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ABSTRACT

Let’s Encrypt is a free, open, and automated HTTPS certificate au-
thority (CA) created to advance HTTPS adoption to the entire Web.
Since its launch in late 2015, Let’s Encrypt has grown to become the
world’s largest HTTPS CA, accounting for more currently valid cer-
tificates than all other browser-trusted CAs combined. By January
2019, it had issued over 538 million certificates for 223 million do-
main names. We describe how we built Let’s Encrypt, including the
architecture of the CA software system (Boulder) and the structure
of the organization that operates it (ISRG), and we discuss lessons
learned from the experience. We also describe the design of ACME,
the IETF-standard protocol we created to automate CA-server inter-
actions and certificate issuance, and survey the diverse ecosystem
of ACME clients, including Certbot, a software agent we created to
automate HTTPS deployment. Finally, we measure Let’s Encrypt’s
impact on the Web and the CA ecosystem. We hope that the success
of Let’s Encrypt can provide a model for further enhancements to
the Web PKI and for future Internet security infrastructure.
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1 INTRODUCTION

HTTPS [78] is the cryptographic foundation of the Web, providing
an encrypted and authenticated form of HTTP over the TLS trans-
port [79]. When HTTPS was introduced by Netscape twenty-five
years ago [51], the primary use cases were protecting financial
transactions and login credentials, but users today face a growing
range of threats from hostile networks—including mass surveil-
lance and censorship by governments [99, 106], consumer profiling
and ad injection by ISPs [30, 95], and insertion of malicious code
by network devices [68]—which make HTTPS important for prac-
tically every Web request. Many cryptographic flaws in TLS have
been discovered and mitigated (e.g., [11, 13, 17, 23, 37, 69]), but low
adoption of HTTPS posed an even starker risk: as recently as 2015,
55-70% of browser page loads used plaintext HTTP [47].

A major barrier to wider HTTPS adoption was that deploying
it was complicated, expensive, and error-prone for server opera-
tors [22, 57]. Most of the difficulty involved interactions with Certifi-
cate Authorities (CAs), entities trusted by Web browsers to validate
a server’s identity and issue a digitally signed certificate binding the
identity to the server’s public key. (Modern TLS implementations
have negligible performance overhead in typical applications [48,
59].) To obtain and install a certificate, a server operator had to use
arcane key generation software and configuration directives, follow
manual steps to prove control of the domain name, and complete
a payment transaction to a CA. The process was burdensome for
smaller sites and difficult to integrate into large hosting platforms.

To reduce these barriers, facilitate broad adoption of HTTPS,
and improve security for all Web users, we created Let’s Encrypt,
a CA that offers domain-validated certificates through a standard
protocol at no cost to server operators. Let’s Encrypt is the first
browser-trusted CA designed for complete automation: identity
validation and certificate issuance are fully robotic, and neither
Web server operators nor CA staff need to take any manual steps.

Automation serves several goals for Let’s Encrypt. On the Web
server side, it greatly reduces the human effort required for HTTPS
deployment, along with the concomitant risk of configuration errors
that can lead to security problems [9, 14]. Automated support for
Let’s Encrypt has been integrated into Web server software [40, 67],
IOT devices [16], large host platforms [71, 75], and CDNs [12].
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On the CA side, automation bolsters security by reducing op-
portunities for human error, historically a frequent cause of misis-
suance events [86]. The only way for Let’s Encrypt to validate a
domain and issue a certificate is through the normal AP there is no
manual override. Moreover, avoiding human intervention allows
Let’s Encrypt to keep the cost-per-certificate low and provide cer-
tificates at no charge. This eliminates two important impediments
to HTTPS adoption: financial burdens and payment friction.

We designed Let’s Encrypt to scale to the size of the entire Web.
In just over three years of operation, it has issued more than 538
million certificates covering 223 million domain names. Today, there
are more currently valid browser-trusted certificates issued by Let’s
Encrypt than issued by all other CAs combined.

This paper reports on our experiences building Let’s Encrypt over
the past seven years. We focus on three main results of that work:

ISRG Let’s Encrypt is operated by an independent nonprofit we
established called the Internet Security Research Group (ISRG).
Running a CA requires round-the-clock operations staff, physically
protected server infrastructure, and regular security and compli-
ance audits, all of which ISRG oversees. Section 3 describes the
organization’s history and structure, its operating costs and fund-
ing model, and how it navigated becoming a trusted issuer and
gaining acceptance in all major root programs.

ACME The key to Let’s Encrypt’s automation is ACME, a pro-
tocol for performing CA-server interactions, including certificate
requests, domain validation, issuance, renewal, and revocation. Sec-
tion 4 explains the principles behind ACME’s design and operation,
along with lessons learned while building it. ACME has recently
been standardized by the IETF as RFC 8555 [20].

Boulder Let’s Encrypt is powered by Boulder, an open-source
ACME-based CA implementation designed for security, scalability,
and high reliability. Section 5 describes Boulder’s architecture, in-
cluding design features motivated by past CA security failures, and
discusses how Let’s Encrypt operates Boulder in production.

Over the four years since Let’s Encrypt launched, the fraction
of browser page-loads that take place over HTTPS has approxi-
mately doubled, to 72-95%, according to telemetry from Google
Chrome [47]. To shed light on how Let’s Encrypt’s has contributed
to and helped shape this growth, we combine the CA’s metrics with
data from Internet-wide scans and Certificate Transparency logs
(Sections 6 and 7). We find that more than a third of Alexa Top
Million sites use Let’s Encrypt, and Let’s Encrypt is the fourth most
popular CA in terms of handshakes from Firefox Beta users. We also
survey the diverse ecosystem of ACME clients that Web servers
and hosting providers use to acquire Let’s Encrypt certificates, and
describe the widely used ACME client we created, Certbot.

We hope that the success of Let’s Encrypt can serve as a model for
future efforts to create usable, scalable, and robust Internet security
infrastructure. To help guide such efforts, Section 8 discusses some
of the factors that we believe helped Let’s Encrypt succeed where
other proposals to provide universal server authentication have not.
We also discuss major challenges facing the Web that Let’s Encrypt
has not solved—including combating phishing and securing domain
validation against network attacks—and call for further security
research to address them.
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2 HTTPS BEFORE & AFTER LET’S ENCRYPT

HTTPS provides a simple experience for browser users: so long as
the server presents a valid certificate that the browser trusts, users
receive the benefits of an authenticated and encrypted connection
without taking any action. For server operators, however, provi-
sioning HTTPS had long been far more difficult. In this section, we
review the state of affairs prior to Let’s Encrypt’s launch in late 2015,
and we highlight several challenges inhibiting widespread HTTPS
deployment that Let’s Encrypt is designed to help overcome.

2.1 Certificate Costs and Marketplace

High prices for certificates were (and still are) common, as shown
in Table 1. In 2015, the average price for a one-year single-domain
certificate from the five largest CAs was $178, and for a wildcard
certificate it was $766. (Prices for the same products from these CAs
today are the same or higher.) Lower-cost alternatives did exist,
but often came with significant limitations; because browsers treat
all domain-validated certificates identically, they were the subject
of extensive market segmentation by the CAs. One CA, StartCom
offered free certificates for non-commercial use starting in 2011;
however, it charged for revocation, which proved to be a source of
problems when Heartbleed [37] forced many sites to revoke [108].

Beyond high prices, the certificate marketplace was complex and
difficult for server operators to navigate, as evinced by the existence
of third-party review sites such as SSL Shopper [91], which helped
administrators compare prices and value for CA products. CAs often
bundled certificates with additional services such as “vulnerability
assessment scans” [92] and warranties covering losses to relying
parties if the certificate was issued in error [45]. These add-ons
could make it harder for customers to assess the true value of
certificates. Some CAs even charged higher prices for certificates on
keys that used more modern cryptographic algorithms; for example,
Symantec charged $597 more per year to issue a certificate for an
elliptic curve key [27] than for an RSA key [92].

Let’s Encrypt offers domain-validated certificates for all domains
at no cost. This eliminates financial barriers to HTTPS adoption
and greatly lessens friction from confusion and transaction costs.

2.2 Obtaining and Installing a Certificate

Prior to our work, the process of obtaining a certificate and config-
uring an HTTPS server was often manual and tedious [22]. First,
system administrators had to recognize that they needed a certifi-
cate and navigate the confusing marketplace. Then they had to

Mid-2015 Prices Mid-2019 Prices

Certificate Authority Single Wildcard Single Wildcard
GoDaddy [45, 46] $69 $332  $79 $369
Comodo/Sectigo [31, 85] $76 $404 $92 $422
GeoTrust [43, 44] $149 $499 $149 $688
DigiCert [32, 33] $195 $595  $207 $653
Symantec [92, 93] $399 $1999  $399 $1999

Table 1: Prices for a one-year certificate for non-free CAs with the
largest market shares. Single domain offerings are domain-validated; wild-
card offerings sometimes require organization validation. The 2015 prices
are from shortly before Let’s Encrypt began offering service to the public.
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generate a private key, create a certificate signing request (CSR),
and perform the verification steps required by the CA. After waiting
(sometimes for days or more) for the CA to issue the certificate, they
had to figure out how to configure their server with the certificate
and the appropriate trust chain. All these steps typically involved
esoteric commands, and in practice many users blindly followed a
tutorial. Even when a CA issued a certificate immediately, usability
studies show that it would often take administrators over an hour
to install the certificate on their servers [57]. These tasks had to be
repeated every year or so when the certificate expired.

Besides being difficult, manual HTTPS server setup carries the
risk of introducing security vulnerabilities through misconfigura-
tion. A study in 2013 found that only 45% of certificates on HTTPS
servers were correctly configured, while about 13% were config-
ured so poorly that their corresponding Web sites were completely
inaccessible for some clients [36].

Certificate renewals present additional challenges. Expired cer-
tificates can cause browser warnings for site visitors, so adminis-
trators run the risk of driving away customer traffic if they fail to
replace old certificates before they expire. Prior to Let’s Encrypt,
renewal lapse occurred for about 20% of trusted certificates [36].

Let’s Encrypt seeks to overcome all these problems through
automation. We designed the ACME protocol (Section 4) to allow
software agents on HTTPS servers to obtain, provision, and renew
certificates automatically, with no user interaction. Third-party
contributors have created a rich ecosystem of ACME clients that
automate HTTPS deployment on systems ranging from IoT devices
to traditional Web servers to large hosting platforms (see Section 6).

To further promote automation, Let’s Encrypt limits certificate
lifetimes to 90 days, rather than one or multiple years as CAs have
traditionally offered. This is short enough to strongly encourage
operators to automate things (few people will want to manually re-
new certificates every quarter) but long enough to allow for manual
renewal if necessary in a particular deployment. Shorter certificate
lifetimes potentially enhance security, since they lessen reliance
on certificate revocation in the event of key compromise [97], and
some clients do not check revocation status [61].

2.3 CA Validation Practices

Validating the identity of certificate subjects is one of the main jobs
of any CA. The CA/Browser Forum—a voluntary consortium of CAs
and browser and platform vendors that works to standardize Web
PKI ecosystem rules—defines several categories of validation [28].
For “Domain Validation” (DV), CAs confirm that the requester
has control over the domain name to be listed in the certificate.
For “Organization Validation” (OV), CAs verify public business
registration documents for the requesting organization. “Extended
Validation” (EV) takes this process even further, with more intensive
checks of proper ownership of identifiers.

OV and EV require manual submission and verification of iden-
tity documents, which significantly slows the issuance process [29].
Some CAs limit useful certificate features (such as wildcard names)
to these stricter and more expensive validation levels [43].

OV and EV were intended to provide greater protection for
site visitors [29]. However, research has found that users do not
notice or understand the distinction between validation levels [96],
negating the potential security benefit. Consequently, Chrome [73],
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Firefox [94], and Safari [53] have or will soon drop UI distinctions
between validation levels. Moreover, Web clients treat all valid
certificates for a given domain, whatever the validation level, as
the same security context [21], further undermining the security
benefit of OV and EV certificates.

Let’s Encrypt offers only domain validation, since only DV can
be completely automated and the security benefits of OV and EV are
unclear. The CA provides both regular and wildcard DV certificates,
and supports several methods of verifying control of a domain (see
Section 4) to cover a wide spectrum of use cases.

3 ISRG: THE HOME OF LET’S ENCRYPT

Creating an automated CA that could scale to the size of the Web re-
quired more than building software and protocols. We also needed
to establish an organization to operate the CA, develop processes
that would provide high security and high availability, find a sus-
tainable funding model, and become a trusted issuer so that our
certificates would be accepted by major browsers and platforms. In
this section, we discuss how ISRG, the organization that runs Let’s
Encrypt, came to be, and how it accomplished these goals.

3.1 History and Organizational Structure

Let’s Encrypt was created through the merging of two simultaneous
efforts to build a fully automated certificate authority. In 2012, a
group led by Alex Halderman at the University of Michigan and
Peter Eckersley at EFF was developing a protocol for automatically
issuing and renewing certificates. Simultaneously, a team at Mozilla
led by Josh Aas and Eric Rescorla was working on creating a free
and automated certificate authority. The groups learned of each
other’s efforts and joined forces in May 2013.

That month, they formed the Internet Security Research Group
(ISRG), a nonprofit corporation, to be the legal entity operating
Let’s Encrypt. It was decided that ISRG should be a nonprofit be-
cause nonprofit governance requirements—such as no profit motive,
no ownership, relatively high transparency, and a public service
mission—would help ensure that the organization served the public
in a stable and trustworthy manner over the long term. Josh Aas
has served as ISRG’s Executive Director since its founding.

Initially, ISRG had no full-time staff. Richard Barnes of Mozilla,
Jacob Hoffman-Andrews of EFF, and Jeff Hodges (under contract
with ISRG) began developing Let’s Encrypt’s CA software stack.
Josh Aas and J.C. Jones, both with Mozilla at the time, led infras-
tructure development with assistance from Cisco and IdenTrust
engineers. ISRG’s first full-time employee, Dan Jeffery, joined in
April 2015 to help prepare the CA’s infrastructure for launch. Simul-
taneously, James Kasten, Peter Eckersley, and Seth Schoen worked
on the initial ACME client (which would eventually become Cert-
bot) while at the University of Michigan and EFF. Kevin Dick of
Right Side Capital Management, John Hou of Hou & Villery, and
Josh Aas constituted the team responsible for completing a trusted
root partnership deal and signing initial sponsors.

Let’s Encrypt was publicly announced on November 18, 2014 [1],
issued its first browser-trusted certificate on September 14, 2015 [4],
and began providing service to the public on December 3, 2015 [2].

As of May 2019, ISRG had 13 full-time staff: six site reliability
engineers, three software developers, and four administrative staff.
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Figure 1: ISRG operating budget and effective cost per certificate.
Automation has allowed Let’s Encrypt to keep operating costs stable even
in the face of tremendous growth in certificate issuance since its launch.

Site reliability engineers are responsible for the CA’s infrastructure
and are the only staff with access to systems that issue certificates.
Administrative staff work on fundraising, finance, communication,
management, legal, and other organizational administration tasks.
Software developers work primarily on the CA’s Boulder software,
while also contributing back to various open source projects. Since
launch, the CA has regularly introduced new features, including
IPv6 support (July 2016), internationalized domain name support
(October 2016), ACMEv2 support (March 2018), and wildcard cer-
tificate support (March 2018).

ISRG is governed by a board of directors, which meets quarterly.
As of September 2019, there are ten directors, including representa-
tives from public benefit entities, educational institutions, and major
financial contributors, as well as the ISRG Executive Director [54].

3.2 Budget and Fundraising

ISRG spent approximately $3.0M in 2018 and is projected to spend
approximately $3.3M in 2019. (These figures exclude money set
aside as cash reserves and do not reflect in-kind contributions,
which significantly reduce costs for third-party services and host-
ing.) Staffing is ISRG’s largest category of expense, accounting for
about two-thirds of the budget. Daily CA operations are heavily
automated, so most staffing costs go towards software engineer-
ing and systems administration of the automated infrastructure.
This has allowed ISRG to maintain stable operating costs despite
enormous growth in certificate issuance, as shown in Figure 1.

Initially, ISRG was funded almost entirely through large dona-
tions from technology companies. In late 2014, it secured financial
commitments from Akamai, Cisco, EFF, and Mozilla, allowing the
organization to purchase equipment, secure hosting contracts, and
pay initial staff. Today, ISRG has more diverse funding sources; in
2018 it received 83% of its funding from corporate sponsors, 14%
from grants and major gifts, and 3% from individual giving.

3.3 Becoming a Trusted Issuer

One of the greatest hurdles to establishing Let’s Encrypt was acquir-
ing the ability to issue certificates that would be trusted by existing
clients. New CAs can apply for inclusion in browser and OS root
programs, but the time from acceptance of new roots to broad client
deployment is prohibitively long. For example, years may elapse
between when new roots are added to Google’s root program and
when they are available on the majority of Android devices [100].
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For a new CAs to be widely trusted at launch, it either needs to
purchase an established, already trusted root, or get cross-signed
by a trusted authority. A “cross-signed” intermediate CA certificate
is signed by another CA. If the other CA is already widely trusted
by root programs, this makes the cross-signed intermediate, and
any certificates it issues, immediately widely trusted as well.

ISRG initially investigated purchasing an existing root, as this
would provide the greatest flexibility. The estimated price for a root
at the time was $1-8M, depending on remaining lifetime, extent
of trust, cryptographic algorithm type, and attached liabilities. We
made a small number of offers, but never completed an acquisition.

In October 2014, ISRG executed a long-term cross-signing agree-
ment with IdenTrust [3], a root authority trusted by Mozilla, Apple,
and Microsoft [63]. IdenTrust was attractive as a partner because it
had a sufficiently trusted root, offered cross-signing, and supported
Let’s Encrypt’s mission. IdenTrust also offered WebTrust-compliant
datacenter environments, which Let’s Encrypt needed to host its
servers and gained access to as part of the agreement.

ISRG has since established a root trust anchor, which was ac-
cepted into all major browser and platform root programs as of
August 2018 [6] and is gradually becoming widely deployed. Start-
ing in July 2020, Let’s Encrypt will default to issuing certificates
with a trust chain leading to the ISRG root instead of IdenTrust [7].

3.4 Legal Environment

As a U.S.-based entity, ISRG endeavors to craft policies that comply
with U.S. law, including applicable sanctions. Although service is
not provided to people or entities on the U.S. Treasury Department’s
Specially Designated Nationals (SDN) list [98], and service to a num-
ber of governments is limited as a result of sanctions, Let’s Encrypt
serves the vast majority of people and entities in every country.

ISRG occasionally receives requests from law enforcement and
relies on legal counsel to determine whether or not the requests are
legitimate, in whole or in part. It publishes a Legal Transparency
Report every six months in order to provide information about
the numbers of requests received [66]. Let’s Encrypt has never
been compelled by law enforcement, or any other entity, to issue a
certificate (e.g., to facilitate HTTPS interception attacks). The Web
security community generally recognizes this threat, along with
the risk of CA compromise, as important motivations [88] for the
adoption of Certificate Transparency (CT) [62]. Let’s Encrypt has
always fully participated in CT.

4 THE ACME PROTOCOL

A central element in the creation of Let’s Encrypt was the Au-
tomated Certificate Management Environment (ACME) protocol.
Unlike prior certificate management protocols (e.g., CMP, CMC,
and EST [10, 77, 82]), ACME is tailored to the needs of the Web PKI
and was designed with scalable, automated issuance as a core goal.

Let’s Encrypt launched with an initial version of the protocol
that our team designed internally [55]. This initial version became
the basis for the IETF ACME working group, which published a
final version as RFC 8555 [20]. The initial and final versions are
sometimes referred to as “ACMEv1” and “ACMEv2”, respectively.
In this section we will use “ACME” to refer to the final protocol
version (v2) unless otherwise specified.
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4.1 Protocol Overview

Earlier certificate management protocols presume pre-existing re-
lationships between the certificate applicant and the CA, such as
pre-shared secrets. In contrast, ACME provides tools to automate
the entire relationship between a CA and a certificate applicant.
A typical interaction is illustrated in Figure 2 and includes the
following tasks:

Account management. CAs need to track applicants’ identities
in order to know which applicants are allowed to request issuance
for which identifiers. ACME provides a minimal notion of an ac-
count, which is essentially a key-pair that the applicant registers
with the CA, together with some optional metadata. The focus of
ACME on automation enables the use of digital signatures to authen-
ticate applicants, as opposed to less secure means like pre-shared
keys or passwords. In addition to basic functions like account regis-
tration and account key rotation, ACME also provides an external
account binding feature, by which CAs can associate a bare-bones
ACME account with a richer account in some other system.

Authorization and identifier validation. Before a CA can issue
a certificate containing a given identifier to a given applicant, it
must verify that applicant’s authority to represent that identifier. In
the Web PKT, this is typically done by the CA requiring the applicant
to demonstrates control of the identifier. ACME has a notion of an
authorization being bound to an account, by virtue of the account
holder completing challenges that validate control of the identifier.
It supports challenges that implement the most commonly used and
easily automated validation methods, as discussed in Section 4.2.

Certificate request and issuance. Once an ACME client has reg-
istered an account with a CA’s ACME server, it can request that a
certificate be issued by sending the CA a description of the desired
certificate: what identifiers, what lifetime, etc. Although a PKCS#10
Certificate Signing Request (CSR) [72] must still be sent by the
client, the request description is encoded in a JSON object, since the
CSR format is unable to express, for example, a request for specific
notBefore and notAfter values. This request creates an order that
is used to track the process of authorizing and issuing the certificate.
The CA populates the order with the authorizations that the CA
requires the client to complete before it will issue the certificate.

In most cases, authorizations will correspond to identifiers—
issuing for example.com will require demonstrating control over
example.com. However, this model also allows for more exotic
cases such as wildcard certificates, where validation cannot be done
directly on the identifier in the certificate. Let’s Encrypt’s policy,
for example, is that a wildcard certificate (e.g., for *.example.com)
requires proving control over the base domain name (example.com)
using a specific challenge type.

ACME has no notion of renewal. Instead, a client “renews” a
certificate by simply requesting a new certificate.

Certificate revocation. ACME provides a mechanism for revoca-
tion of a certificate to be requested by any of the following parties:

(1) The account that caused the certificate to be issued;

(2) Any other account that can prove control of the identifiers
in the certificate; or

(3) Anyone who can prove control of the private key correspond-
ing to the public key in the certificate.
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Figure 2: ACME protocol. This diagram illustrates how an ACME client
can obtain a certificate without human interaction. In the dashed region,
the client proves ownership of the domain using an HT'TP-based challenge.

The last case is an especially important innovation over prior pro-
tocols, since it allows a good Samaritan who encounters a leaked
key to request automated revocation of corresponding certificates.

4.2 Validation Methods

The ACME challenge mechanism for identifier validation is exten-
sible so that new validation mechanisms can be added over time
and so that CAs can implement their own mechanisms. (Acceptable
methods for the Web PKI are defined in the CA/Browser Forum’s
Baseline Requirements [28].) There are currently three specified
challenge types, all of which are supported by Let’s Encrypt:

(1) The HTTP challenge requires the applicant to serve an ob-
ject containing a CA-provided random value at a specific
HTTP URL at the domain. The CA makes GET requests for
the URL and verifies that the correct object is returned.

@

~

The DNS challenge requires the applicant to provision a
DNS record at _acme-challenge.<domain> containing a
CA-provided random value. The CA fetches this record and
verifies that its content is correct.

3

=

The TLS-ALPN challenge requires the applicant to config-
ure a TLS server to respond to a TLS ClientHello message
containing a specific ALPN value and an ACME-specific TLS
extension [42, 87]. The TLS server must then present a self-
signed certificate containing a CA-provided random value
and correctly complete the TLS handshake.

These three mechanisms allow ACME to be integrated into a
variety of operational environments. For example, the HTTP chal-
lenge is easy to deploy on domains that have single Web servers,
but it requires the response to be provisioned across all servers in
load-balanced configurations. The TLS-ALPN challenge allows for
certificate management to be done by a TLS entity with no HTTP
logic of its own, e.g., by a TLS-terminating load balancer.

The various challenge types offer slightly different levels of as-
surance, and it is up to CAs to decide which are appropriate in a
given situation. Let’s Encrypt, for example, only allows a wildcard
certificate to be issued if the applicant has proven control with
the DNS challenge, since this challenge type proves direct control



CCS ’19, November 11-15, 2019, London, United Kingdom

over the DNS zone in question (and such control could be used to
provision arbitrary subdomains and obtain certificates for them).

In the 90 days preceding September 22, 2019, Let’s Encrypt com-
pleted 266M successful challenges with ACME clients. Of these,
86% used HTTP, 13% used DNS, and 0.3% used TLS-ALPN.

4.3 Security Improvements

While ACMEv1 and ACMEv2 share many attributes, several sig-
nificant changes were made in ACMEv2 in response to security
analyses performed during the IETF standardization process.

Bhargavan et al. formally verified the security of ACME [24].
They modeled the protocol in the applied pi calculus and demon-
strated its security in an even more robust threat model than the
one addressed by traditional CAs’ issuance processes. However,
their work also uncovered weaknesses involving some subtle au-
thentication properties. ACMEv2 incorporates improvements based
on their recommendations.

IETF security review also highlighted some areas for privacy
improvements Most notably, all GET requests (which lacked any
authentication) were replaced with authenticated POST requests,
so that CAs can apply appropriate authorization policies.

ACME validation methods have also evolved in response to se-
curity findings. In general, all validation methods that rely on em-
pirical validation of control (as all of the above do) are vulnerable
to network-layer attacks on the validation process, such as BGP
hijacking to reroute validation requests [25, 26, 84]. The ACME RFC
discusses these risks in detail, and suggests some mitigations [20].

However, validation methods face a range of other, often subtle
threats due to the diversity of server and hosting-provider behavior.
During ACME’s development, two additional challenges types were
proposed (one of which was deployed by Let’s Encrypt), but they
were found to be insecure in common shared-hosting environments:

HTTPS-based HTTP challenge. Initially, HTTP challenges were
allowed to be completed on port 80 (over HTTP) or port 443 (over
HTTPS). In 2015, Kasten and Eckersley noted that Apache would
serve the first HTTPS site defined in its configuration file if the
requested domain did not have HTTPS enabled. In other words, if
the same Apache instance served both site1.comand site2.com
but only site2.com supported HTTPS, all HTTPS requests to the
server—regardless of whether the client requested sitel.com or
site2.com—would be served with content from site2.com. In
shared-hosting environments, this behavior could allow an attacker
to acquire certificates for domains they did not control. In response,
the HTTP challenge type was changed to prohibit HTTPS requests.

TLS-SNI challenge. In early 2018, Franz Rosén found that the
TLS-SNI challenge supported by Let’s Encrypt did not provide suffi-
cient authentication in many shared-hosting environments [5, 81].
This challenge validated domain control by requiring the applicant
to configure a TLS server at the domain to host a specific chal-
lenge certificate. This certificate had to contain a subject alternative
name (SAN) with a CA-specified random value as a subdomain
of .acme.invalid. The server was required to respond with the
certificate if the subdomain was queried using the Server Name
Indication (SNI) extension [38] in the TLS handshake.

The challenge design incorrectly assumed that hosting providers
prevent clients from uploading certificates for domains they do not
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own (including . invalid domains). After Rosén demonstrated that
this was often not the case, Let’s Encrypt immediately disabled
the challenge, then re-enabled it for a small set of whitelisted non-
vulnerable providers. Let’s Encrypt eventually phased it out and
replaced it with the TLS-ALPN challenge described above, which
represents the result of security lessons learned from this process.

5 CA SOFTWARE AND OPERATIONS

When we started to develop Let’s Encrypt, available CA software
was designed around the manual processes that CAs typically fol-
lowed. ACME, with its focus on automation, differs substantially
from these human-oriented workflows, and we needed to build
entirely different software to operate an automated CA. We created
Boulder, a new, open-source CA software stack that forms the core
of Let’s Encrypt’s operations.

5.1 Security Principles

Let’s Encrypt must achieve high security and availability in order
to remain trustworthy and fulfill its role as Internet infrastruc-
ture. Both Boulder and the CA’s operations reflect a set of design
principles that support these goals:

Minimal logic. Boulder implements the minimal logic necessary
to instantiate an ACME-based CA, in order to make it easier for
developers and auditors to verify the correctness of the code. Boul-
der is implemented in a relatively high-level language, with struc-
tured intercomponent communications (Go and gRPC, respectively),
which further increase the comprehensibility of the code.

Minimal data. To reduce the potential harm from data breaches,
Let’s Encrypt collects only the minimum subscriber data necessary
to deliver the service in compliance with ACME and WebTrust [103]
requirements: a public key, an optional contact email address, and
various access logs [64].

Full automation. The system has a single issuance path, based
on ACME, with no facility for human operators to manually create
certificates or make one-off policy exceptions. Locking out humans
prevents errors that have led to misissuance by other CAs [80].

Functional isolation. Boulder is composed of limited-purpose
components that communicate only through well-defined APIs.
Components with different risk levels are physically isolated from
one another. This reduces the risk that compromise of more ex-
posed components (e.g., the Internet-facing front end) will lead to
compromise of more critical components (e.g., CA signing keys).

Operational isolation. To limit risk of physical compromise, ac-
cess to Let’s Encrypt data centers is strictly limited, even for our
staff. Most administration is performed remotely, with engineers
only entering the data centers to complete tasks that require physi-
cal access to hardware. Remote administration tasks are protected
by multifactor authentication and strong monitoring. Staff with
administrative access can only access administration functions
via dedicated, restricted virtual machine environments within a
security-focused operating system running on specific laptops.

Continuous availability. Boulder’s componentized architecture
allows multiple redundant instances of each function to be run
in parallel. Let’s Encrypt operates Boulder instances in physically
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Figure 3: Boulder architecture. Let’s Encrypt developed and operates a Go-based open-source CA software platform named Boulder, which is composed of
single-purpose components that communicate over gRPC, as illustrated here. The certificate lifecycle unfolds roughly from left to right in the diagram.

secure, geographically distributed facilities, and divides production
traffic between datacenters, with load balancing handled by a CDN.

In addition, security audits by outside firms are regularly com-
missioned. Physical access to core CA equipment, all HSM adminis-
trative operations, and certain other functions require multiple staff
members to present authentication. For most other administrative
operations, including software deployments, logging and monitor-
ing systems provide strong accountability. These protections help
ensure that a rogue engineer would have difficulty stealing a sign-
ing key, and although they might be able to cause misissuance, they
would likely be caught after the fact.

To reduce the chances that bugs in Boulder could lead to misis-
suance or other problems, new versions are tested in a public stag-
ing environment prior to entering production. Boulder also applies
ZLint [58] to perform automated conformance tests on every cer-
tificate, and any ZLint notices, warnings, or errors block issuance.

5.2 System Architecture

Boulder implements the three main functions required of a CA in
the modern Web PKI:

(1) Issuance of certificates (via ACME);

(2) Submission of precertificates and certificates to Certificate
Transparency (CT) logs [62]; and

(3) Publication of certificate revocation status via OCSP.

Figure 3 illustrates Boulder’s components and their interactions.
All instances of a given Boulder component run independently.
For example, Let’s Encrypt runs four instances of the Certificate
Authority component, each of which can sign certificates and OCSP
responses without communication with the other three instances.

ACME clients communicate with Let’s Encrypt exclusively via
the ACME API component, which validates client requests and re-
lays them to the Registration Authority (RA). The RA orchestrates
the authorization and issuance process. For example, when a client
responds to an ACME challenge, the RA instructs the Validation Au-
thority to validate that the client has completed the challenge. Once
the RA has verified that the client has sufficient authorization to
issue a requested certificate, it instructs the Certificate Authority to
issue a precertificate, which is submitted to CT logs by the Publisher.

When a CT log provides a Signed Certificate Timestamp (SCT), the
RA instructs the Certificate Authority to issue the certificate and
makes it available to the client.

Each Certificate Authority has access to a hardware security
module (HSM) that stores the private key corresponding to one of
the Let’s Encrypt intermediate certificates. The private key corre-
sponding to the ISRG root certificate is held in a separate, offline
HSM. The online HSMs also hold a private key corresponding to
an OCSP signer certificate, used to sign OCSP responses. As of
September 2019, Let’s Encrypt HSMs perform approximately 450
signatures per second, with the bulk of this work going towards
OCSP responses and the remainder towards signing certificates.

OCSP responses are computed proactively, asynchronously from
OCSP requests. The OCSP Updater monitors for new certificates or
newly revoked certificates, and instructs the Certificate Authority
to sign appropriate OCSP responses. As these responses expire,
the OCSP Updater issues fresh ones, until the certificate expires.
All of these OCSP responses are stored in a database, from which
the OCSP Responder answers OCSP requests. OCSP responses are
served and cached via Akamai, allowing Let’s Encrypt to keep up
with OCSP traffic even for very popular sites.

The architecture described here has allowed Let’s Encrypt to
scale up to issuing more than a million certificates per day at peak,
running on modest infrastructure. The biggest scalability challenge
has not been compute power or signing capacity, but rather the
growth of the primary CA database and of log data. As of September
2019, Let’s Encrypt produces about 150 GB of CA log data per day.
All of this log data is kept online and searchable for 90 days (the life-
time of certificates), and, in compliance with WebTrust audit require-
ments, a subset is archived offline for a minimum of seven years.

6 CLIENT ECOSYSTEM

There is no official client for Let’s Encrypt. Instead, by standardizing
ACME, the project has fostered an ecosystem of third-party clients
that support a wide range of platforms and use cases [65]. ACME
client libraries are available in a variety of languages, including
C, Go, and Java. There are a range of command-line clients, such
as acme.sh and Certbot, as well as server software with built-in
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provisioning, such as Caddy, Apache, and cPanel. Shared hosting
providers, including Squarespace, Google, and OVH, also use Let’s
Encrypt to transparently provision HTTPS. In this section, we
survey some of the noteworthy clients and gauge their popularity.

6.1 Certbot

In conjunction with Let’s Encrypt’s launch, the Electronic Frontier
Foundation (EFF) created an ACME client, now named Certbot [40].
Unlike most other clients, Certbot aims to fully automate secure
HTTPS deployment, rather than simply procuring a certificate.
Certbot currently is the most popular client in terms of unique IP
addresses. During the time period we studied, 50% of clients (by
unique IP address) used Certbot, and about 16% of certificates were
requested using it, as shown in Table 2. This suggests that Certbot
is particularly popular with operators of individual servers.

Certbot automatically parses and modifies configuration files
for popular Web servers, including Apache and Nginx. This lets
Certbot automate complicated HTTPS configuration steps that have
historically confused administrators [36, 107] and contributed to
TLS vulnerabilities (e.g., [11, 17, 23]). Furthermore, Certbot updates
can automatically patch server configurations to apply new security
configuration recommendations or mitigate newfound attacks.

Certbot’s extensible Python-based framework supports a va-
riety of Web servers and validation types. Authenticator plugins
implement means of satisfying ACME challenges. Certbot provides
authenticators for solving HTTP challenges with or without an
existing HTTP service, as well as for solving DNS challenges with
common DNS providers such as Amazon Route 53. Installer plugins
configure a service to use a newly obtained certificate and can mod-
ify configurations for improved security. Current installers support
Apache, Nginx, HAProxy, and other services.

Working with server configuration files has been one of the
most difficult challenges for Certbot. Neither Apache nor Nginx

ACME Agent Certificates FQDNs Client IPs
cPanel 10.0M (17.5%) 63.8M (48.7%) 87K (2.95%)
Certbot 9.4M (16.4%) 14.8M (11.3%) 1.5M (49.5%)
Squarespace 51M (8.97%) 5.2M (3.95%) <50 (0.00%)
acmedj 4.6M (8.09%) 7.8M (5.92%) 2.4K (0.08%)
Net-ACME2 33M (5.79%) 3.7M (2.79%) 13K (0.43%)
curl 3.IM (5.53%) 4.0M (3.09%) 113K (3.83%)
Acme:Client 3.0M (5.21%) 1.IM (0.84%) 15K (0.51%)
Plesk 2.0M (3.49%) 3.7M (2.84%) 164K (5.54%)
xenolf-acme 1.8M (3.16%) 1.5M (1.15%) 54K (1.82%)
Go-http-client 17M (2.91%) 0.2M (0.16%) 192K (6.48%)
acme.sh 1.7M (2.91%) 2.3M (1.73%) 211K (7.11%)
eggsampler 1.2M (2.05%) 3.6M (2.76%) 11K (0.36%)
OVH ACME 0.9M (1.65%) 2.4M (1.85%) <50 (0.00%)
Google 0.9M (1.63%) 1.2M (0.89%) <500 (0.02%)
Other (130k unique) 8.4M (14.7%) 15.8M (12.1%) 0.6M (21.4%)
Total 57.2M 147M 3.0M

Table 2: Most popular ACME clients. There is a rich ecosystem of ACME
clients. Here we show the clients that requested the most certificates in De-
cember 2018 and January 2019, based on data from Let’s Encrypt logs. Some
clients that are integrated with large hosting providers (e.g., Squarespace)
tend to issue many certificates from a small number of IP addresses.
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offers an API to access its configuration, and their configuration
languages are not well specified. To reduce the chance of breaking
the server’s configuration, Certbot runs automated checks and will
revert any modifications if a test fails. Unfortunately, this cannot
guarantee that all changes have the intended effects. We encourage
server developers to provide APIs that allow external services to
modify their configurations, publish a formal specification for their
configuration languages, and provide secure defaults that do not
require correction by third-party tools.

6.2 Servers with Automatic Provisioning

Several Web servers can automatically provision Let’s Encrypt cer-
tificates. One of the first was Caddy [67], a Go-based Web server
with an integrated ACME client that provisions and renews cer-
tificates without user interaction. Servers running Caddy exhibit
nearly ubiquitous HTTPS deployment and use of modern TLS con-
figurations, although they account for only a small fraction of Let’s
Encrypt certificates. We hope to see other popular server software
follow Caddy’s lead. The Apache project’s mod_md provides similar
functionality [15], although it has yet to see significant adoption.

Web control panels, which help administrators configure servers,
have also added ACME support, including cPanel [101], Plesk [76],
and Webmin [102]. These integrations are frequently deployed by
hosting providers and help drive HTTPS adoption for smaller sites.
They account for a huge portion of Let’s Encrypt usage. About half
of domains with a Let’s Encrypt certificate and 18% of Let’s Encrypt
certificates are issued using the cPanel plugin alone.

6.3 Hosting Providers

Prior to Let’s Encrypt, a disproportionate number of sites without
HTTPS were small sites, a significant number of which were served
by shared hosting providers that controlled all aspects of HTTPS
configuration (see Section 7). Often, these services provided no
means for enabling HTTPS or required customers to upload their
own certificates—an approach that was problematic for the techni-
cally unsophisticated users that such providers tend to attract.

Let’s Encrypt has enabled a number of very large providers to
automatically provision HTTPS for all of their sites without any
user interaction. Around 200 hosting providers, including Squares-
pace [90], WordPress [8], OVH [74], and Google, now have built-
in Let’s Encrypt provisioning. As we discuss in Section 7, more
than half of publicly accessible Let’s Encrypt certificates are hosted
by these providers. While most individual sites hosted by these
providers see only relatively little traffic, an avenue for migrating
them to HTTPS with little or no user interaction is necessary to
transition the entire Web to HTTPS.

6.4 Embedded Devices

A growing number of embedded devices include ACME clients,
including products from Asus, D-Link, Synology, and Zyxel. AVM
GmbH’s Fritz!Box residential gateway [18] illustrates a typical im-
plementation. Devices are assigned a subdomain of myfritz.net,
which acts as a dynamic DNS provider, requests a certificate from
Let’s Encrypt, and allows users to administer the device without
needing to bypass any browser warnings. Such devices are only
responsible for a small fraction of Let’s Encrypt certificates.
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Figure 4: CA market share and Let’s Encrypt’s growth for Alexa Top Million domains. Since Let’s Encrypt launched, it has seen more growth among
top million sites than any other CA. It was used by about 35% of top million sites with HTTPS as of January 2019.

7 LET’S ENCRYPT’S USAGE AND IMPACT

Since its launch in December 2015, Let’s Encrypt has steadily grown
to become the largest CA in the Web PKI by certificates issued and
the fourth largest known CA by Firefox Beta TLS full handshakes.
As of January 21, 2019, the CA had issued a total of 538M cer-
tificates for 223M unique FQDNSs, and there were 91M unexpired
Let’s Encrypt certificates valid for 155M unique FQDNs. This repre-
sents more unique certificates than all other CAs combined. (Except
where otherwise noted, analysis in this section is based on data
from that date. For Certificate Transparency data, we count cer-
tificates by the SHA-256 hash of the tbsCertificate structure
after removing CT poison and SCTs to prevent double counting
pre-certificates and certificates.) In this section, we analyze Let’s
Encrypt’s role in the HTTPS ecosystem from a variety of perspec-
tives including longitudinal Censys HTTPS scans [35], Certificate
Transparency (CT) logs [62], Firefox client telemetry, and our own
HTTPS scans of names in CT logs.

7.1 Adoption By Popular Websites

Let’s Encrypt is more commonly used by the long tail of sites on
the Web than by the most popular sites. Indeed, while the majority
of HTTPS sites use Let’s Encrypt, until recently no sites in the
Alexa Top 100 used a Let’s Encrypt certificate. The CA’s market
share increases as site popularity decreases: 5% of the top 1K, 20%
of the top 100K, and 35% of the top 1M sites with HTTPS use Let’s
Encrypt. Only 3.6% of full TLS handshakes by Firefox Beta users
are protected by Let’s Encrypt certificates. Instead, trust anchors
belonging to DigiCert and GlobalSign—the two CAs that have tran-
sitively issued certificates for the ten most popular sites by Alexa
rank—authenticate the majority of connections (Figure 5).

One likely reason that popular sites prefer other CAs is demand
for Organization Validation (OV) and Extended Validation (EV)
certificates, which Let’s Encrypt does not issue. Over 83% of sites
in the Top 100 use OV or EV certificates, while only 18% of all
trusted certificates are EV or OV validated. Given Firefox, Chrome,
and Safari’s moves to remove unique indicators for each validation
level [53, 73, 94, 96], more sites may move to DV certificates. Stack

100 T

" ARV
i | /
40 /1 \\'WW\"‘M‘\/ S

% of Firefox Certificate Validations

0 , ,
04/2017 07/2017 10/2017 01/2018 04/2018 07/2018 10/2018 01/2019 04/2019 07/2019

GoDaddy GlobalSign DigiCert
Let's Encrypt Certum Other
USERTrust mess Amazon Starfield
Comodo (Sectigo) StartCom Verisign
SecureTrust GeoTrust

Unknown s Entrust s

Figure 5: Firefox HTTPS connections by trust anchor. We show the
trust anchors responsible for authenticating full TLS handshakes by Firefox
Beta users. Let’s Encrypt has become the fourth largest known CA.

Overflow (Alexa Rank 38) began using a Let’s Encrypt certificate
in July 2019, after our primary analysis was complete.

Let’s Encrypt has seen rapidly growing adoption among top
million sites since its launch, while most other CAs have not (Fig-
ure 4b). It was the fastest growing CA for those sites, increasing in
market share from just 2% in July 2016 to over 25% in January 2019
(Figure 4a). By contrast, the market share of Sectigo—the second
most popular CA within the top million sites—remained relatively
steady, at 17%. The only other major CA that showed significant
growth during this period is DigiCert, which grew from 2% to 10%.
Firefox Beta channel telemetry shows Let’s Encrypt increasing from
0.44% of full handshakes in the first 28 days of March 2017 to 3.7%
in the 28 days ending September 17, 2019 (Figure 5).

Most sites that have adopted Let’s Encrypt are new to HTTPS, but
many of the most popular sites that use the Let’s Encrypt previously
deployed HTTPS with a different CA. Of the 94K sites consistently
in the Alexa Top Million between 2015 and 2019 that now use a
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Authority Active FQDNs Certificates
Let’s Encrypt 123.6M  (58%) 91.3M  (57%)
cPanel 454M  (21%) 158M  (10%)
Sectigo (previously Comodo) 14.9M (7%)  10.0M (7%)
DigiCert 87M (4% 7IM (4%
Cloudflare 7.4M 3%) 16.1IM  (10%)
GoDaddy 4.2M (2%) 4.8M (3%)
GlobalSign 19M  (0.9%) 1.OM  (0.6%)
Nazwa.pl 1.0M  (05%) 09M (0.5%)
Amazon 0.9M  (0.4%) 1.5M (1%)
Starfield 09M  (0.4%) 03M  (0.2%)
TrustAsia 0.5M  (0.2%) 0.9M  (0.6%)
Other 36M  (17%) 113M  (7.0%)
Total 213M 161M

Table 3: Most popular certificate authorities based on certificates in
public CT logs and based on domains responding to HTTPS requests. Let’s
Encrypt has issued more certificates and is served on more unique domains
than all other CAs combined.

Provider LE %LE % ofLE | Provider LE %LE %ofLE
Unified Layer 33.8M 91%  27.0% | Wix 39M  85% 3.2%
OVH 51M  60% 4.0% | Hetzner 3.0M 57% 2.4%
Amazon 49M  60% 4.0% | Google 2.5M  80% 2.0%
Squarespace  49M  97% 3.9% | PDR 2.0M  59% 1.6%
Automattic 43M  96% 3.5% | SingleHop 2.0M 64% 1.6%

Table 4: Providers with most Let’s Encrypt domains on live websites.
While automatic provisioning of Let’s Encrypt certificates has explained
part of its explosive growth, many of the networks with the most certificates
are cloud providers where users have chosen to use Let’s Encrypt.

Let’s Encrypt certificate, 75% previously deployed HTTPS with
a different CA. (We note that sites consistently in the Alexa Top
Million are likely to be the most popular and may not represent the
top million more broadly.) These include Sectigo (27%), GeoTrust
(15%), GlobalSign (8%), GoDaddy (6.4%), and DigiCert (6.3%).

7.2 Automatic HTTPS Configuration

One reason that Let’s Encrypt has experienced rapid growth is that
its service has been integrated by hosting and CDN providers in
order to automatically provision certificates for their customers. For
example, the drag-and-drop website building service Wix provides
HTTPS for all users using Let’s Encrypt certificates [105]. There
are nearly 4M unique active FQDNs with Let’s Encrypt certificates
that point to servers in the Wix AS (Table 4). In the most extreme
case, Unified Layer, a subsidiary of Endurance International Group
(EIG), which provides public hosting through Bluehost, HostGator,
and several other subsidiary brands, hosts nearly 34M sites with
certificates from Let’s Encrypt. This accounts for 27% of the publicly
accessible names found in Let’s Encrypt certificates.

Half of names in Let’s Encrypt certificates are located in just
10 ASes, and 80% are in 100 ASes. However, this concentration does
not necessarily indicate that these providers are automatically issu-
ing Let’s Encrypt certificates for every site. Rather, this represents
a broader centralization of the Web. Many of the networks with the
most Let’s Encrypt certificates are large cloud providers like OVH,
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Figure 7: Share of domains using Let’s Encrypt for the ASes with the
most HTTPS sites. The largest, Unified Layer, represents 27% of accessible
domains using Let’s Encrypt certificates.

Amazon, Hetzner, and Digital Ocean, where customers are provi-
sioning certificates from a variety of CAs (Figure 7). Of the top ten
largest Let’s Encrypt clients by network (i.e., ASN), only three use
Let’s Encrypt for over 90% of their HTTPS sites. This centralization
is also present for other CAs (Figure 6). Beyond Unified Layer, the
next largest provider that automatically provisions certificates for
all customers is Squarespace, which accounts for under 4% of Let’s
Encrypt domains. In total, the largest providers that automatically
provision certificates for all customers account for only 34% of Let’s
Encrypt names (Table 4).

7.3 Web Servers

While some Web servers like Caddy automatically provision Let’s
Encrypt certificates, the bulk of sites are served from traditional
Web servers like Nginx and Apache. We see Let’s Encrypt usage on
almost all of the common Web servers, though we see significantly
different levels of adoption between servers (Table 5). For example,
while 85% of sites hosted on Nginx use Let’s Encrypt, less than half
of Apache and IIS sites do. Nginx is the most popular Web server
used to host public Let’s Encrypt-protected domains. Caddy is the
most popular server with near 100% Let’s Encrypt usage.

7.4 User Demographics

Beyond automatic provisioning, Let’s Encrypt usage is broadly
similar to that of other authorities by both geographic breakdown
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Name AlFQDNs LEFQDNs %LE % ofLE
Apache 79.3M 367 M 46% 30%
Nginx 66.0M 56.2M 85% 45%
LiteSpeed 14.6M 7.25M  49% 5.8%
Cloudflare 13.2M 31K 0.2% 0.3%
cPanel 10.8M 48M  43% 3.8%
Microsoft 3.9M 15M  38% 1.2%
OpenResty 3.5M 3.1IM  87% 2.5%
DPS (GoDaddy) 1.6M 9 0% 0%
Cowboy 0.5M 0.IM  25% 0.1%
GSE 0.5M 0.4M 81% 0.3%
Other 2.4M 1L.7M  70% 1.4%
Not Specified 18.5M 13.7M  74% 11%

Table 5: Most common server types. Domains that responded to HTTPS
requests on January 29, 2019, grouped by type of server and categorized
as using Let’s Encrypt or another CA. Apache is the most popular server
overall, but Nginx is the most popular among Let’s Encrypt deployments.

eTLD LE %LE %ofLE ‘ eTLD LE %LE %ofLE
.com 44.3M 52% 48.5% | .nl 1.9M 71% 2.1%
.de 3.9M 69% 43% | br 1.8M 72% 1.9%
.org 3.3M 68% 3.6% | .fr 1.7M 82% 1.8%
.uk 2.5M 62% 2.7% | .com.br 1.6M 73% 1.8%
.co.uk 22M  63% 24% | ru 1.3M  79% 1.4%

Table 6: eTLDs with most Let’s Encrypt certificates based on valid
certificates in the Censys dataset.

and TLD. For example, the most common TLDs are largely the same
as for other CAs, though we see differing adoption rates in some
countries (Table 6). For example, while only 49% of . com domains
use Let’s Encrypt, around 80% of . ru and . fr domains do.

There are several public suffixes with a disproportionate number
of Let’s Encrypt certificates. For example, 30 suffixes have more
than 100,000 domains and greater than 95% Let’s Encrypt adoption.
These fall into several broad categories:

Blog and hosting providers. Several large blog providers that
create a unique subdomain for each blog they host. For exam-
ple, there are certificates for 1.3M subdomains of home.blog and
287K domains under automattic.com.

IoT devices. There are a handful of IoT manufacturers who cre-
ate a subdomain and certificate for each deployed IoT device. For
example, there are 875K domains under keenetic.io. We also see
remotewd.com (384K), freeboxos.fr (182K), and myfritz.net (237K).
For these cases, over 99% of subdomains use Let’s Encrypt.

TLDs. There are three TLDs with near 100% LE usage: .blog
(2.3M), .jobs (165K), and .ir (792K). Let’s Encrypt is one of a
small number of CAs that issue certificates for names in Iran’s TLD.

These domains illustrate several new HTTPS use cases and popula-
tions of users enabled by automated certificate issuance.

7.5 Certificate Renewals

Compared to other sites, fewer sites with Let’s Encrypt certificates
serve expired certificates, and few Let’s Encrypt renewals (2.9%)
occur after the prior certificate has expired. Only 2.2% of sites in the
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Top Million with Let’s Encrypt certificates currently serve expired
certificates, while 3.9% of all HTTPS sites have expired certificates.
Most renewals occur in the last 30 days before the validity period of
a certificate expires (64%), but over a third of renewals occur in the
early (19%) and middle (16%) periods of first 30 days and 30-60 days,
respectively. This indicates that organizations are able to maintain
an improved security posture through automation despite shorter
certificate lifespans than other authorities offer.

8 DISCUSSION AND SECURITY LESSONS

When we started work on Let’s Encrypt, the two most commonly
voiced criticisms about the Web PKI were that (a) it was too difficult
for server operators to use, and (b) it wasn’t secure anyway. Let’s
Encrypt was intended to take aim directly at the first complaint,
based on our belief that the usability problem was the more serious
and that it was responsible for the relatively low deployment of
HTTPS. The data in Section 7 (and particularly in Figure 4b) suggest
that this analysis was correct: Let’s Encrypt has been responsible
for significant growth in HTTPS deployment.

By contrast, Let’s Encrypt has had only an indirect impact on
the security of the HTTPS ecosystem itself. Ultimately, the security
of certificates is dictated by that of the weakest CA, and security
only improves when all CAs do a better job. In parallel with our
efforts, browser-makers and security advocates within the Web PKI
community have been working to increase PKI security through
tightened requirements for CAs, promotion of new security mecha-
nisms such as Certificate Transparency, and enforcement of greater
CA transparency and accountability. Let’s Encrypt has been an
eager participant in these changes, which we consider to have been
quite productive, and has attempted to set an example of good PKI
citizenship, including through its commitment to openness and its
record of fast and complete incident disclosure.

8.1 Why Was Let’s Encrypt Successful?

At some level, the answer to Let’s Encrypt’s success is easy: it was
free and easy to use (and in fact automated). While some previous
CAs such as StartCom had free tiers and others had some level
of automation, no previous CA had attempted to combine these
two into a single service offering. These properties turn out to be
strongly interdependent: Automation is necessary to have a free
CA and free certificates make automation practical.

Automation enables free certificates. The dependency of free
certificates on automation is relatively obvious: if certificates are
free and your intent is to issue millions of certificates, then it is
critically important to keep per-certificate costs down; automation
is the only plausible mechanism for doing so. Removing humans
from the validation process also reduces the possibility that social
engineering or simple misjudgment will lead to misissuance, both
of which are sources of risk for a CA on a limited budget.

In addition to lowering the direct monetary cost of certificates,
automation lowers the cost to administrators of managing them.
Manual management, especially of large server farms, is inherently
expensive and also introduces the risk of configuration errors—such
as failure to renew certificates—that can lead to downtime. Together
with free certificates, the net impact is a significant lowering of the
overall cost of serving HTTPS.
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Sept, 2015 | No TLS: 62,142 [l Jan, 2016 No TLS: 56,280

I Sept, 2015 | Comodo: 17,624 I Jan, 2016 | Comodo: 23,905

—Jans2016 | Let's Encrypt: 330

Sept, 2015 | Other‘: 29.468 Jan, 2016 | Other: 29,133
{

Sept, 2015 | DigiCert: 4,669 Jan, 2016 | DigiCert: 4,718

Sept, 2015 | GlobalSign: 6,888 Jan, 2016 | GlobalSign: 4,753

Feb,2017 | No TLS: 48,511

Feb, 2017 | Comodo: 26,411

Feb,2017 1 Liet's Encrypt: 8,199 [l

Feb, 2017 | Other: 23676

Feb,2017 | DigiCert: 4,694

Feb, 20171 GlobalSign: 4,683

Feb, 2017 | cPanel: 3,847

Feb; 2017 | Amazon: 1,112

I Sept, 2015 | GeoTrust: 14,051 Ijan,2016 | GeoTrust: 14,782

Sept, 2015 | Thawte: 3,907 Jan, 2016 | Thawte: 3,929

m=Sept, 2015 | Symantec: 2,740 ™&Jan, 2016 | Symantec: 3,659

Feb, 2017 | GeoTrust: 13,062 l

Feb, 2017 | Thawte: 3,542
Feb, 2017 | Symantec: 3,753 m—

I Jan, 2018 | No TLS: 30,115 L
I Jan, 2018 | Comodo: 32,404 I

I Jan, 2018 | Other: 23,724

Aas, et al.

Jan, 2019 | No TLS: 20 362

Jan, 2019 | Comodo: 32,059

Jan, 2019 | Let's Encrypt: 30,229
Jan, 2018 |- Let's Encrypt: 18,326 \ v

Jan, 2019, Other: 23,978

'

Jan} 2018 | DigiCert: 7419 Jan, 2019 | DigiCert: 20,811

Jan, 2018 | GlobalSign: 5,662 Jan, 2019 GlobalSign: 5,766

Jan,2018 | cPanel: 4,184 Jan, 2019 |.cPanel: 3,934 mm

Jan, 2018 | Amazon: 2,439 Jan, 2019 | Amazon: 3,787 mm

Jani, 20181 GeoTrust: 10,702 [ e i S s

Jan, 2018 | Thawte: 3 231 Jan, 2019 Thewie?s3

Jan, 2018 | Symantec: 3,282 mm—_ Jan, 2019 | Symantec: 86

Figure 8: Certificate authority flow among stable, popular sites. We track CA choice for 141K domains over five snapshots, from 7/2015 to 1/2019. The
included sites are those that were ranked in the Alexa Top Million at every snapshot, and so are likely more popular and long-lived than the top million overall.

Free certificates make automation practical. Although it is
technically possible to have automation with non-free certificates,
the requirement for payment makes automation significantly less
valuable. This is most obvious in the case of large hosting providers
such as Automattic or Squarespace, which have been responsible
for a large fraction of the use of Let’s Encrypt (see Section 4). Each
of these providers made use of Let’s Encrypt’s APIs to automatically
issue certificates for large fractions of their users. This would have
been more difficult, if not impossible for most providers, if they had
to pay for each certificate.

Even for smaller operators, free is an enabler. It allows for initial
setup without arranging for payment and then “fire and forget”
configuration without concerns that the credit card will become
invalid and result in reissuance failures.

Gradual deployment is essential. Let’s Encrypt is far from the
only attempt to provide universal free server authentication, but it
is the first to see widespread adoption. Other efforts include DNS
Authentication of Named Entities (DANE) [19], Sovereign Keys [39],
and MonkeySphere [70]. As a concrete comparison, the DNSSEC
root zone was signed in 2010 and DANE was published in 2012—
three years before Let’s Encrypt launched—yet there is essentially
no server deployment and no major Web client supports DANE.
While DANE suffers from a number of deficiencies [60], the primary
problem is hinted at by “no major Web client”. In order for servers
to use DANE, clients first have to change, but, conversely, without
any servers, clients have no incentive to support it. This is also
true for Sovereign Keys and other alternative proposals for Web
server authentication. By contrast, because Let’s Encrypt issued
ordinary Web PKI certificates that, thanks to the cross-signature,
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were immediately valid in nearly any browser, it was able to deploy
rapidly without asking both sides to change.

There is an important lesson here for the future. The applica-
tion of blockchain technologies for cryptocurrency has led to a
number of proposals for rooting identity in a blockchain, so that
it would be possible to directly verify ownership of a given name
without requiring some third party to verify and then vouch for
that ownership, as with DV certificates. However, as with previous
proposals, actual deployment of such a system would require every
client to change, and until that happens, servers would need an
ordinary Web PKI certificate in any case. If history is any guide,
this chicken-and-egg problem will stall deployment. One potential
solution would be to issue Web PKI certificates but to attach proofs
of ownership rooted in the blockchain-based identity system. This
would allow all clients to talk to those servers while clients and Cer-
tificate Transparency monitors could validate that those certificates
had been properly issued and report any misissuance.

8.2 Remaining Security Concerns

As noted above, Let’s Encrypt has increased HT'TPS deployment
but has not directly made the Web PKI itself appreciably more
secure. Important security challenges remain, including that domain
validation as a whole remains far from as secure as we would like
it to be. Moreover, debate continues about whether Let’s Encrypt
has had a negative impact on some aspects of Web PKI security.

Automation has improved but not solved validation. While
a fully-automated validation process has eliminated many of the
human sources of error that plagued other certificate authorities,
the approach is not foolproof.
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One major security objective we have not yet accomplished with
Let’s Encrypt is strongly protecting validation against DNS- and
routing-layer attacks. An attacker who can use DNS or BGP hijack-
ing to redirect traffic—or who can compromise a network device
close to the server or the CA—can intercept domain validation traf-
fic and falsely request a certificate [26, 52, 84]. Domain owners can
make some of these attacks more difficult by limiting the CAs that
can issue for them using CAA [49], and vigilant operators can use
CT monitors (e.g., [41]) to detect false issuances and respond.

As a further mitigation against route hijacking and man-in-the-
middle attacks, Let’s Encrypt is experimenting with multiple per-
spective validation. In this approach (similar to [104]), control of
the domain is simultaneously verified from multiple vantage points
in different autonomous systems, a strong majority of which must
succeed for the certificate to be issued.

Unfortunately, none of these measures can protect against the
full spectrum of validation attacks. The fundamental problem is that
domain validation is itself not cryptographically protected, since it
is the bootstrapping mechanism by which sites join the PKI. After
a domain has been validated once, it might seem sensible to give it
some way to disable future non-cryptographic validation methods,
but, as with HPKP [50], this risks creating downtime for sites that
lose their validation keys—or, worse, when attackers temporarily
take over a domain and change the key to one they control. There
may be no easy solution.

Phishing remains a challenge for the Web in general. Prob-
ably the most frequent complaint about Let’s Encrypt is that it is
used in the perpetration of phishing attacks. By some measures,
more than half of phishing sites now use HTTPS [56], as do many
sites that distribute malware, and a large number of those sites
use certificates issued by Let’s Encrypt [34]. Some observers have
called for CAs to take a more active role in combating such sites.

In our view, CAs are not well positioned to detect phishing and
malware campaigns, or to police content more generally. They
simply do not have sufficient ongoing visibility into sites’ content,
which can change much faster than certificate issuance and revoca-
tion cycles. As a result, certificates cannot offer assurances related
to the safety of Web content.

Attempts to limit certificates (and thus HTTPS) to domains with
entirely safe content are likely to be highly problematic. Some sites
will be denied service because of false positives or questionable def-
initions of what constitutes safe content. Another problem is that
the only enforcement mechanism CAs have is to deny service to
entire domains. Should a major global news site have its certificates
revoked because a single ad on a single page had malware embed-
ded? Finer-grained mechanisms for protecting users are needed.
Let’s Encrypt once checked Google’s Safe Browsing API before
certificate issuance, but it has stopped doing so for these reasons.

Browsers and search engines have much greater content aware-
ness, and they can protect users at the page level (or better). For
instance, Google Safe Browsing [89] uses machine learning to con-
tinuously detect malicious content. The results are used to warn
Chrome users when they try to load pages with unsafe content.
Users are much better informed and protected when browsers in-

clude such anti-phishing and anti-malware features.
Fortunately, widespread HTTPS deployment has made it possible

for browsers to change their security indicator Uls in ways that
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reduce the risk of user confusion. Rather than showing a positive
security indicator for HTTPS (which users might mistake for a
“seal of approval” on the site’s content), Chrome, Firefox, and other
browsers have begun to show negative security indicators for HT TP
sites [83]. This also further encourages sites to adopt HTTPS.

9 CONCLUSION

In this paper, we described how we created Let’s Encrypt, a free,
open, and automated HTTPS certificate authority (CA) designed
to accelerate universal adoption of HTTPS. We presented the ar-
chitecture of the CA software system (Boulder) and the structure
of the organization that operates it (ISRG). We also described the
design of ACME, the IETF-standard protocol we created to auto-
mate CA-server interactions and certificate issuance. Finally, we
measured the CA’s impact on the Web and the CA ecosystem.

Prior to our work, a major barrier to wider HTTPS adoption was
that deploying it was complicated, expensive, and error-prone for
server operators. Let’s Encrypt overcomes these through a strategy
of automation: identity validation, certificate issuance, and server
configuration are fully robotic, which also results in low marginal
costs and enables the CA to provide certificates at no charge.

We designed Let’s Encrypt to scale to the size of the entire Web.
In just over three years of operation, it is well on its way: it has
issued over 538 million certificates and accounts for more valid
browser-trusted certificates than all other CAs combined. We hope
that in the near future, clients will start using HTTPS as the default
Web transport. Eventually, we may marvel that there was ever a
time when Web traffic traveled over the Internet as plaintext.
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