
Let’s Encrypt: An Automated Certificate
Authority to Encrypt the Entire Web

Josh Aas∗

Let’s Encrypt
Richard Barnes∗

Cisco
Benton Case

Stanford University

Zakir Durumeric
Stanford University

Peter Eckersley∗

Electronic Frontier Foundation
Alan Flores-López
Stanford University

J. Alex Halderman∗2

University of Michigan
Jacob Hoffman-Andrews∗

Electronic Frontier Foundation
James Kasten∗

University of Michigan

Eric Rescorla∗

Mozilla
Seth Schoen∗

Electronic Frontier Foundation
Brad Warren∗

Electronic Frontier Foundation

ABSTRACT

Let’s Encrypt is a free, open, and automated HTTPS certificate au-

thority (CA) created to advance HTTPS adoption to the entire Web.

Since its launch in late 2015, Let’s Encrypt has grown to become the

world’s largest HTTPS CA, accounting for more currently valid cer-

tificates than all other browser-trusted CAs combined. By January

2019, it had issued over 538 million certificates for 223 million do-

main names. We describe how we built Let’s Encrypt, including the

architecture of the CA software system (Boulder) and the structure

of the organization that operates it (ISRG), and we discuss lessons

learned from the experience. We also describe the design of ACME,

the IETF-standard protocol we created to automate CAśserver inter-

actions and certificate issuance, and survey the diverse ecosystem

of ACME clients, including Certbot, a software agent we created to

automate HTTPS deployment. Finally, we measure Let’s Encrypt’s

impact on the Web and the CA ecosystem. We hope that the success

of Let’s Encrypt can provide a model for further enhancements to

the Web PKI and for future Internet security infrastructure.

CCS CONCEPTS

· Networks → Web protocol security; · Security and privacy →

Security services; Usability in security and privacy.
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1 INTRODUCTION

HTTPS [78] is the cryptographic foundation of the Web, providing

an encrypted and authenticated form of HTTP over the TLS trans-

port [79]. When HTTPS was introduced by Netscape twenty-five

years ago [51], the primary use cases were protecting financial

transactions and login credentials, but users today face a growing

range of threats from hostile networksÐincluding mass surveil-

lance and censorship by governments [99, 106], consumer profiling

and ad injection by ISPs [30, 95], and insertion of malicious code

by network devices [68]Ðwhich make HTTPS important for prac-

tically every Web request. Many cryptographic flaws in TLS have

been discovered and mitigated (e.g., [11, 13, 17, 23, 37, 69]), but low

adoption of HTTPS posed an even starker risk: as recently as 2015,

55ś70% of browser page loads used plaintext HTTP [47].

A major barrier to wider HTTPS adoption was that deploying

it was complicated, expensive, and error-prone for server opera-

tors [22, 57]. Most of the difficulty involved interactions with Certifi-

cate Authorities (CAs), entities trusted by Web browsers to validate

a server’s identity and issue a digitally signed certificate binding the

identity to the server’s public key. (Modern TLS implementations

have negligible performance overhead in typical applications [48,

59].) To obtain and install a certificate, a server operator had to use

arcane key generation software and configuration directives, follow

manual steps to prove control of the domain name, and complete

a payment transaction to a CA. The process was burdensome for

smaller sites and difficult to integrate into large hosting platforms.

To reduce these barriers, facilitate broad adoption of HTTPS,

and improve security for all Web users, we created Let’s Encrypt,

a CA that offers domain-validated certificates through a standard

protocol at no cost to server operators. Let’s Encrypt is the first

browser-trusted CA designed for complete automation: identity

validation and certificate issuance are fully robotic, and neither

Web server operators nor CA staff need to take any manual steps.

Automation serves several goals for Let’s Encrypt. On the Web

server side, it greatly reduces the human effort required for HTTPS

deployment, alongwith the concomitant risk of configuration errors

that can lead to security problems [9, 14]. Automated support for

Let’s Encrypt has been integrated into Web server software [40, 67],

IOT devices [16], large host platforms [71, 75], and CDNs [12].
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On the CA side, automation bolsters security by reducing op-

portunities for human error, historically a frequent cause of misis-

suance events [86]. The only way for Let’s Encrypt to validate a

domain and issue a certificate is through the normal API; there is no

manual override. Moreover, avoiding human intervention allows

Let’s Encrypt to keep the cost-per-certificate low and provide cer-

tificates at no charge. This eliminates two important impediments

to HTTPS adoption: financial burdens and payment friction.

We designed Let’s Encrypt to scale to the size of the entire Web.

In just over three years of operation, it has issued more than 538

million certificates covering 223million domain names. Today, there

are more currently valid browser-trusted certificates issued by Let’s

Encrypt than issued by all other CAs combined.

This paper reports on our experiences building Let’s Encrypt over

the past seven years. We focus on three main results of that work:

ISRG Let’s Encrypt is operated by an independent nonprofit we

established called the Internet Security Research Group (ISRG).

Running a CA requires round-the-clock operations staff, physically

protected server infrastructure, and regular security and compli-

ance audits, all of which ISRG oversees. Section 3 describes the

organization’s history and structure, its operating costs and fund-

ing model, and how it navigated becoming a trusted issuer and

gaining acceptance in all major root programs.

ACME The key to Let’s Encrypt’s automation is ACME, a pro-

tocol for performing CAśserver interactions, including certificate

requests, domain validation, issuance, renewal, and revocation. Sec-

tion 4 explains the principles behind ACME’s design and operation,

along with lessons learned while building it. ACME has recently

been standardized by the IETF as RFC 8555 [20].

Boulder Let’s Encrypt is powered by Boulder, an open-source

ACME-based CA implementation designed for security, scalability,

and high reliability. Section 5 describes Boulder’s architecture, in-

cluding design features motivated by past CA security failures, and

discusses how Let’s Encrypt operates Boulder in production.

Over the four years since Let’s Encrypt launched, the fraction

of browser page-loads that take place over HTTPS has approxi-

mately doubled, to 72ś95%, according to telemetry from Google

Chrome [47]. To shed light on how Let’s Encrypt’s has contributed

to and helped shape this growth, we combine the CA’s metrics with

data from Internet-wide scans and Certificate Transparency logs

(Sections 6 and 7). We find that more than a third of Alexa Top

Million sites use Let’s Encrypt, and Let’s Encrypt is the fourth most

popular CA in terms of handshakes from Firefox Beta users. We also

survey the diverse ecosystem of ACME clients that Web servers

and hosting providers use to acquire Let’s Encrypt certificates, and

describe the widely used ACME client we created, Certbot.

We hope that the success of Let’s Encrypt can serve as amodel for

future efforts to create usable, scalable, and robust Internet security

infrastructure. To help guide such efforts, Section 8 discusses some

of the factors that we believe helped Let’s Encrypt succeed where

other proposals to provide universal server authentication have not.

We also discuss major challenges facing the Web that Let’s Encrypt

has not solvedÐincluding combating phishing and securing domain

validation against network attacksÐand call for further security

research to address them.

2 HTTPS BEFORE & AFTER LET’S ENCRYPT

HTTPS provides a simple experience for browser users: so long as

the server presents a valid certificate that the browser trusts, users

receive the benefits of an authenticated and encrypted connection

without taking any action. For server operators, however, provi-

sioning HTTPS had long been far more difficult. In this section, we

review the state of affairs prior to Let’s Encrypt’s launch in late 2015,

and we highlight several challenges inhibiting widespread HTTPS

deployment that Let’s Encrypt is designed to help overcome.

2.1 Certificate Costs and Marketplace

High prices for certificates were (and still are) common, as shown

in Table 1. In 2015, the average price for a one-year single-domain

certificate from the five largest CAs was $178, and for a wildcard

certificate it was $766. (Prices for the same products from these CAs

today are the same or higher.) Lower-cost alternatives did exist,

but often came with significant limitations; because browsers treat

all domain-validated certificates identically, they were the subject

of extensive market segmentation by the CAs. One CA, StartCom

offered free certificates for non-commercial use starting in 2011;

however, it charged for revocation, which proved to be a source of

problems when Heartbleed [37] forced many sites to revoke [108].

Beyond high prices, the certificate marketplace was complex and

difficult for server operators to navigate, as evinced by the existence

of third-party review sites such as SSL Shopper [91], which helped

administrators compare prices and value for CA products. CAs often

bundled certificates with additional services such as łvulnerability

assessment scansž [92] and warranties covering losses to relying

parties if the certificate was issued in error [45]. These add-ons

could make it harder for customers to assess the true value of

certificates. Some CAs even charged higher prices for certificates on

keys that used more modern cryptographic algorithms; for example,

Symantec charged $597 more per year to issue a certificate for an

elliptic curve key [27] than for an RSA key [92].

Let’s Encrypt offers domain-validated certificates for all domains

at no cost. This eliminates financial barriers to HTTPS adoption

and greatly lessens friction from confusion and transaction costs.

2.2 Obtaining and Installing a Certificate

Prior to our work, the process of obtaining a certificate and config-

uring an HTTPS server was often manual and tedious [22]. First,

system administrators had to recognize that they needed a certifi-

cate and navigate the confusing marketplace. Then they had to

Certificate Authority
Mid-2015 Prices Mid-2019 Prices

Single Wildcard Single Wildcard

GoDaddy [45, 46] $69 $332 $79 $369

Comodo/Sectigo [31, 85] $76 $404 $92 $422

GeoTrust [43, 44] $149 $499 $149 $688

DigiCert [32, 33] $195 $595 $207 $653

Symantec [92, 93] $399 $1999 $399 $1999

Table 1: Prices for a one-year certificate for non-free CAs with the

largest market shares. Single domain offerings are domain-validated; wild-

card offerings sometimes require organization validation. The 2015 prices

are from shortly before Let’s Encrypt began offering service to the public.
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generate a private key, create a certificate signing request (CSR),

and perform the verification steps required by the CA. After waiting

(sometimes for days or more) for the CA to issue the certificate, they

had to figure out how to configure their server with the certificate

and the appropriate trust chain. All these steps typically involved

esoteric commands, and in practice many users blindly followed a

tutorial. Even when a CA issued a certificate immediately, usability

studies show that it would often take administrators over an hour

to install the certificate on their servers [57]. These tasks had to be

repeated every year or so when the certificate expired.

Besides being difficult, manual HTTPS server setup carries the

risk of introducing security vulnerabilities through misconfigura-

tion. A study in 2013 found that only 45% of certificates on HTTPS

servers were correctly configured, while about 13% were config-

ured so poorly that their corresponding Web sites were completely

inaccessible for some clients [36].

Certificate renewals present additional challenges. Expired cer-

tificates can cause browser warnings for site visitors, so adminis-

trators run the risk of driving away customer traffic if they fail to

replace old certificates before they expire. Prior to Let’s Encrypt,

renewal lapse occurred for about 20% of trusted certificates [36].

Let’s Encrypt seeks to overcome all these problems through

automation. We designed the ACME protocol (Section 4) to allow

software agents on HTTPS servers to obtain, provision, and renew

certificates automatically, with no user interaction. Third-party

contributors have created a rich ecosystem of ACME clients that

automate HTTPS deployment on systems ranging from IoT devices

to traditional Web servers to large hosting platforms (see Section 6).

To further promote automation, Let’s Encrypt limits certificate

lifetimes to 90 days, rather than one or multiple years as CAs have

traditionally offered. This is short enough to strongly encourage

operators to automate things (few people will want to manually re-

new certificates every quarter) but long enough to allow for manual

renewal if necessary in a particular deployment. Shorter certificate

lifetimes potentially enhance security, since they lessen reliance

on certificate revocation in the event of key compromise [97], and

some clients do not check revocation status [61].

2.3 CA Validation Practices

Validating the identity of certificate subjects is one of the main jobs

of any CA. The CA/Browser ForumÐa voluntary consortium of CAs

and browser and platform vendors that works to standardize Web

PKI ecosystem rulesÐdefines several categories of validation [28].

For łDomain Validationž (DV), CAs confirm that the requester

has control over the domain name to be listed in the certificate.

For łOrganization Validationž (OV), CAs verify public business

registration documents for the requesting organization. łExtended

Validationž (EV) takes this process even further, with more intensive

checks of proper ownership of identifiers.

OV and EV require manual submission and verification of iden-

tity documents, which significantly slows the issuance process [29].

Some CAs limit useful certificate features (such as wildcard names)

to these stricter and more expensive validation levels [43].

OV and EV were intended to provide greater protection for

site visitors [29]. However, research has found that users do not

notice or understand the distinction between validation levels [96],

negating the potential security benefit. Consequently, Chrome [73],

Firefox [94], and Safari [53] have or will soon drop UI distinctions

between validation levels. Moreover, Web clients treat all valid

certificates for a given domain, whatever the validation level, as

the same security context [21], further undermining the security

benefit of OV and EV certificates.

Let’s Encrypt offers only domain validation, since only DV can

be completely automated and the security benefits of OV and EV are

unclear. The CA provides both regular and wildcard DV certificates,

and supports several methods of verifying control of a domain (see

Section 4) to cover a wide spectrum of use cases.

3 ISRG: THE HOME OF LET’S ENCRYPT

Creating an automated CA that could scale to the size of theWeb re-

quired more than building software and protocols. We also needed

to establish an organization to operate the CA, develop processes

that would provide high security and high availability, find a sus-

tainable funding model, and become a trusted issuer so that our

certificates would be accepted by major browsers and platforms. In

this section, we discuss how ISRG, the organization that runs Let’s

Encrypt, came to be, and how it accomplished these goals.

3.1 History and Organizational Structure

Let’s Encrypt was created through the merging of two simultaneous

efforts to build a fully automated certificate authority. In 2012, a

group led by Alex Halderman at the University of Michigan and

Peter Eckersley at EFF was developing a protocol for automatically

issuing and renewing certificates. Simultaneously, a team at Mozilla

led by Josh Aas and Eric Rescorla was working on creating a free

and automated certificate authority. The groups learned of each

other’s efforts and joined forces in May 2013.

That month, they formed the Internet Security Research Group

(ISRG), a nonprofit corporation, to be the legal entity operating

Let’s Encrypt. It was decided that ISRG should be a nonprofit be-

cause nonprofit governance requirementsÐsuch as no profit motive,

no ownership, relatively high transparency, and a public service

missionÐwould help ensure that the organization served the public

in a stable and trustworthy manner over the long term. Josh Aas

has served as ISRG’s Executive Director since its founding.

Initially, ISRG had no full-time staff. Richard Barnes of Mozilla,

Jacob Hoffman-Andrews of EFF, and Jeff Hodges (under contract

with ISRG) began developing Let’s Encrypt’s CA software stack.

Josh Aas and J.C. Jones, both with Mozilla at the time, led infras-

tructure development with assistance from Cisco and IdenTrust

engineers. ISRG’s first full-time employee, Dan Jeffery, joined in

April 2015 to help prepare the CA’s infrastructure for launch. Simul-

taneously, James Kasten, Peter Eckersley, and Seth Schoen worked

on the initial ACME client (which would eventually become Cert-

bot) while at the University of Michigan and EFF. Kevin Dick of

Right Side Capital Management, John Hou of Hou & Villery, and

Josh Aas constituted the team responsible for completing a trusted

root partnership deal and signing initial sponsors.

Let’s Encrypt was publicly announced on November 18, 2014 [1],

issued its first browser-trusted certificate on September 14, 2015 [4],

and began providing service to the public on December 3, 2015 [2].

As of May 2019, ISRG had 13 full-time staff: six site reliability

engineers, three software developers, and four administrative staff.
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over the DNS zone in question (and such control could be used to

provision arbitrary subdomains and obtain certificates for them).

In the 90 days preceding September 22, 2019, Let’s Encrypt com-

pleted 266M successful challenges with ACME clients. Of these,

86% used HTTP, 13% used DNS, and 0.3% used TLS-ALPN.

4.3 Security Improvements

While ACMEv1 and ACMEv2 share many attributes, several sig-

nificant changes were made in ACMEv2 in response to security

analyses performed during the IETF standardization process.

Bhargavan et al. formally verified the security of ACME [24].

They modeled the protocol in the applied pi calculus and demon-

strated its security in an even more robust threat model than the

one addressed by traditional CAs’ issuance processes. However,

their work also uncovered weaknesses involving some subtle au-

thentication properties. ACMEv2 incorporates improvements based

on their recommendations.

IETF security review also highlighted some areas for privacy

improvements Most notably, all GET requests (which lacked any

authentication) were replaced with authenticated POST requests,

so that CAs can apply appropriate authorization policies.

ACME validation methods have also evolved in response to se-

curity findings. In general, all validation methods that rely on em-

pirical validation of control (as all of the above do) are vulnerable

to network-layer attacks on the validation process, such as BGP

hijacking to reroute validation requests [25, 26, 84]. The ACME RFC

discusses these risks in detail, and suggests some mitigations [20].

However, validation methods face a range of other, often subtle

threats due to the diversity of server and hosting-provider behavior.

During ACME’s development, two additional challenges types were

proposed (one of which was deployed by Let’s Encrypt), but they

were found to be insecure in common shared-hosting environments:

HTTPS-basedHTTP challenge. Initially, HTTP challengeswere

allowed to be completed on port 80 (over HTTP) or port 443 (over

HTTPS). In 2015, Kasten and Eckersley noted that Apache would

serve the first HTTPS site defined in its configuration file if the

requested domain did not have HTTPS enabled. In other words, if

the same Apache instance served both site1.com and site2.com

but only site2.com supported HTTPS, all HTTPS requests to the

serverÐregardless of whether the client requested site1.com or

site2.comÐwould be served with content from site2.com. In

shared-hosting environments, this behavior could allow an attacker

to acquire certificates for domains they did not control. In response,

the HTTP challenge type was changed to prohibit HTTPS requests.

TLS-SNI challenge. In early 2018, Franz Rosén found that the

TLS-SNI challenge supported by Let’s Encrypt did not provide suffi-

cient authentication in many shared-hosting environments [5, 81].

This challenge validated domain control by requiring the applicant

to configure a TLS server at the domain to host a specific chal-

lenge certificate. This certificate had to contain a subject alternative

name (SAN) with a CA-specified random value as a subdomain

of .acme.invalid. The server was required to respond with the

certificate if the subdomain was queried using the Server Name

Indication (SNI) extension [38] in the TLS handshake.

The challenge design incorrectly assumed that hosting providers

prevent clients from uploading certificates for domains they do not

own (including .invalid domains). After Rosén demonstrated that

this was often not the case, Let’s Encrypt immediately disabled

the challenge, then re-enabled it for a small set of whitelisted non-

vulnerable providers. Let’s Encrypt eventually phased it out and

replaced it with the TLS-ALPN challenge described above, which

represents the result of security lessons learned from this process.

5 CA SOFTWARE AND OPERATIONS

When we started to develop Let’s Encrypt, available CA software

was designed around the manual processes that CAs typically fol-

lowed. ACME, with its focus on automation, differs substantially

from these human-oriented workflows, and we needed to build

entirely different software to operate an automated CA. We created

Boulder, a new, open-source CA software stack that forms the core

of Let’s Encrypt’s operations.

5.1 Security Principles

Let’s Encrypt must achieve high security and availability in order

to remain trustworthy and fulfill its role as Internet infrastruc-

ture. Both Boulder and the CA’s operations reflect a set of design

principles that support these goals:

Minimal logic. Boulder implements the minimal logic necessary

to instantiate an ACME-based CA, in order to make it easier for

developers and auditors to verify the correctness of the code. Boul-

der is implemented in a relatively high-level language, with struc-

tured intercomponent communications (Go and gRPC, respectively),

which further increase the comprehensibility of the code.

Minimal data. To reduce the potential harm from data breaches,

Let’s Encrypt collects only the minimum subscriber data necessary

to deliver the service in compliance with ACME andWebTrust [103]

requirements: a public key, an optional contact email address, and

various access logs [64].

Full automation. The system has a single issuance path, based

on ACME, with no facility for human operators to manually create

certificates or make one-off policy exceptions. Locking out humans

prevents errors that have led to misissuance by other CAs [80].

Functional isolation. Boulder is composed of limited-purpose

components that communicate only through well-defined APIs.

Components with different risk levels are physically isolated from

one another. This reduces the risk that compromise of more ex-

posed components (e.g., the Internet-facing front end) will lead to

compromise of more critical components (e.g., CA signing keys).

Operational isolation. To limit risk of physical compromise, ac-

cess to Let’s Encrypt data centers is strictly limited, even for our

staff. Most administration is performed remotely, with engineers

only entering the data centers to complete tasks that require physi-

cal access to hardware. Remote administration tasks are protected

by multifactor authentication and strong monitoring. Staff with

administrative access can only access administration functions

via dedicated, restricted virtual machine environments within a

security-focused operating system running on specific laptops.

Continuous availability. Boulder’s componentized architecture

allows multiple redundant instances of each function to be run

in parallel. Let’s Encrypt operates Boulder instances in physically
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Internet-Facing
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Figure 3: Boulder architecture. Let’s Encrypt developed and operates a Go-based open-source CA software platform named Boulder, which is composed of

single-purpose components that communicate over gRPC, as illustrated here. The certificate lifecycle unfolds roughly from left to right in the diagram.

secure, geographically distributed facilities, and divides production

traffic between datacenters, with load balancing handled by a CDN.

In addition, security audits by outside firms are regularly com-

missioned. Physical access to core CA equipment, all HSM adminis-

trative operations, and certain other functions require multiple staff

members to present authentication. For most other administrative

operations, including software deployments, logging and monitor-

ing systems provide strong accountability. These protections help

ensure that a rogue engineer would have difficulty stealing a sign-

ing key, and although they might be able to cause misissuance, they

would likely be caught after the fact.

To reduce the chances that bugs in Boulder could lead to misis-

suance or other problems, new versions are tested in a public stag-

ing environment prior to entering production. Boulder also applies

ZLint [58] to perform automated conformance tests on every cer-

tificate, and any ZLint notices, warnings, or errors block issuance.

5.2 System Architecture

Boulder implements the three main functions required of a CA in

the modern Web PKI:

(1) Issuance of certificates (via ACME);

(2) Submission of precertificates and certificates to Certificate

Transparency (CT) logs [62]; and

(3) Publication of certificate revocation status via OCSP.

Figure 3 illustrates Boulder’s components and their interactions.

All instances of a given Boulder component run independently.

For example, Let’s Encrypt runs four instances of the Certificate

Authority component, each of which can sign certificates and OCSP

responses without communication with the other three instances.

ACME clients communicate with Let’s Encrypt exclusively via

the ACME API component, which validates client requests and re-

lays them to the Registration Authority (RA). The RA orchestrates

the authorization and issuance process. For example, when a client

responds to an ACME challenge, the RA instructs the Validation Au-

thority to validate that the client has completed the challenge. Once

the RA has verified that the client has sufficient authorization to

issue a requested certificate, it instructs the Certificate Authority to

issue a precertificate, which is submitted to CT logs by the Publisher.

When a CT log provides a Signed Certificate Timestamp (SCT), the

RA instructs the Certificate Authority to issue the certificate and

makes it available to the client.

Each Certificate Authority has access to a hardware security

module (HSM) that stores the private key corresponding to one of

the Let’s Encrypt intermediate certificates. The private key corre-

sponding to the ISRG root certificate is held in a separate, offline

HSM. The online HSMs also hold a private key corresponding to

an OCSP signer certificate, used to sign OCSP responses. As of

September 2019, Let’s Encrypt HSMs perform approximately 450

signatures per second, with the bulk of this work going towards

OCSP responses and the remainder towards signing certificates.

OCSP responses are computed proactively, asynchronously from

OCSP requests. The OCSP Updater monitors for new certificates or

newly revoked certificates, and instructs the Certificate Authority

to sign appropriate OCSP responses. As these responses expire,

the OCSP Updater issues fresh ones, until the certificate expires.

All of these OCSP responses are stored in a database, from which

the OCSP Responder answers OCSP requests. OCSP responses are

served and cached via Akamai, allowing Let’s Encrypt to keep up

with OCSP traffic even for very popular sites.

The architecture described here has allowed Let’s Encrypt to

scale up to issuing more than a million certificates per day at peak,

running on modest infrastructure. The biggest scalability challenge

has not been compute power or signing capacity, but rather the

growth of the primary CA database and of log data. As of September

2019, Let’s Encrypt produces about 150GB of CA log data per day.

All of this log data is kept online and searchable for 90 days (the life-

time of certificates), and, in compliancewithWebTrust audit require-

ments, a subset is archived offline for a minimum of seven years.

6 CLIENT ECOSYSTEM

There is no official client for Let’s Encrypt. Instead, by standardizing

ACME, the project has fostered an ecosystem of third-party clients

that support a wide range of platforms and use cases [65]. ACME

client libraries are available in a variety of languages, including

C, Go, and Java. There are a range of command-line clients, such

as acme.sh and Certbot, as well as server software with built-in
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provisioning, such as Caddy, Apache, and cPanel. Shared hosting

providers, including Squarespace, Google, and OVH, also use Let’s

Encrypt to transparently provision HTTPS. In this section, we

survey some of the noteworthy clients and gauge their popularity.

6.1 Certbot

In conjunction with Let’s Encrypt’s launch, the Electronic Frontier

Foundation (EFF) created an ACME client, now named Certbot [40].

Unlike most other clients, Certbot aims to fully automate secure

HTTPS deployment, rather than simply procuring a certificate.

Certbot currently is the most popular client in terms of unique IP

addresses. During the time period we studied, 50% of clients (by

unique IP address) used Certbot, and about 16% of certificates were

requested using it, as shown in Table 2. This suggests that Certbot

is particularly popular with operators of individual servers.

Certbot automatically parses and modifies configuration files

for popular Web servers, including Apache and Nginx. This lets

Certbot automate complicated HTTPS configuration steps that have

historically confused administrators [36, 107] and contributed to

TLS vulnerabilities (e.g., [11, 17, 23]). Furthermore, Certbot updates

can automatically patch server configurations to apply new security

configuration recommendations or mitigate newfound attacks.

Certbot’s extensible Python-based framework supports a va-

riety of Web servers and validation types. Authenticator plugins

implement means of satisfying ACME challenges. Certbot provides

authenticators for solving HTTP challenges with or without an

existing HTTP service, as well as for solving DNS challenges with

common DNS providers such as Amazon Route 53. Installer plugins

configure a service to use a newly obtained certificate and can mod-

ify configurations for improved security. Current installers support

Apache, Nginx, HAProxy, and other services.

Working with server configuration files has been one of the

most difficult challenges for Certbot. Neither Apache nor Nginx

ACME Agent Certificates FQDNs Client IPs

cPanel 10.0M (17.5%) 63.8M (48.7%) 87K (2.95%)

Certbot 9.4M (16.4%) 14.8M (11.3%) 1.5M (49.5%)

Squarespace 5.1M (8.97%) 5.2M (3.95%) <50 (0.00%)

acme4j 4.6M (8.09%) 7.8M (5.92%) 2.4K (0.08%)

Net-ACME2 3.3M (5.79%) 3.7M (2.79%) 13K (0.43%)

curl 3.1M (5.53%) 4.0M (3.09%) 113K (3.83%)

Acme::Client 3.0M (5.21%) 1.1M (0.84%) 15K (0.51%)

Plesk 2.0M (3.49%) 3.7M (2.84%) 164K (5.54%)

xenolf-acme 1.8M (3.16%) 1.5M (1.15%) 54K (1.82%)

Go-http-client 1.7M (2.91%) 0.2M (0.16%) 192K (6.48%)

acme.sh 1.7M (2.91%) 2.3M (1.73%) 211K (7.11%)

eggsampler 1.2M (2.05%) 3.6M (2.76%) 11K (0.36%)

OVH ACME 0.9M (1.65%) 2.4M (1.85%) <50 (0.00%)

Google 0.9M (1.63%) 1.2M (0.89%) <500 (0.02%)

Other (130k unique) 8.4M (14.7%) 15.8M (12.1%) 0.6M (21.4%)

Total 57.2M 147M 3.0M

Table 2: Most popular ACME clients. There is a rich ecosystem of ACME

clients. Here we show the clients that requested the most certificates in De-

cember 2018 and January 2019, based on data from Let’s Encrypt logs. Some

clients that are integrated with large hosting providers (e.g., Squarespace)

tend to issue many certificates from a small number of IP addresses.

offers an API to access its configuration, and their configuration

languages are not well specified. To reduce the chance of breaking

the server’s configuration, Certbot runs automated checks and will

revert any modifications if a test fails. Unfortunately, this cannot

guarantee that all changes have the intended effects. We encourage

server developers to provide APIs that allow external services to

modify their configurations, publish a formal specification for their

configuration languages, and provide secure defaults that do not

require correction by third-party tools.

6.2 Servers with Automatic Provisioning

Several Web servers can automatically provision Let’s Encrypt cer-

tificates. One of the first was Caddy [67], a Go-based Web server

with an integrated ACME client that provisions and renews cer-

tificates without user interaction. Servers running Caddy exhibit

nearly ubiquitous HTTPS deployment and use of modern TLS con-

figurations, although they account for only a small fraction of Let’s

Encrypt certificates. We hope to see other popular server software

follow Caddy’s lead. The Apache project’s mod_md provides similar

functionality [15], although it has yet to see significant adoption.

Web control panels, which help administrators configure servers,

have also added ACME support, including cPanel [101], Plesk [76],

and Webmin [102]. These integrations are frequently deployed by

hosting providers and help drive HTTPS adoption for smaller sites.

They account for a huge portion of Let’s Encrypt usage. About half

of domains with a Let’s Encrypt certificate and 18% of Let’s Encrypt

certificates are issued using the cPanel plugin alone.

6.3 Hosting Providers

Prior to Let’s Encrypt, a disproportionate number of sites without

HTTPS were small sites, a significant number of which were served

by shared hosting providers that controlled all aspects of HTTPS

configuration (see Section 7). Often, these services provided no

means for enabling HTTPS or required customers to upload their

own certificatesÐan approach that was problematic for the techni-

cally unsophisticated users that such providers tend to attract.

Let’s Encrypt has enabled a number of very large providers to

automatically provision HTTPS for all of their sites without any

user interaction. Around 200 hosting providers, including Squares-

pace [90], WordPress [8], OVH [74], and Google, now have built-

in Let’s Encrypt provisioning. As we discuss in Section 7, more

than half of publicly accessible Let’s Encrypt certificates are hosted

by these providers. While most individual sites hosted by these

providers see only relatively little traffic, an avenue for migrating

them to HTTPS with little or no user interaction is necessary to

transition the entire Web to HTTPS.

6.4 Embedded Devices

A growing number of embedded devices include ACME clients,

including products from Asus, D-Link, Synology, and Zyxel. AVM

GmbH’s Fritz!Box residential gateway [18] illustrates a typical im-

plementation. Devices are assigned a subdomain of myfritz.net,

which acts as a dynamic DNS provider, requests a certificate from

Let’s Encrypt, and allows users to administer the device without

needing to bypass any browser warnings. Such devices are only

responsible for a small fraction of Let’s Encrypt certificates.
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Figure 4: CA market share and Let’s Encrypt’s growth for Alexa Top Million domains. Since Let’s Encrypt launched, it has seen more growth among

top million sites than any other CA. It was used by about 35% of top million sites with HTTPS as of January 2019.

7 LET’S ENCRYPT’S USAGE AND IMPACT

Since its launch in December 2015, Let’s Encrypt has steadily grown

to become the largest CA in the Web PKI by certificates issued and

the fourth largest known CA by Firefox Beta TLS full handshakes.

As of January 21, 2019, the CA had issued a total of 538M cer-

tificates for 223M unique FQDNs, and there were 91M unexpired

Let’s Encrypt certificates valid for 155M unique FQDNs. This repre-

sents more unique certificates than all other CAs combined. (Except

where otherwise noted, analysis in this section is based on data

from that date. For Certificate Transparency data, we count cer-

tificates by the SHA-256 hash of the tbsCertificate structure

after removing CT poison and SCTs to prevent double counting

pre-certificates and certificates.) In this section, we analyze Let’s

Encrypt’s role in the HTTPS ecosystem from a variety of perspec-

tives including longitudinal Censys HTTPS scans [35], Certificate

Transparency (CT) logs [62], Firefox client telemetry, and our own

HTTPS scans of names in CT logs.

7.1 Adoption By Popular Websites

Let’s Encrypt is more commonly used by the long tail of sites on

the Web than by the most popular sites. Indeed, while the majority

of HTTPS sites use Let’s Encrypt, until recently no sites in the

Alexa Top 100 used a Let’s Encrypt certificate. The CA’s market

share increases as site popularity decreases: 5% of the top 1K, 20%

of the top 100K, and 35% of the top 1M sites with HTTPS use Let’s

Encrypt. Only 3.6% of full TLS handshakes by Firefox Beta users

are protected by Let’s Encrypt certificates. Instead, trust anchors

belonging to DigiCert and GlobalSignÐthe two CAs that have tran-

sitively issued certificates for the ten most popular sites by Alexa

rankÐauthenticate the majority of connections (Figure 5).

One likely reason that popular sites prefer other CAs is demand

for Organization Validation (OV) and Extended Validation (EV)

certificates, which Let’s Encrypt does not issue. Over 83% of sites

in the Top 100 use OV or EV certificates, while only 18% of all

trusted certificates are EV or OV validated. Given Firefox, Chrome,

and Safari’s moves to remove unique indicators for each validation

level [53, 73, 94, 96], more sites may move to DV certificates. Stack
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Figure 5: Firefox HTTPS connections by trust anchor. We show the

trust anchors responsible for authenticating full TLS handshakes by Firefox

Beta users. Let’s Encrypt has become the fourth largest known CA.

Overflow (Alexa Rank 38) began using a Let’s Encrypt certificate

in July 2019, after our primary analysis was complete.

Let’s Encrypt has seen rapidly growing adoption among top

million sites since its launch, while most other CAs have not (Fig-

ure 4b). It was the fastest growing CA for those sites, increasing in

market share from just 2% in July 2016 to over 25% in January 2019

(Figure 4a). By contrast, the market share of SectigoÐthe second

most popular CA within the top million sitesÐremained relatively

steady, at 17%. The only other major CA that showed significant

growth during this period is DigiCert, which grew from 2% to 10%.

Firefox Beta channel telemetry shows Let’s Encrypt increasing from

0.44% of full handshakes in the first 28 days of March 2017 to 3.7%

in the 28 days ending September 17, 2019 (Figure 5).

Most sites that have adopted Let’s Encrypt are new toHTTPS, but

many of the most popular sites that use the Let’s Encrypt previously

deployed HTTPS with a different CA. Of the 94K sites consistently

in the Alexa Top Million between 2015 and 2019 that now use a
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Authority Active FQDNs Certificates

Let’s Encrypt 123.6M (58%) 91.3M (57%)

cPanel 45.4M (21%) 15.8M (10%)

Sectigo (previously Comodo) 14.9M (7%) 10.0M (7%)

DigiCert 8.7M (4%) 7.1M (4%)

Cloudflare 7.4M (3%) 16.1M (10%)

GoDaddy 4.2M (2%) 4.8M (3%)

GlobalSign 1.9M (0.9%) 1.0M (0.6%)

Nazwa.pl 1.0M (0.5%) 0.9M (0.5%)

Amazon 0.9M (0.4%) 1.5M (1%)

Starfield 0.9M (0.4%) 0.3M (0.2%)

TrustAsia 0.5M (0.2%) 0.9M (0.6%)

Other 3.6M (1.7%) 11.3M (7.0%)

Total 213M 161M

Table 3: Most popular certificate authorities based on certificates in

public CT logs and based on domains responding to HTTPS requests. Let’s

Encrypt has issued more certificates and is served on more unique domains

than all other CAs combined.

Provider LE % LE % of LE Provider LE % LE % of LE

Unified Layer 33.8M 91% 27.0% Wix 3.9M 85% 3.2%

OVH 5.1M 60% 4.0% Hetzner 3.0M 57% 2.4%

Amazon 4.9M 60% 4.0% Google 2.5M 80% 2.0%

Squarespace 4.9M 97% 3.9% PDR 2.0M 59% 1.6%

Automattic 4.3M 96% 3.5% SingleHop 2.0M 64% 1.6%

Table 4: Providers with most Let’s Encrypt domains on live websites.

While automatic provisioning of Let’s Encrypt certificates has explained

part of its explosive growth, many of the networks with the most certificates

are cloud providers where users have chosen to use Let’s Encrypt.

Let’s Encrypt certificate, 75% previously deployed HTTPS with

a different CA. (We note that sites consistently in the Alexa Top

Million are likely to be the most popular and may not represent the

top million more broadly.) These include Sectigo (27%), GeoTrust

(15%), GlobalSign (8%), GoDaddy (6.4%), and DigiCert (6.3%).

7.2 Automatic HTTPS Configuration

One reason that Let’s Encrypt has experienced rapid growth is that

its service has been integrated by hosting and CDN providers in

order to automatically provision certificates for their customers. For

example, the drag-and-drop website building service Wix provides

HTTPS for all users using Let’s Encrypt certificates [105]. There

are nearly 4M unique active FQDNs with Let’s Encrypt certificates

that point to servers in the Wix AS (Table 4). In the most extreme

case, Unified Layer, a subsidiary of Endurance International Group

(EIG), which provides public hosting through Bluehost, HostGator,

and several other subsidiary brands, hosts nearly 34M sites with

certificates from Let’s Encrypt. This accounts for 27% of the publicly

accessible names found in Let’s Encrypt certificates.

Half of names in Let’s Encrypt certificates are located in just

10 ASes, and 80% are in 100 ASes. However, this concentration does

not necessarily indicate that these providers are automatically issu-

ing Let’s Encrypt certificates for every site. Rather, this represents

a broader centralization of the Web. Many of the networks with the

most Let’s Encrypt certificates are large cloud providers like OVH,

Figure 6: CDF of ASes and eTLDs for Let’s Encrypt certificates.While

a large number of providers automatically provision certificates using Let’s

Encrypt, certificates from the CA are only somewhat more concentrated

(i.e., located in a small number of ASes) than those from other authorities.

Figure 7: Share of domains using Let’s Encrypt for the ASes with the

most HTTPS sites. The largest, Unified Layer, represents 27% of accessible

domains using Let’s Encrypt certificates.

Amazon, Hetzner, and Digital Ocean, where customers are provi-

sioning certificates from a variety of CAs (Figure 7). Of the top ten

largest Let’s Encrypt clients by network (i.e., ASN), only three use

Let’s Encrypt for over 90% of their HTTPS sites. This centralization

is also present for other CAs (Figure 6). Beyond Unified Layer, the

next largest provider that automatically provisions certificates for

all customers is Squarespace, which accounts for under 4% of Let’s

Encrypt domains. In total, the largest providers that automatically

provision certificates for all customers account for only 34% of Let’s

Encrypt names (Table 4).

7.3 Web Servers

While some Web servers like Caddy automatically provision Let’s

Encrypt certificates, the bulk of sites are served from traditional

Web servers like Nginx and Apache. We see Let’s Encrypt usage on

almost all of the common Web servers, though we see significantly

different levels of adoption between servers (Table 5). For example,

while 85% of sites hosted on Nginx use Let’s Encrypt, less than half

of Apache and IIS sites do. Nginx is the most popular Web server

used to host public Let’s Encrypt-protected domains. Caddy is the

most popular server with near 100% Let’s Encrypt usage.

7.4 User Demographics

Beyond automatic provisioning, Let’s Encrypt usage is broadly

similar to that of other authorities by both geographic breakdown
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Name All FQDNs LE FQDNs % LE % of LE

Apache 79.3M 36.7M 46% 30%

Nginx 66.0M 56.2M 85% 45%

LiteSpeed 14.6M 7.25M 49% 5.8%

Cloudflare 13.2M 31K 0.2% 0.3%

cPanel 10.8M 4.8M 43% 3.8%

Microsoft 3.9M 1.5M 38% 1.2%

OpenResty 3.5M 3.1M 87% 2.5%

DPS (GoDaddy) 1.6M 9 0% 0%

Cowboy 0.5M 0.1M 25% 0.1%

GSE 0.5M 0.4M 81% 0.3%

Other 2.4M 1.7M 70% 1.4%

Not Specified 18.5M 13.7M 74% 11%

Table 5: Most common server types. Domains that responded to HTTPS

requests on January 29, 2019, grouped by type of server and categorized

as using Let’s Encrypt or another CA. Apache is the most popular server

overall, but Nginx is the most popular among Let’s Encrypt deployments.

eTLD LE % LE % of LE eTLD LE % LE % of LE

.com 44.3M 52% 48.5% .nl 1.9M 71% 2.1%

.de 3.9M 69% 4.3% .br 1.8M 72% 1.9%

.org 3.3M 68% 3.6% .fr 1.7M 82% 1.8%

.uk 2.5M 62% 2.7% .com.br 1.6M 73% 1.8%

.co.uk 2.2M 63% 2.4% .ru 1.3M 79% 1.4%

Table 6: eTLDs with most Let’s Encrypt certificates based on valid

certificates in the Censys dataset.

and TLD. For example, the most common TLDs are largely the same

as for other CAs, though we see differing adoption rates in some

countries (Table 6). For example, while only 49% of .com domains

use Let’s Encrypt, around 80% of .ru and .fr domains do.

There are several public suffixes with a disproportionate number

of Let’s Encrypt certificates. For example, 30 suffixes have more

than 100,000 domains and greater than 95% Let’s Encrypt adoption.

These fall into several broad categories:

Blog and hosting providers. Several large blog providers that

create a unique subdomain for each blog they host. For exam-

ple, there are certificates for 1.3M subdomains of home.blog and

287K domains under automattic.com.

IoT devices. There are a handful of IoT manufacturers who cre-

ate a subdomain and certificate for each deployed IoT device. For

example, there are 875K domains under keenetic.io. We also see

remotewd.com (384K), freeboxos.fr (182K), and myfritz.net (237K).

For these cases, over 99% of subdomains use Let’s Encrypt.

TLDs. There are three TLDs with near 100% LE usage: .blog

(2.3M), .jobs (165K), and .ir (792K). Let’s Encrypt is one of a

small number of CAs that issue certificates for names in Iran’s TLD.

These domains illustrate several new HTTPS use cases and popula-

tions of users enabled by automated certificate issuance.

7.5 Certificate Renewals

Compared to other sites, fewer sites with Let’s Encrypt certificates

serve expired certificates, and few Let’s Encrypt renewals (2.9%)

occur after the prior certificate has expired. Only 2.2% of sites in the

Top Million with Let’s Encrypt certificates currently serve expired

certificates, while 3.9% of all HTTPS sites have expired certificates.

Most renewals occur in the last 30 days before the validity period of

a certificate expires (64%), but over a third of renewals occur in the

early (19%) and middle (16%) periods of first 30 days and 30ś60 days,

respectively. This indicates that organizations are able to maintain

an improved security posture through automation despite shorter

certificate lifespans than other authorities offer.

8 DISCUSSION AND SECURITY LESSONS

When we started work on Let’s Encrypt, the two most commonly

voiced criticisms about the Web PKI were that (a) it was too difficult

for server operators to use, and (b) it wasn’t secure anyway. Let’s

Encrypt was intended to take aim directly at the first complaint,

based on our belief that the usability problem was the more serious

and that it was responsible for the relatively low deployment of

HTTPS. The data in Section 7 (and particularly in Figure 4b) suggest

that this analysis was correct: Let’s Encrypt has been responsible

for significant growth in HTTPS deployment.

By contrast, Let’s Encrypt has had only an indirect impact on

the security of the HTTPS ecosystem itself. Ultimately, the security

of certificates is dictated by that of the weakest CA, and security

only improves when all CAs do a better job. In parallel with our

efforts, browser-makers and security advocates within the Web PKI

community have been working to increase PKI security through

tightened requirements for CAs, promotion of new security mecha-

nisms such as Certificate Transparency, and enforcement of greater

CA transparency and accountability. Let’s Encrypt has been an

eager participant in these changes, which we consider to have been

quite productive, and has attempted to set an example of good PKI

citizenship, including through its commitment to openness and its

record of fast and complete incident disclosure.

8.1 Why Was Let’s Encrypt Successful?

At some level, the answer to Let’s Encrypt’s success is easy: it was

free and easy to use (and in fact automated). While some previous

CAs such as StartCom had free tiers and others had some level

of automation, no previous CA had attempted to combine these

two into a single service offering. These properties turn out to be

strongly interdependent: Automation is necessary to have a free

CA and free certificates make automation practical.

Automation enables free certificates. The dependency of free

certificates on automation is relatively obvious: if certificates are

free and your intent is to issue millions of certificates, then it is

critically important to keep per-certificate costs down; automation

is the only plausible mechanism for doing so. Removing humans

from the validation process also reduces the possibility that social

engineering or simple misjudgment will lead to misissuance, both

of which are sources of risk for a CA on a limited budget.

In addition to lowering the direct monetary cost of certificates,

automation lowers the cost to administrators of managing them.

Manual management, especially of large server farms, is inherently

expensive and also introduces the risk of configuration errorsÐsuch

as failure to renew certificatesÐthat can lead to downtime. Together

with free certificates, the net impact is a significant lowering of the

overall cost of serving HTTPS.
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One major security objective we have not yet accomplished with

Let’s Encrypt is strongly protecting validation against DNS- and

routing-layer attacks. An attacker who can use DNS or BGP hijack-

ing to redirect trafficÐor who can compromise a network device

close to the server or the CAÐcan intercept domain validation traf-

fic and falsely request a certificate [26, 52, 84]. Domain owners can

make some of these attacks more difficult by limiting the CAs that

can issue for them using CAA [49], and vigilant operators can use

CT monitors (e.g., [41]) to detect false issuances and respond.

As a further mitigation against route hijacking and man-in-the-

middle attacks, Let’s Encrypt is experimenting with multiple per-

spective validation. In this approach (similar to [104]), control of

the domain is simultaneously verified from multiple vantage points

in different autonomous systems, a strong majority of which must

succeed for the certificate to be issued.

Unfortunately, none of these measures can protect against the

full spectrum of validation attacks. The fundamental problem is that

domain validation is itself not cryptographically protected, since it

is the bootstrapping mechanism by which sites join the PKI. After

a domain has been validated once, it might seem sensible to give it

some way to disable future non-cryptographic validation methods,

but, as with HPKP [50], this risks creating downtime for sites that

lose their validation keysÐor, worse, when attackers temporarily

take over a domain and change the key to one they control. There

may be no easy solution.

Phishing remains a challenge for the Web in general. Prob-

ably the most frequent complaint about Let’s Encrypt is that it is

used in the perpetration of phishing attacks. By some measures,

more than half of phishing sites now use HTTPS [56], as do many

sites that distribute malware, and a large number of those sites

use certificates issued by Let’s Encrypt [34]. Some observers have

called for CAs to take a more active role in combating such sites.

In our view, CAs are not well positioned to detect phishing and

malware campaigns, or to police content more generally. They

simply do not have sufficient ongoing visibility into sites’ content,

which can change much faster than certificate issuance and revoca-

tion cycles. As a result, certificates cannot offer assurances related

to the safety of Web content.

Attempts to limit certificates (and thus HTTPS) to domains with

entirely safe content are likely to be highly problematic. Some sites

will be denied service because of false positives or questionable def-

initions of what constitutes safe content. Another problem is that

the only enforcement mechanism CAs have is to deny service to

entire domains. Should a major global news site have its certificates

revoked because a single ad on a single page had malware embed-

ded? Finer-grained mechanisms for protecting users are needed.

Let’s Encrypt once checked Google’s Safe Browsing API before

certificate issuance, but it has stopped doing so for these reasons.

Browsers and search engines have much greater content aware-

ness, and they can protect users at the page level (or better). For

instance, Google Safe Browsing [89] uses machine learning to con-

tinuously detect malicious content. The results are used to warn

Chrome users when they try to load pages with unsafe content.

Users are much better informed and protected when browsers in-

clude such anti-phishing and anti-malware features.
Fortunately, widespread HTTPS deployment has made it possible

for browsers to change their security indicator UIs in ways that

reduce the risk of user confusion. Rather than showing a positive

security indicator for HTTPS (which users might mistake for a

łseal of approvalž on the site’s content), Chrome, Firefox, and other

browsers have begun to show negative security indicators for HTTP

sites [83]. This also further encourages sites to adopt HTTPS.

9 CONCLUSION

In this paper, we described how we created Let’s Encrypt, a free,

open, and automated HTTPS certificate authority (CA) designed

to accelerate universal adoption of HTTPS. We presented the ar-

chitecture of the CA software system (Boulder) and the structure

of the organization that operates it (ISRG). We also described the

design of ACME, the IETF-standard protocol we created to auto-

mate CAśserver interactions and certificate issuance. Finally, we

measured the CA’s impact on the Web and the CA ecosystem.

Prior to our work, a major barrier to wider HTTPS adoption was

that deploying it was complicated, expensive, and error-prone for

server operators. Let’s Encrypt overcomes these through a strategy

of automation: identity validation, certificate issuance, and server

configuration are fully robotic, which also results in low marginal

costs and enables the CA to provide certificates at no charge.

We designed Let’s Encrypt to scale to the size of the entire Web.

In just over three years of operation, it is well on its way: it has

issued over 538 million certificates and accounts for more valid

browser-trusted certificates than all other CAs combined. We hope

that in the near future, clients will start using HTTPS as the default

Web transport. Eventually, we may marvel that there was ever a

time when Web traffic traveled over the Internet as plaintext.
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