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Predicting transcription factor binding in single cells

through deep learning
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Characterizing genome-wide binding profiles of transcription factors (TFs) is essential for understanding bio-
logical processes. Although techniques have been developed to assess binding profiles within a population of
cells, determining them at a single-cell level remains elusive. Here, we report scFAN (single-cell factor analysis
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network), a deep learning model that predicts genome-wide TF binding profiles in individual cells. scFAN is
pretrained on genome-wide bulk assay for transposase-accessible chromatin sequencing (ATAC-seq), DNA
sequence, and chromatin immunoprecipitation sequencing (ChlP-seq) data and uses single-cell ATAC-seq to
predict TF binding in individual cells. We demonstrate the efficacy of scFAN by both studying sequence motifs
enriched within predicted binding peaks and using predicted TFs for discovering cell types. We develop a new
metric “TF activity score” to characterize each cell and show that activity scores can reliably capture cell identities.
scFAN allows us to discover and study cellular identities and heterogeneity based on chromatin accessibility

profiles.

INTRODUCTION

Transcription factors (TFs) bind to accessible or “open” promoter
and enhancer regions, which play a pivotal role in regulating gene
expression by aiding or inhibiting binding of RNA polymerase (1-3).
Different binding events lead to heterogeneity of gene expression
across a population of cells, which may result in distinct cellular
identities. Therefore, characterizing TF binding profiles is critical
for understanding gene regulatory mechanisms and differentiation
of cells into distinct subpopulations.

Chromatin accessibility assays such as deoxyribonuclease hyper-
sensitive sites sequencing (DNase-seq) (4), formaldehyde-assisted
isolation of regulatory elements sequencing (FAIRE-seq) (5), and
assay for transposase-accessible chromatin sequencing (ATAC-seq)
(6) provide a way to study TF binding activity across the whole
genome (7, 8). Of these methods, ATAC-seq is gaining popularity
because of its low cost, efficiency, and simplicity. ATAC-seq profiles
are generally designed to identify open chromatin regions, which
can be used to infer TF binding events if these regions overlap with
protein-binding sites.

A previously published model, HINT-ATAC, was designed to pre-
dict TF binding at a cell population level [based on either bulk ATAC-
seq data or a combination of single-cell ATAC-seq (scATAC-seq)
data as bulk data] (8). In recent years, deep learning techniques, such
as convolutional neural networks (CNNs), have become a powerful tool
for discovering TF binding patterns (9). Methods such as FactorNet
(10) and deepATAC (11) leverage deep learning-based approaches
to identify open chromatin regions and infer TF binding locations
using bulk chromatin accessibility data. However, all these methods

'Systems Engineering Institute, School of Electronic and Information Engineering,
Xi'an Jiaotong University, Xi‘an, Shannxi 710049, China. “Department of Computer
Science, University of California, Irvine, Irvine, CA 92697, USA. 3Department of
Mathematics, University of California, Irvine, Irvine, CA 92697, USA. “NSF-Simons
Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA
92697, USA. *Department of Developmental and Cell Biology, University of California,
Irvine, Irvine, CA 92697, USA. ®Center for Complex Biological Systems, University of
California, Irvine, Irvine, CA 92697, USA.

*Corresponding author. Email: gnie@uci.edu (Q.N.); xhx@uci.edu (X.X.)

Fu et al., Sci. Adv. 2020; 6 : eaba9031 18 December 2020

make population-level TF binding predictions and therefore do not
take into account heterogeneity within cellular populations.

Recent advances in single-cell epigenomic sequencing permit
characterization of chromatin accessibility at a single-cell level (12).
For example, probing chromatin accessibility within single cells by
scATAC-seq has become possible (13, 14), enabling the identifica-
tion of cis- and trans-regulators and the study of how these regula-
tors coordinate in different cells to influence cell fate (15-17). Asin all
single-cell sequencing technologies, using only scATAC-seq data is
challenging because they are sparse and noisy due to not only tech-
nical constraints such as shallow sequencing (13) but also biological
realities such as cellular heterogeneity (18).

To address these challenges, we present a deep learning-based
framework called single-cell factor analysis network (scFAN). scFAN’s
pipeline consists of a “pretrained model” trained on bulk data, which
is then used to predict TF binding at a cellular level using a combi-
nation of DNA sequence data, aggregated similar scATAC-seq data,
and mapability data (19). This approach alleviates the intrinsic sparsity
and noise constraints of scATAC-seq. scFAN provides an effective
tool to predict different TF profiles across individual cells and can
be used for analyzing single-cell epigenomics and predicting cell types.

RESULTS

scFAN overview

We start with a brief overview of scFAN (Fig. 1A and fig. S1). scFAN
is a deep learning model that predicts the probability of a TF binding
at a given genomic region, with inputs of ATAC-seq, DNA sequence,
and DNA mapability data from that region. scFAN is trained using
publicly available “bulk” datasets, which contain genome-wide ATAC-
seq and chromatin immunoprecipitation sequencing (ChIP-seq)
profiles collected from multiple cell types measured at a population
level. The data inputs (i.e., feature vectors) are 1000-base pair (bp)
bins composed of bulk ATAC-seq data, DNA sequence, and mapa-
bility data for that bin. The feature vectors are fed into a three-layer
CNN to extract high-level features. The CNN is then linked to two
fully connected layers and a final sigmoid layer to make predictions.
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Fig. 1. scFAN pipeline and classification performance on bulk data. (A) scFAN pipeline. Bulk ATAC-seq, mapability data, and regions of DNA identified by ChIP-seq
data are passed to the deep learning “pretrained model.” The trained model is then used to predict TF binding profiles based on regions of DNA called by scATAC-seq,
mapability data, and a combination of scATAC-seq and bulk ATAC-seq. TF “activity scores” are calculated from the predictions by summing the number of times the top
2 most frequent TFs appear per cell. scFAN cluster cells from these activity scores. (B) Circular barplots showing AUC and auPR values of all the TFs from the pretrained

model, from three different cell lines.

The ground-truth outputs are multiple binary labels indicating
whether a particular TF binds to that genomic region, annotated on
the basis of ChIP-seq peaks.

Once the model is fully trained, scFAN predicts TF bindings in
each individual cell based on its scATAC-seq profile. Because of the
intrinsic sparsity of current scATAC-seq technology, we smoothed
the scATAC-seq signal from the individual bases of each cell by ag-
gregating scATAC-seq data from similar cells. For each single cell,
we calculated similarity scores between it and other cells, then
aggregated chromatin accessibility signals of its near neighbors
to boost chromatin accessibility coverage, and used the aggregated
data as inputs to our model. This approach allows us to increase the
chromatin accessibility coverage while retaining cellular specificity.
The input vectors in the prediction step are the aforementioned
aggregated scATAC-seq data, DNA regions called by scATAC-seq,
and mapability data.

Validation of scFAN accuracy on bulk data

We trained scFAN on three bulk ATAC-seq datasets, GM12878,
H1-ESC, and K562, in which ChIP-seq data for a number of TFs
were also available from the ENCODE consortium (with 33, 31, and
60 TFs in each dataset, respectively), and generated three pretrained
scFAN models—one for each dataset. We then validated the accuracy
of the trained models on test datasets (hold-out chromosome regions
were not used during training). Similar to the TF binding annota-
tions in the training data, the ground-truth labels of the TF binding
in the testing data are also based on ChIP-seq peaks. Because our
dataset has more negative samples than positive samples, we measured
the prediction accuracy using the area under the ROC (receiver
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operating characteristic) curve (AUC), the area under the precision-
recall curve (AUPR), the recall value, and the F1 score correspond-
ing to each TF (Fig. 1B, fig. S2, and table S1) to comprehensively
evaluate the performance of our model. Our trained model captured
most of the TF binding information correctly: All the TF prediction
AUC values are more than 0.80, and nearly half of the TF AUPR
values are more than 0.8 (table S1). Moreover, we and others have
reported that CNNs could capture TF binding motif information
(10, 20). We used the same method from FactorNet and visualized
TF kernels of SPI1, CREBI, JUND, and MAFK from the trained
model based on cell line GM12878. These kernels were first converted
to position weight matrices and then aligned with motifs from
JASPAR (21) using TOMTOM (22). All these kernels successfully
matched the TFs that were identified by known database like JASPER
with matched E-values all less than 107, e.g., 9.02 x 10™* for TF SPI1
(Fig. 2A).

We then compared scFAN with two other state-of-the-art bulk
TF binding profile prediction methods, FactorNet (10), and deepATAC
(11). Similar to FactorNet and deepATAC, scFAN uses convolutional
neural nets as its basic building structure but simplifies the model
structure to include fewer convolution layers with fewer parameters.
A key difference between the input of scFAN and the input of the
previous two models is the continuous ATAC-seq signal used by
scFAN, as opposed to the binarized signal used by deepATAC and
the DNase-seq data adopted by FactorNet. Binarizing the data may
result in loss or change of ATAC-seq signal coverage across the
genome. All three models were trained and tested on the same data-
sets. Encouragingly, scFAN more accurately predicted bulk TF
binding than either FactorNet or deepATAC, based on mean values
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Fig. 2. Validation of TF predictions. scFAN can predict both bulk and single-cell TF binding. (A) Four convolutional kernels that matched with four known motifs de-
rived from JASPAR database. The heatmap denotes the value of each nucleotide corresponding to the above position. (B) Box plot of the performance of the pretrained

model and two other models predicting bulk cell TF binding on the same dataset.

(€) Enrichment analysis of the five predicted most active TFs from six randomly

chosen cells. scFAN predicts the most likely TF per bin and adds up the number of times each TF is the highest predicted TF. Homer takes all the candidate peaks that
need to be predicted and generates the enrichment analysis. All these TFs were significantly enriched in all these peaks. (D) Several example regions were used for
enrichment analysis. scFAN was used to predict these regions’ most active TFs, which are ATCF7, YY1, CREB1, MAFF, and SPI. De novo matched motifs were compared

to known motifs from Homer.

of AUC, AUPR, and recall in three cell lines (Fig. 2B). Per the
GM12878, K562, and HI1ESC cell lines, 85% (61%), 90% (55%), and
81% (71%) of TF predictions have better recall values compared
to deepATAC (FactorNet). The improvements are statistically
significant for two comparisons (two-tailed ¢ test, P < 0.05).

In addition, we tested the transferability of the model by focus-
ing on the 17 shared TFs that have ChIP-seq data in all three cell
lines. For each of these TFs, we trained a TF model on one cell line
and then evaluated its performance (in terms of AUC) on the other
two cell lines. Of the 17 tested TFs, the majority (75%) showed
robust model transferability across cell lines (fig. S3A). There are
still four to five TFs showing reduced performance across cell lines;
however, these TFs exhibit clear cell type specificity.

Single-cell TF predictions are consistent with

enrichment analysis

Next, we evaluated scFAN’s predictive performance at a single-cell
level. We ran scFAN TF binding prediction on two scATAC-seq
datasets. The first one consists of 2210 cells with multiple cell types:
chronic myelogenous leukemia cell line K562 (both treated and un-
treated with drug), lymphoblastoid cell lines (GM12878) (including
replicates), human embryonic stem cells (HIESC), fibroblasts (B]),
erythroblasts (TF-1), promyeloblast (HL60), patients with acute
myeloid leukemia (AML), lymphoid-primed multipotent progeni-
tors (LMPPs), and monocyte cells from Buenrostro et al. (13) and
Corces et al. (23). For simplicity, we denote this dataset as “Corces.”
The second dataset is the peripheral blood mononuclear cell (PBMC)
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dataset from Buenrostro et al. (24, 25), which consists of 10 fluorescence-
activated cell sorting (FACS)-sorted cell populations from CD34"
human bone marrow, namely, hematopoietic stem cells (HSCs),
multipotent progenitors (MPPs), LMPPs, common myeloid pro-
genitors, granulocyte-macrophage progenitors (GMPs), megakaryocyte-
erythrocyte progenitors, common lymphoid progenitors, plasmacytoid
dendritic cells, monocytes, and other uncharacterized cells (26). We
ran TF binding predictions on each individual cell using each of the
three pretrained scFAN models and then concatenated these pre-
dictions (see Materials and Methods) to generate the binding pro-
files of 124 TFs in each of the 2210/2034 cells.

Unlike the bulk data, acquiring TF information via simultaneous
ChIP-seq and ATAC-seq measurements in the same single cell is
still technologically challenging. Hence, we could not evaluate the
accuracy of our single-cell TF binding predictions by directly com-
paring to a ground-truth label as in the case of the bulk data. To
assess the quality of our predictions, we instead used two indirect
approaches.

First, we verified whether there are sequence motifs enriched
in the predicted TF regions and whether these motifs matched
known binding profiles of the TFs. For this purpose, we used the
software Homer (27) to discover and evaluate the enrichment of
motifs with scFAN-predicted peaks from the Corces dataset. The
result showed that five of the active TFs predicted by scFAN in six
cells were all significantly enriched in Homer (P < 107" Fig. 2C).
TFs critical to monocyte differentiation such as SPI1 (a.k.a. PU.1),
EGR, CREB, and YY1 were highly enriched in monocyte cells
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(P < 107°) (28, 29). To further explore whether each of these TF
binding predictions matched the known motifs, we implemented
TF predictions in all the candidate peaks in the monocyte cell using
scFAN, selected those peaks that were predicted to bind with each
one of these TFs, and performed de novo enrichment analysis using
Homer. For each TF result, we used one of the most enriched de
novo assembled motifs to match with corresponding TF motifs. We
found that the de novo assembled motifs from scFAN closely matched
the known motifs from Homer (Fig. 2D).

Using single-cell TF prediction to cluster cell types

Next, we studied whether the predicted TF binding profiles can be
used to differentiate cell types. We reasoned that if the TF binding
predictions are accurate, they should be sufficient to cluster cells
into different groups that share similar cell identities. Fortunately,
the cell types of individual cells in the scATAC-seq datasets are
known. We can therefore assess the quality of the cell clusters
derived from TF binding profiles by comparing them to their true
cell type labels.

To explore the ability of scFAN to cluster cell types based on the
TF binding predictions, we developed a metric called “TF activity
scores” to characterize the state of single cells. The TF’s activity
score of a cell summarizes the intensity of its predicted occurrences
across the genome in the cell—the higher the score, the more active
the TF is (see Materials and Methods). Overall, the state of each cell
is characterized by a TF activity vector of dimension 124, one com-
ponent for each TF (all three pretrained models’ predictions were
used to generate TF activity scores; see Materials and Methods).
Both datasets were clustered using hierarchical clustering based on
Euclidean distances between the TF activity vectors, shown in
t-distributed stochastic neighbor embedding (¢-SNE) plots (Figs. 3A
and 4A). To comprehensively show the clusters of cells without
ground-truth labels, we marked each of those “unknown” clusters
with a numerical label. The number of clusters was computed via
community detection using open-source python packages “networkx”
and “community.” The predicted clusters did not entirely overlap with
the clusters defined by these labels, even if they showed an overall con-
sistency to external cell type labels (fig. S3B). It is possible that some of
these clusters discovered by the model potentially correspond to previ-
ously unidentified cell types not recognized in the original annotations.

To further verify the effectiveness of the TF activity score, we
included two bulk expression datasets from ENCODE for an addi-
tional analysis—experiment ENCSROO0AEE corresponding to cell
type GM12878 and experiment ENCSR109IQO corresponding to
cell type K562. For each cell type, we randomly selected 10 cells and
calculated their mean TF activity scores. Then, we extracted the TF
expression based on the fragments per kilobase million (FPKM) and
calculated their Pearson correlations with the TF activity scores. Most
of the TF expression values are well correlated with these TF activity
scores, with correlation coefficient R > 0.7 and P < 0.01 (fig. S3C).

To validate the clustering result, we evaluated the clustering per-
formance of scFAN by comparing the predicted clusters to ground-
truth cell type labels. The performance of scFAN was benchmarked
against several other popular methods that cluster cells on chromatin
accessibility data—scABC (30), cisTopic (31), SCALE (32), Cicero
(33), Brockman (34), and ChromVAR (15). For the Corces dataset,
we performed the same filtering procedure for all the cells and used
the same parameter settings (fig. S4A). We retained all cells of the
PBMC dataset because those cells were filtered in the original study.

Fu et al., Sci. Adv. 2020; 6 : eaba9031 18 December 2020

We used three common metrics to quantitatively measure the clus-
tering performance of scFAN and other compared methods: adjust-
ed Rand index (ARI), normalized mutual information (NMI), and
v-measure score (V-score). ARI correlates with clustering accuracy,
so the higher the ARI is, the more accurately the model clustered
the cells. NMI/v-measure score measures the mutual information of
different clusters: If the two clusters have similar boundaries, they
might show similar NMI/v-measure score and vice versa. Our model
had the highest metric scores of these methods on the Corces(PBMCs)
datasets, with ARI, NMI, and v-measure score equaling 0.470(0.432),
0.674(0.663), and 0.674(0.662), respectively (Figs. 3B and 4B). These
results indicate that clustering cell types based on TF activity scores
is consistently better than previous methods based on peak-cell
matrix or chromatin accessibility. In addition, it further shows the
transferability of our model because the PBMC dataset of 2034 cells
is totally independent from the GM12878, K562, and H1-ESC cells
and was not used for training the model.

Having demonstrated that TF activity scores are effective in dif-
ferentiating cell types, we explored the contribution of individual
TFs in defining cell identities. For this purpose, we plotted the activity
scores of three TFs (EGR1, CEBPB, and SPI1) across the Corces
dataset of 2210 cells on top of the cluster t-SNE plots (Fig. 5A). A
couple of observations are notable from these plots. First, individual
TFs show considerable amount of variation in their activity scores
across different cell types. For instance, LMPP cells have the highest
EGRI activity score, with a mean activity score of 1.879, suggesting
EGRI’s prominent role in the transcriptional regulation of LMPP
cells. CEBPB, on the other hand, has the highest mean activity score
in fibroblast cells (3.136). Second, there is also large heterogeneity
among different TFs in their involvement in different cell types.
SPI1 is more active than EGR1 in monocyte cells, with EGR1 mean
activity score value higher in AML cells than monocyte cells. These
observations seemed to be consistent with previously published
studies, which not only indicate that EGR1 is highly enriched in
LMPP cells (35) but also show that CEBPB is involved in fibroblast
cell development and so is SPI1 in LMPP cells (36). We also found
that in both datasets, the activity scores of CEBPB are relatively high
in GMP and monocyte cells compared with others (Figs. 4C and
5A). Similar findings were shown in the original study (24). Overall,
the computed TF activity score exhibits useful biological meaning
to delineate the differentiation process of those cells.

The use of scFAN and TF activity score-based clustering can poten-
tially help alleviate single-cell sparsity and further improve clustering
performance. When only raw scATAC-seq data without aggregation
were used to predict TF and cluster cells on the Corces dataset, scFAN
subclustered nominally genetically identical HIESCs (Fig. 5B). How-
ever, when we adopted the aggregated scATAC-seq data as our
input, scFAN grouped the subclusters back into one cluster. The
aggregation of the scATAC-seq signals probably helped recover
chromatin accessibility signals of HIESC cells, which made the
model prediction more accurate. The heatmap plots of TF predic-
tion on one H1ESC cell across all the peaks using raw scATAC-seq
data and the aggregated scATAC-seq data showed that the TF pre-
diction results of scFAN contain higher probability on some TFs
compared with the heatmap without scATAC-seq aggregation (in-
dicated by the brighter colors) (Fig. 5C). Furthermore, we randomly
selected the regions in chromosome 1 to visualize the chromatin
accessibility signals (fig. S5). We found that the signal coverage in
some regions became dense after borrowing information from
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Fig. 3. Comparison of scFAN to seven other count matrix-based methods or open chromatin accessibility-based methods applied to the Corces dataset.
(A) t-SNEs of all seven different open chromatin-based or count matrix-based clustering methods. (B) Comparison of seven different clustering metrics of each method.
ARI, NMI, and v-measure score were used to measure each method. The higher the score, the better the clustering performance.

neighboring cells, which might be helpful for further TF prediction
in those separated H1ESC cells. From the improvement of ARI and
NMI metric values compared to previous models, we could indi-
rectly infer that scFAN potentially has the ability to help alleviate
the data sparsity and find missing signals of scATAC-seq data in
low-coverage cells and thus provide a better performance on TF
prediction across the genome.

Alleviating batch effects
scFAN could potentially reduce batch effects compared with other
models. Identical cell types derived from different batches (or samples)
may group into multiple subclusters due to batch effects (Fig. 4A
and fig. S4B). For example, in the PBMC dataset, 160 LMPP cells are
from two different batches, and certain peaks are more likely to
appear in one batch than the other. scFAN therefore reduced those
peaks to help alleviate batch effects from different batches (details in
Materials and Methods). We performed batch effect correction on
the PBMC dataset because we identified multiple batches within
some cell types (such as LMPP cells, MPP cells, and HSCs) in this
dataset. Our model “dragged” LMPP and MPP cells together while
keeping other cells well clustered compared with other models
[Fig. 4A (a, e, and g)]. After batch effect correction, some cell types
such as HSCs still partitioned into two subclusters [fig. S6A (c)]. We
then performed gene enrichment pathway analysis and found differ-
ential expression of genes between the two subclusters, suggesting
that these two subclusters likely represent different cell identities
(fig. S6, B and C).

As for the Corces dataset consisting of the three K562 replicate
cells and four GM12878 replicate cells, we compared the clustering

Fuetal., Sci. Adv. 2020; 6 : eaba9031 18 December 2020

results between the raw data (i.e., without batch correction) and the
batch-corrected data by computing ARI, NMI, and v-measure score
(v-score). We found that the metric changes between the raw data and
the batch-corrected data were quite small, suggesting that these data
do not suffer from meaningful batch effects (fig. S6D). On the other
hand, we reevaluated the clustering scores of scFAN under a new
setting in which all the replicates in GM12878 and K562 are con-
sidered as one cell type. We compared scFAN to two other state-of-
the-art models—cisTopic and Cicero. We saw that scFAN still
outperforms these models, while the ARI scores on GM12878 and
K562 replicates are similar or lower than other two models, mean-
ing no batch effect overfitting on these cells (fig. S7A); we there-
fore did not perform additional batch effect corrections on these
replicates.

In addition, we also evaluated the performance of the compared
methods with the addition of batch effect correction on the PBMC
dataset. We found that some batch effects might have been alleviated
because LMPP cells were “dragged” back together, but some other
cells remained mixed (fig. S7, B and C); however, the low ARI/
NMI/V-score might indicate that these methods would have diffi-
culty handling single-cell data with complex batch effects.

Performance and sensitivity

Because scFAN can cluster cells accurately, we wanted to characterize
how sensitive the clustering is to different parameters. We used the
Corces dataset and started by varying the number of top predicted
TFs per cell the clustering algorithm takes into account. scFAN by
default uses the top 2 predicted TFs per cell. We compared the orig-
inal clustering result to the clustering based on the activity scores of
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method. ARI, NMI, and v-measure score were used to measure each method. The higher the score, the better the clustering performance. (C) t-SNE plot on the PBMC
dataset, colored by CEBPB activity score; CEBPB is more active in GMP and monocyte cells as their colors are more red than other cells.
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Fig. 5. TF activity score varies across cell types, and H1 cells are well separated by TF activity scores. (A) TFs have varying activity scores across cell types. EGR1 is
most active in the LMPP cells, CEBPB is most active in fibroblasts (BJ) cells, and SPI1 is most active in monocyte cells. (B) Separation of H1 embryonic stem cells (ESCs)
colored red when using scATAC-seq as model input. The H1ESC cells clearly separated into two distinct groups (subclusters 1 and 2). (C) Heatmap plot of all the TFs and
across the whole chromosome from one H1ESC cell. The left heatmap was generated by aggregated scATAC-seq data as input, and the right heatmap was generated by
raw scATAC-seq data as input. The left heatmap contains more TF prediction information than the right plot.

only the most active TF and the top 5 most active TFs. There is a Next, we combined different models for predictions and tested
slight improvement in the NMI and v-measure when choosing the clustering performance on the Corces dataset (fig. S7D). While
the top 5 TFs, but top 2 yields the highest ARI score. Overall, the the overall ARI/NMI/V-measure scores decreased a little when
clustering is robust to the chosen number of most active TFs  choosing one or two models, they are still comparable with the de-
(Fig. 6A). fault combined result and are better than most compared methods
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Fig. 6. Clustering performance comparison when different thresholds and parameters are changed on the Corces dataset. (A) Sensitivity of clustering to different
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on the activity score of the top 2 most active TFs. (B) Clustering performance using three different pretrained models adopting scATAC-seq data as input. (C) Clustering
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(Fig. 3B), suggesting the robustness of scFAN with respect to the
choice of models. To alleviate the bias a single model may bring to
the result, scFAN could combine the three models to enhance the
overall performance.

We also verified the performance of TF binding prediction and
clustering with the raw scATAC-seq data, for which the pretrained
model was the same but the scATAC-seq signal was not aggregated.
Using the same six cells shown in Fig. 2C, we found that those
peaks, which were enriched with specific TFs in the aggregated
scATAC-seq data model, remain mostly enriched in those cells
(fig. S4C). Similar findings were obtained for the PBMC dataset
(fig. S4D), demonstrating the consistency between the raw data ap-
proach and the aggregation approach and indicating the capability
of scFAN to preserve the cell heterogeneity. We found that includ-
ing similar scATAC-seq data to alleviate the data sparsity actually
improves clustering performance over only using unaggregated
scATAC-seq data (Fig. 6 and fig. S6A), probably due to the afore-
mentioned sparsity and noisiness of scATAC-seq. Overall, the
clustering performance of scFAN on both datasets using only
scATAC-seq data still outperformed most of the compared methods,
including cisTopic and Cicero (the other two best clustering models),
further confirming the robustness of our model (fig. S6A).

Fuetal., Sci. Adv. 2020; 6 : eaba9031 18 December 2020

DISCUSSION
Here, we developed a pipeline to predict TF binding not only at a
cellular level but also in a specific genomic region within a single
cell. scFAN is a deep learning-based single-cell analysis pipeline
that mitigates the fundamental difficulties in analyzing scATAC-seq
by leveraging bulk ATAC-seq data. At the bulk level, we found that
scFAN can predict TF binding motifs more accurately than other
deep learning models. At the single-cell level, scFAN robustly identi-
fies cellular identities, even in cells that are genetically similar. Detect-
ing cellular identities at a chromatin accessibility level may enable
more faithful identification of distinct cell types. scFAN is also
effective in dealing with batch effects across multiple samples.
Because of the limited availability of ChIP-seq TF binding data,
we chose three standard cell lines in our model. Because the number
of datasets used in this study lacks full coverage of all TFs in humans,
some TF activities may be missing. With the increase in more TF-
related data covering more TFs across multiple cell types, merging
such TF-related single-cell information into one dataset could lead
to a better prediction of TF binding and avoid calibration on pre-
diction results, which is also a further expectation of implementing
scFAN to more data. scFAN allows easy incorporation of new
TF-related ChIP-seq data for other biological systems, and the users
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can choose their own dataset to retrain the model. While comparing
predicted motifs to previously known ones or clustering cells based
on TF activity can provide validation to some degree, experimental
validations need to be carried out, for instance, using single-cell
ChIP-seq (37) and scATAC-seq data together for further confirma-
tion of scFAN’s. Last, scFAN’s downstream analyses, such as pseudo-
time analysis, can also be expanded and refined.

Overall, scFAN is a highly promising tool for single-cell analysis,
not only for predicting TF binding and TF motifs but also for deter-
mining cellular identities. Being able to correlate open chromatin
regions and binding activity of TFs in individual cells enables better
understanding of cellular dynamics and regulations. This study
shows that deep learning techniques can significantly improve our
capability of using single-cell data to discern cell fate decisions.

MATERIALS AND METHODS

Data processing

DNA sequence

The sequence data were processed using the pipeline of Quang et al.
(10). The genome was segmented into 200-bp bins, containing both
the forward and reverse strands, with 50-bp intervals. Bins that
overlapped with a known TF binding site were considered bound
sites, and the rest of the bins excluding the blacklist regions (38)
were considered as unbound sites. The bins were then expanded
to 1000 bp, centered around the middle of each bin locus.
Chromatin accessibility

We processed the raw bulk ATAC-seq files by trimming with cut-
adapt (39), mapping to the human genome (hgl9) using Bowtie2,
and discarding the redundancy read pairs using Picard. We pro-
cessed the scATAC-seq data with the ENCODE ATAC-seq pipeline
protocol (https://github.com/ENCODE-DCC/ATAC-seq-pipeline)
to obtain the filtered reads and called peaks using MACS2. The fil-
tered bam files from both scATAC-seq and bulk ATAC-seq were
converted into normalized bigwig files using deepTools2 (40).
When we aggregated similar neighbor scATAC-seq signals, we ad-
opted the bigWigMerge tool from the UCSC Genome Browser
website and then converted the bedGraph file into bigwig files using
a custom script. Bulk ATAC-seq and 35-bp uniqueness mapability
signal values were also binned to 1000 bp with loci consistent with
each ChIP-seq region.

Data preparation for machine learning

Bulk data

The bulk data were prepared as follows. Each bin was extracted
from human genome DNA sequence, which was then one-hot en-
coded into a 4 x 1000 feature vector S. To fully use the sequencing
signal data, the feature vector S was concatenated with both forward
and reverse strands of ATAC-seq/mapability feature to form a 2 x
1000 ATAC-seq feature vector A and the 2 x 1000 mapability fea-
ture vector U, which were all concatenated to form the input feature
vector Spyik. U refers to the uniqueness of a 35-bp subsequence on
the positive strand starting at a particular base.

Single-cell data

The single-cell input feature vector Ssc was prepared in a similar
manner to the bulk input feature vector. The DNA sequence feature
matrix S is now of the same length as Spy but is extracted from
peaks called from scATAC-seq data. We define the feature vector
Ay, which is the aggregated scATAC-seq input data. Ay is a feature

Fu et al., Sci. Adv. 2020; 6 : eaba9031 18 December 2020

vector identical to A in the pretrained model. The mapability fea-
ture vector U remains the same. The feature vectors S, A, and U
were concatenated into the single-cell input feature vector Sgc.
Aggregated scATAC-seq data

The aggregated scATAC-seq data were computed by calculating the
cell-cell similarity matrix using the scATAC-seq binarized cell-peak
count matrix, which also helped alleviate batch effects (fig. S7E).
We used cisTopic to calculate a low-dimensional cell-topic latent
feature and used cosine similarity to calculate the similarity between
one cell and other cells. For each cell, we considered its most 100
similar neighbor cells and aggregated their signals together to form
its aggregated scATAC-seq data (fig. S8A).

Batch effect correction

First, for each cell type with multiple batches, we collected all the
peaks from different batches separately. Second, for all the peaks
from each single cell, we used the pyBedtools software to detect the
peaks that are overlapped with all the peaks in other batches and
retained those peaks. Third, we removed the peaks that did not
overlap with any peaks in all the other batches, because those non-
overlapped peaks are potentially artifact sequencing regions that
could eventually cause batch effects. The retained peaks were then
used for further analysis.

Training and prediction
Calibration on the TF binding prediction
To train our pretrained models, we chose datasets from three differ-
ent cell lines. For the TFs that are only present in the dataset from
one cell line, those TF outputs were directly used to represent the
final TF prediction. If the same TF appeared in multiple cell lines,
we calculated the probability of intersecting peaks between called
peaks in the single-cell dataset and called peaks of each bulk dataset
separately. scFAN predicted these TFs on all the three models but
only chose one model result whose corresponding cell line has the
highest matched probability to the single cell and used its result to
represent TF binding (see details in fig. S8B).
Deep learning calculations
Because deep learning models, such as CNNs (9), provide a natural
and convenient way to make TF binding predictions, we either put
the input feature vectors Sgyik for the pretrained model or Sgc for
single-cell prediction in a three-layer two-dimensional CNN to ex-
tract the feature map. Two fully connected layers were connected to
the output feature map, the output of which was passed to a sigmoid
function to obtain the prediction of TF binding. Three different
pretrained models were trained on bulk data Sy from three differ-
ent cell lines (GM12878, K562, and HIESC). Each model was opti-
mized using the Adam algorithm and then individually used to
predict TF binding on the single-cell data Sgc. The overall deep
learning framework is shown in fig. S1. The TF binding predictions
were then used to calculate the TF activity score to prepare for
further clustering.

Our convolution calculation can be defined as follows

F; = max_pooling(ReLU(conv,(SF)) (1)
F, = max_pooling(ReLU(conv,(F;)) 2)
F5 = max_pooling(ReLU(convs(F,)) (3)
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21 = RCLU(W1 . F3) (4)
Zink = sigmoid(W, - z1) (5)

where Sr is either Spui or Ssc, and Fy, F, F3, z; denote the feature
maps of each convolutional layer and the output of the first fully
connected layer. Wi, W, refer to the weight matrix of the two fully
connected layers. The final output of the network is the probability
z of TF k binding to a peak n in each cell i, i.e., z; , r, Where k €
1---M, M being the total number of TFs of each cell from the pre-
trained model and n € 1---N, N being the total number of peaks per
cell. The parameters of the network are mostly in default settings,
and other settings such as the number of CNN layers and the kernel
sizes are adopted from FactorNet (10) and deepATAC (11). All the
parameters of the network are shown in table S2.

Partition choice

Our pretrained model was restricted to the same dataset partition
choice as in Quang et al. (10) for GM12878, H1-ESC, and K562:
Chromosomes 1, 8, and 21 were used for testing, chromosome 11
was used for evaluation, and the remaining chromosomes were
used for training (chromosome Y was excluded).

TF activity score

Here, we selected the top 2 potential predicted TF motifs of each
peak and aggregated all the predicted TFs of all the peaks in each
cell. We then normalized the value ci,k by calculating the proba-
bility across all peaks within a cell, which can be defined as the
activity score pc; i for TF k in cell i, shown as follows

(Zin kiopr> Zisoksope> -+ i) = ATGSOTE(Zi k) (6)
0’ | Zink < Zi,n,kmpz
Cink = > (7)
1> | Zink = Zi,n,kmpz
N
Cik = X Cink (8)
Cik
PCik = M; (9)
Loy Cik

Cell clustering

We clustered cells on the TF activity scores. To use all the activity
scores, we concatenated all the TF activity score results by column
from all three models for all the cells without artificially cutting off
any scores. We performed principal components analysis reduction
and hierarchical clustering and drew the t-SNE plots using the con-
catenated feature. To filter the low-quality cells in the Corces data-
set, we set the threshold of the fraction of total read counts per total
number of peaks per cell to be 0.05 and also set the threshold of total
read counts of each cell to be at least 1000 (fig. S2A). The scFAN
pipeline is shown in Fig. 1A.

Method comparison

There are several recently published models, such as scABC (30),
cisTopic (31), Cicero (33), SCALE (32), Brockman (34), and ChromVAR
(15), that are also designed to cluster single cells based on scATAC-
seq data. The first four methods all work with peak-by-cell binarized
read count matrix. In particular, scABC uses the read count matrix
to cluster cells via a weighted K-medoids clustering algorithm.

Fu et al., Sci. Adv. 2020; 6 : eaba9031 18 December 2020

cisTopic adopts latent Dirichlet allocation to convert the read count
matrix into a topic-cell low-dimensional matrix, which is further
used to clustering cells. Cicero applies latent semantic indexing to
reduce the high-dimensional matrix into low-dimensional matrix
similar to cisTopic. SCALE is a Variational AutoEncoder-based
deep learning model that uses a Gaussian mixture model to initial-
ize and model the cell clusters using binarized peak-cell matrix and
then uses the latent features to cluster the cells. ChromVAR is based
on scATAC-seq read counts and motifs in every peak: single-cell
read count matrix and corrected peak-motif matched binary matrix
are combined to calculate bias-corrected deviation and z-score matrix.
The “corrected” z-score matrix is used to cluster each individual
cell. Brockman uses adopted peaks to calculate k-mer frequency
within each sample cell, generating more than 1000 kinds of k-mer
frequency vectors of each cell and uses the combined matrix to cluster
the cells. We also used the raw binarized matrix to directly cluster
the cells as a benchmark. We used ARI, NMI, and V-measure score
to quantitatively measure the clustering performance of these methods.
We determined every cell label from each method using Euclidean
distance and hierarchical clustering based on #-SNE projections of
each method, which are the low-dimensional t-SNE embedding
matrices from scABC, cisTopics, Cicero, and SCALE, k-mer t-SNE
embedding matrix from Brockman, the motif correlation t-SNE
embedding matrix from chromVAR, and the TF appearance prob-
ability +-SNE embedding matrix from our model.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/51/eaba9031/DC1

View/request a protocol for this paper from Bio-protocol.
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