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– Each TapDance station could use only 1U of physi-

cal rack space at one of the ISP’s uplink locations.

– All stations at the ISP would need to coordinate to

function as a single distributed system.

– The deployment had to operate continuously, de-

spite occasional downtime of individual stations.

– We had to strictly avoid interfering with the ISP’s

network operations or its customers systems.

– The deployment had to achieve acceptable network

performance to users in censored environments.

In this paper we describe our experience meeting these

requirements and the implications this has for further

deployment of Refraction Networking.

In addition, we analyze data from four months of

operations to evaluate the system’s performance. This

four-month period reflected typical behavior for our ISP

partners and concluded with a significant censorship

event that applied stress to infrastructure of our cir-

cumvention tool deployment partner. It shows that our

deployment’s load is affected by censorship practices,

and that it was able to handle the spike in utilization

effectively. During the censorship event, we provided In-

ternet access to more users than at any previous time,

and the system handled this load without measurable

degradation in quality of service or generating excessive

load on decoy websites, as reflected by the opt-out rate.

Our final contribution is a discussion of lessons we

learned from building and operating the deployment

that can inform future work on Refraction Networking

and other circumvention technologies. We identify two

particular areas—decoy site discovery and reducing sta-

tion complexity—where further research and develop-

ment work would be greatly beneficial.

We conclude that Refraction Networking can be de-

ployed continuously to end-users with sufficient network

operator buy-in. Although attracting ISP partnership

remains the largest hurdle to the technology’s practical

scalability, even with relatively limited scale, Refraction

can meet a critical real-world need as a fall-back trans-

port that can provide service when other, lighter-weight

transports are disrupted by censors.

The remainder of this paper is structured as follows.

In Section 2, we discuss existing techniques for and use

of Refraction Networking. We then describe our deploy-

ment’s architecture in Section 3. In Section 4, we quan-

tify the performance of our deployment using data from

the first four months of 2019. We end the discussion with

a comparison to existing decoy routing schemes. In Sec-

tion 5, we draw lessons from our deployment experience.

Finally, we conclude in Section 6.

2 Background

Refraction Networking (previously known as “decoy

routing”) is an anticensorship strategy that places cir-

cumvention technology at Internet service providers

(ISPs) and other network operators, rather than at

network endpoints. Clients access the service by mak-

ing innocuous-looking encrypted connections to existing,

uncensored websites (“decoys”) that are selected so that

the connection travels through a participating network.

The client covertly requests proxy service by including

a steganographic tag in the connection envelope that

is constructed so that it can only be detected using a

private key. At certain points within the ISP’s network,

devices (“stations”) inspect passing traffic to identify

tagged connections, use data in the tag to decrypt the

request, proxy it to the desired destination, and return

the response as if it came from the decoy site. To the

censor, this connection looks like a normal connection to

an unblocked decoy site. If sufficiently many ISPs par-

ticipate, censors will have a difficult time blocking all

available decoy sites without also blocking a prohibitive

volume of legitimate traffic [24].

Refraction Networking was first proposed in 2011.

Three independent works that year—Telex [28], Curve-

ball [16] and Cirripede [13]—all proposed the idea of

placing proxy “stations” at ISPs, with various propos-

als for how clients would signal the ISP station. For

instance, Curveball used a pre-shared secret between

the client and station, while Telex and Cirripede used

public-key steganography to embed tags in either TLS

client-hello messages or TCP initial sequence numbers.

Without the correct private key, these tags are crypto-

graphically indistinguishable from the random protocol

values they replace, so censors cannot detect them.

However, all of these first-generation schemes re-

quired inline blocking at the ISP; that is, the station

needed to be able to stop packets in individual tag-

carrying TCP connections from reaching their destina-

tion. This lets the station pretend to be the decoy server

without the real decoy responding to the client’s pack-

ets. While this makes for a conceptually simpler design,

inline blocking is expensive to do in production ISP

networks, where traffic can exceed 100s of Gbps. Inline

blocking devices also carry a higher risk of failing closed,

which would disrupt other network traffic, making ISPs

leery of deploying the Telex-era protocols.

To address this concern, researchers developed Tap-

Dance [27], which only requires a passive tap at the ISP

station, obviating the need for inline blocking. Instead,
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Fig. 2. Multistation Architecture. Light-weight detectors collo-

cated with ISP uplinks identify TapDance flows and forward them

to a central proxy. This allows a TapDance session to be multi-

plexed across connections to any set of decoys within the ISP,

regardless of which detectors the paths traverse.

3.2 Station Design and Coordination

The original TapDance design considered only single sta-

tions running in isolation [27]. While this makes sense

for a prototype, there are additional complexities when

scaling the protocol to even a mid-sized ISP.

The primary complicating factor is the need to mul-

tiplex traffic over many flows. We term a single connec-

tion to a decoy a TapDance flow, and a longer-lived con-

nection over our transport to a particular destination a

TapDance session. Multiplexing works by having clients

choose a random 16-byte session identifier, which is sent

in the first TapDance flow to the decoy site. On the sta-

tion, this first connection sets up the session state and

connects the client to the covert destination. Before the

decoy times out or the client sends data beyond the de-

coy’s upload limit, the client closes the flow and opens

a new one with the same session identifier. The station

then connects the new flow to the previous session, giv-

ing the client the appearance of an uninterrupted long-

lived session to the covert destination.

When each station operates independently, every

flow within a session has to be serviced by the same

station. During our 2017 pilot, we achieved this by hav-

ing clients use the same decoy for the duration of a

session [8]. However, this approach is unreliable when

routing conditions are unstable and subsequent flows

can take different paths, which led us to adopt a differ-

ent station architecture for our long-term deployment.

Instead of acting in isolation, stations at multiple up-

link locations coordinate, so that sessions can span any

set of decoys within the ISP. Figure 2 shows a high-level

overview of this architecture.

We split the station design into two components:

multiple detectors and a single central proxy. Detectors

located at the ISP’s uplink locations process raw traf-

fic and look for tagged TapDance flows. When a tagged

flow is identified, its packets are forwarded using Ze-

roMQ [12] to the central proxy running elsewhere in

the ISP. The central proxy maintains session state, de-

multiplexes flows, and services the TapDance session.

Detectors ingest traffic using the PF_RING high-

speed packet capture library [21], which achieves rates

from 10–40 Gbps. PF_RING allows us to split packet

processing across multiple (4–6) cores on each detector

while ensuring that all the packets in a flow are pro-

cessed by the same core, reducing the need for inter-

core communication. To identify TapDance flows, the

detectors isolate TLS connections and perform a cryp-

tographic tag check on the first TLS application data

packet using Elligator [1]. Depending on its network lo-

cation, each detector typically processes between 300

and over 16,000 new TLS flows per second.

Once a TapDance-tagged flow is observed, the de-

tector forwards it to the central proxy by sending the

flow’s TCP SYN packet, the tag-carrying application

data packet, and all subsequent packets in the flow. The

proxy thus only receives packets for flows that are re-

lated to TapDance connections. The proxy runs multiple

processes on separate cores, and, as with the detectors,

the forwarding scheme ensures that all of a session’s

flows are handled by the same process.

For each TapDance session, the central proxy main-

tains a connection to a local HTTP proxy server, which

the client uses to connect to covert destinations. (In

practice, Psiphon clients simply use it to make a long-

lived encrypted connection to an external proxy server

operated by Psiphon, so our central proxy does not see

actual user traffic.) To communicate with the TapDance

client, the central proxy uses a custom Linux kernel mod-

ule named forge_socket to initialize a socket with the

IP/TCP parameters from the client–decoy connection.

This lets the central proxy call send and recv on the

socket to produce and consume packets in the TapDance

flow, as if it were the decoy server.

One drawback of this multistation architecture is

that packets are received from the client at a different

network location (the detector) than where they are sent
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to the client (the central proxy). This could potentially

be used by censors to infer the presence of TapDance,

by observing TTL, timing, or network arrival point dif-

ferences. We have not seen evidence of censors exploit-

ing this (or any other technique) to block TapDance so

far. However, if it becomes necessary, the proxy could

forward packets back to the detector corresponding to

each flow and inject them into the network there.

3.3 Client Integration

To make our deployment available to users who need it,

we partnered with a popular censorship circumvention

app, Psiphon, which has millions of users globally. We

integrated TapDance support into Psiphon’s Android

and Windows software and distributed it to a cohort of

559,000 users in nine censored regions.

Psiphon clients support a suite of transport proto-

cols and dynamically select the best performing, un-

blocked transport for the user’s network environment.

Our integration with Psiphon benefits Psiphon users by

giving them access to a greater diversity of circumven-

tion techniques, and it has allowed our team to focus

on protocol implementation and operations rather than

user community building and front-end development. In

the future, our deployment could be integrated with

other user-facing circumvention tools in a similar way.

From a user’s perspective, Psiphon looks exactly the

same with or without TapDance enabled. The app does

not expose which transport it is using, and there are

no user-configurable options related to TapDance. Users

simply install the app, activate it as a system-wide VPN,

and enjoy uncensored web browsing.

Psiphon ships with several transport modules.

When a circumvention tunnel is needed, Psiphon at-

tempts to establish connections using all available trans-

ports. Whichever successfully establishes the connection

first is then used, while connections made by other trans-

ports are discarded. This selection algorithm provides

optimal user experience by prioritizing the unblocked

technique with the lowest latency.

Our TapDance deployment is available as one of

these modular transports for a subset of Psiphon users.

Since our overall capacity is limited by the size of Merit’s

network and the number of available decoys, Psiphon

has prioritized enabling TapDance in aggressively cen-

sored countries and networks. However, since Psiphon

does not track individual users, the granularity of this

distribution is coarse. The Psiphon TapDance user-base

was fixed during the measurement period analyzed in

this paper, but we have subsequently enabled it for users

in several additional countries facing censorship.

Our client library, gotapdance, is written in Go, as

is Psiphon’s app, which greatly simplified integration.

The gotapdance library provides a Dialer structure that

implements the standard net.Dialer interface. It spec-

ifies Dial and DialContext functions to establish con-

nections over TapDance to arbitrary addresses and re-

turns a TapDance connection as a standard net.Conn

object. Implementation of standard interfaces simplifies

integration by providing a familiar API, and it improves

modularity, allowing Psiphon to reuse existing code.

While this interface makes establishing TapDance

connections with gotapdance straightforward, there are

two functions that library consumers like Psiphon may

need to call first. The first is gotapdance.EnableProxy

Protocol, which modifies TapDance requests so that

the TapDance station sends the HAProxy PROXY [26]

protocol header to the destination address before start-

ing to tunnel the connection. This header includes the

IP address of the client, which Psiphon’s servers check

against an anti-abuse blacklist before discarding. All

Psiphon transport modules conform to this behavior.

Second, library users need to call gotapdance.Assets

SetDir to specify a writeable folder in which the library

can persistently store updates to its configuration, in-

cluding the list of available decoys.

To facilitate testing, Psiphon worked with us to cre-

ate a version of their application that exclusively uses

the TapDance transport. We use this version for auto-

mated testing with a continuous integration (CI) sys-

tem. On any code change to the TapDance library, the

CI system runs a suite of tests and builds Android and

command-line versions of the app for manual testing.

3.4 Operations and Monitoring

Operating a distributed deployment requires thorough

performance monitoring, so that our team can quickly

respond to component downtime, detect censorship

events or blocking attempts if they occur, and un-

derstand the effect of engineering changes on overall

throughput and reliability. We rely on a system of log-

ging and analysis technologies that aggregate informa-

tion from each individual station.

Detectors track and report the number of packets

checked, the traffic flow rates, and the current num-

ber of live sessions, among other data points. The cen-

tral proxy produces metrics that allow us to associate

flows with sessions and monitor their number, duration,
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5.3 Addressing Partner Concerns

Merit and other network operators we have engaged

with have expressed several very reasonable concerns

concerning deploying Refraction Networking. We review

some of the most prominent ones here and discuss how

we mitigated the issues.

Will the deployment impact normal production traffic?

TapDance is specifically designed to avoid interference

to an ISP’s normal operation. Since TapDance stations

only observe a mirror of traffic, their outages will not af-

fect regular commodity traffic flowing through the ISP.

Although an ISP’s network might become saturated if

too many TapDance clients started using it, we pro-

visioned our deployment to avoid this: Merit observed

70 Gbps of commodity traffic (out of a 140 Gbps capac-

ity), while our user traffic added only about 500 Mbps,

much less than a problematic level. We also have the

ability to modulate usage at a coarse granularity if nec-

essary to address capacity concerns, though we have not

had to use this capability in practice. Proxied connec-

tions originate from address space managed by Psiphon,

which also manages responding to abuse.

Will the deployment affect user privacy?

Stations observe network traffic to identify connections

from Refraction users. To protect privacy and reduce

risks, stations only need to receive traffic that is already

end-to-end encrypted via TLS. This does not remove

all privacy risks in the case of a compromised station—

IP addresses and domains from SNI headers and certifi-

cates would be visible—but exposure is greatly reduced

compared to a full packet tap. To reduce privacy risks

for TapDance users, clients connect to Psiphon proxies

through an encrypted tunnel over the deployment, so

stations cannot see the content users request or receive.

How will decoy websites be affected?

Our clients used 1500–2000 decoy websites at times dur-

ing the measurement period. These sites do indeed see a

small increase in load, but, since client traffic is spread

across all available decoys, the burden on individual

sites should be negligible. We monitored the number

of connections to each decoy to ensure it was under a

conservative threshold (see Figure 13). We also offered

a simple way for sites to opt-out of being used as decoys,

but only two sites did so during our evaluation period.

Will censors attack the ISP in retaliation?

Our ISP partner was also concerned that censors might

try to attack it or its customers in retaliation for host-

ing TapDance. Such a response would be extraordinary,

though not completely unprecedented [18]. We have

not observed any evidence of retaliatory attacks tak-

ing place, but Merit mitigated the risk by proactively

contracting with a DDoS protection service provider.

5.4 Lessons and Future Directions

Some of the lessons we learned in the course of deploying

TapDance may be useful for those looking to improve

upon Refraction Networking techniques or manage fur-

ther deployments. In particular:

1. TapDance’s complexity, and the need to work

around TCP window and server timeout limitations,

created ongoing engineering and operational chal-

lenges, as well as bottlenecks to some aspects of

the deployment’s measured performance. Simplify-

ing the design would enhance the deployability of

future Refraction approaches.

2. Decoy attrition did not pose a significant challenge

for our scale of deployment, at least over the 18

months of operation to date. Few servers opted out,

and none reported operational problems.

3. Router-level route prediction for client-to-decoy

connections is important to the performance of Re-

fraction techniques, but this problem is complex

when deploying in networks like Merits, in which

it is prohibitive to place stations on every incom-

ing path to many decoys. Our current approach

is overly simplistic—about half of client connec-

tion attempts fail to pass a station due to routing

behavior—and it would be even less effective for

deployments farther from the edge of the network.

Further work is needed.

4. ISP partnerships remain a bottleneck to the growth

of Refraction Networking. Despite TapDance’s ease

of deployment relative to earlier Refraction schemes,

partners remain concerned about effects on decoy

sites and other operational risks. Partnership with

Tier 1 or Tier 2 ISPs may also raise more concern

about impacts on decoy websites, as the lack of a di-

rect customer relationship between the ISP and site

operators may make ISPs less comfortable with an

opt-out model. Significant investments in partner-

building will continue to be necessary in order to

grow our deployment.

5. Although larger Refraction Networking deploy-

ments would have more capacity and be more

prohibitive to block, even relatively small deploy-
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ments such as ours can be surprisingly valuable as

a fallback technique to keep users connected dur-

ing periods of heightened censorship. This suggests

that a deployment composed of a constellation of

mid-sized network operators like Merit could be a

powerful anticensorship tool, and it would require

far less investment than the Tier-1 scale installa-

tions envisioned in early Refraction research.

Some of these lessons are incorporated into the design

of Conjure [9], a new Refraction protocol in which the

importance of decoys backed by real websites is reduced.

Rather, beyond initial registration, decoys are produced

from address space with no web server present. This ap-

proach holds promise as a practical way to reduce com-

plexity and performance bottlenecks and obviate con-

cerns about impacts on decoy sites. However, we note

that Conjure does not resolve all of the remaining chal-

lenges to Refraction Network’s deployability, and there

is a continued need for research.

6 Conclusion

This paper presents results from the first deployment of

a Refraction Networking scheme to enter continuous pro-

duction with real-world users. Our experience running

TapDance in production for 18 months demonstrates

that Refraction Networking can play a vital role in pro-

viding connectivity, even when censors increase their ef-

forts to block other circumvention techniques. We hope

our work will inform the design and operation of fur-

ther advanced anticensorship systems, which are more

important than ever for people living under censorship

in countries worldwide.
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