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Prediction of Essential Genes in Comparison States
Using Machine Learning

Jiang Xie, Chang Zhao, Jiamin Sun, Jiaxin Li, Fuzhang Yang, Jiao Wang* and Qing Nie*

Abstract— Identifying essential genes in comparison states (EGS) is vital to understanding cell differentiation, performing drug
discovery, and identifying disease causes. Here, we present a machine learning method termed Prediction of Essential Genes in
Comparison States (PreEGS). To capture the alteration of the network in comparison states, PreEGS extracts topological and
gene expression features of each gene in a five-dimensional vector. PreEGS also recruits a positive sample expansion method
to address the problem of unbalanced positive and negative samples, which is often encountered in practical applications.
Different classifiers are applied to the simulated datasets, and the PreEGS based on the random forests model (PreEGSRF) was
chosen for optimal performance. PreEGSRF was then compared with six other methods, including three machine learning
methods, to predict EGS in a specific state. On real datasets with four gene regulatory networks, PreEGSRF predicted five
essential genes related to leukemia and five enriched KEGG pathways. Four of the predicted essential genes and all predicted
pathways were consistent with previous studies and highly correlated with leukemia. With high prediction accuracy and
generalization ability, PreEGSRF is broadly applicable for the discovery of disease-causing genes, driver genes for cell fate

decisions, and complex biomarkers of biological systems.

Index Terms—Differential Network Analysis, Essential Genes in Comparison States, Machine Learning, Biomarker Discovery
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1 INTRODUCTION

Essential genes account for a small fraction of genes in a
genome; however, they are vital to the survival or de-
velopment of organisms [1], [2]. They also play significant
roles in cell state transformation during complex disease
progression as well as in cell development and differentia-
tion.

Essential genes in comparison states (EGS) are indispen-
sable to the transformation of the two states, which can
prevent, improve or adjust organisms to go from one state
to another. Identifying EGS is significant not only for ex-
ploring the factors influential the survival and develop-
ment of living organisms but also for finding pathogenic
genes and potential drug targets for curing diseases [3]. For
example, in terms of finding pathogenic genes, researchers
identified the genes modules that were possibly responsi-
ble for STAT-mediated antiviral responses through gene
co-expression networks for shrimp [4]. In terms of finding
drug targets, the DrPOCS method was used to predict po-
tential associations between drugs and diseases with ma-
trix completion based on EGS [5]. Currently, there are three
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main types of experimental strategies for the genome-wide
discovery of essential genes: gene knockout [6], gene
knockdown [7] and transposon mutagenesis [8]. Although
these experimental methods can accurately discover essen-
tial genes, they are expensive, time consuming and labori-
ous. Importantly, these experiments cannot be performed
in living organisms, especially in human beings. For com-
plex organisms and diseases, the prediction performance
is far from perfect.

Therefore, predicting EGS through computational
methods may be a valuable tool for improved performance.
Many computational methods and tools have been previ-
ously developed to identify the genes undergoing signifi-
cant changes across biological comparison states. For ex-
ample, the CSTEA webserver organized, analyzed and vis-
ualized the time-course gene expression data and essential
genes during cell differentiation [9]; and the HISP hybrid
intelligent method was used to determine the optimal to-
pologies of signaling pathways in an accurate way to un-
veil a high-resolution signaling pathway [10]. These meth-
ods and tools enabled both experimental and computa-
tional biologists to better understand the mechanisms of
cell fate determination.

In order to find EGS, various gene expression analysis
methods have been developed, such as Student’s t-test and
the significance analysis of microarrays (SAM) [11]. How-
ever, because genes are strongly intertwined with each
other in multiple pathways, those methods are strongly bi-
ased because gene interaction information is neglected. To
address the potential bias introduced by conventional gene
expression analysis methods, network-based methods
were developed to provide better ways of exploring multi-
ple interactions among genes. One popular approach, dif-
ferential network analysis, has been frequently used to
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measure the changes in networks in comparison states
[12],[13]. Such an approach could also be utilized to iden-
tify essential biomolecules between two states. Many struc-
ture/function analyses of protein sequences have been
performed to improve the prediction accuracy in different
states [14], [15], [16]. Diffk [17] used differential degree cen-
trality (DDC) [12] to score all nodes in networks, and the
essential genes were then obtained by ranking the scores.
Another method, DiffRank [18], ranked genes based on
their contributions to the differences between two net-
works by using two new structural scoring measures. In
DCloc [19], differential correlation patterns were identified
by comparing the local or global topology of correlation
networks.

The methods mentioned above have contributed to
identifying EGS through network analyses. However, the
methods based on statistics or graph theory were insuffi-
cient to discover the potential rules and could not be gen-
eralized across biological processes.

Recently, machine learning combined with bionetwork
analysis has been found to be a powerful approach in clas-
sification problems, including tumors, protein sequences
and essential biomolecules, and has already been proven
useful in predicting essential biomolecules. Support vector
machines and neural networks on protein-protein net-
works have been used to estimate whether each protein in
the network is essential or inessential [20]. The NC method
[21] found essential proteins by considering the modular
nature of protein essentiality through calculating the edge
clustering coefficient. The support vector machine (SVM)
classifier has been utilized to classify the protein sequences,
protein-protein interactions and hot spot residues in pro-
tein interfaces [22],[23],[24]. D.S. Huang combined ICA and
regularized regression models to classify tumors by gene
expression data [25]. HED is a machine learning method
used to predict potential associations between drugs and
diseases based on a drug-disease heterogeneous network
[26]. PREvalL [27] is an integrative machine learning ap-
proach that combines sequence, structural, and network
features to determine the catalytic residues in an enzyme.
A method based on extreme gradient boosting in a specific
network (XGBoost_EG) [28] can constructively project es-
sential genes by integrating homology, gene-intrinsic char-
acteristics, and network topology features.

The current machine learning methods focus on finding
the essential genes in specific networks in a static way. The
critical network features associated with the changes be-
tween networks in different states, which are likely
strongly associated with alterations in biological functions
or pathways, are not considered. Here, we present a novel
method termed Prediction of Essential Genes in Compari-
son States (PreEGS), which is used to extract the differen-
tial information of each gene between two networks. The
method considers not only topological structure but also
gene expression, and we transform this information into
vectors to construct the learning model. Then, the well-
trained model is used to find the essential genes that cause
the differences between two networks of comparison states.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

2 METHODS

PreEGS is based on the machine learning model and aims
to predict the essential genes in differential networks. A
novel feature extraction method is built using both net-
work topology and gene expression. Moreover, PreEGS in-
troduces a sample expansion method to address the prob-
lem of unbalanced positive and negative samples.

2.1 Dataset Sources

2. 1.1 Training and Test Dataset Sources

Both the training and test datasets include pairs of con-
trasted biomolecular networks along with the gene expres-
sion data for each gene. Each network is constructed by the
gene expression in the specific state, and a pair of con-
trasted networks indicate two comparison states (e.g., the
pathological disease state and the control state). Here, the
expression data of each gene were collected from various
databases, such as the Gene Expression Omnibus (GEO)
(https:/ / www.ncbinlm.nih. gov/geo/).

2. 1.2 Marking the Training Data

Every piece of data should be marked in the training da-
taset. This is a binary classification problem. Each gene is
regarded as essential (marked as 1) or unessential (marked
as 0). Currently, the essential biomolecules in specific states
can be integrated from databases, such as DEG [29]. How-
ever, there are few databases that contain marked essential
genes in comparison states. Therefore, the genes supported
by literature reports are defined as the essential genes
(marked as 1) in this paper.

2.2 Generating 5-Dimensional Feature Vector

2.2. 1 Topological Features of Nodes in Networks
It is essential to describe each node in the network using a
feature vector. While many types of network topological
features have been developed [30], the most-frequently
used features [31] for the machine learning-based predic-
tion of essential biomolecules are degree centrality (DC)
[32], betweenness centrality (BC) [33], closeness centrality
(CC) [34] and clustering coefficient (CCo) [35].

1) DC: DC indicates how many nodes are connected to
one node, and it can measure one node’s apparent ‘central-
ity’. It is formalized by (1):

Cp(v) = deg(v) )

2) BC: For a node v, BC is defined as the average length
of the shortest path through it. If more shortest paths pass
through v, then v has a higher centrality. BC’s equation is

as follows:
Cp(v) = Z

SEVELEV

a5t (V)
Ost

(2)

where g, means the number of shortest paths through
node s and node t, and o, (v) means the number of paths
that go through node v.

3) CC: CC indicates the degree of a node v that com-
municates with other nodes in the network with n nodes.
It is calculated by the sum of the shortest distance between
v and the others:
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n-1

Cc(v) = vaj (1 a U)

j=1

3)

where x,,; is the shortest path form node v to node j . CC
relates to the scale of the network. A larger network may
lead to a higher CC. To eliminate the impact of network
size on CC, (3) is converted into (4):

n—1
C.(v)

4) CCo: CCo is a coefficient indicating the level of aggre-
gation around a node in the network.

Cl(v) = 4)

m 2m
Ceco(W) = c = k=D

)
As shown above, k represents the total number of neigh-
bors of node v, and m represents the number of edges that
link all adjacent nodes of node v.
2. 2. 2 Feature Extraction of PreFGS
A novel feature extraction method was proposed to illus-
trate the comprehensive features of differential networks,
including topological structure and gene expression. A
five-dimensional vector x, = {x}, x2,x3, x} x5} was con-
structed for node v to quantify the differences in v in com-
parison states.

1) x; = ADC.The degree change in node v is the most in-
tuitive way to describe the differences in v in comparison
states. The equation of DC is shown in (1); therefore, the
calculation method of x1 is as follows:

xy = 1Cp(v) = Cp ()] (6)

where Cp(v) and C},(v) denote the degree of node v in
the two states.

2) x2 = ABC. As shown in (2), BC means a kind of ‘cen-
trality” of one node. The more shortest-paths pass through
anode, the more critical the node might be in the network.
Therefore, ABC can reflect the change in centrality in com-
parison states.

x5 = |Cg(v) — C5(W)] (7)

Cz(v) and Cz(v) denote BC of v in comparison states.

3) x3 = ACC. CC is shown in (4). ACC shows the differ-
ence in closeness centrality in comparison states. x; is cal-
culated as follows:

x5 = [Cc(v) — C¢ (W) (8

Ct(v) and C¢' (v) denote the CC of v in comparison
states.

4) x} = ACCo. A node v with high CCo has high power
to influence the network. ACCo can reflect the change in the
power of v.

Xy = |Coco(W) — Cico (W) )

5)x; =p —value(E, E"). E and E' represent the expres-
sion values of each gene in two comparison states. The dif-
ferences between E and E’ are direct representations of

genes changes. x; represents the statistical significance of
the difference in gene expression.

2.3 Expanding Positive Samples

Usually, the essential genes marked by the known litera-
ture studies are not abundant, causing positive samples
and negative samples to be out of balance. Under such cir-
cumstance, the predictions of the model have no signifi-
cance and the algorithm lacks extensiveness and predicta-
bility [36].

The genes supported by literature studies are essential,
although genes that have not been reported in existing
work may also be essential. Therefore, we extend the posi-
tive samples to address the problem of unbalanced data. In
this paper, a positive sample extension method is pre-
sented by using the Pearson correlation coefficient (PCC)
and setting up a threshold .

NYxyi—Xx 0y
PCC(x,y) = (10)
) N e R x ) NSy - B

where N indicates the number of all genes. x;, y; indicate
the five-dimensional vectors of two genes (x, y). The value
of iis from 1 to 5 in this paper.

All genes are divided into the essential gene set R =
{ro, 11,13, ..., 1,,} supported by the literature research and the
unmarked gene set U = {ug, uy, Uy, ..., Uy}, where n K m.
After calculating all PCC(ry, u,) betweenr, €R and u,, €
U, u, is marked as an essential gene if PCC(r,u,) is larger
than the threshold .

The principle for setting € is that the number of positive
and negative samples should be as balanced as possible af-
ter extension. The greater the absolute value of the PCC s,
the stronger the correlation is. Generally, a PCC over 0.8
means that there is a strong correlation between the two
genes [37], indicating that the unmarked genes are more
likely to be essential genes. To ensure the biological sense,
we set the threshold € to no less than 0.8 in this paper.

2.4 Training the Model

Biomolecular || Biomolecular || Gene Expression || Gene Expression
Network 1 Network 1 Profile 1 Profile 2
BC; CC; BC, CC, Differential Differential
CCo, DC,; CCo, DC, Expression 1 Expression 2

xi~xh x5

‘ Combine into 5-dimensional Eigenvector ‘

l

‘ Training and Predicting ‘

Fig. 1. Flow Chart of PreEGS.

The flow chart of PreEGS is shown in Figure. 1. The param-
eters in x}, x2, x3 and x; are constructed by four topologi-
cal structures in (6), (7), (8) and (9), and x3 is constructed
by differential expression from the gene expression profile.

The 5-dimension feature vector x, = {x}, x2, x3,x% x5} is
built by both network topology and gene expression to
train the model.

1545-5963 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloadegd aniQictober 13,2020 at 07:01:04 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TCBB.2020.3027392, IEEE/ACM Transactions on Computational Biology and Bioinformatics

To validate the prediction, various well-known data
mining algorithms, such as support vector machine (SVM),
K-nearest neighbor (KNN), random forest (RF), Gaussian
naive Bayes (GNB), and logistic regression (LG), were ap-
plied to the datasets. All the machine learning algorithms
above are implemented by the scikit-learn package [38].
After model training, the EGS of the life process are pre-
dicted and can provide new inspiration for bioscience or
medical science research.

2.5 Performance Evaluation

To evaluate the performance of a prediction model, true
negative (TN), false positive (FP), false negative (FN) and
true positive (TP) [39] are used to calculate evaluation in-
dicators, including accuracy, precision, recall and F1-Score,
as follows.

A _ TP+ TN 1
Ay = TP Y TN+ FP + FN an
o TP

Precision = TP T FP (12)
Sensitivity = Recall = i 13
ensitivity = Recall = TPTFN (13)

2 * Precision * Recall
1= (14)

Precision + Recall
Moreover, the F1-Score is a useful indicator for measur-

ing the accuracy of a binary classification model. The F1-
Score considers precision and recall, which ranges from 0
to 1. The model is better if the F1-Score is closer to 1.

3 RESULTS

In this section, PreEGS was first verified by the application
of different classifiers to simulated datasets. Next, the clas-
sifier with the optimal PreEGS performance was compared
with three classical methods (including DCloc, DiffRank
and DEC [40]). Furthermore, to compare with machine
learning methods, NC, FVM [31] and XGboost_EG are
used to identify essential genes on the simulated datasets.
Finally, we applied the proposed method to neurocytoma
and leukemia datasets to identify the EGS and modules.
3.1 Simulated Datasets Sources
According to the scale-free property of biomolecular net-
works [41], the algorithm [42] would output a pair of net-
works along with the gene expression and a list of essential
genes. In the algorithm, the parameters n, and n, repre-
sent the number of genes, and m represents the number of
essential genes in the two networks. The parameter p is the
proportion of differential edges driven by perturbed genes.
The smaller p is, the more difficult it is to find EGS. We
used this algorithm to generate 200 pairs of networks, each
containing 100 nodes whose degree distribution followed
a power-law distribution. These simulated networks,
among which 100 pairs, named 100A_dataset, were used
to train the PreEGS model, and the remaining 100 pairs,
named the 100B_dataset, were used for testing. To simulate
the EGS proportions of the real dataset and minimize the
problem of unbalanced data [28], n, = n, = 100, m = 30,
p = 0.05.
3.2 Performance Comparison on Simulated
Datasets

The PreEGS method was tested in several different ways,
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and this section is organized as follows.

First, the PreEGS method was compared with different
classifiers by 10-fold cross-validation on the 100A_dataset.
We found that the PreEGS based on random forests
(PreEGSRF) had the optimal performance.

Second, to demonstrate the superiority of PreEGSRF
over classical methods, we compared the prediction per-
formance with that of other methods, including DCloc,
DiffRank and DEC on the 100B_dataset.

Third, PreEGSRF was compared with machine learning-
based methods including NC, FVM and XGboost_EG on
the 100A_dataset. The results indicated that PreEGSRF had
higher performance than the state-of-the-art methods.

3. 2. 1 Performance Fvaluation of the PrefGS Method
for Different Classifiers

We adopted five machine learning methods for the EGS
prediction task: SVM, KNN, RF, GNB and LG.

The K-fold cross-validation technique was used to verify
the reliability of the experiments on the 100A_dataset. The
cross-validation process was repeated k times, with each of
the k subsamples used exactly once as the validation data.
In this paper, the number of folds was set to be 10 for the
approximation of error.

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%
PreEGSSVM  PreEGSLG  PreEGSKNN  PreEGSGNB  PreEGSRF
Accuracy Precision mRecall mF1-Score

Fig. 2. Evaluation Indicators of PreEGS with Different Classifiers.

Figure 2 shows the evaluation indicators obtained by
PreEGS on different original machine learning classifiers.

The results showed that the PreEGS method based on RF
performed best among the different machine learning clas-
sifiers. In further experiments, PreEGSRF was the repre-
sentative whose performance was compared with that of
other methods.

3. 2.2 Performance Evaluation of PreFGSRF with
Classical Methods

In simulated experiments, PreEGSRF was compared with
three other classical methods that could predict EGS:
DCloc, DiffRank and DEC.

These three methods were based on the traditional nu-
merical calculation method, which could score all nodes
but not classify whether the gene was essential or not in
the differential networks.

In this paper, 100B_dataset was calculated by the three
methods. Each of the top 30 score genes was compared
with 30 marked essential nodes, and the indicators of each
method were the mean values of 100 experiments as shown
in Figure 3.

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloadegd aniQictober 13,2020 at 07:01:04 UTC from IEEE Xplore. Restrictions apply.



This article has bean accepted for publication ina fuhare issue of this journal, but has not been fully edited. Content may change pricr bo final publication. Citation information: TOT
10,1108 TCER. 20203027382, IEEEfACM Trnsctions on Computational Biology and Bioinformatics

AUTHOR ET AL.: TITLE

Doc DiiffRank DEC FreEGSRF

B Fl-5cone

100.00%
B0.00%
60.00%
40.00%
20.00%

0.00%

Accuracy Precikion M Recall

Fig. 3. Evaluation Indicators of Three Classical Methods Compared
with PreEGS.

Baszed on the trained PreEGSRF model in section 3.2.1,
the 100B_dataset was used for testing. Figure 3 lists the
mean values of the 100 tests.

As shown in Figure 3, PreEGSRF is superior to the other
three methods in terms of these evaluation indicators. In
particular, the F1-Score of PreEGSRF is 0.982, which is clos-
est to 1, thus proving that PreEGSRF has a good perfor-
mance for essential node prediction.

The results showed that traditional numerical calculation
methods lack generalization ability. In most cases, they had
less ability to detect potential differential indicators.
PreEGSEF learned multiple kinds of features and could
take wvarious kinds of differences into consideration to
achieve a better prediction.

I 2 3 Performance Evaluation of PrefGSRF with
Machine Learning Methods

EGS imply an underlying mechanism of transformation
from one state to another However, the prediction of es-
sential genes based on machine learning is currently
mostly focused on specific networks. The state-of-the-art
methods induded NC, FWVM and XGBoost_ EG. When
working on networks in comparison states by 10-fold
cross-validation on the 100A_dataset, these methods will
respectively obtain two sets of essential genes correspond-
ing to one of the specific states. To evaluate their perfor-
mance on comparison states, the evaluation indicators are
the average value of the two states. The evaluation indica-
tors of PreEGSRF in Figure 2 were compared with these
three methods in Figure 4.

100.00% -
B0.00% . |
60,005 4 i :

| i
40,005 Ik i
2000% M
000% M -
4 Futd HGBoost EG PreEGERF
1 Accuracy Precision ®Recall = F1-5core

Fig. 4. Evaluation Indicators of Three Machine Learning Methods
Compared with PreEGSRF.

As shown in Figure 4, PreEGSRF is superior to the other
machine learning methods. It detects the differences be-
tween two comparison states beyond the features of a spe-
cific network so that the evaluation performance is im-
proved for EGS prediction.

3.3 Application to Leukemla
3 8 1 Data Sources

In the real data experiments, two sets of networks were
found in the Interactome dataset [43], [44] (http://
www.regulatorynetworks.org/, January, 2019). The astro-
cyte gene regulatory network (NHA) and the neuroblas-
toma gene regulatory network (SKINSH) were used as the
training set. The microvascular endothelium, adult, blood
gene regulatory network (HMVEC_dBlAd) and promyelo-
cytic leukemia gene regulatory network (NB4) were se-
lected as the test set. Moreover, this paper referred to the
GEO datasets for gene expression profile data. All the data
sources are shown in Table 1.

TABLE 1
Training and Test Sets
Network Network-Scale GEOID
Train- NHA 516 genes GSES9051
ing 9296 edges [45]
Set SEMNSH 508 genes GSE112384
12761 edges  [46]
Test HMVEC dBlAd 520 genes GSE12679
Set 13510 edges [47]
MNB4 525 genes GSET3157
18960 [48]

For the training set, 23 essential genes for neuroblastoma
were supported by 14 literature studies [49], [50], [51], [52],
(58], [54], [35], [5e], [57], [38], [59], [60], [61], [62]: TP53,
BRCAI, MYCHM, E2F1, FOX A1, ZFX, PEDMI1, BCLe, XBF1,
ASCL1, TP73, ESR1, ZBTB33, PPARA, E2XF2, BACHI,
BACH?2, PBX1, MEIS1, GATA3, HIF1A, ZFNF148 and BPTE;
these genes were marked as essential(1), while the remain-
ing genes were marked tentatively as unessential{0).

I 32 Features Extraction and Sample Balancing

In the differential network analysis, significant differential
changes in the common genes are the focus of concern.
Thus, the common genes between two differential net-
works should be found first. There were 486 and 247 com-
mon genes in the two sets of networks, respectively. In the
training set, the SKINSH network had 12149 edges, while
the NHA network had 8649 edges among the common 486
genes. In the test set, the HMVEC_dBlAd network had 480
edges, while the NB4 network had 663 edges among the
common 247 genes.

Next, using the PreEGSRF method, each common node
in the training set was vectorized as 5-dimensional feature
vectors x, = {x}, x2, 23, 2} x5}

There were only 23 essential genes out of 486 genes. The
positive samples and negative samples were out of balance.
Therefore, the extension method was used to balance the
two kinds of samples. After setting e=0.9, the number of
essential genes was 198 and the number of unmarked
genes was 288 after extension.

3 5 3 Validation of EGS in Leukemia Datasets
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To further evaluate the performance, PreEGSRF was
compared with three other machine learning methods fo-
cused on specific states.

To avoid the deviation caused by randomness, the train-
test procedure was repeated 100 times. Every predicted
gene was selected as a candidate EGS.

When working on networks in comparison states on the
leukemia datasets, three machine learning methods (NC,
FVM and XGBoost_EG) would respectively obtain two sets
of essential genes, each corresponding to one of the specific
states. The predicted genes were the intersection of the two
sets of essential genes.

In total, 30, 22, 38 and 25 genes were marked as candi-
date genes for leukemia by four methods (NC, FVM,
XGBoost_EG and PreEGSRE, respectively). According to
the predicted genes, the top five candidate genes were rec-
ognized as EGS to compare the performance in Table 2.

TABLE 2
The Top Five Candidate Genes Recognized by Four
Methods.
Methods Essential Genes
NC GATAL1[63], GATA2[64], PATZ1, SP1[65], SP3
FVM MTF1,NR3C1[66], NFYA, GATA1[63], SP1[65]
XGBoost ~ HMGA2, PATZI, STAT6[67], GATA1[63],
EG HES1[68]
HES1[68], STATI1[69], REXANK, TALI1[70],

PreEGSRF SPII[71]

In Table 2, the genes associated with the leukemia had
been marked by the literature researches. For the three ma-
chine learning methods focused on specific states, the can-
didate essential genes were not enriched in any pathway
of leukemia. However, these 25 candidate EGS predicted
by PreEGSRF were enriched in the leukemia Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway.

The results show that PreEGSRF can detect more EGS
and have better performance for predicting EGS.

For the PreEGSRF method, HES1, STAT1, REXANK and
TAL1 were marked as essential for 100 times, and SPI1 was
marked for 97 times, while the others were marked less
than 30 times. Afterward, these five most-frequently occur-
ring genes were recognized as EGS and analyzed by litera-
ture research.

HES1: HES1 plays a critical role in the development of T
cells and plays an essential role in the process of cancer.
More importantly, HES1 can be treated as an essential drug
target for leukemia [68].

STAT1: STAT1 is widely known as a suppressor during
tumor growth. However, STAT1 can accelerate the process
of leukemia [69].

TALL: In the TAL1 gene, site-specific DNA recombina-
tion will occur in patient of leukemia. Therefore, the TAL1
gene is closely interrelated with leukemia [70].

SPI1: Friend viruses, such as the Rauscher virus, are a
cause of leukemia [71]. SPI1 gene activation is a general
feature of malignant proerythroblastic transformation that
occurs in mice infected with Friend and Rauscher viruses.

In additional, SPI1 encodes transcription factor
PU.1(another name for SPI1), whose knockout and overex-
pression are known to be associated with leukemia [72].
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Recently, Ye et al. found that PU.1 plays a key role in early
T cell differentiation through a core network topology [73].
Therefore, SPI1 plays an important role in leukemia.

RFXANK: No direct relation between REXANK and leu-
kemia has been found. However, as a kind of transcription
factor, RFXB [74] (another name for REXANK) positively
regulates HLA genes, which are closely interrelated with
leukemia. According to the prediction of PreEGSRE, it was
hypothesized that REXANK has a close relationship with
leukemia. This hypothesis could be verified by later bio-
logical experiments.

In conclusion, the prediction of PreEGSRF has biological
significance in that the five genes are essential in the pro-
cess of leukemia.

3. 3.4 Functional Enrichment Analyses

Gene Ontology (GO) and KEGG analyses were performed
to understand the underlying biological mechanisms. GO
analysis explored the biological significance of genes by
using the R package “clusterProfiler” [75]. The enriched GO
terms were chosen based on p-value < 0.05 and count >5
[76]. The KEGG analyses were based on pathways with p-
value < 0.05.

Based on the PreEGSRF method, 25 candidate EGS were
used to perform the functional enrichment GO analyses.
As shown in Table 3, the EGS are associated with transcrip-
tional activator activity, RNA polymerase II transcription
regulatory region sequence-specific DNA binding, etc.,
which have a high correlation with leukemia.

TABLE 3
Enriched GO Terms in the Leukemia Dataset

Description p-value Count

GO:0001228~transcriptional activator ~ 2.96 x 10~14 12
activity, RNA polymerase II transcrip-
tion regulatory region sequence-spe-
cific DNA binding
GO:0000978~RNA  polymerase II
proximal promoter sequence-specific
DNA binding

GO:0000987~proximal promoter se-
quence-specific DNA binding
GO:0000982~transcription factor ac-
tivity, RNA polymerase II proximal
promoter sequence-specific DNA
binding

GO:0001077~transcriptional activator
activity, RNA polymerase II proximal
promoter sequence-specific DNA
binding

GO0:0001227~transcriptional re-
pressor activity, RNA polymerase II
transcription regulatory region se-
quence-specific DNA binding
G0:0001047~core promoter binding
G0:0001078~transcriptional re-
pressor activity, RNA polymerase II
proximal promoter sequence-specific
DNA binding

5.03 x 10714 12

7.52 x 10714 12

1.19 x 10712 11

1.47 x 107° 8

136 x 1078 7

2.28 x 1078 6
9.34 x 1077 5

Moreover, the 25 candidate EGS were enriched in five
KEGG pathways, which were all related to leukemia. Spe-
cifically, four EGS reported by PreEGSRF were involved in
the pathways as shown in Table 4.

Among the five pathways, the “Transcriptional
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misregulation in cancer pathway” may lead to various
kinds of cancers, such as leukemia [77] and small-cell lung
cancer. The “Th17 cell differentiation pathway” is related
to leukemia because the leukemia inhibitory factor inhibits
T helper 17 cell differentiation and confers treatment ef-
fects of neural progenitor cell therapy in autoimmune dis-
ease [78]. The “Osteoclast differentiation pathway”
demonstrates that adult T-cell leukemia cells overexpress
Wnt5a and promote osteoclast differentiation [79]. The
“Fanconi anemia pathway” is associated with leukemia
[80]. The “Acute myeloid leukemia pathway” is enriched
in leukemia.
TABLE 4

Enriched KEGG Pathways in the Leukemia Dataset; 4

EGS (bolded) are involved

Description p-value Genes
hsa05202~Transcrip- HMGA2/RXRB/
tional misregulation in  4.72x107® RUNX1/MITF/
cancer SPI1
hsa04659~Th17 cell 484 % 10~4 STAT1/RXRB/
differentiation ’ RUNX1
h§a043SQ~Qsteoclast 818 x 10-+ STATI /MITE/
differentiation SPI1
hsa03460~Fanconi 2.89x 103 HES1/ BRCA1
anemia pathway
hsa05221-Acute - mye- 9 10-2  RUNX1/ SPI1

loid leukemia

4 CONCLUSIONS

Predicting the essential genes in differential network anal-
yses is biologically significant. Here, we present a method
of predicting EGS based on random forest model with two
main features. First, the information of each node is vector-
ized to a 5-dimensional feature vector by extracting both
topological structure and gene expression features in com-
parison states. Second, a positive sample expansion
method based on PCC is introduced to address the prob-
lem of unbalanced positive and negative samples.

In the simulated data experiments, PreEGSRF has been
compared with three classical methods and three machine
learning-based methods. A series of indicators show the
excellent performance of PreEGSRF in EGS prediction.
This is partly because PreEGSRF has a strong ability to
identify multiple features by comparing two biological
states, namely, the topological structure of the network and
gene expression, which may make a gene ‘essential’.

In the real data experiments, PreEGSRF predicted five
leukemia-related EGS, four of which were supported by
literature researches. Moreover, the five enriched KEGG
pathways involving these four EGS are closely interrelated
with leukemia. The fifth predicted EGS RFXANK(RXRB)
needs further study. While there is a lack of annotation in-
formation about the relationship between EGS
RFXANK(RXRB) and leukemia, the EGS REXANK(RXRB)
has been found to be enriched in two KEGG pathways
(hsa05202 and hsa04659), suggesting that REXANK(RXRB)
is closely interrelated with leukemia. New targeted biolog-
ical experiments to examine our hypothesis would help

test our predictions.

Single-cell RNA sequencing (scRNA-seq) has been in-
creasingly used to study gene expression at the level of in-
dividual cells and graduated processes, thus adding an-
other dimension to understand gene expression regulation
and dynamics [81]. A network construction method has
been developed in which a cell-specific network (CSN) [82]
for each single cell from scRNA-seq data (i.e., one network
for one cell) transforms the data from an ‘unstable’ gene
expression form to ‘stable’ gene association form on a sin-
gle-cell basis. In particular, CSN represents an excellent
method of performing scRNA-seq data analyses and pro-
vides insights for expanding the application of PreEGSRF.
In the future, PreEGSRF can be applied to scRNA-seq da-
tasets based on CSN.

In general, the PreEGSRF method is a useful tool to iden-
tify essential genes in networks, and it has broad applica-
tion prospects for the discovery of biomarkers of complex
cellular systems, such as driver genes in cell fate decisions
or diseases.
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