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Abstract— Identifying essential genes in comparison states (EGS) is vital to understanding cell differentiation, performing drug 
discovery, and identifying disease causes. Here, we present a machine learning method termed Prediction of Essential Genes in 
Comparison States (PreEGS). To capture the alteration of the network in comparison states, PreEGS extracts topological and 
gene expression features of each gene in a five-dimensional vector. PreEGS also recruits a positive sample expansion method 
to address the problem of unbalanced positive and negative samples, which is often encountered in practical applications. 
Different classifiers are applied to the simulated datasets, and the PreEGS based on the random forests model (PreEGSRF) was 
chosen for optimal performance. PreEGSRF was then compared with six other methods, including three machine learning 
methods, to predict EGS in a specific state. On real datasets with four gene regulatory networks, PreEGSRF predicted five 
essential genes related to leukemia and five enriched KEGG pathways. Four of the predicted essential genes and all predicted 
pathways were consistent with previous studies and highly correlated with leukemia. With high prediction accuracy and 
generalization ability, PreEGSRF is broadly applicable for the discovery of disease-causing genes, driver genes for cell fate 
decisions, and complex biomarkers of biological systems. 

Index Terms—Differential Network Analysis, Essential Genes in Comparison States, Machine Learning, Biomarker Discovery 
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1 INTRODUCTION
ssential genes account for a small fraction of genes in a 
genome; however, they are vital to the survival or de-

velopment of organisms [1], [2]. They also play significant 
roles in cell state transformation during complex disease 
progression as well as in cell development and differentia-
tion.  

Essential genes in comparison states (EGS) are indispen-
sable to the transformation of the two states, which can 
prevent, improve or adjust organisms to go from one state 
to another. Identifying EGS is significant not only for ex-
ploring the factors influential the survival and develop-
ment of living organisms but also for finding pathogenic 
genes and potential drug targets for curing diseases [3]. For 
example, in terms of finding pathogenic genes, researchers 
identified the genes modules that were possibly responsi-
ble for STAT-mediated antiviral responses through gene 
co-expression networks for shrimp [4]. In terms of finding 
drug targets, the DrPOCS method was used to predict po-
tential associations between drugs and diseases with ma-
trix completion based on EGS [5]. Currently, there are three 

main types of experimental strategies for the genome-wide 
discovery of essential genes: gene knockout [6], gene 
knockdown [7] and transposon mutagenesis [8]. Although 
these experimental methods can accurately discover essen-
tial genes, they are expensive, time consuming and labori-
ous. Importantly, these experiments cannot be performed 
in living organisms, especially in human beings. For com-
plex organisms and diseases, the prediction performance 
is far from perfect.  

Therefore, predicting EGS through computational 
methods may be a valuable tool for improved performance. 
Many computational methods and tools have been previ-
ously developed to identify the genes undergoing signifi-
cant changes across biological comparison states. For ex-
ample, the CSTEA webserver organized, analyzed and vis-
ualized the time-course gene expression data and essential 
genes during cell differentiation [9]; and the HISP hybrid 
intelligent method was used to determine the optimal to-
pologies of signaling pathways in an accurate way to un-
veil a high-resolution signaling pathway [10]. These meth-
ods and tools enabled both experimental and computa-
tional biologists to better understand the mechanisms of 
cell fate determination.  

In order to find EGS, various gene expression analysis 
methods have been developed, such as Student’s t-test and 
the significance analysis of microarrays (SAM) [11]. How-
ever, because genes are strongly intertwined with each 
other in multiple pathways, those methods are strongly bi-
ased because gene interaction information is neglected. To 
address the potential bias introduced by conventional gene 
expression analysis methods, network-based methods 
were developed to provide better ways of exploring multi-
ple interactions among genes. One popular approach, dif-
ferential network analysis, has been frequently used to 
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measure the changes in networks in comparison states 
[12],[13]. Such an approach could also be utilized to iden-
tify essential biomolecules between two states. Many struc-
ture/function analyses of protein sequences have been 
performed to improve the prediction accuracy in different 
states [14], [15], [16]. Diffk [17] used differential degree cen-
trality (DDC) [12] to score all nodes in networks, and the 
essential genes were then obtained by ranking the scores. 
Another method, DiffRank [18], ranked genes based on 
their contributions to the differences between two net-
works by using two new structural scoring measures. In 
DCloc [19], differential correlation patterns were identified 
by comparing the local or global topology of correlation 
networks.  

The methods mentioned above have contributed to 
identifying EGS through network analyses. However, the 
methods based on statistics or graph theory were insuffi-
cient to discover the potential rules and could not be gen-
eralized across biological processes. 

Recently, machine learning combined with bionetwork 
analysis has been found to be a powerful approach in clas-
sification problems, including tumors, protein sequences 
and essential biomolecules, and has already been proven 
useful in predicting essential biomolecules. Support vector 
machines and neural networks on protein-protein net-
works have been used to estimate whether each protein in 
the network is essential or inessential [20]. The NC method 
[21] found essential proteins by considering the modular 
nature of protein essentiality through calculating the edge 
clustering coefficient. The support vector machine (SVM) 
classifier has been utilized to classify the protein sequences, 
protein-protein interactions and hot spot residues in pro-
tein interfaces [22],[23],[24]. D.S. Huang combined ICA and 
regularized regression models to classify tumors by gene 
expression data [25]. HED is a machine learning method 
used to predict potential associations between drugs and 
diseases based on a drug-disease heterogeneous network 
[26]. PREvaIL [27] is an integrative machine learning ap-
proach that combines sequence, structural, and network 
features to determine the catalytic residues in an enzyme. 
A method based on extreme gradient boosting in a specific 
network (XGBoost_EG) [28] can constructively project es-
sential genes by integrating homology, gene-intrinsic char-
acteristics, and network topology features. 

The current machine learning methods focus on finding 
the essential genes in specific networks in a static way. The 
critical network features associated with the changes be-
tween networks in different states, which are likely 
strongly associated with alterations in biological functions 
or pathways, are not considered. Here, we present a novel 
method termed Prediction of Essential Genes in Compari-
son States (PreEGS), which is used to extract the differen-
tial information of each gene between two networks. The 
method considers not only topological structure but also 
gene expression, and we transform this information into 
vectors to construct the learning model. Then, the well-
trained model is used to find the essential genes that cause 
the differences between two networks of comparison states.  

2 METHODS 
PreEGS is based on the machine learning model and aims 
to predict the essential genes in differential networks. A 
novel feature extraction method is built using both net-
work topology and gene expression. Moreover, PreEGS in-
troduces a sample expansion method to address the prob-
lem of unbalanced positive and negative samples. 
2.1 Dataset Sources 
2.1.1 Training and Test Dataset Sources 
Both the training and test datasets include pairs of con-
trasted biomolecular networks along with the gene expres-
sion data for each gene. Each network is constructed by the 
gene expression in the specific state, and a pair of con-
trasted networks indicate two comparison states (e.g., the 
pathological disease state and the control state). Here, the 
expression data of each gene were collected from various 
databases, such as the Gene Expression Omnibus (GEO) 
(https://www.ncbi.nlm.nih. gov/geo/). 
2.1.2 Marking the Training Data  
Every piece of data should be marked in the training da-
taset. This is a binary classification problem. Each gene is 
regarded as essential (marked as 1) or unessential (marked 
as 0). Currently, the essential biomolecules in specific states 
can be integrated from databases, such as DEG [29]. How-
ever, there are few databases that contain marked essential 
genes in comparison states. Therefore, the genes supported 
by literature reports are defined as the essential genes 
(marked as 1) in this paper. 
2.2 Generating 5-Dimensional Feature Vector 
2.2.1 Topological Features of Nodes in Networks 
It is essential to describe each node in the network using a 
feature vector. While many types of network topological 
features have been developed [30], the most-frequently 
used features [31] for the machine learning-based predic-
tion of essential biomolecules are degree centrality (DC) 
[32], betweenness centrality (BC) [33], closeness centrality 
(CC) [34] and clustering coefficient (CCo) [35]. 

1) DC: DC indicates how many nodes are connected to 
one node, and it can measure one node’s apparent ‘central-
ity’. It is formalized by (1): 

																																									𝐶#(𝑣) = 𝑑𝑒𝑔(𝑣)																															(1) 

2) BC: For a node 𝑣, BC is defined as the average length 
of the shortest path through it. If more shortest paths pass 
through 𝑣, then 𝑣 has a higher centrality. BC’s equation is 
as follows: 

																																					𝐶,(𝑣) = -
𝜎/0(𝑣)
𝜎/0/1210∈4

																							(2) 

where 𝜎/0 means the number of shortest paths through 
node 𝑠 and node 𝑡, and 𝜎/0(𝑣) means the number of paths 
that go through node 𝑣. 

3) CC: CC indicates the degree of a node 𝑣  that com-
municates with other nodes in the network with n nodes. 
It is calculated by the sum of the shortest distance between 
𝑣 and the others: 
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																																						𝐶8(𝑣) = -𝑥2:

;<=

:>=

(𝑗 ≠ 𝑣)     			            (3) 

where 𝑥2: is the shortest path form node 𝑣 to node 𝑗 . CC 
relates to the scale of the network. A larger network may 
lead to a higher CC. To eliminate the impact of network 
size on CC, (3) is converted into (4): 

																																												𝐶8B(𝑣) =
𝑛 − 1
𝐶8(𝑣)

																																(4) 

4) CCo: CCo is a coefficient indicating the level of aggre-
gation around a node in the network. 

𝐶FFG(𝑣) =
𝑚
𝐶IJ

=
2𝑚

𝑘(𝑘 − 1)																				(5) 

As shown above, 𝑘 represents the total number of neigh-
bors of node 𝑣, and 𝑚 represents the number of edges that 
link all adjacent nodes of node 𝑣. 
2.2.2 Feature Extraction of PreEGS 
A novel feature extraction method was proposed to illus-
trate the comprehensive features of differential networks, 
including topological structure and gene expression. A 
five-dimensional vector 𝑥2 = {𝑥2=, 𝑥2J, 𝑥2O, 𝑥2P, 𝑥2Q}  was con-
structed for node 𝑣 to quantify the differences in 𝑣 in com-
parison states.  

1)	𝑥2= = ∆𝐷𝐶.	The degree change in node 𝑣 is the most in-
tuitive way to describe the differences in	𝑣 in comparison 
states.	 The equation of DC is shown in (1); therefore, the 
calculation method of 𝑥2= is as follows:  

																									𝑥2= = |𝐶#(𝑣) − 𝐶#B (𝑣)|																												(6) 

where 𝐶#(𝑣) and 𝐶#B (𝑣) denote the degree of node 𝑣 in 
the two states. 

2) 𝑥2J = ∆𝐵𝐶. As shown in (2), BC means a kind of ‘cen-
trality’ of one node. The more shortest-paths pass through 
a node, the more critical the node might be in the network. 
Therefore, ∆𝐵𝐶 can reflect the change in centrality in com-
parison states.  

																														𝑥2J = |𝐶,(𝑣) − 𝐶,B (𝑣)|																												(7) 

𝐶,(𝑣) and 𝐶,B (𝑣) denote BC of 𝑣 in comparison states. 
3) 𝑥2O = ∆𝐶𝐶. CC is shown in (4). ∆𝐶𝐶 shows the differ-

ence in closeness centrality in comparison states. 𝑥2O is cal-
culated as follows: 

																									𝑥2O = |𝐶FB (𝑣) − 𝐶FBB(𝑣)|																											(8) 

𝐶FB (𝑣)  and 𝐶FBB(𝑣)  denote the CC of  𝑣  in comparison 
states. 

4) 𝑥2P = ∆𝐶𝐶𝑜. A node 𝑣 with high CCo has high power 
to influence the network. ∆𝐶𝐶𝑜 can reflect the change in the 
power of 𝑣. 

																							𝑥2P = |𝐶FF\(𝑣) − 𝐶FFGB (𝑣)|																									(9) 

5)	𝑥2Q = 𝑝 − 𝑣𝑎𝑙𝑢𝑒(𝐸, 	𝐸B). 𝐸 and 𝐸B represent the expres-
sion values of each gene in two comparison states. The dif-
ferences between 𝐸  and 𝐸B  are direct representations of 

genes changes. 𝑥2Q represents the statistical significance of 
the difference in gene expression. 
2.3 Expanding Positive Samples  
Usually, the essential genes marked by the known litera-
ture studies are not abundant, causing positive samples 
and negative samples to be out of balance. Under such cir-
cumstance, the predictions of the model have no signifi-
cance and the algorithm lacks extensiveness and predicta-
bility [36].  

The genes supported by literature studies are essential, 
although genes that have not been reported in existing 
work may also be essential. Therefore, we extend the posi-
tive samples to address the problem of unbalanced data. In 
this paper, a positive sample extension method is pre-
sented by using the Pearson correlation coefficient (PCC)	 
and setting up a threshold ε. 

			𝑃𝐶𝐶(𝑥, 𝑦) =
𝑁∑𝑥g𝑦g − ∑𝑥g ∑𝑦g

h𝑁∑𝑥gJ − (∑𝑥g)Jh𝑁∑𝑦gJ − (∑𝑦g)J
		(10) 

where 𝑁 indicates the number of all genes. 𝑥g, 𝑦g indicate 
the five-dimensional vectors of two genes (x, y). The value 
of i is from 1 to 5 in this paper. 

All genes are divided into the essential gene set 𝑅 =
{𝑟l, 𝑟=, 𝑟J, … , 𝑟;} supported by the literature research and the 
unmarked gene set 𝑈 = {𝑢l, 𝑢=, 𝑢J, … , 𝑢o},  where 𝑛 ≪ 𝑚 . 
After calculating all 𝑃𝐶𝐶(𝑟q, 𝑢r)  between 𝑟q ∈ 𝑅  and 𝑢r ∈
𝑈, 𝑢r is marked as an essential gene if 	𝑃𝐶𝐶(𝑟q, 𝑢r) is larger 
than the threshold ε. 

The principle for setting ε	 is that the number of positive 
and negative samples should be as balanced as possible af-
ter extension. The greater the absolute value of the PCC is, 
the stronger the correlation is. Generally, a PCC over 0.8 
means that there is a strong correlation between the two 
genes [37], indicating that the unmarked genes are more 
likely to be essential genes. To ensure the biological sense, 
we set the threshold ε to no less than 0.8 in this paper. 
2.4 Training the Model 

The flow chart of PreEGS is shown in Figure. 1. The param-
eters in 𝑥2=, 𝑥2J, 𝑥2O	and	𝑥2P	 are constructed by four topologi-
cal structures in (6), (7), (8) and (9), and 𝑥2Q is constructed 
by differential expression from the gene expression profile. 

The 5-dimension feature vector 𝑥2 = {𝑥2=, 𝑥2J, 𝑥2O, 𝑥2P, 𝑥2Q}  is 
built by both network topology and gene expression to 
train the model. 

 
Fig. 1. Flow Chart of PreEGS. 
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To validate the prediction, various well-known data 
mining algorithms, such as support vector machine (SVM), 
K-nearest neighbor (KNN), random forest (RF), Gaussian 
naive Bayes (GNB), and logistic regression (LG), were ap-
plied to the datasets. All the machine learning algorithms 
above are implemented by the scikit-learn package [38]. 
After model training, the EGS of the life process are pre-
dicted and can provide new inspiration for bioscience or 
medical science research. 
2.5 Performance Evaluation 
To evaluate the performance of a prediction model, true 
negative (TN), false positive (FP), false negative (FN) and 
true positive (TP) [39] are used to calculate evaluation in-
dicators, including accuracy, precision, recall and F1-Score, 
as follows.!
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Moreover, the F1-Score is a useful indicator for measur-
ing the accuracy of a binary classification model. The F1-
Score considers precision and recall, which ranges from 0 
to 1. The model is better if the F1-Score is closer to 1. 

3 RESULTS 
In this section, PreEGS was first verified by the application 
of different classifiers to simulated datasets. Next, the clas-
sifier with the optimal PreEGS performance was compared 
with three classical methods (including DCloc, DiffRank 
and DEC [40]). Furthermore, to compare with machine 
learning methods, NC, FVM [31] and XGboost_EG are 
used to identify essential genes on the simulated datasets. 
Finally, we applied the proposed method to neurocytoma 
and leukemia datasets to identify the EGS and modules. 
 3.1 Simulated Datasets Sources 
According to the scale-free property of biomolecular net-
works [41], the algorithm [42] would output a pair of net-
works along with the gene expression and a list of essential 
genes. In the algorithm, the parameters C=  and CJ  repre-
sent the number of genes, and H represents the number of 
essential genes in the two networks. The parameter � is the 
proportion of differential edges driven by perturbed genes. 
The smaller � is, the more difficult it is to find EGS. We 
used this algorithm to generate 200 pairs of networks, each 
containing 100 nodes whose degree distribution followed 
a power-law distribution. These simulated networks, 
among which 100 pairs, named 100A_dataset, were used 
to train the PreEGS model, and the remaining 100 pairs, 
named the 100B_dataset, were used for testing. To simulate 
the EGS proportions of the real dataset and minimize the 
problem of unbalanced data [28], C= ' CJ ' +ii, H ' Ai, 
� ' iUiL.  
3.2 Performance Comparison on Simulated 

Datasets 
The PreEGS method was tested in several different ways, 

and this section is organized as follows. 
 First, the PreEGS method was compared with different 

classifiers by 10-fold cross-validation on the 100A_dataset. 
We found that the PreEGS based on random forests 
(PreEGSRF) had the optimal performance. 

Second, to demonstrate the superiority of PreEGSRF 
over classical methods, we compared the prediction per-
formance with that of other methods, including DCloc, 
DiffRank and DEC on the 100B_dataset.  

Third, PreEGSRF was compared with machine learning-
based methods including NC, FVM and XGboost_EG on 
the 100A_dataset. The results indicated that PreEGSRF had 
higher performance than the state-of-the-art methods.  

We adopted five machine learning methods for the EGS 
prediction task: SVM, KNN, RF, GNB and LG. 

The K-fold cross-validation technique was used to verify 
the reliability of the experiments on the 100A_dataset. The 
cross-validation process was repeated k times, with each of 
the k subsamples used exactly once as the validation data. 
In this paper, the number of folds was set to be 10 for the 
approximation of error. 

Figure 2 shows the evaluation indicators obtained by 
PreEGS on different original machine learning classifiers. 

The results showed that the PreEGS method based on RF 
performed best among the different machine learning clas-
sifiers. In further experiments, PreEGSRF was the repre-
sentative whose performance was compared with that of 
other methods. 

In simulated experiments, PreEGSRF was compared with 
three other classical methods that could predict EGS:  
DCloc, DiffRank and DEC.  

These three methods were based on the traditional nu-
merical calculation method, which could score all nodes 
but not classify whether the gene was essential or not in 
the differential networks.  

In this paper, 100B_dataset was calculated by the three 
methods. Each of the top 30 score genes was compared 
with 30 marked essential nodes, and the indicators of each 
method were the mean values of 100 experiments as shown 
in Figure 3.  

 
Fig. 2. Evaluation Indicators of PreEGS with Different Classifiers. 
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!

B a s e d o n t h e tr ai n e d Pr e E G S R F  m o d el  i n s e cti o n 3. 2. 1, 
t h e 1 0 0 B _ d at a s et  w a s  u s e d f or t e sti n g. Fi g ur e  3  li st s  th e 
m e a n v al u e s of t h e 1 0 0 t e st s . 

A s s h o w n i n Fi g ur e 3 , Pr eE G S R F is s u p eri or t o t h e ot h er 
t hr e e m et h o d s  i n t er m s of t h e s e e v al u ati o n i n di c at or s. I n 
p arti c ul ar , t h e F 1-S c or e of Pr e E G S R F i s 0. 9 8 2, w hi c h  i s cl o s-
e st  t o 1, t h u s pr o vi n g  t h at Pr eE G S R F h a s a g o o d p erf or-
m a n c e f or  e s s e nti al n o d e  pr e di cti o n.  
   T h e r e s ult s s h o w e d t h at t r a diti o n al n u m eri c al c al c ul ati o n 
m et h o d s l a c k g e n er ali z ati o n a bilit y . I n m o st c a s e s, t h e y h a d 
l e s s  a bilit y  t o  d et e ct  p ot e nti al diff er e nti al  i n di c at or s. 
Pr e E G S R F l ear n e d  m ulti pl e  ki n d s  of  f e at ur e s  a n d  c o ul d  
t a k e  v ari o u s ki n d s  of  diff er e n c e s  i nt o  c o n si d er ati o n  t o  
a c hi e v e a b ett er pr e di cti o n.  

E G S  i m pl y a n  u n d erl yi n g  m e c h a ni s m  of  t r a n sf or m ati o n 
fr o m o n e st at e t o a n ot h er. H o w e v er, t h e pr e di cti o n of e s-
s e nti al  g e n e s b a s e d  o n  m a c hi n e  l e ar ni n g  i s c urr e ntl y  
m o stl y f o c u se d  o n  s p e cifi c  n et w or k s . T h e st at e-of -t h e-art 
m et h o d s  i n cl u d e d  N C,  F V M  a n d  X G B o o st _ E G . W h e n 
w or k i n g o n  n et w or k s i n  c o m p ari s o n st at e s  b y  1 0 -f ol d 
cr o s s -v ali d ati o n  o n t h e 1 0 0 A _ d at a s et, t h e s e m et h o d s will 
r e s p e cti v el y o bt ai n t w o s et s of e s s e nti al g e n e s  c orr e s p o n d-
i n g t o o n e of t h e s p e cifi c  st at e s. T o e v al u at e  t h ei r p erf or-
m a n c e  o n c o m p ari s o n  st at e s, t h e e v al u ati o n i n di c at or s  ar e  
t h e a v er a g e v al u e  of t h e t w o st at e s. T h e e v al u ati o n i n di c a-
t or s of Pr e E G S R F  i n Fi g ur e 2  wer e  c o m p ar e d wit h  t h e s e 
t hr e e m et h o d s i n Fi g ur e 4 . 

A s s h o w n i n Fi g ur e  4,  Pr e E G S R F is s u p eri or t o t h e ot h er 
m a c hi n e  l e ar ni n g  . (? + - 8@ .  It d et e c ts  t h e  diff er e n c e s  b e-
t w e e n t w o c o m p ari s o n  st at e s b e y o n d t h e  f e at ur e s of a s p e-
cifi c  n et w or k  s o  t h at  t h e  e v al u ati o n  p erf or m a n c e i s  i m-
pr o v e d  f or A B /  pr e di cti o n . 
3. 3 A p pli c ati o n t o L e u k e mi a  

I n t h e r e al d at a e x p eri m e nt s, t w o s et s of n et w or k s w er e 
f o u n d  i n  t h e  I nt er a ct o m e  d at a s et  [4 3 ], [ 4 4 ]  ( htt p: / /  
w w w. r e g ul at or y n et w or k s. or g /, J a n u ar y, 2 0 1 9). T h e a str o-
c yt e g e n e r e g ul at or y n et w or k ( N H A) a n d t h e n e ur o bl a s-
t o m a g e n e r e g ul at or y n et w or k ( S K N S H) w er e u s e d  a s t h e 
t r ai ni n g s et. T h e mi cr o v a s c ul ar e n d ot h eli u m, a d ult, bl o o d 
g e n e r e g ul at or y n et w or k ( H M V E C _ d Bl A d) a n d pr o m y el o-
c yti c  l e u k e mi a  g e n e  r e g ul at or y  n et w or k  ( N B 4)  w er e  s e-
l e ct e d a s t h e t e st s et. M or e o v er , th i s p a p er  r ef err e d t o t h e 
G E O d at a s et s f or g e n e e x pr e s si o n pr ofil e d at a.  All t h e d at a 
s o ur c e s ar e s h o w n i n T a bl e 1. 
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i n g g e n e s w er e m ar k e d t e nt ati v el y a s u n e s s e nti al( 0) . 
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 To further evaluate the performance, PreEGSRF was 
compared with three other machine learning methods fo-
cused on specific states.  

To avoid the deviation caused by randomness, the train-
test procedure was repeated 100 times. Every predicted 
gene was selected as a candidate EGS.  

When working on networks in comparison states on the 
leukemia datasets, three machine learning methods (NC, 
FVM and XGBoost_EG) would respectively obtain two sets 
of essential genes, each corresponding to one of the specific 
states. The predicted genes were the intersection of the two 
sets of essential genes. 

In total, 30, 22, 38 and 25 genes were marked as candi-
date genes for leukemia by four methods (NC, FVM, 
XGBoost_EG and PreEGSRF, respectively). According to 
the predicted genes, the top five candidate genes were rec-
ognized as EGS to compare the performance in Table 2. 

TABLE 2 
The Top Five Candidate Genes Recognized by Four 

Methods. 

In Table 2, the genes associated with the leukemia had 
been marked by the literature researches. For the three ma-
chine learning methods focused on specific states, the can-
didate essential genes were not enriched in any pathway 
of leukemia. However, these 25 candidate EGS predicted 
by PreEGSRF were enriched in the leukemia Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway. 

The results show that PreEGSRF can detect more EGS 
and have better performance for predicting EGS. 

For the PreEGSRF method, HES1, STAT1, RFXANK and 
TAL1 were marked as essential for 100 times, and SPI1 was 
marked for 97 times, while the others were marked less 
than 30 times. Afterward, these five most-frequently occur-
ring genes were recognized as EGS and analyzed by litera-
ture research. 

HES1: HES1 plays a critical role in the development of T 
cells and plays an essential role in the process of cancer. 
More importantly, HES1 can be treated as an essential drug 
target for leukemia [68]. 

STAT1: STAT1 is widely known as a suppressor during 
tumor growth. However, STAT1 can accelerate the process 
of leukemia [69]. 

TAL1: In the TAL1 gene, site-specific DNA recombina-
tion will occur in patient of leukemia. Therefore, the TAL1 
gene is closely interrelated with leukemia [70]. 

SPI1: Friend viruses, such as the Rauscher virus, are a 
cause of leukemia [71]. SPI1 gene activation is a general 
feature of malignant proerythroblastic transformation that 
occurs in mice infected with Friend and Rauscher viruses. 

 In additional, SPI1 encodes transcription factor 
PU.1(another name for SPI1), whose knockout and overex-
pression are known to be associated with leukemia [72]. 

Recently, Ye et al. found that PU.1 plays a key role in early 
T cell differentiation through a core network topology [73]. 
Therefore, SPI1 plays an important role in leukemia. 

RFXANK: No direct relation between RFXANK and leu-
kemia has been found. However, as a kind of transcription 
factor, RFXB [74] (another name for RFXANK) positively 
regulates HLA genes, which are closely interrelated with 
leukemia. According to the prediction of PreEGSRF, it was 
hypothesized that RFXANK has a close relationship with 
leukemia. This hypothesis could be verified by later bio-
logical experiments. 

In conclusion, the prediction of PreEGSRF has biological 
significance in that the five genes are essential in the pro-
cess of leukemia. 
3.3.4 Functional Enrichment Analyses  
Gene Ontology (GO) and KEGG analyses were performed 
to understand the underlying biological mechanisms. GO 
analysis explored the biological significance of genes by 
using the R package ‘clusterProfiler’ [75]. The enriched GO 
terms were chosen based on p-value < 0.05 and count >5 
[76]. The KEGG analyses were based on pathways with p-
value < 0.05. 

Based on the PreEGSRF method, 25 candidate EGS were 
used to perform the functional enrichment GO analyses. 
As shown in Table 3, the EGS are associated with transcrip-
tional activator activity, RNA polymerase II transcription 
regulatory region sequence-specific DNA binding, etc., 
which have a high correlation with leukemia.  

TABLE 3  
Enriched GO Terms in the Leukemia Dataset 

    Moreover, the 25 candidate EGS were enriched in five 
KEGG pathways, which were all related to leukemia. Spe-
cifically, four EGS reported by PreEGSRF were involved in 
the pathways as shown in Table 4.  

 Among the five pathways, the “Transcriptional 

Methods Essential Genes 

NC GATA1[63], GATA2[64], PATZ1, SP1[65], SP3 

FVM MTF1, NR3C1[66], NFYA, GATA1[63], SP1[65] 
XGBoost_
EG 

HMGA2, PATZ1, STAT6[67], GATA1[63], 
HES1[68]  

PreEGSRF HES1[68], STAT1[69], RFXANK, TAL1[70], 
SPI1[71] 

Description p-value Count 

GO:0001228~transcriptional activator 
activity, RNA polymerase II transcrip-
tion regulatory region sequence-spe-
cific DNA binding 

2.96 × 10<=P 12 

GO:0000978~RNA polymerase II 
proximal promoter sequence-specific 
DNA binding 

5.03 × 10<=P  12 

GO:0000987~proximal promoter se-
quence-specific DNA binding 

7.52 × 10<=P  12 

GO:0000982~transcription factor ac-
tivity, RNA polymerase II proximal 
promoter sequence-specific DNA 
binding 

1.19 × 10<=J  11 

GO:0001077~transcriptional activator 
activity, RNA polymerase II proximal 
promoter sequence-specific DNA 
binding 

1.47 × 10<Å  8 

GO:0001227~transcriptional re-
pressor activity, RNA polymerase II 
transcription regulatory region se-
quence-specific DNA binding 

1.36 × 10<Ç  7 

GO:0001047~core promoter binding 2.28 × 10<Ç 6 
GO:0001078~transcriptional re-
pressor activity, RNA polymerase II 
proximal promoter sequence-specific 
DNA binding 

9.34 × 10<É  5 
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misregulation in cancer pathway” may lead to various 
kinds of cancers, such as leukemia [77] and small-cell lung 
cancer. The “Th17 cell differentiation pathway” is related 
to leukemia because the leukemia inhibitory factor inhibits 
T helper 17 cell differentiation and confers treatment ef-
fects of neural progenitor cell therapy in autoimmune dis-
ease [78]. The “Osteoclast differentiation pathway” 
demonstrates that adult T-cell leukemia cells overexpress 
Wnt5a and promote osteoclast differentiation [79]. The 
“Fanconi anemia pathway” is associated with leukemia 
[80]. The “Acute myeloid leukemia pathway” is enriched 
in leukemia. 

TABLE 4  
Enriched KEGG Pathways in the Leukemia Dataset; 4 

EGS (bolded) are involved 

 4 CONCLUSIONS 
Predicting the essential genes in differential network anal-
yses is biologically significant. Here, we present a method 
of predicting EGS based on random forest model with two 
main features. First, the information of each node is vector-
ized to a 5-dimensional feature vector by extracting both 
topological structure and gene expression features in com-
parison states. Second, a positive sample expansion 
method based on PCC is introduced to address the prob-
lem of unbalanced positive and negative samples. 

In the simulated data experiments, PreEGSRF has been 
compared with three classical methods and three machine 
learning-based methods. A series of indicators show the 
excellent performance of PreEGSRF in EGS prediction. 
This is partly because PreEGSRF has a strong ability to 
identify multiple features by comparing two biological 
states, namely, the topological structure of the network and 
gene expression, which may make a gene ‘essential’. 

 In the real data experiments, PreEGSRF predicted five 
leukemia-related EGS, four of which were supported by 
literature researches. Moreover, the five enriched KEGG 
pathways involving these four EGS are closely interrelated 
with leukemia. The fifth predicted EGS RFXANK(RXRB) 
needs further study. While there is a lack of annotation in-
formation about the relationship between EGS 
RFXANK(RXRB) and leukemia, the EGS RFXANK(RXRB) 
has been found to be enriched in two KEGG pathways 
(hsa05202 and hsa04659), suggesting that RFXANK(RXRB) 
is closely interrelated with leukemia. New targeted biolog-
ical experiments to examine our hypothesis would help 

test our predictions. 
Single-cell RNA sequencing (scRNA-seq) has been in-

creasingly used to study gene expression at the level of in-
dividual cells and graduated processes, thus adding an-
other dimension to understand gene expression regulation 
and dynamics [81]. A network construction method has 
been developed in which a cell-specific network (CSN) [82] 
for each single cell from scRNA-seq data (i.e., one network 
for one cell) transforms the data from an ‘unstable’ gene 
expression form to ‘stable’ gene association form on a sin-
gle-cell basis. In particular, CSN represents an excellent 
method of performing scRNA-seq data analyses and pro-
vides insights for expanding the application of PreEGSRF. 
In the future, PreEGSRF can be applied to scRNA-seq da-
tasets based on CSN. 

In general, the PreEGSRF method is a useful tool to iden-
tify essential genes in networks, and it has broad applica-
tion prospects for the discovery of biomarkers of complex 
cellular systems, such as driver genes in cell fate decisions 
or diseases. 
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