

CCS ’19, November 11–15, 2019, London, United Kingdom Sergey Frolov, Jack Wampler, Sze Chuen Tan, J. Alex Halderman, Nikita Borisov, and Eric Wustrow

To date, only TapDance [59], one of six Refraction Networking

proposals, has been deployed at ISP scale [20].

TapDance was designed for ease of deployment. Instead of in-line

network devices required by earlier schemes, it calls for only a pas-

sive tap. This łon-the-sidež approach, though much friendlier from

an ISP’s perspective, leads to major challenges when interposing

in an ongoing client-to-decoy connection:

• Implementation is complex and error-prone, requiring kernel

patches or a custom TCP stack.

• To avoid detection, the system must carefully mimic subtle

features of each decoy’s TCP and TLS behavior.

• The architecture cannot resist active probing attacks, where

the censor sends specially crafted packets to determinewhether

a suspected connection is using TapDance.

• Interactions with the decoy’s network stack limit the length

and duration of each connection, forcing TapDance to multi-

plex long-lived proxy connections over many shorter decoy

connections. This adds overhead and creates a traffic pattern

that is challenging to conceal.

Conjure In this paper, we present Conjure, a Refraction Network-

ing protocol that overcomes these challenges while retaining Tap-

Dance’s ISP-friendly deployment requirements Our key innovation

is an architecture that avoids having to actively participate in client-

to-decoy connections.

In our scheme (Figure 1), clients register their intentions to con-

nect to phantom hosts in the łdarkž or unused address space of

the deploying ISP. Once registered, clients can connect to these

phantom hosts IP addresses as if they were real proxy servers. The

Conjure station (deployed at an ISP) acts as the other end of these

connections, and responds as if it were a legitimate site or service.

To the censor, these phantom hosts appear as legitimate sites or

services, and even active probes will not reveal information that

would allow the censor to block them.

Phantom hosts are cheap to connect to, and greatly expand the

number of viable proxy endpoints that a censor must consider.

This increases the cost for censors to block, as they must detect and

block in real time. Meanwhile, even a censor that could theoretically

detect 90% of phantom hosts with confidence does not significantly

reduce the effectiveness of a circumvention system, giving Conjure

an advantage in the censor/circumventor cat-and-mouse game.

Conjure supports both IPv4 and IPv6, though we note that the

technique is especially powerful in IPv6, where censors cannot ex-

haustively scan the address space ahead of time to identify addresses

that change behavior. Because we fully control the proxy transport,

connections can live as long as needed, without the complexity

faced by TapDance.

We introduce the Conjure protocol (Section 4) and analyze its

security, finding that it resists a broader range of detection at-

tacks than TapDance. We have implemented Conjure (Section 5)

and deployed it on a 20 Gbps ISP testbed similar to the TapDance

deployment [20]. Compared to TapDance, we find that Conjure

has reduced complexity and substantially improved performance

(Section 6): on average, Conjure has 20% lower latency, 14% faster

download bandwidth, and over 1400 times faster upload bandwidth.

In addition, Conjure is significantly more flexible than existing Re-

fraction Networking protocols, allowing maintainers to respond to

future censor techniques with greater agility. We believe that these

advantages will make Conjure a strong choice for future Refraction

Networking deployments.

We have released the open source implementation of the Conjure

client at https://github.com/refraction-networking/gotapdance/tree/

dark-decoy.

2 BACKGROUND

Refraction Networking operates by injecting covert communica-

tion inside a client’s HTTPS connection with a reachable site, also

known as a decoy site. In a regular HTTPS session, a client es-

tablishes a TCP connection, performs a TLS handshake with a

destination site, sends an encrypted web request, and receives an

encrypted response. In Refraction Networking, at least one direc-

tion of this exchange is observed by a refraction station, deployed

at some Internet service provider (ISP). The station watches for a

covert signal from the client that this connection is to be used for

censorship circumvention. Upon seeing the signal, the station will

take over the HTTPS session, and establish a proxy session with

the client that can then be used for covert communication.

One of the key challenges for Refraction Networking is in taking

over a session. The station must start responding to the client’s

traffic as if it were the decoy destination, and at the same time

prevent the destination from sending its own responses back to

the client. A simple approach is to have the refraction station act

as an inline transparent proxy (Figure 2a) that forwards the traffic

between the client and the decoy site. After a TLS handshake has

been completed, the station terminates the connection with the

decoy site by sending a TCP reset and takes over the session with

the client.

An inline element, however, can significantly affect the relia-

bility and performance of the regular, non-refraction traffic of an

ISP. Cirripede [26] and Telex [60] attempted to mitigate this by

dynamically adding router rules to forward only a subset of traffic

from a registered client or an active session through the element,

but this nevertheless presented a deployability challenge.

TapDance [59] offered an alternative design that did not require

the blocking or redirection of traffic, but used a mirror port instead

(Figure 2b). In TapDance a client sends an incomplete HTTP request,

which causes the decoy site to pause waiting for more data while the

station takes over the connection in its place. After a client would

receive a packet initiated by the station, its TCP sequence numbers

would become desynchronized with the decoy site, causing the

decoy to ignore the packets sent by the client.

This approach reduced the barriers to deployment and TapDance

was used in production during a pilot study, serving upwards of

50 000 real-world users [20]. The tap-based approach, however, has

some disadvantages. A decoy site will only ignore packets as long

as the sequence numbers stay within its TCP window, and will

terminate the connection after a timeout. Frolov et al. report that

in their pilot, they eliminated roughly a third of potential decoy

sites due to their measured window or timeout values being too

small [20]. Even so, sessions that try to upload non-trivial data

amounts (in excess of about 15 KB) or last longer than the timeout

value (ranging from 20ś120 s) require the user to create new refrac-

tion connections, adding overhead, complexity, and opportunities

2

Conjure: Summoning Proxies from Unused Address Space CCS ’19, November 11–15, 2019, London, United Kingdom

Client Refraction
Station

Handshake

Decoy
Site

Handshake

TLS session TCP reset

(a) First generation systems for Refraction Networking, such as Telex

and Cirripede, operated as inline network elements, with the ability to

observe traffic and block specific flows. ISPs worried that if the inline

element failed, it could bring down the network.

Client

Refraction
Station

Decoy
Site

Handshake

TLS session [ignored]

Tap

(b) TapDance is a second-generation Refraction Network scheme that

operates without flow blocking, needing only to passively observe traffic

and inject packets. TapDance has recently been deployed at a mid-size

ISP, but the techniques used to silence the decoy site and participate in

the clientśdecoy TCP connection mid-stream add significant complexity,

performance bottlenecks, and detection risk.

Client

Refraction
Station

Registration Session

Decoy
Site

Dark Session

Tap

Phantom
Host

(c) Conjure, our third-generation RefractionNetworking design, overcomes

these limitations. It uses two sessions. First, the client connects to a decoy

site and embeds a steganographic registration message, which the station

receives using only a passive tap. Second, the client connects to a łphan-

tom hostž where there is no running server, and the station proxies the

connection in its entirety.

Figure 2: Evolution of Refraction Networking

for errors. Additionally, keeping the connections to the decoy site

open for tens of seconds uses up the site’s resources; Frolov et al.

found that a default configuration of the Apache web server would

only keep 150 simultaneous connections open, while the pilot de-

ployment would often result in dozens of connections to the same

decoy site, creating a scaling concern.

Conjure is able to avoid these problems by creating proxies at

unused IP addresses, allowing the station full control over a host it

has created, rather than forcing it tomimic an already existing decoy

(Figure 2c). This design obviates the need for taking over a session

already in progress, which both simplifies the implementation and

eliminates certain attacks, as we will discuss in Section 7.

Registration Signal In all implementations of Refraction Net-

working, a client must send a covert signal to the station to initiate

communication. This covert signal is embedded inside communica-

tion fields that must be indistinguishable from random by a censor

without access to a secret/private key available to the station. Past

implementations have used TCP initial sequence numbers [26], the

ClientRandom field inside a TLS handshake [29, 60], and the en-

crypted body of an HTTPS request [59]. In principle Conjure can

use any of these mechanisms for registration, but in our prototype

we used the HTTPS request body as it offers the greatest flexibility

for the amount of data that can be sent with the registration.

3 THREAT MODEL

Our deployment model is identical to that of TapDance: we only

require a passive tap at the deploying ISP, and the ability to inject

(spoofed) traffic from phantom hosts. Furthermore, we assume

asymmetric routing (i.e. that the tapmight only see packets from but

not to the client). However, we assume a stronger threat model for

the adversary than TapDance, as our design resists active attacks.

We assume the censor can block arbitrary IP addresses and net-

works, but faces a cost in doing so if it blocks potentially useful

resources. In particular, we assume it is difficult for the censor

to have complete knowledge of legitimate addresses used, and so

instead resorts to a blacklist approach to blocking proxies and objec-

tionable content. Whitelists are expensive for censors to maintain

and can stifle innovation, and are rarely employed by country-level

censors.

We assume that the censor can know what network the Con-

jure station(s) are deployed in and the prefixes phantom hosts are

selected from, but that blocking those networks outright brings

a collateral damage the censor is unwilling to suffer. Instead, the

censor aims to identify the addresses that are phantom hosts, and

block only those. We note this assumption supposes that the censor

does not mount effective routing decoy attacks [27, 49]; we discuss

these attacks further in Section 8.2.

We allow the censor access to the client to register and use its

own phantom hosts, so the system should ensure that these will

not reveal the phantom hosts of other users. The censor can also

actively probe addresses that it sees users accessing, and can employ

tools such as ZMap [11] to scan large network blocks, excepting

large IPv6 prefixes (e.g. a /32 IPv6 prefix contains 296 addresses).

Finally, we assume the censor can replay or preplay any connec-

tions that it suspects involve phantom hosts (or their registration)

in an attempt to confirm. However, the censor wishes to avoid

disrupting any connections before it knows for certain they are

from Conjure clients, lest they disrupt legitimate connections. This

means that injecting false data or corrupting TLS sessions is outside

the scope of the censor, but that the censor can send non-disruptive

probes (such as stale TCP acknowledgments) that would normally

be ignored. We emphasize that TapDance is observable by censors

that can send TCP packets in suspected connections, but that our

protocol is robust against this class of censor.

3

Conjure: Summoning Proxies from Unused Address Space CCS ’19, November 11–15, 2019, London, United Kingdom

packets that originate from the IP address of the registering client,

making the phantom host appear firewalled off to everyone but

the client. We note that censors have been observed taking over

client IP addresses for follow-up probing [14]. This would allow

censors to hijack registrations if they can connect within the small

window between client registration and connection. However this

only allows the censor to communicate to the local application

that handles transports, it does not connect them to the covert

address that the client indicated in their registration. Filtering by

client IP and phantom IP also prevents censors from enumerating

the address space before hand, as they would have to do so from

every potential client IP address. Simply scanning the prefixes with

ZMap [11] from a single vantage point would not reveal hosts that

only respond to specific IPs (e.g., firewalled subnets).

4.2 Transports

Once the client has registered, packets sent to the phantom host IP

address are detected at the station and passed to the local applica-

tion which provides proxy access to the client. A viable Conjure

transport has two main requirements: first, the protocol it uses with

the client must be difficult for the censor to passively detect and

block by traffic inspection. Second, the endpoint must resist active

probes by the censor (who does not know some shared secret).

Any protocol that satisfies these criteria can be used as an effec-

tive transport with Conjure. In this section, we describe various

existing protocols (OSSH and obfs4) as well as introduce our own

(Mask sites, TLS 1.3 eSNI, and phantom WebRTC clients) that can

be used in Conjure, and evaluate how each meet the necessary

requirements. Table 1 compares the application protocols. Conjure

uses a modular approach to transports because research into proxy

detection is ongoing. Having a variety of supported transports gives

clients a quick way to pivot and maintain proxy access even when

new proxy protocol vulnerabilities are discovered.

4.2.1 Obfuscated SSH. Obfuscated SSH [31] (OSSH) is a protocol

that attempts to mask the Secure Shell (SSH) protocol in a thin

layer of encryption. This makes it difficult for censors to identify

using basic packet filters, as there are no identifying headers or

fields to search for. Instead, Obfuscated SSH clients first send a

16-byte random seed, which is used to derive a symmetric key

that encrypts the rest of the communication. Early versions of

OSSH were passively detectable by censors, who could observe the

random seed and derive the key, allowing them to de-obfuscate the

protocol. These versions also did not protect against active probing

attacks, as a censor could easily create their own connections to

confirm if a server supports the protocol.

More recent versions of OSSH, such as those used by Psiphon [44],

mix a secret value into the key derivation, thwarting the naive pas-

sive detection/decryption attack. The secret is distributed out-of-

band along with the proxy’s address, and is unknown to a passive or

active-probing censor. If a client connects and cannot demonstrate

knowledge of the secret, the OSSH server does not respond, making

it more difficult for censors to discover OSSH servers via active

probing attacks.

4.2.2 obfs4. obfs4 [52] is a pluggable transport used by Tor [8] de-

signed to resist both passive detection and active probing. Traffic is

obfuscated by encrypting it and sending headerless ciphertext mes-

sages. Similar to OSSH, clients can only connect to obfs4 servers

by proving knowledge of a secret. Probing censors that do not have

the secret get no response from obfs4 servers, making it difficult

for censors to confirm if a host is a proxy. Server IPs and their cor-

responding secrets are normally distributed out-of-band through

Tor’s bridge distribution system.

During registration, the Conjure client and station could use

the registration seed to derive the obfs4 secrets (NODE_ID and

server private/public keys) needed for the client to connect. The

station could then launch an obfs4 server instance locally for the

client to connect to as a transport using the derived secrets. If a

censor attempts to connect to the phantom address (even using the

client’s IP), it will not receive a response, as it does not know the

registration seed used to derive the obfs4 secrets.

Using obfs4 as a Conjure application has the added benefit

that servers and secrets do not need to be distributed out-of-band,

eliminating one of the main ways censors currently block existing

obfs4 instances [7]. Instead, each Conjure obfs4 instance is private

to its registering client, and there is no public service that censors

can use to discover them.

4.2.3 TLS. TLS is a natural protocol for Conjure applications, be-

cause it is ubiquitous on the Internet (making it difficult for censors

to block), while also providing strong cryptographic protection

against passive and active network adversaries. However, there are

several challenges to make it robust against censors that wish to

block a particular service.

One challenge is that TLS sends important server-identifying

content in plaintext during the TLS handshake. This includes the

Server Name Indication (SNI) in the Client Hello message that

specifies the domain name, and the X.509 Certificate of the server.

To evade censors, we must send a plausible SNI value (sending no

SNI is uncommon and easily blockedÐonly 1% of TLS connections

do not send the SNI extension [21]), and we must have the server

respond with a plausible (and corresponding) certificate. Even if

we manage to avoid sending either in the clear (e.g. using session

resumption), censors could actively probe the server in a way that

would normally elicit a certificate.

Encrypted SNI TLS 1.3 [46] offers several features that may

greatly simplify Conjure transport design. For instance, TLS 1.3

handshakes include encrypted certificates, removing a strong traffic

classification feature. Unfortunately, TLS 1.3 currently still sends

the SNI in the (plaintext) Client Hello, meaning we would have to

choose a realistic domain to fool a censor.

However, there are proposals to encrypt the SNI in the Client

Hello [47], though none have been implemented or deployed as of

2019. Nonetheless, if widely adopted, Encrypted SNI (ESNI) would

offer a powerful solution for Conjure applications by allowing the

client to use plain TLS as the transport while remaining hidden from

the censor. Censors could still try to actively probe with guesses

for the SNI, but servers could respond with generic łUnknown

SNIž errors. If such responses were common for incorrect SNI, the

censor’s efforts to identify phantom hosts would be frustrated.

Mask Sites Another option to overcome active and passive prob-

ing attacks is to mimic existing TLS sites. In this application, we

simply forward traffic between any connecting clients and a real

5

CCS ’19, November 11–15, 2019, London, United Kingdom Sergey Frolov, Jack Wampler, Sze Chuen Tan, J. Alex Halderman, Nikita Borisov, and Eric Wustrow

TLS site. To a censor, our phantom site will be difficult to distin-

guish from the actual łmaskž site, making it expensive for them to

block without potentially blocking the real site. TLS connections

to the Conjure station will terminate exactly as connections to the

mask site would, with Conjure acting as a transparent TCP-layer

proxy between the client and mask site. However, this leaves the

application unable to introspect on the contents of the TLS con-

nection to the mask site, as it does not have the client-side shared

secrets, and it cannot overtly man-in-the-middle the connection

before knowing it is communicating with the legitimate client (and

not the censor).

To covertly signal to the relaying application, the client changes

the shared secret it derives with the mask site to something that

the Conjure station can also derive. The client’s first Application

Data packet is thus encrypted under a different secret than the

client/mask site secret. Specifically, the client uses the seed sent dur-

ing registration to derive the pre-master secret for the connection.

The new pre-master secret is hashed alongwith the client and server

randoms of the current (mask site) TLS connection to obtain the

master secret that determines encryption/decryption/authentication

keys.

The Conjure station can determine if the client did this by trial

decryption with the master secret derived from the known seed

shared at registration. If it succeeds, the client has proved knowl-

edge of the seed, and the application can respond as a proxy. If not,

the application simply continues to forward data between the client

and the mask site, in case a client’s IP was taken over by a censor

after registration. As the censor does not have knowledge of the

seed used in registration, it cannot coerce the application to appear

as anything besides the mask site.

Mask Site Selection Selecting which sites to masquerade as

must be done carefully to avoid censors being able to detect obvious

choices. For example, if a small university network has a phantom

host in their network that appears to be apple.com, it would be easy

for a censor to block as a likely non-legitimate host. Likewise, if a

phantom host at an IP address pretends to be a domain that globally

resolves to a single (different) IP address, the censor could also

trivially identify and block the phantom host. Several approaches

are possible:

Nearby sites: pick websites that are legitimately hosted in or near

the network of the phantom host addresses effectively creat-

ing copies of legitimate sites. However, other signals such

as DNS may reveal the true mask site.

Popular sites: choose mask sites from a list such as the Alexa top

site [1] list. Although it may be wise to avoid sites that are

obviously not hosted in the phantom host address range,

such as large companies that run their own data centers and

own their own ASN. The list could also be filtered to domains

that resolve to different IP addresses from different vantage

points, making it harder for a censor to know if a phantom

host corresponds to a domain’s IP.

Passive observation: collect sites by passively observing DNS re-

quests, TLS SNI, or certificates that pass by at the network

tap. This would allow for building a realistic set of sites that

are plausibly in the vicinity of the phantom host addresses

that pass by the tap.

O
SS
H
[3
1]

ob
fs
4
[5
2]

M
as
k
Si
te
s

TL
S
eS
N
I

W
eb
RT
C

Active probe resistant

Randomized or Tunneling R R T T T

Known passive attack [15] [53] - - -

Conjure implementation # # #

Table 1: Conjure ApplicationsÐ łActive probe resistantž protocols are

designed to look innocuous even if scanned by a censor. łTunnelingž (T)

protocols use another protocol (e.g. TLS) to blend in, while łRandomizedž

(R) ones attempt to have no discernable protocol fingerprint or headers. For

existing protocols, we list any known attacks suggested in the literature

that let censors passively detect them. We also list if we have implemented

the application in our prototype.

In practice, clients can often try multiple phantom hosts/mask

sites over several attempts, as blocking the client outright may

negatively impact other unrelated users behind the same network

(e.g. in the case of NAT). Thus, even a censor that can block most but

not all mask site usage (i.e. by employing website fingerprinting)

only delays access, and doesn’t prevent it outright.

4.2.4 PhantomWebRTC Clients. Phantom hosts could also pretend

to be clients instead of servers. This may potentially give censors

less to block on, as actively probing clients commonly returns few

or no open ports. A censor may also be hesitant to block client-to-

client communication, as it could block peer-to-peer applications

as well as many video conferencing protocols. WebRTC is a natural

choice for a client-to-client transport in censorship circumvention,

and is already used in existing schemes like Snowflake [23]. Conjure

could also use WebRTC as the transport protocol, convincing the

censor that two clients are communicating.

5 IMPLEMENTATION

We implemented Conjure and deployed a station at a mid-sized

transit ISP tapping traffic from a 20 Gbps router. We used PF_RING

to consume the 20 Gbps link, and feed it to a custom detector writ-

ten in Rust. The detector processes all packets and watches for new

registrations. Once a registration is detected the local application is

notified via an out-of-band ZMQ [61] connection, which provides

the registering client’s IP address, the seed, and other configuration

information. We note that this is not along a critical timing path

for proxying connections and no client packets are sent over ZMQ.

The detectors forwards all packets destined for a (registered)

phantom host address to the local application via tun interfaces

and iptables DNAT rules that rewrite the destination IP, allowing

the local application to accept and respond to connections using

the native operating system’s interface. Figure 4 shows the over-

all architecture of our implementation, which we describe in the

following subsections.

5.1 Detector

We implemented our detector in approximately 1,800 lines of Rust,

compared to over 5,000 lines for TapDance (excluding from both

auto-generated protobuf code).

6

CCS ’19, November 11–15, 2019, London, United Kingdom Sergey Frolov, Jack Wampler, Sze Chuen Tan, J. Alex Halderman, Nikita Borisov, and Eric Wustrow

Once the station accepts accepts a connection for a registered flow,

it initially acts as a transparent proxy to a mask site specified by the

client during registration. The application parses the handshake,

forwarding packets back and forth between client and mask site

without modification, extracting the server and client randoms. The

application attempts to decrypt the first application data record

from the client using a key derived from the secret seed, client,

and server randoms. We use the uTLS library [21, 41] on both the

application and client to allow us to change the TLS secrets being

used after the handshake.

If the decryption is successful, the application switches to for-

warding (decrypted) data back and forth with a client-specified

endpoint, such as a SOCKS proxy, which can provide multiple se-

cure connections over the single connection to the phantom host.

6 EVALUATION

To evaluate our Conjure implementation, we compare its band-

width and latency to that of TapDance in a realistic ISP setting. We

used a 20 Gbps network tap at a mid-sized ISP and run both imple-

mentations on a 1U server with an 8-core Intel Xeon E5-2640 CPU,

64GB of RAM, and a dual-port Intel X710 10GbE SFP+ network

interface. A typical week of bandwidth seen on the tap is shown in

Figure 5, ranging from 2.4 Gbps to peaks above 17 Gbps.

6.1 Performance

We evaluated the performance of a client from an India-based VPS.

Figures 6 and 7 show the upload and download bandwidth as mea-

sured by iperf for TapDance, our Conjure implementation (using

the mask site application), and a direct connection to our iperf

server in the ISP’s network.

TapDance must reconnect if the amount of data sent by the client

exceeds a short TCP window (typically on the order of 32 KBytes)

or the connection persists until a timeout (18-120 seconds). At each

reconnect, the TapDance client naively blocks until a new TLS con-

nection to the decoy and station has been established. Thus, when

uploading files, TapDance has to create a new TLS connection for

every 32 KBytes of data it sends, limiting its average upload band-

width to around 0.1 Mbps due to the high overhead. In contrast, our

Conjure implementation is able to maintain the same connection

during large uploads, and achieves performance inline with the

direct connection, over 1400 times faster.

During download-only workloads, TapDance is able to better uti-

lize the network, but must still reconnect before the decoy times out.

In our tests, we see TapDance reconnect every 25 seconds, which

can negatively impact the performance of downloads or any real-

time streaming applications. Again, our Conjure implementation

is able to maintain a single connection and provide the maximum

download rate without interruption, 14% faster than TapDance.

We also measure the latency of repeated small requests. In both

Conjure (using the OSSH protocol) and TapDance we establish a

single session tunnel using our integrated Psiphon client, and make

1000 requests through each using Apache Benchmark (ab). We

find that our India-based VPS throttles TLS but not OSSH, making

TapDance twice as slow as Conjure. We repeated these tests on

a US-based VPS which does not have such throttling, and show

results in Figure 8. TapDance’s frequent reconnects adds significant

latency to about 10% of requests. In addition, the median latency

of Conjure is about 19% faster, due to the added overhead of TLS

and the complex path that TapDance data packets take through the

station compared to Conjure.

6.2 Address Selection

Phantom host IP addresses must be derived from network blocks

that are routed (so they pass the Conjure station) and contain other

legitimate hosts (so that censors cannot block the entire network

without collateral damage). Because of the large number of IPv6 ad-

dresses, even moderately-sized network prefixes have astronomical

numbers of addresses: a single /32 prefix has 296 possible addresses.

Therefore, client-chosen seeds have negligible probability of cor-

responding to addresses that are already being used by legitimate

hosts. This allows us to select phantom host addresses from net-

work prefixes that contain legitimate hostsÐcrucial to discouraging

the censor from blocking them outrightÐwithout worry that regis-

trations could interfere with legitimate services.

6.2.1 IPv4. While Conjure works best with IPv6, it can also support

IPv4, with some careful caveats.

First, in IPv4, there are substantially fewer addresses, allowing

censors to potentially enumerate all the network prefixes that

pass by the ISP station, compose the list of innocuous sites, and

block other websites, as they are being summoned by Conjure. To

address this, Conjure phantom hosts are firewalled from all IPs

other than the client that registered them, providing a reason why

the address hasn’t been seen in an enumerating scan, conducted by

a censor from a single vantage point. Censors could attempt to scan

the network from all potential client vantage points, by co-opting

client IPs to perform scansÐa behavior previously observed by the

Great Firewall of China to scan for Tor bridges [14]. To prevent

this, for IPv4 Conjure, we dynamically generate the TCP port of

the phantom host (along with its IP) from the registration seed,

which further makes exhaustive scans infeasible: a censor that must

enumerate from the vantage point of a /10 of client IPs (4 million

IPs) to a /16 (65K IPs) of potential phantom proxies on each of 65K

potential ports would take nearly 50 years of scanning with ZMap

at 10 Gbps. We note that while the use of non-standard ports could

potentially be suspicious, several successful circumvention toolsÐ

including Psiphon [44] and obfs4 [52]Ðuse random ports on their

obfuscated protocols. Finally, we note that censors that whitelist

either standard ports or discovered hosts from enumerations scans

would over-block new services that came online after their scans.

A second problem in IPv4 Conjure is that the limited range of

IPs (and ports) makes it possible for a censor to pre-image the

hash used to derive the phantom address from the seed. Even with

the /16 of IPs and all 65K ports, in order to find a seed for any

desired address a censor needs to only test an expected 232 possible

seeds. The censor could then register a suspected address, and see

if it provides proxy access. If it does, the censor learns there is no

legitimate service there, and can block it. To combat this, we allow

only a single client to register for a particular phantom address at a

time. A censor could attempt to register all addresses in an attempt

to deny proxy service to legitimate users, but this would be easily

observed at the registration system, where rate limits via client

puzzles or account-based fees could be enforced.

8

CCS ’19, November 11–15, 2019, London, United Kingdom Sergey Frolov, Jack Wampler, Sze Chuen Tan, J. Alex Halderman, Nikita Borisov, and Eric Wustrow

performed a scan of 10 million IPv6 addresses in a routable /32

prefix to see if it is common to respond with such tell-tale ICMP

messages for unused messages. We found only 0.016% of addresses

responded with any ICMP messages (mainly łTime Exceededž and

łDestination Unreachablež).

Many legitimate hosts and routers do not respond to or forward

ICMP packets, and it is common for firewalls to block traceroutes

from penetrating inside networks. Thus, simply ignoring ICMP

messages (or low TTL packets that might be used by traceroute)

may be a viable strategy. Alternatively, we could spoof responses

to convince an adversary that a phantom host is part of a particular

network. However, this strategy requires careful consideration of

what network makes sense for a mask site to be in. Also, the censor

may try to probe for addresses around the phantom host (but still

likely to be in the same network), which must also be responded to.

8 RELATED WORK

Wefirst compare Conjurewith other RefractionNetworking schemes

and then discuss other related work.

8.1 Prior Refraction Networking Schemes

Since 2011, there have been several proposed Refraction Network-

ing schemes. Telex [60], Cirripede [26] and Decoy Routing (aka

Curveball) [29] are łfirst generationž protocols with nearly identical

features. These designs require inline flow blocking at the ISP to

allow the station to intercept flows with detected tags and act as

the decoy host for them. However, inline blocking is difficult for

ISPs to deploy, as it requires special-purpose hardware to be placed

inline with production traffic, introducing risk of failures and out-

ages that may be expensive for the ISP and potentially violate their

contractual obligations (SLAs).

TapDance [59] solves the issue of inline-blocking by coercing

the decoy into staying silent, and allowing the station to respond

instead. However, as previously described, this trick comes at a cost:

the decoy only stays silent for a short timeout (typically 30ś120 s),

and limits the amount of data the client can send before it responds.

TapDance clients must keep connections short and repeatedly re-

connect to decoys, increasing overhead and potentially alerting

censors with this pattern. Conjure addresses this issue and allows

clients to maintain long-lived connections to the phantom host.

Rebound [13] and Waterfall [40] both focus on routing asym-

metries and routing attacks by the censor. Rebound modifies the

client’s packets on the way to the decoy, and uses error pages on

the decoy site to reflect data back to the client. Waterfall only ob-

serves and modifies the decoy-to-client traffic, similarly using error

pages on the decoy to reflect communication from the client to

the station. These schemes also provide some resistance to traffic

analysis, as they use the real decoy to reflect data to the user. Thus,

the TCP/TLS behavior seen by the censor more closely matches

that of a legitimate decoy connection. However, latency and other

packet-timing characteristics may be observable, and both schemes

require some form of inline flow blocking.

Slitheen [3] focuses on addressing observability by replacing

data in packets sent by the legitimate decoy. Thus, even the packet

timings and sizes of a Slitheen connection match that of a legitimate

decoy connection. However, Slitheen also requires inline-blocking,

and introduces a large overhead as it has to wait for the subset

of data-carrying packets from the decoy that Slitheen can safely

replace. We note that the Slitheen model of mimicry is compatible

with Conjure, as we could use Slitheen as the application protocol.

Despite using a passive tap, our scheme is effectively inline to the

phantom host (which won’t otherwise respond).

Bocovich andGoldberg propose an asymmetric gossip scheme [4]

that combines a passive monitor on the forward path from the client

to the decoy with an inline blocking element on the return path.

These elements work in concert to allow schemes such as Telex

and Slitheen to work on asymmetric connections. This approach,

however, still requires inline blocking on one direction, and fur-

ther complicates deployment by requiring the installation of more

components and potentially complex coordination between them.

MultiFlow [34] uses refraction networking only as a forward mech-

anism to communicate a web request to the station, and then uses

a bulletin board or email to deliver the response back. It does not

require inline flow blocking as it does not modify users’ traffic at all,

but it fundamentally relies on a separate data delivery mechanism,

similar to other cloud- or email-based circumvention tools [5, 28].

Conjure allows a large amount of flexibility compared to previ-

ous schemes. Because we have significant degrees of freedom in

choosing the specific application the phantom host will mimic or

talk, our scheme can combine the best of existing Refraction Net-

working protocols to achieve high performance, be easy to deploy,

and also be resistant to active attacks such as replaying or prob-

ing by the censor. Table 2 lists the existing Refraction Networking

schemes and their features, as compared to Conjure.

8.2 Decoy Placement and Routing Attacks

Houmansadr et al. [26] found that placing refraction proxies in

a handful of Tier 1 networks would be sufficient for them to be

usable by the majority of the Internet population. Cesareo et al. [6]

developed an algorithm for optimizing the placement of proxies

based on AS-level Internet topology data. Schuchard et al. [49]

suggested that a censor may actively change its routes to ensure

traffic leaving its country avoids the proxies, but Houmansadr et

al. [27] suggested that real-world constraints on routing make this

attack difficult to carry out in practice. Nevertheless, Nasr et al. [39]

propose a game-theoretic framework to optimize proxy placement

in an adversarial setting, and the design of Waterfall [40] is in part

motivated by resilience to routing attacks, as it is more difficult for

the censor to control the return path from a decoy site, rather than

the forward path.

In practice, deployment of refraction networking has so far been

at access, rather than transit ISPs [20]. This may be in part because

a transit ISP has a large number of routers and points-of-presence,

significantly raising the costs of deployment [22].2 Likewise, we

expect Conjure to use address space announced by the ISP, rather

than addresses relayed by it, which mitigates routing-based attacks.

Depending on the size of the ISP, however, a censor may decide to

block the entirety of its address space, which would incur smaller

collateral damage than blocking all addresses seen by a transit ISP.

2We note that Gosain et al. [22] use an estimate of $885,000/proxy, while Frolov et
al. [20] report line-rate TapDance deployment using commodity hardware that costs
only several thousand dollars.

12

Conjure: Summoning Proxies from Unused Address Space CCS ’19, November 11–15, 2019, London, United Kingdom

Te
le
x
[6
0]

Ci
rr
ip
ed
e
[2
6]

D
ec
oy
Ro
ut
in
g
[2
9]

Ta
pD
an
ce
[5
9]

Re
bo
un
d
[1
3]

Sl
ith
ee
n
[3
]

W
at
er
fa
ll
[4
0]

C
on
ju
re

No inline blocking # # # # # #

Handles asym. routing # # #

Replay attack resistant #

Traffic analysis resistant # # # # G# G# #

Unlimited Session Length # # # #

Table 2: Comparing Refraction Networking SchemesÐ łNo inline blockingž corresponds to schemes that can operate as a passive tap on the side without

needing an inline element in the ISP network. łHandles asymmetric routesž refers to schemes that work when only one direction (either client to decoy or

decoy to server) is seen by the station. łReplay attacksž refers to censors who may replay/preplay previous messages or actively probe the protocol. łTraffic

analysisž includes latency, inter-packet timing, and website fingerprinting. łUnlimited Sessionsž shows schemes that do not need to repeatedly reconnect to

download or upload arbitrarily large content.

8.3 Avoiding Destination Blocking

Traditionally, proxies deployed for censorship are eventually iden-

tified and blocked by the censor. Several proposals have been made

to carefully control the distribution of proxy addresses, using so-

cial connections and reputation [9, 38, 55]. Nevertheless, keeping

this information secret is challenging; additionally, censors often

employ active scanning techniques to discover proxies [10]. Re-

fraction networking generally assumes that clients have no secret

information, and instead relies on the collateral damage that would

result from blocking all the potential decoy destinations. Conjure

furthers this goal by creating a large number of destinations out

of the dark space. A similar approach was conceptualized in DE-

FIANCE [32], where censored Tor clients connect to pools of ad-

dresses that are volunteered to run Tor bridge nodes. DEFIANCE

also requires volunteer web servers to run specialized servers to dis-

tribute information. Unlike Conjure, DEFIANCE was not designed

to run at an ISP, and involves many moving parts that present

single points of failure if blocked by a censor. In contrast, Con-

jure has a relatively simple yet flexible design, allowing it to easily

respond to censors. Another similar approach was taken by Cen-

sorSpoofer [54], which spoofed traffic from a large set of dummy

destinations. CensorSpoofer, however, could only send information

in one directionÐto the clientÐand had to rely on a separate out-of-

band channel for client-to-proxy communication. As an alternative

approach, FlashProxy [16] and Snowflake [23] allow users to run

Flash- or WebRTC-based proxies within their browser to allow

censored users to connect to the Tor network with the potential

to greatly increase the number. In practice, these proxies served

a very small number of users, as compared with other Tor bridge

transports.3

9 CONCLUSION AND FUTUREWORK

Conjure provides a much larger degree of engineering flexibility

than previous Refraction Networking schemes. Due to its modu-

lar design, different registration protocols and proxy transports

can be used interchangeably by the client. The flexibility of proxy

3https://metrics.torproject.org/userstats-bridge-transport.html?start=2017-
01-01&end=2019-02-15&transport=!<OR>&transport=websocket&transport=
snowflake

transports and simplicity of registration allows Conjure to incor-

porate state of the art censorship circumvention tools and resist

nation-state censors.

One obvious future direction is to study new options for regis-

tration and proxy transport. For instance, while Conjure currently

uses a TapDance- style covert channel for registration, we could

potentially cut down on the overhead of one-time registration by us-

ing port-knocking or using a Telex-style [60] tag (in the ClientHello

rather than Application Data).

Client-side applications Conjure provides an interesting op-

portunity to explore client mimicking phantom hosts. Rather than

pretend to be a server (e.g., a mask site), our transport itself could

connect to a newly registered client from the phantom host ad-

dress. Possible protocols could include WebRTC, mentioned in Sec-

tion 4.2.4, or other peer-to-peer protocols such as BitTorrent, Skype,

or Bitcoin.

Traffic analysis Conjure could also support applications that

tradeoff performance for observability. While Slitheen offers ideal

mimicry of decoys, it comes at a high cost of overhead. Conjure

transports such as mask site could implement Slitheen in order

to perfectly mimic the decoy site’s latency, packet timings, and

payload sizes. In addition, careful choice of mask sites may allow

for higher performance, as sites with more replaceable content can

carry more covert data.

Long-term deployment Ultimately, the goal for Refraction Net-

working protocols is to be useful in circumventing censorship.

While it has taken many years for research protocols to mature, we

are excited to see schemes like TapDance deployed in practice [20].

We believe Conjure can be even easier to deploy at scale, and we

hope to leverage the existing success of TapDance to place Conjure

stations at real ISPs.

ACKNOWLEDGMENTS

The authors thank the incredible partner organizations that have

made deployment of Refraction Networking a reality, especially

Merit Network and Psiphon. We also thank the University of Col-

orado IT Security and Network Operations staff. This material is

based in part upon work supported by the U.S. National Science

Foundation under Awards CNS-1518888 and OAC-1925476.

13

CCS ’19, November 11–15, 2019, London, United Kingdom Sergey Frolov, Jack Wampler, Sze Chuen Tan, J. Alex Halderman, Nikita Borisov, and Eric Wustrow

REFERENCES
[1] Alexa Internet, Inc. 2019. Alexa Top 500 Global Sites. https://www.alexa.com/

topsites.
[2] Daniel J Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. 2013.

Elligator: Elliptic-curve points indistinguishable from uniform random strings. In
20th ACM Conference on Computer and Communications Security (CCS). 967ś980.

[3] Cecylia Bocovich and Ian Goldberg. 2016. Slitheen: Perfectly imitated decoy
routing through traffic replacement. In 23rd ACM Conference on Computer and
Communications Security (CCS). 1702ś1714.

[4] Cecylia Bocovich and Ian Goldberg. 2018. Secure asymmetry and deployability
for decoy routing systems. Proceedings on Privacy Enhancing Technologies 2018,
3 (2018), 43ś62.

[5] Chad Brubaker, Amir Houmansadr, and Vitaly Shmatikov. 2014. CloudTransport:

Using Cloud Storage for Censorship-Resistant Networking. In The 14th Privacy
Enhancing Technologies Symposium (PETS).

[6] Jacopo Cesareo, Josh Karlin, Michael Shapira, and Jennifer Rexford. 2012. Opti-
mizing the Placement of Implicit Proxies.

[7] Roger Dingledine. 2011. Research problems: Ten ways to discover Tor bridges.
https://blog.torproject.org/research-problems-ten-ways-discover-tor-bridges

[8] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
Generation Onion Router. In 13th USENIX Security Symposium. 303ś320.

[9] Frederick Douglas, Rorshach, Weiyang Pan, and Matthew Caesar. 2016. Salmon:
Robust Proxy Distribution for Censorship Circumvention. PoPETs 2016, 4 (2016),
4ś20.

[10] Arun Dunna, Ciarán O’Brien, and Phillipa Gill. 2018. Analyzing China’s Blocking
of Unpublished Tor Bridges. In Free and Open Communications on the Internet.
8th USENIXWorkshop on Free and Open Communications on the Internet (FOCI
18).

[11] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. 2013. ZMap: Fast
Internet-Wide Scanning and its Security Applications. In 22nd USENIX Security
Symposium.

[12] K. P. Dyer, S. E. Coull, T. Ristenpart, and T Shrimpton. 2013. Protocol misidentifi-
cation made easy with format-transforming encryption. In 20th ACM Conference
on Computer and Communications Security (CCS). 61ś72.

[13] Daniel Ellard, Alden Jackson, Christine Jones, Victoria Manfredi, W. Timothy
Strayer, Bishal Thapa, and Megan Van Welie. 2015. Rebound: Decoy routing on
asymmetric routes via error messages. In 40th IEEE Conference on Local Computer
Networks (LCN). 91ś99.

[14] R. Ensafi, D. Fifield, P. Winter, N. Feamster, N. Weaver, and V. Paxson. 2015.
Examining How the Great Firewall Discovers Hidden Circumvention Servers. In
15th ACM Internet Measurement Conference (IMC). 445ś458.

[15] David Fifield. 2017. Threat modeling and circumvention of Internet censorship.
Ph.D. Dissertation. University of California, Berkeley.

[16] David Fifield, Nate Hardison, Jonathan Ellithorpe, Emily Stark, Roger Dingledine,
Phil Porras, and Dan Boneh. 2012. Evading Censorship with Browser-Based
Proxies. In 12th Privacy Enhancing Technologies Symposium (PETS). 239ś258.

[17] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. 2015.
Blocking-resistant communication through domain fronting. Proceedings on
Privacy Enhancing Technologies 2015, 2 (2015), 46ś64.

[18] Pawel Foremski, David Plonka, and Arthur Berger. 2016. Entropy/ip: Uncovering
structure in ipv6 addresses. In Proceedings of the 2016 Internet Measurement
Conference. ACM, 167ś181.

[19] Freedom House. 2018. Freedom on the Net 2018: The Rise of Digital Authoritari-
anism. https://freedomhouse.org/sites/default/files/FOTN_2018_FinalBooklet_
11_1_2018.pdf.

[20] Sergey Frolov, FredDouglas,Will Scott, AllisonMcDonald, Benjamin VanderSloot,
Rod Hynes, Adam Kruger, Michalis Kallitsis, David Robinson, Nikita Borisov,
J. Alex Halderman, and Eric Wustrow. 2017. An ISP-scale deployment of Tap-
Dance. Free and Open Communications on the Internet (FOCI) (2017), 49.

[21] Sergey Frolov and Eric Wustrow. 2019. The use of TLS in Censorship Circum-
vention. In 2019 Network and Distributed System Security Symposium (NDSS).

[22] Devashish Gosain, Anshika Agarwal, Sambuddho Chakravarty, andH. B. Acharya.
2017. The Devil’s in The Details: Placing Decoy Routers in the Internet. In
Proceedings of the 33rd Annual Computer Security Applications Conference (ACSAC
2017). ACM, 577ś589.

[23] Serene Han. 2017. Snowflake. https://trac.torproject.org/projects/tor/wiki/doc/
Snowflake.

[24] Jamie Hayes and George Danezis. 2016. k-fingerprinting: A robust scalable
website fingerprinting technique. In 25th USENIX Security Symposium. 1187ś
1203.

[25] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. 2013. The Parrot
is Dead: Observing Unobservable Network Communications. In The 34th IEEE
Symposium on Security and Privacy.

[26] Amir Houmansadr, Giang T. K. Nguyen, Matthew Caesar, and Nikita Borisov.
2011. Cirripede: Circumvention infrastructure using router redirection with
plausible deniability. In 18th ACM Conference on Computer and Communications
Security (CCS). 187ś200.

[27] Amir Houmansadr, Edmund L. Wong, and Vitaly Shmatikov. 2014. No Direction
Home: The True Cost of Routing Around Decoys. In 21st Annual Network and
Distributed System Security Symposium, NDSS 2014. The Internet Society.

[28] Amir Houmansadr, Wenxuan Zhou, Matthew Caesar, and Nikita Borisov. 2017.
SWEET: Serving the Web by Exploiting Email Tunnels. IEEE/ACM Transactions
on Networking 25, 3 (Jan 2017).

[29] Josh Karlin, Daniel Ellard, Alden W. Jackson, Christine E. Jones, Greg Lauer,
David P. Mankins, and W. Timothy Strayer. 2011. Decoy Routing: Toward Un-
blockable Internet Communication. In 1st USENIX Workshop on Free and Open
Communications on the Internet (FOCI).

[30] Redis Labs. 2019. Redis is open source, in-memory data structure store. https://
redis.io/.

[31] Bruce Leidl. 2009. Obfuscated SSH. https://github.com/brl/obfuscated-openssh
[32] Patrick Lincoln, Ian Mason, Phillip A Porras, Vinod Yegneswaran, Zachary Wein-

berg, Jeroen Massar, William Allen Simpson, Paul Vixie, and Dan Boneh. 2012.
Bootstrapping Communications into an Anti-Censorship System. In 2nd USENIX
Workshop on Free and Open Communications on the Internet. USENIX.

[33] Colm MacCarthaigh. 2018. Enhanced Domain Protections for Amazon Cloud-
Front Requests. https://aws.amazon.com/blogs/security/enhanced-domain-
protections-for-amazon-cloudfront-requests/.

[34] Victoria Manfredi and Pi Songkuntham. 2018. MultiFlow: Cross-Connection
Decoy Routing using TLS 1.3 Session Resumption. In 8th USENIX Workshop on
Free and Open Communications on the Internet (FOCI 18). USENIX Association.

[35] Bill Marczak, Nicholas Weaver, Jakub Dalek, Roya Ensafi, David Fifield, Sarah
McKune, Arn Rey, John Scott-Railton, Ron Deibert, and Vern Paxson. 2015. An
analysis of China’s łGreat Cannonž. FOCI. USENIX (2015), 37.

[36] Moxie Marlinspike. 2016. Doodles, stickers, and censorship circumvention for
Signal Android. https://signal.org/blog/doodles-stickers-censorship/.

[37] Moxie Marlinspike. 2018. Amazon threatens to suspend Signal’s AWS account
over censorship circumvention. https://signal.org/blog/looking-back-on-the-
front/.

[38] Damon McCoy, Jose Andre Morales, and Kirill Levchenko. 2012. Proximax:
Measurement-driven Proxy Dissemination (Short Paper). In Proceedings of the
15th International Conference on Financial Cryptography and Data Security (FC’11).
Springer-Verlag, Berlin, Heidelberg, 260ś267.

[39] Milad Nasr and Amir Houmansadr. 2016. GAME OF DECOYS: Optimal Decoy
Routing Through Game Theory. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, Vienna, Austria, October 24-28,
2016. ACM, 1727ś1738.

[40] Milad Nasr, Hadi Zolfaghari, and Amir Houmansadr. 2017. The waterfall of
liberty: Decoy routing circumvention that resists routing attacks. In 24th ACM
Conference on Computer and Communications Security (CCS). 2037ś2052.

[41] Refraction Networking. 2019. uTLSÐfork of the Go standard TLS library, provid-
ing low-level access to the ClientHello for mimicry purposes. https://github.com/
refraction-networking/utls/.

[42] Ntop . PF_RING. http://www.ntop.org/products/pf_ring.
[43] Open Whisper Systems . Signal Private Messenger. https://signal.org/.
[44] Psiphon . Psiphon. https://psiphon.ca.
[45] Refraction Routing Site [n.d.]. Refraction Networking: Internet freedom in the

network’s core. https://refraction.network/.
[46] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.

RFC 8446.
[47] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. 2018. En-

crypted Server Name Indication for TLS 1.3. Internet-Draft draft-ietf-tls-esni-02.
Internet Engineering Task Force. Work in Progress.

[48] David Robinson, Harlan Yu, and Anne An. 2013. Collateral freedom: A snapshot
of chinese Internet users circumventing censorship. Open Internet Tools Project
Report (2013).

[49] Max Schuchard, John Geddes, Christopher Thompson, and Nicholas Hopper.
2012. Routing around decoys. In 19th ACM Conference on Computer and Commu-
nications Security (CCS). 85ś96.

[50] Shadowsocks. 2019. Shadowsocks: A secure SOCKS5 proxy.
[51] Payap Sirinam, Mohsen Imani, Marc Juarez, and MatthewWright. 2018. Deep fin-

gerprinting: Undermining website fingerprinting defenses with deep learning. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1928ś1943.

[52] The Tor Project . obfs4 Specification. https://gitweb.torproject.org/pluggable-
transports/obfs4.git/tree/doc/obfs4-spec.txt.

[53] Liang Wang, Kevin P Dyer, Aditya Akella, Thomas Ristenpart, and Thomas
Shrimpton. 2015. Seeing through network-protocol obfuscation. In 22nd ACM
Conference on Computer and Communications Security (CCS). ACM, 57ś69.

[54] Qiyan Wang, Xun Gong, Giang T. K. Nguyen, Amir Houmansadr, and Nikita
Borisov. 2012. CensorSpoofer: Asymmetric Communication using IP Spoofing for
Censorship-Resistant Web Browsing. In Computer and Communications Security.
ACM.

[55] Qiyan Wang, Zi Lin, Nikita Borisov, and Nicholas Hopper. 2013. rBridge: User
Reputation based Tor Bridge Distribution with Privacy Preservation. In 20th
Annual Network and Distributed System Security Symposium, NDSS 2013. The

14

Conjure: Summoning Proxies from Unused Address Space CCS ’19, November 11–15, 2019, London, United Kingdom

Internet Society.
[56] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.

Effective attacks and provable defenses for website fingerprinting. In 23rd USENIX
Security Symposium. 143ś157.

[57] Tim Wilde. Jan. 7, 2012. Knock knock knockin’ on bridges’ doors. Tor Blog.
https://blog.torproject.org/blog/knock-knock-knockin-bridges-doors.

[58] Philipp Winter and Stefan Lindskog. 2012. How the Great Firewall of China is
Blocking Tor. In 2nd USENIX Workshop on Free and Open Communications on the

Internet. USENIX.
[59] Eric Wustrow, Colleen M. Swanson, and J. Alex Halderman. 2014. TapDance:

End-to-Middle Anticensorship without Flow Blocking. In 23rd USENIX Security
Symposium. 159ś174.

[60] Eric Wustrow, Scott Wolchok, Ian Goldberg, and J. Alex Halderman. 2011. Telex:
Anticensorship in the Network Infrastructure. In 20th USENIX Security Sympo-
sium.

[61] ZeroMQ . ZeroMQ Distributed Messaging. http://zeromq.org/.

15

	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Architecture
	4.1 Registration
	4.2 Transports

	5 Implementation
	5.1 Detector
	5.2 Client
	5.3 Application and Transports

	6 Evaluation
	6.1 Performance
	6.2 Address Selection

	7 Attacks and Defenses
	7.1 Probing phantom hosts
	7.2 Passive identification
	7.3 Blocking registration
	7.4 ICMP

	8 Related Work
	8.1 Prior Refraction Networking Schemes
	8.2 Decoy Placement and Routing Attacks
	8.3 Avoiding Destination Blocking

	9 Conclusion and Future Work
	Acknowledgments
	References

