementary Figures 3B,C), the most probable
transition trajectories were revealed (Figure 3E). Based on
the GO analysis of the top marker genes (Supplementary
Figure 3D), the two ICSs were different states (Supplementary
Figure 3E). The I1 state was related to signaling and locomotion
indicating the communications with other cells and sharing
mesenchymal features.
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FIGURE 1 | Analyzing OVCA420 cancer cell line undergoing EMT induced by TGFB1 using QuanTC. (A–C) Visualization of cells in the two dimensional space by
QuanTC. Each circle represents one cell colored by clustering (A), the collection time of the samples after the treatment (B), and CPI values (C). (D) Percentage of
TC associated with each cluster relative to the total number of TC. The dashed box covers the ICS having more TC around. The parameters to choose TC are given
in Supplementary Table 1. (E) Visualization of cluster centers with color consistent with (A). Each percentage on the line show the percentage of TC between two
clusters relative to the total number of cells. Arrowed solid line shows the main transition trajectory. (F) Violin plot of pseudotime value of each cell vs the collection
time points. Each dot represents a cell colored by collection time points. The circle displays the mean and vertical line shows the interquartile ranges.

Similar to EMT induced by EGF, the average pseudotime
values slightly increased across time points with high
variance within each time point, thus suggesting the

heterogeneity of cells undergoing EMT (Figure 3F).
Therefore, EMT induced by TNF was also found to be an
asynchronous process.
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FIGURE 2 | Analyzing OVCA420 cancer cell line undergoing EMT induced by EGF using QuanTC. (A–C) Visualization of cells. Each circle represents one cell colored
by clustering (A), the collection time of the samples after the treatment (B), and CPI values (C). (D) Percentage of TC associated with each cluster relative to the total
number of TC. The dashed box covers the ICS having more TC around. The parameters to choose TC are given in Supplementary Table 1. (E) Visualization of
cluster centers with color consistent with (A). Each percentage on the line show the percentage of TC between two clusters relative to the total number of cells.
Arrowed solid line shows the main transition trajectory. (F) Violin plot of pseudotime value of each cell vs the collection time points. Each dot represents a cell colored
by collection time points. The circle displays the mean and vertical line shows the interquartile ranges.

Context-Specific Cellular
Communications With Underlying Gene
Regulations in TGF-β Signaling
Transforming growth factor-β is a strong promoter of EMT
(Hao et al., 2019). TGF-β ligands are not exclusively provided

as an external EMT-inducing signal, but can also be secreted by
cells, thus raising the possibility of cell–cell communication and
EMT driven by intercellular signaling. In order to determine the
possible role of TGF-β signaling in EMT, we assembled in silico
ligand–receptor interaction pairs to explore the crosstalk between
ICSs and E/M states. We applied SoptSC (Wang S. et al., 2019)
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FIGURE 3 | Analyzing OVCA420 cancer cell line undergoing EMT induced by TNF using QuanTC. (A–C) Visualization of cells. Each circle represents one cell colored
by clustering (A), the collection time of the samples after the treatment (B), and CPI values (C). (D) Percentage of TC associated with each cluster relative to the total
number of TC. The dashed box covers the ICS having more TC around. The parameters to choose TC are given in Supplementary Table 1. (E) Visualization of
cluster centers with color consistent with (A). Each percentage on the line show the percentage of TC between two clusters relative to the total number of cells.
Arrowed solid line shows the main transition trajectory. (F) Violin plot of pseudotime value of each cell vs the collection time points. Each dot represents a cell colored
by collection time points. The circle displays the mean and vertical line shows the interquartile ranges.

to the expression matrix with inferred states and calculated
the signaling probability of each ligand–receptor pair and their
downstream targets between pairs of cells. Finally, averaging
these pairwise signaling probabilities within each EMT state

provides a snapshot of how cells tend to communicate based on
their degree of EMT progression (Figures 4A–C).

In Figure 4B, the directed edges from lower hemisphere
to upper hemisphere were inferred between cells where a
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FIGURE 4 | TGFB pathway on OVCA420 cancer cell line undergoing EMT induced by TGFB1. (A) Visualization of signaling probability scores of Ligand-Receptor
pairs and their downstream signaling components. Dot size represents the number of averaged cells with non-zero probability scores between clusters. Dot color
represents the signaling probability scores. (B) Circos plot of intercellular network on the top ten ligand-producing and top ten receptor-bearing cells from every
cluster. The upper hemisphere of the plot shows receptor-bearing cells. The chords of the plot are colored by the ligand-producing cells in the lower hemisphere. The
directed edges from the lower hemisphere to the upper hemisphere represent the probabilities of signaling between cells. The probabilities of signaling between cells
above the thresholds are presented. (C) Intercluster network. The widths of edges are proportional to the signaling probability scores between clusters. The directed
edges are colored by the ligand-producing clusters. (D) Multilayer network. The first layer shows the intercluster network as in (C) but with higher signaling
probabilities greater than 0.5. Second and third layers show gene regulatory networks of target genes and top marker genes of clusters, respectively, using the PIDC
algorithm. The target up (down) genes are the up-regulated (down-regulated) target genes of TGF-β signaling. Each dot represents a gene colored by its type. Graph
edges indicate the top interactions and the length of the edge is inversely proportional to the interaction strength between genes. The link between first and second
layer indicates the target gene are higher expressed within the cluster. The link between second and third layer indicates the strong interaction strength between
target and marker genes. The widths of links between layers are proportional to the interaction strength. The ligands, receptors and target genes are given in
Supplementary Table 3.

high probability of signaling was predicted according to the
expressions of ligands in a “sender” (lower hemisphere in
the figure) cell and the appropriate expressions of cognate

receptors and target genes in a “receiver” cell (upper hemisphere
in the figure). The large proportion of M state behaving
as “receiver” with high signaling probabilities suggests that
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the M state played a dominant role as receiver in TGF-β
signaling. All the four states behaved as “sender” in TGF-
β signaling.

The cluster–cluster signaling network was then constructed
based on the average cell–cell signaling within each cluster
(Figure 4C). We used strength, closeness, and pagerank as
metrics to measure node centrality in the signaling network so
that we can quantify the centralities of states in TGF-β signaling.
Strength is defined as the sum over weights of the adjacent
edges for a given node. Closeness of a node is the inverse of the
average length of the shortest path to/from all the other nodes.
Pagerank is proportional to the average time spent at a given node
during all random walks; therefore, we interpret a high pagerank
score as an indication that a node serves as a signaling hub in
the network. The pagerank centrality of I1 and that of M were
higher, thus showing the signaling hub potential (Supplementary
Table 2). The I1 and M states had higher in-strength and lower
in-closeness indicating that they behaved more like receivers
(Supplementary Table 2).

To explore the change of the GRNs underlying TGF-β
signaling with respect to EMT progress, we applied PIDC
(Chan et al., 2017), an algorithm using partial information
decomposition to identify GRNs, to the gene expression matrix
of target genes and marker genes inferred by QuanTC within
each state. In the dataset induced by TGFB1, the first layer of
the multilayer network showed the cluster–cluster interactions
as in Figure 4C but with only higher signaling probabilities
greater than 0.5 (Figure 4D, top layer). The widths of the
directed lines were proportional to the signaling probabilities.
The central and bottom layers displayed the GRNs of target
genes and marker genes within each state, respectively. The
interactions between genes within each state were shown
by the edges with lengths inversely proportional to the
correlations between genes.

Based on the average correlations between target genes
of TGF-β signaling and marker genes (Supplementary
Figure 1F), both the up-regulated target genes and down-
regulated target genes had stronger interactions with
marker genes within E and M states. The up-regulated
target genes always had largest correlations with marker
genes of M stats, whereas the down-regulated target genes
had relatively larger correlations with E marker within
only E and M states.

In the dataset of EMT induced by EGF, the average
TGF-β signaling probabilities suggest that I2 and M states
played important roles as receivers, whereas all four states
shared similar importance as senders (Figures 5A–C).
Compared to EMT induced by TGFB1, the pagerank
centrality of I2, instead of I1, and M states were higher
(Supplementary Table 2).

In the multilayer network, the highly varied target genes were
quite similar to EMT induced by TGFB1 (Figures 4, 5D). The
up-regulated target genes were the same except missing COL1A1,
and five out of the eight down-regulated target genes were the
same as in Figure 4D. However, the top five marker genes of
each state varied between the two treatments. Only LGALS4,
BPIFA2, and ZBED2 shared marker genes of E and M states.

CCNB1 and CCNB2, used to be I2 markers, were I1 markers for
EMT induced by EGF.

The average correlations between target genes and marker
genes were stronger within the I1 state (Supplementary
Figure 2F). The up-regulated target genes did not always have
largest correlations with marker genes of M state but still with
relatively large correlations. The down-regulated target genes had
stronger correlations with E markers except in the M state.

In the dataset of EMT induced by TNF, the different EMT
states seemed to have similar importance as sender in TGF-β
signaling (Figures 6A–C). The E and M states behaved as the
main receivers. The M state had higher pagerank value showing
the potential of signaling hub (Supplementary Table 2).

In the multilayer network, the varied up-regulated target genes
were the subset of the genes in EMT induced by EGF except
having CLDN3, and the down-regulated target genes were the
subset of those genes in EMT induced by TGFB1 (Figures 4–6D).
More than half of the marker genes of E, I1, and M states were the
same as in EMT induced by EGF, suggesting the similarity of the
EMT under the two treatments.

The target genes and marker genes had higher correlations
within the I2 state (Supplementary Figure 3F). The up-
regulated target genes always had relatively large correlations
with marker genes of M state. The down-regulated target
genes had stronger correlations with E markers except
in the I2 state.

Overall, the M state and part of the ICSs behaved as the
signaling hub in the TGF-β signaling of EMT under three
different treatments (Figures 4–6). The M state was the main
receiver in OVCA420 under three treatments with lowest
in-closeness (Supplementary Table 2), while the underlying
GRNs changed between different treatments and along EMT
progress. Besides, the top marker genes of different EMT states
were quite different among the EMT induced by different
treatments, all suggesting the context-specific regulation of
GRNs during EMT.

Dominant Role of ICSs in vivo During
TGF-β Signaling
Finally, we compare the results obtained for OVCA420
cells with in vivo data from a skin SCC mouse model
to seek whether the defining traits of EMT dynamics
are conserved or context-specific. In the original study,
a total of six distinct cell populations were identified
based on differential expression of cell surface markers
(CD106, CD61, and CD51), including four transition states
(Pastushenko et al., 2018).

In our previous work (Sha et al., 2020), we identified
a total of four EMT states (Supplementary Figure 4A and
Figure 7A) when applying QuanTC unsupervised clustering
(Pastushenko et al., 2018). There were two ICSs displaying
biological processes including cell–cell adhesion and cell
migration indicating hybrid epithelial/mesenchymal features
(Supplementary Figure 4B).

Compared to the OVCA420 cancer cell line undergoing EMT,
the ICSs in SCC had higher probabilities of signaling and played
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FIGURE 5 | TGFB pathway on OVCA420 cancer cell line undergoing EMT induced by EGF. (A) Visualization of signaling probability scores of Ligand-Receptor pairs
and their downstream signaling components. Dot size represents the number of averaged cells with non-zero probability scores between clusters. Dot color
represents the signaling probability scores. Dot color represents the signaling probability scores. (B) Circos plot of intercellular network on the top ten
ligand-producing and top ten receptor-bearing cells from every cluster. The upper hemisphere of the plot shows receptor-bearing cells. The chords of the plot are
colored by the ligand-producing cells in the lower hemisphere. The directed edges from the lower hemisphere to the upper hemisphere represent the probabilities of
signaling between cells. The probabilities of signaling between cells above the thresholds are presented. (C) Intercluster network. The widths of edges are
proportional to the signaling probability scores between clusters. The directed edges are colored by the ligand-producing clusters. (D) Multilayer network. The first
layer shows the intercluster network as in (C) but with higher signaling probabilities greater than 0.5. Second and third layers show gene regulatory networks of
target genes and top marker genes of clusters, respectively, using the PIDC algorithm. The target up (down) genes are the up-regulated (down-regulated) target
genes of TGF-β signaling. Each dot represents a gene colored by its type. Graph edges indicate the top interactions and the length of the edge is inversely
proportional to the interaction strength between genes. The link between first and second layer indicates the target gene are higher expressed within the cluster. The
link between second and third layer indicates the strong interaction strength between target and marker genes. The widths of links between layers are proportional
to the interaction strength. The ligands, receptors and target genes are given in Supplementary Table 3.

the even more dominant role of cell–cell and cluster–cluster
interactions during TGF-β signaling (Figures 7B–D). The ICSs,
especially the I1 state, had higher Pagerank scores and served as

the signaling hub (Supplementary Table 2). Both ICSs had lower
out-closeness score, indicating that they played the dominant role
as the sender in TGF-β signaling. While the M state had by far
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FIGURE 6 | TGFB pathway on OVCA420 cancer cell line undergoing EMT induced by TNF. (A) Visualization of signaling probability scores of Ligand-Receptor pairs
and their downstream signaling components. Dot size represents the number of averaged cells with non-zero probability scores between clusters. Dot color
represents the signaling probability scores. (B) Circos plot of intercellular network on the top ten ligand-producing and top ten receptor-bearing cells from every
cluster. The upper hemisphere of the plot shows receptor-bearing cells. The chords of the plot are colored by the ligand-producing cells in the lower hemisphere. The
directed edges from the lower hemisphere to the upper hemisphere represent the probabilities of signaling between cells. The probabilities of signaling between cells
above the thresholds are presented. (C) Intercluster network. The widths of edges are proportional to the signaling probability scores between clusters. The directed
edges are colored by the ligand-producing clusters. (D) Multilayer network. The first layer shows the intercluster network as in (C) but with higher signaling
probabilities greater than 0.5. Second and third layers show gene regulatory networks of target genes and top marker genes of clusters, respectively, using the PIDC
algorithm. The target up (down) genes are the up-regulated (down-regulated) target genes of TGF-β signaling. Each dot represents a gene colored by its type. Graph
edges indicate the top interactions and the length of the edge is inversely proportional to the interaction strength between genes. The link between first and second
layer indicates the target gene are higher expressed within the cluster. The link between second and third layer indicates the strong interaction strength between
target and marker genes. The widths of links between layers are proportional to the interaction strength. The ligands, receptors and target genes are given in
Supplementary Table 3.

the higher pagerank score in the three OVCA420 datasets, the
pagerank score of the M state in SCC was comparable to those of
I1 and I2. Consistently, in the original study, the mesenchymal
SCC exhibited a “quasi-mesenchymal” phenotype, which was

more similar to intermediate state, instead of a fully mesenchymal
phenotype (Pastushenko et al., 2018).

The highly varied target genes and marker genes of each state
shared no similarity to the OVCA420 cancer line (Figure 7E).
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FIGURE 7 | TGF-β pathway on EMT in SCC dataset. (A) Visualization of cells using QuanTC. Each circle represents a cell colored by corresponding cell state.
(B) Circos plot of intercellular network on the top ten ligand-producing and top ten receptor-bearing cells from every cluster. The upper hemisphere of the plot shows
receptor-bearing cells. The chords of the plot are colored by the ligand-producing cells in the lower hemisphere. The directed edges from the lower hemisphere to
the upper hemisphere represent the probabilities of signaling between cells. The probabilities of signaling between cells above the thresholds are presented.
(C) Intercluster network. The widths of edges are proportional to the signaling probability scores between clusters. The directed edges are colored by the
ligand-producing clusters. (D) Visualization of signaling probability scores of Ligand-Receptor pairs and their downstream signaling components. Dot size represents

(Continued)
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FIGURE 7 | Continued
the number of averaged cells with non-zero probability scores between clusters. Dot color represents the signaling probability scores. (E) Multilayer network. The first
layer shows the intercluster network as in (C) but with higher signaling probabilities greater than 0.5. Second and third layers show gene regulatory networks of
target genes and top marker genes of clusters, respectively, using the PIDC algorithm. The target up (down) genes are the up-regulated (down-regulated) target
genes of TGF-β signaling. Each dot represents a gene colored by its type. Graph edges indicate the top interactions and the length of the edge is inversely
proportional to the interaction strength between genes. The link between first and second layer indicates the target gene are higher expressed within the cluster. The
link between second and third layer indicates the strong interaction strength between target and marker genes. The widths of links between layers are proportional
to the interaction strength. The ligands, receptors and target genes are given in Supplementary Table 3.

The target genes had strong associations with inferred marker
genes within E and I1 states (Supplementary Figure 4C). It
suggests that EMT varies both between mouse vs human, and
in vitro vs in vivo.

MATERIALS AND METHODS

scRNA-Seq Data Clustering and
Transition Trajectory Reconstruction
QuanTC was used to perform clustering and transition trajectory
reconstruction. QuanTC can simultaneously detect the ICSs and
construct transition trajectories via quantifying the CPI (Sha
et al., 2020). The cells with higher CPI values are considered
to be transitioning between clusters and are identified as TCs.
Via non-negative matrix factorization, QuanTC calculates the
probabilities of a given cell belonging to the identified clusters.
Cells are projected to a low-dimensional space based on a
probabilistic regularized embedding. The transition trajectories
are then inferred by summing the cluster-to-cluster transition
probabilities that are calculated from cell-to-cluster probabilities
and TCs between clusters. The transition genes and marker
genes of clusters are obtained through factorizing the gene
expression matrix as product of cell-to-cluster probabilities and
likelihoods of genes uniquely marking each cluster. In the first
step of QuanTC, we applied two additional considerations when
choosing the number of identified clusters. First, we know from
the original experiment that cells undergo EMT (i.e., there is
at least one E state and one M state); furthermore, given that
we seek to study ICSs during EMT, we search for at least
three total states.

Preprocessing
Single cells with less than 95% expressed genes among all detected
genes were considered as low-quality cells and were filtered. Top
3,000 bimodal distributed genes were selected by QuanTC with
default parameters to do downstream analysis.

Clustering
A total of 3,000 selected genes and 558 cells of OVCA420
induced by TGFB1, 1,137 cells of OVCA420 induced by EGF,
and 1,856 cells of OVCA420 induced by TNF from day 0 to
day 7 were retained for clustering. Consensus clustering via
SC3 (Kiselev et al., 2017) was performed on the expression
matrix to capture the cell–cell similarity. The clusters were
defined based on symmetric non-negative factorization as
wrapped in QuanTC.

Transition Trajectory
The beginning and end of EMT transition trajectory, E/M
states, were identified based on the percentage of TCs
around each cluster. The parameters to choose TCs were
given in Supplementary Table 1. The clusters with fewer
TCs around were considered as E/M states, whereas the
rest clusters were considered as ICSs along EMT. The
E/M states between the two clusters were then identified
based on the canonical epithelial and mesenchymal marker
genes. The potential transition trajectory was inferred
according to the TCs between clusters using “traj” function
wrapped in QuanTC. The pseudotime value of each cell
was then computed by QuanTC based on the two most
probable trajectories.

EMT Marker Genes
The marker genes and transition genes were defined using
“markers” function wrapped in QuanTC.

GO Analysis
The analysis of GO biological processes was performed by
Metascape (Zhou et al., 2019) on the top 50 markers genes of each
ICS selected by QuanTC.

Qualitatively Characterizing Cell–Cell
Communications
SoptSC (Wang S. et al., 2019) was used on the datasets without
gene filtering to calculate the probability matrix of signals
being passed between cells and clusters. Signaling probabilities
between cells are defined based on weighted co-expression of
signaling pathway activity in sender–receiver cell pairs. With the
input of ligand–receptor pairs and target genes (up-regulated
or down-regulated in response to pathway activation), SoptSC
computes signaling probabilities between sender cells (expressing
ligands) and receiver cells (expressing receptors and exhibiting
differential target genes activity). Intuitively, given a ligand–
receptor pair for a specific signaling pathway, if the ligand is
highly expressed in cell i, the cognate receptor is highly expressed
in cell j, and the target gene activity in cell j suggests that the
signaling pathway may have been activated in this cell, and
then there is a chance that communication occurred between
these two cells. The signaling passed from cell i to j for a given
ligand–receptor pair is quantified by the signaling probability
Pi,j. For a set of ligand–receptor pairs, SoptSC considers the
consensus signaling probabilities between cells by taking the
average over all signaling probability matrices. The signaling
probability passed from cluster u to cluster v is then given
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by Pu,v =
∑

i∈Cu,j∈Cv Pi,j
|Cu||Cv|

, with |Cu| representing the number of
cells in cluster u.

The lists of ligands, receptors, and target genes were retrieved
from previous studies (Wendt et al., 2009; Xu et al., 2009; Jin et al.,
2020) and are given in Supplementary Table 3.

Measuring Node Centrality
The centrality of a node (cluster) in cellular communication
network is used to quantify its importance in the signaling. We
used strength, closeness, and pagerank as metrics to measure
node centrality. All these centralities were calculated with the
package igraph 1.2.4 (Csardi and Nepusz, 2006).

Strength is one of the basic measures of centrality: it is
measured by summing up the edge weights of the adjacent edges
for a given node. Our inferred cluster–cluster communication
networks are directed, so we calculated in-strength (incoming
edges), and out-strength (outgoing edges). Closeness of a
given node is defined by the inverse of the average length
of the shortest path to/from all the other nodes. In-closeness
measures the path to the node, whereas out-closeness measures
the paths from the node. We used the normalized values
to avoid biases based on the network size. Pagerank is
proportional to the average time spent at a given node
during all random walks. In the cluster–cluster communication
networks, the clusters with high pagerank can be seen as
the signaling hub.

Multilayer Regulations of EMT
We utilized the multilayer network framework (Kivelä et al.,
2014) to analyze and visualize the changes of complex
hierarchical signaling and gene expression regulations in EMT
across multiple scales.

Mathematically, the multilayer network can be expressed as
the M = (VM,EM,V, L). Here, V denotes sets of all nodes in
the network (as in the regular case), and L = {La}da=1 denotes
d aspects of the network layers, with each aspect La = {Lia}

ka
i=1

contains ka elementary layers. Denotes × as the Cartesian
product of sets, and then the node–layer tuple set VM ⊆ V ×
L1 × · · · × Ld represents all the feasible node–layer combinations
in which a node is present in the corresponding layers. The
edges set EM ⊆ VM × VM denotes the weighted links across
nodes and layers.

In our context, the nodes set V not only contains
cell states S =

⋃Nc
k=1 Sk along the EMT trajectories, with

Nc denoting the number of cell states, but also contains
target genes T of specified signal transduction pathway and
marker genes A of each cell state. The layers L = {LH, LC}
has two aspects: The hierarchy aspect LH = {L1

H, L2
H, L3

H}

represents the elementary layers of cell–cell communication
L1
H , target genes L2

H , and marker genes L3
H , respectively, and

the cell states aspect LC = {LkC}
Nc
k=1 represents the EMT stages

of E state, ICSs, and M state ordered by pseudotime of
QuanTC, as we are interested in constructing cell-state–specific
regulatory relations. For simplicity, we denote the node–layer
tuples in EMT as VM = {

(
S, L1

H, ·
)
,
(
T, L2

H, ·
)
, (A, L3

H, ·)} ⊆
V × LH × LC, representing the hierarchical regulation structures

at different stages. For instance, (A, L3
H, L1

C) denotes the
marker genes analyzed in the E state, while

(
T, L2

H, L2
C
)

represents the target genes considered in the first ICSs. We
next specify how the edges EM are constructed based on
the VM .

The Edges Within Layer
(

S, L1
H, ·

)
The first layer L1

H in hierarchy aspect displays the cluster–
cluster interactions of intercellular communication, where the
aligned nodes show the different EMT states/clusters. Using the
notations above,

(
S, L1

H, LkC
)

contains only one node for each k,
representing the cell state Sk. The weights for the directed edges
to connect

(
S, L1

H, LiC
)

and
(
S, L1

H, LjC
)

are the cluster–cluster
interactions between state Si and state Sj computed by SoptSC
above threshold 0.7.

The Edges Within Layer
(

T, L2
H, ·

)
The second layer L2

H demonstrates the state-specific interactions
among target genes at different stages. The target genes T
are the intersection of the list of target genes and the top
3,000 selected informative genes. Given the stage LkC, the
weighted edges between target gene pair

(
TX, L2

H, LkC
)

and(
TY , L2

H, LkC
)

were constructed by PIDC algorithm (Chan
et al., 2017) using partial information decomposition, only
with the cells in cluster Sk. The input to PIDC is an expression
matrix with cells from Sk, and the confidence of an edge
between a pair of genes is given by c = FX

(
UX,Y

)
+ FY

(
UX,Y

)
where FX (U) is the cumulative distribution function of
all the proportional unique contribution scores involving
gene X. The top 30% weights were used to embed the
inferred network in

(
T, L2

H, LkC
)

using “graph” function
in MATLAB based on spectral layout (Koren, 2005). The
weights were normalized with max 2 to be comparable
with other datasets.

The Edges Within Layer
(

A, L3
H, ·

)
The third layer L3

H demonstrates the state-specific interactions
among marker genes at different stages. The marker genes
selected were identical for

(
A, L3

H, LkC
)

with respect to the choice
of k, which represent the union of top five marker genes in each
cluster inferred by QuanTC. The edges between marker genes are
state-specific for each cell-state layer LkC, using the same strategy
as for the target genes described above.

The Edges Connecting Layer
(
S, L1

H, ·
)

and
(

T, L2
H, ·

)
These edges quantify the expression of target genes within
different states during EMT. The weights for the edges
between

(
S, L1

H, LkC
)

and
(
T, L2

H, LkC
)

are the mean expression
levels of target genes within cell state Sk , and top 20%
weights were shown.
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The Edges Connecting Layer
(

T, L2
H, ·

)
and(

A, L3
H, ·

)
These edges display the regulatory interactions from target
genes to marker genes within different states during EMT. The
weights for the edges between

(
T, L2

H, LkC
)

and
(
A, L3

H, LkC
)

were inferred by PIDC within cell state Sk, and top 1.5%
weights were shown.

DISCUSSION

In this study, we have developed an approach combining
unsupervised learning, multivariate information theory, and
multilayer network approach to uncover the complex cellular
crosstalk and the underlying gene regulatory relationship of EMT
from scRNA-seq data.

We started with trajectory reconstruction on the time-
series datasets of an OVCA420 cancer cell line undergoing
EMT induced by three different external signal (TGFB1,
EGF, and TNF) and uncovered the existence of multiple
ICSs displaying hybrid epithelial and mesenchymal features.
Analysis of scRNA-seq previously demonstrated that EMT
induction by TGFB1, EGF, and TNF is carried by context-specific
signaling pathways (Cook and Vanderhyden, 2020). Here, we
show striking differences in the EMT population dynamics
as well. While EMT induced by TGFB1 is synchronous,
EGF and TNF induce asynchronous transitions because
cells collected at different time points spread all over
different clusters. These differences at the cell population
level could be explained by the signaling complexity and
modularity in response to different EMT inducers. TNF
can activate nuclear factor κB (NF-κB) signaling, which
in turn crosstalks with several transduction pathways and
induces responses to inflammation (Hayden and Ghosh,
2014). TNF–NF-κB signaling has also been proposed as a
stability factor for hybrid E/M phenotypes, thus potentially
resisting a complete EMT in TNF-induced EMT (Bocci
et al., 2019). Similarly, EGF regulation of EMT is not direct,
but rather relies on several intermediate signaling steps
that could hamper a synchronized transition (Kang et al.,
2013). Certainly, future efforts focusing on integrating high-
throughput data analysis with in silico modeling of the
underlying regulatory circuitry will help validate or falsify
these hypotheses.

To clarify how cells in different EMT states contribute to cell–
cell signaling, we subsequently constructed multilayer networks
displaying the TGF-β signaling communication between cells
in different EMT states and the underlying GRN that regulates
EMT at different EMT stages. We found that ICSs serve
as signaling hubs of cell–cell communication, as well as the
context-specific response of TGF-β under different treatments.
In other words, cells in intermediate EMT states can send
and receive inputs from other cells through TGF-β signaling,
potentially inducing EMT in their neighbors. Therefore,
both cell autonomous TGFB1 induction and intercellular

TGFB signaling could contribute to EMT. Future experiments
controlling conditional knockouts of TGFB ligands could
validate this prediction and quantify the role played by cell–
cell communication in EMT. These observations also raise
an interesting parallel with Notch signaling, another master
regulator of cell–cell communication (Bray, 2016). Signaling
through the Notch-Jagged pathway between cancer cells in
intermediate EMT states has been proposed as a mechanism
that (i) stabilizes intermediate EMT states and (ii) further
induces “partial EMT” in other cells (Bocci et al., 2017;
Jolly et al., 2017). Our analysis on in vivo dataset also
suggests that ICS plays the more dominant role in the TGF-β
signaling communication.

The core gene circuits for EMT are known to involve
multiple molecular components and interactions (Jia
et al., 2017; Tian et al., 2019; Yang et al., 2020), providing
mechanisms of the EMT transition process (Jolly and
Levine, 2017). Recent time-series scRNA-seq data suggest
that EMT is indeed highly context-specific (Cook and
Vanderhyden, 2020), calling for the need of inferring EMT
regulation circuits from a data-driven approach (Tanaka and
Ogishima, 2015; Ramirez et al., 2020). Previous works have
constructed the GRN of EMT based on the combination
of prior knowledge, transcription factor predictions, and
model validations from single-cell datasets (Ramirez
et al., 2020). Here we have incorporated the intercellular
communications in the context of analyzing TCs and ICSs to
inspect the dynamical change of regulation interactions along
the EMT spectrum.

Our analysis reveals that ICS plays the crucial role in
not only interchanging information with both pure epithelial
and mesenchymal states, but also communicating with other
cells in ICSs during EMT. Previously, the role of ICSs
has been studied for tumor metastasis (Jolly et al., 2015)
and analyzed through the emergent dynamical properties
such as signal adaptation, noise attenuation, and population
transition (Ta et al., 2016; Sha et al., 2019; Goetz et al.,
2020). Taken together, the EMT cell lineage models with ICS-
mediated feedback through cell–cell communications (Lander
et al., 2009; Lo et al., 2009) could be further developed to
explore the non-linear effects on different cell populations
(Jia W. et al., 2019).

The integrative analysis here is a general approach and can
be applied to other cell-state transition processes beyond EMT.
In particular, the multiplayer gene regulatory and intercellular
network provides a multiscale framework to simultaneously
explore the cellular communications, the underlying gene
regulations, and dynamics of GRNs along transitions. By
incorporating additional layers of different transduction elements
beyond TGF-β (Jin et al., 2020) and associated transcription
factors, one can investigate the more complex regulation
processes, such as signal crosstalk and corporation of multiple
pathways (Xing and Tian, 2019). In addition, the inclusion of
spatial information layer may also facilitate the accuracy of
intercellular communication analysis (Cang and Nie, 2020).

Overall, our study provides an initial attempt to investigate
the multiscale interactions of intercellular communications and
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gene expression regulations during the dynamical process of
cell-fate determination.
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