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Abstract Stochasticity (or noise) at cellular and molecular levels has been observed extensively as a universal

feature for living systems. However, how living systems deal with noise while performing desirable biological

functions remains a major mystery. Regulatory network configurations, such as their topology and timescale, are

shown to be critical in attenuating noise, and noise is also found to facilitate cell fate decision. Here we review

major recent findings on noise attenuation through regulatory control, the benefit of noise via noise-induced

cellular plasticity during developmental patterning and summarize key principles underlying noise control.
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1 Introduction

One fundamental task in biology is to understand how cells perform complex functions accurately and ro-

bustly in face of inevitable biological noise. Due to the fluctuating environments and inherently stochastic

biochemical reactions, many cellular processes including signal transduction and gene expression oper-

ate in a substantially noisy way [22, 75]. As a result, the temporal fluctuations or cell-cell variability

of a molecule in its concentration, activity, modification form, or cellular localization, often referred as

“noise”, are observed [19, 21].

Over the recent decade, noise in gene circuits has been observed, dissected and analyzed to understand

how cell executes complex functions. Multiple biochemical processes can contribute to the noise in specific

cellular behavior, and reversely, the observed noise can be decomposed into different components based

on the sources of noise, providing a deep insight into the roles of each component on the cellular behavior

[15, 22, 44, 62]. Besides, quantitative analysis of the observed noise supplies the information about the

biological network, such as the network topology and the regulation interaction [49, 70]. Furthermore,
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increasing studies investigate how to control or utilize noise in living systems [15, 16, 24, 27, 46, 48, 65,

66, 86, 93]. While noise may induce heterogeneity within the cell population, contributing to diversity

in cell fate choice [1, 26, 38], it usually causes uncertainty in information transmission in the cell and

impairs robustness of cellular functions, which is one of the main reasons for the difficulty in robust

circuit functions [21,58]. A natural question at hand is how cells deal with noise effectively.

Since cellular functions, such as bistability, oscillation and adaptation, have been found to link to

regulatory network architectures [43], the network property is naturally important in noise control [7,

9, 12, 33–35, 84, 91, 93]. What are basic constraints on the regulatory networks for noise attenuation?

How noise is controlled in function-specific systems, such as adaptive systems or oscillatory systems?

In addition, can noise be utilized to achieve specific biological functions? How does noise affect spatial

organization and morphogen-mediated patterning? How can a precise and robust readout be generated

from the noisy spatial morphogen gradient?

In this work, we first review major noise attenuation mechanisms in regulatory networks, and then

explore key strategies to combat noise in morphogens during spatial patterning. We conclude by sum-

marizing the major mechanisms in noise control.

2 Noise attenuation mechanisms in regulatory networks

To study how cell regulatory network functions robustly in the presence of noise, many efforts have

been made through experiments and theoretical approaches. By encoding a fluorescent protein as a tag

of a protein of interest, the expression in each single cell at any observed time is quantified through

fluorescence intensity. Therefore, the expression noise with time or in a population of clonal cells can

be measured by using the coefficient of variation (CV, i.e., standard derivation over the mean) or the

Fano factor (i.e., variance over the mean). From a theoretical or a computational point of view, the

molecular species are modelled as discrete random variables, which are produced or hydrolyzed when

reaction events (such as translation, transcription and protein-protein binding) occur. Reductions of the

model, including assuming molecular species as continuous variables, merging multi-steps to one reaction

and simplifying the noise term, are also adopted according to the scale of the question. By analyzing or

simulating the model, one can obtain the analytical expression or numerical value of noise.

In the last two decades, noise attenuation mechanisms have been largely explored in diverse cellular

networks, such as the chemotaxis pathway in Escherichia coli [15,65], MAP (mitogen-activated protein)

kinase pathway [16,46], and the pathway controlling mammalian circadian clock [24,48]. General princi-

ples that are applicable for most biological networks have been identified [27,65,66,86], and among them

the network topology and timescale emerge as two important factors for noise attenuation. Since the

cell performs multi-functions simultaneously, subsequent research is also aimed at understanding how to

handle the cellular noise in function-specific systems.

2.1 The role of network topology and timescale

It is widely accepted that structures determine functions. Likewise, the topology of the regulatory network

may be crucial for noise buffering capability. Noise attenuation motifs and the corresponding mechanisms

have been summarized in Figure 1. While Figure 1(A) presents three generic noise attenuation motifs

that are applicable for most biological systems, Figure 1(B) illustrates the noise attenuation motifs in

four function-specific systems.

Linear cascade acts as a low-pass filter by attenuating high-frequency fluctuation in the input signal [33].

This property is due to time delay of reactions (see Figure 1(A)) and many biological networks also possess

it. However, the gene expression noise is not only determined by the noise in the input signal level but

also the intrinsic fluctuations and variations in the reaction rates [56]. Compared with the short cascade,

the long cascade exhibits better capability of filtering fluctuations in the input signal level while at the

same time accumulating more inherent noise. In order to achieve small output noise, the length of cascades
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Figure 1 (Color online) Noise attenuation motifs and the corresponding mechanisms. (A)–(B) Three generic noise

attenuation motifs that are applicable for the most biological systems (A) and noise attenuation motifs in the four function-

specific systems (B). The noise attenuation motifs in general systems include long linear cascade, negative feedback loop

and incoherent feedforward loop. The four function-specific systems are high-sensitivity system, switching system, adaptive

system and oscillatory system. For all network topologies, node A receives the input signal, while node B is the output

node except that the output node for incoherent feedforward loop or adaptation module is node C. Dashed lines indicate

quantities related to noise buffering capability, including the response time t1/2 (defined by the time of output to reach

halfway of the steady state), the output change magnitude and SAT (refer to (2.3) for the definition). In the adaptive system,

distributions of response time for the noise attenuation module and the adaptation module are schematically plotted in

blue and red, respectively

needs to be optimized by considering the trade-off between the noise buffered by time lags and noise

accumulated in the pathway [77].

Negative feedback (NF) is a common noise-attenuating regulatory network. The principle of NF is

that an increase (decrease) of one species can lead to repression (activation) of itself through one or

multi-step chemical reactions. Its dynamic behavior helps to suppress fluctuations, thus contributing

to the stability of the species [71]. This effect can be also demonstrated by the comparison of negative

autoregulation, positive autoregulation and simple regulation in the synthetic gene circuit. Adding the

negative feedback in simply regulated genes reduces the cell-cell variation of protein levels [7]. In contrast,

positive autoregulation increases the cell-cell variation compared with negative autoregulation [2]. Strong

positive autoregulation can even induce the bimodal distribution of protein levels.

In fact, the noise buffering capability of NF arises from the system’s low steady-state sensitivity (or



428 Nie Q et al. Sci China Math March 2020 Vol. 63 No. 3

susceptibility) [34] and incoherent feedforward loops adopt similar mechanism (see Figure 1(A)). How-

ever, when the sensitivity to input signal is required, positive feedback (PF) shows superiority in noise

attenuation (see Figure 1(B)). In most cases, sensitivity is defined as the steady-state or transient re-

sponse to a small change of the input signal, leading to two versions of sensitivity: steady-state sensitivity

(or susceptibility)

Sensitivitysteady =

∣∣∣∣ (O2 −O1)/O1

(I2 − I1)/I1

∣∣∣∣ (2.1)

and transient sensitivity

Sensitivitytransient =

∣∣∣∣ (Opeak −O1)/O1

(I2 − I1)/I1

∣∣∣∣, (2.2)

where O1, Opeak and O2 are the initial output steady state, transient peak value, final output steady state

respectively when the input signal changes from I1 to I2. The steady-state sensitivity can be rewritten as∣∣∣∣d(lnO1)

d(lnI1)

∣∣∣∣
when I2 − I1 is infinitesimally small. By numerically analyzing networks consisting of an input node

and a two-node network, the output noise of PF is found smaller than that of NF for a given steady-

state susceptibility to long-term changes in input signals [34]. This advantage also holds when transient

sensitivity is used [59]. Furthermore, if we consider the condition when the change of the input signal is

large, i.e., the input signal is removed or added, PF still exhibits lower noise in both ON and OFF states

compared with NF in switching systems [12]. The main reason resides in the fact that PF usually exhibits

longer response time than NF. At the early stage of input change, the output of PF usually increases

slowly while that of NF rises rapidly. As a consequence, PF needs more time to reach the halfway to

the steady state, thus slowing down the dynamics. Because the prolonged response time provides good

time-averaging of fluctuations, PF has better noise buffering capability than NF.

The fact that longer linear cascade provides better time-averaging for noise buffering and the fact that

the different noise buffering capabilities of PF and NF are related to their different timing of response,

both indicate the important role of timescale in noise attenuation. Here, timescale represents how fast

the system responds to the input change.

An intrinsic quantity termed the signed activation time (SAT), directly measured through the system’s

dynamic properties in the absence of the noise, has been identified to affect the noise buffering capabili-

ty [84]. The SAT is defined as the difference between the deactivation and activation timescales relative

to the input noise timescale

SAT = (t1→0 − t0→1)ω, (2.3)

where ω is the frequency of input noise, and t1→0 and t0→1 denote the deactivation timescale and the

activation timescale respectively. The output noise is quantified by the noise amplification rate, defined

as the ratio of output CV to the input CV

NAR =
std(O)/mean(O)

std(I)/mean(I)
. (2.4)

An inverse relationship between SAT and the noise amplification rate has been found when the switching

system settles in the ON state [84]. It means that switching systems with both fast activation and

slow deactivation, i.e., large SAT, are advantageous in noise attenuation. An intuitive explanation is

illustrated as follows: fast activation helps the output to rebound rapidly from the OFF state while slow

deactivation prevents the output from falling into the OFF state, thus arresting the output at the ON

state and reducing fluctuations.

The inverse relation between SAT and noise amplification rate is validated by theoretical and numer-

ical studies in systems of two positive feedback loops, systems of one positive feedback loop and one

negative feedback loop, and six complex regulatory systems [84]. The single positive feedback loop (see
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Figure 1(B)), incorporating a mutual activation loop of A and B, can be used to theoretically illustrate

the inverse relation. The system can be modeled by the following ordinary differential equations:

db

dt
= k1a(1− b)− k2b+ k3,

da

dt
= (kbsb(1− a)− a+ k4)τa,

(2.5)

where a and the output b are the normalized concentrations of A and B, respectively. The normalized

input signal s ranges between the OFF state (i.e., s = 0) and the ON state (i.e., s = 1), and varies

over time with the frequency ω. A general form of s can be taken as follows: s = 0 when t 6 T0 and

s = 1+ξω(t) when t > T0, where T0 is the time point when the system changes from the OFF state to the

ON state and ξω(t) is the noise term. Typically, ξω(t) is constructed by dividing the time interval into

subintervals with length 1/ω and then applying independent random numbers from a uniform distribution

in [−1, 1] to ξω(t) on each subinterval. kb, k1, k2, k3 and k4 are kinetic parameters and the inverse of τa
represents the timescale of A. On the one hand, the fluctuation dissipation theorem (FDT) is used to

calculate the noise amplification rate [34, 55, 84]. When τa ≪ 1 and τa/ω ≪ 1, the noise amplification

rate is

NAR ≈
√

τa/ω

⟨s⟩(Kbkb − 1)(Kb + 1) kb

kb+1

, (2.6)

where Kb = k1/k2 is the association constant. Because Kbkb − 1 > 0 is always true for the switching

system, NAR is an increasing function of τa and decreasing function of Kb and kb. On the other hand,

the deactivation and activation timescales are derived by linearizing the noise-free system around the ON

state and the OFF state, respectively. In order to achieve slow deactivation time, τa needs to be small

enough. With a fixed small τa, the deactivation timescale is characterized by

(Kb + 1)
kb

kb + 1
. (2.7)

So, increasing Kb or kb contributes to slow deactivation time. Similarly, under the assumption of small

fixed τa, the activation timescale can be accelerated by decreasing the following quantity:

1

Kb + 1

(
1 +

1

kb

)
(2.8)

and increasing Kb or kb also speeds up the activation process. As a result, the noise amplification rate

is supposed to depend negatively on t1→0 − t0→1. Based on the equation of the noise amplification

rate, the frequency of input signal ω negatively affects the noise amplification rate. These facts, taken

together, theoretically indicate the inverse relation of noise amplification rate and (t1→0 − t0→1)ω in

the single positive feedback loop. Furthermore, SAT in the single positive feedback loop links the noise

amplification rate and the sensitivity to the input signal

NAR ≈ son√
SAT

, (2.9)

where son denotes the steady-state sensitivity in the ON state [12].

The SAT can only explain the system’s noise buffering capability at the ON state, but not at the

OFF state. To address this issue, researchers introduced a modified version of SAT—input-associated

SAT (iSAT) to capture the noise buffering capability at the OFF state in the switching system [12]. The

definition of iSAT at the OFF state is the same as the SAT except that the input change is relatively

small. However, at the OFF state, the iSAT has a positive relationship with the noise amplification rate,

which is validated in several feedback systems. It means that slow activation and fast deactivation help

to fix the output at the OFF state. Thus, there is a trade-off between the noise buffering capability at

the ON state and at the OFF state. Nevertheless, an exploration of 33 three-node circuits identifies five

network topologies capable of producing both high SAT at the ON state and low iSAT at the OFF state.

Interestingly, all these five network topologies contain the mutual activation motif.
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Nevertheless, the SAT exhibits topology dependence. A large SAT can be obtained in the single positive

feedback loop (see Figure 1(B)), while an additional positive feedback loop tends to further increase the

SAT by accelerating the activation and keeping the deactivation slow. This is consistent with the previous

work showing the superior noise attenuation at the ON state of the interlinked fast and slow positive

feedback loops [9].

The interplay between network topology and noise buffering capability can be partially explained by

the timescale. For example, linear cascades have the effect of time delay, and cascade with long length

is good at filtering input signal noise due to enough time delay; positive feedback responses more slowly

than negative feedback when the same sensitivity is required, and thus leads to better noise buffering

capability; interlinked fast and slow positive feedback loops, where the output turns on rapidly and turns

off slowly, have been identified to maintain a robust high state [9]. In summary, timescale may be a

bridge linking network topology to noise buffering capability.

2.2 Rules to control noise in adaptive systems

While early studies identified several general principles for noise attenuation, recent explorations of noise

attenuation mechanism have been extended to diverse signaling systems such as those executing adap-

tation, oscillation and cell fate decision [4, 25, 30, 36, 58, 86]. The challenge for the latter is to coordinate

multiple functions together, considering different functions could interfere each other. For example, during

the lineage commitment process, the noise helps to induce the cell fate selection, and then is suppressed

to stabilize the cell fate [30, 93].

Adaptation, the system’s ability to sense the change of stimulus and finally go back to the

pre-stimulated level, widely exits in biological systems such as bacteria and amoeba [3, 8]. This

function enlarges the sensing range, resists fluctuating environments and shuts down the signaling re-

sponse timely. A systematic search of all three-node networks demonstrates that a negative feedback

loop with a buffering node (NFBLB) and an incoherent feedforward loop with a proportioner node (IF-

FLP) are two core motifs in order to achieve the adaption [45]. Since adaptive systems are always executed

with noise, the accuracy of the adaptation is reduced and thus how to achieve accurate adaptation is

of interest. Most signaling pathways need external metabolic energy, so they are operated out of equi-

librium and do not follow the linear relationship between noise and sensitivity (fluctuation dissipation

theorem). As a result, it is possible for signaling networks to achieve the aim: high sensitivity (i.e., tran-

sient sensitivity) to stimulus and low noisy simultaneously [66]. For different adaptive systems, negative

feedback loop is more sensitive to the change of the signal than incoherent feedforward loop for a given

output noise level caused by the intrinsic stochasiticity of chemical reactions [68]. In terms of timescale,

adaptive systems act as a bandpass filter with respect to the input signal: high-frequency extrinsic noise

is filtered by the effect of time-averaging and low-frequency extrinsic noise is buffered by the adaptation

dynamics [65].

Whereas early work studied the mechanism of achieving noise attenuation and adaptation simultane-

ously on a case-by-case basis, there exists the general design principle from the bottom up [59]. Since

adaptation requires at least three nodes (i.e., an input node, an output node and an intermediate node),

the network topologies achieving dual function of adaptation and noise attenuation are supposed to be

those with three or more nodes. Unfortunately, an exhausted search of all three-node networks shows

that the trade-off between noise attenuation and adaptation hinders the achievement of this dual func-

tion in three-node networks. Given the important role of timescale, strategies of tuning the timescale are

investigated. Taking the enzymatic regulatory IFFLP (the incoherent feedforward loop in Figure 1(A))

as an example, we modeled the system and studied the effect of timescale. In this system, input (I)

activates enzyme A and then the active form of enzyme A catalyzes the conversion from inactive forms

of enzymes B and C to their active forms, while the active form of enzyme B catalyzes the conversion

from the active form of enzyme C to its inactive form. The corresponding dynamics can be described by
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a set of differential equations

τA
dA

dt
= fA(I,A) , IkIA

1−A

1−A+KIA
− FAkFAA

A

A+KFAA
,

τB
dB

dt
= fB(A,B) , AkAB

1−B

1−B +KAB
− FBkFBB

B

B +KFBB
,

τC
dC

dt
= fC(A,B,C) , AkAC

1− C

1− C +KAC
−BkBC

C

C +KBC
,

(2.10)

where I is the input signal as a function of time t. Dynamical variables A, B and C are the concentrations

of the active enzymes A, B and C, respectively. By normalizing the total concentration of each enzyme as

1, 1−A, 1−B and 1−C represent concentrations of the three enzymes in inactive form. fi, i = A,B,C

denotes the reaction rate of the active enzyme. FA and FB (set to be constant) are concentrations of the

basal deactivating enzymes of A and B, respectively. K’s and k’s are Michaelis-Menten constants and

catalytic rate constants, respectively. τA, τB and τC represent the timescales of input node A, intermediate

node B and output node C, respectively. When measuring the sensitivity and precision, the input signal

I is a step function of t. When calculating the noise buffering capability, a zero-mean noise term whose

autocorrelation function dies out exponentially with timescale τ0 (the inverse of the frequency ω) is added

to input I. By assuming the same dynamics of the input and the node A and linearizing the system, the

sensitivity and NAR for enzymatic regulatory IFFLP satisfying perfect adaptation can be approximated

as

Sensitivitytransient =
k4
k6

(
k1τC
k6τB

) k1τC
k6τB

1− k1τC
k6τB (2.11)

and

NAR =

√√√√ k24(
τB
τC

)2ω

(k6
τB
τC

+ k1)(k6
τB
τC

+ ωτB)(
k1

τB
+ ω)

(2.12)

respectively. Here,

k1 =
kFBBFB

KFBB
, k4 =

kBC⟨B⟩
⟨C⟩+KBC

and

k6 =

[
KAC⟨C⟩

(1− ⟨C⟩+KAC)(1− ⟨C⟩)
+

KBC

⟨C⟩+KBC

]
k4,

where ⟨ · ⟩ denotes the steady-state value. With fixed τC
τB

, it can be seen that sensitivity remains constant

and NAR is a decreasing function of τB (or τC) if τBτC > k1k6

ω2 [59]. Together with numerical simulations,

the analytic derivation of NAR and sensitivity confirms that increasing both the timescale of the output

node and of the intermediate node can dramatically decrease NAR while maintaining sensitivity. Never-

theless, this strategy introduces prolonged adaption time and unrealistic parameter ranges. It seems that

three-node networks are difficult to achieve the dual function of perfect adaptation and noise attenuation.

By contrast, four-node networks are able to achieve the dual function by sequentially combining adap-

tation module and noise attenuation module (see Figure 1(B)). However, placing the noise attenuation

module upstream the adaptation module (N-A) exhibits better performance of the dual function than

combining modules in the reverse order (A-N). Besides, the performance of achieving the dual function in

the sequentially combined four-node network is affected by the topology of the functional module. The

main reason is that different topologies of the functional module possess different response time and thus

cause distinct abilities to maintain high sensitivity after combination, which greatly affects the perfor-

mance of the dual function in sequentially combined four-node networks as a consequence. Typically,

the noise attenuation module has a longer response time than the adaptation module under the same

parameter space, because noise attenuation needs time averaging. However, a matched response time of

the two modules is advantageous in combining the high-performance dual function network. For N-A

networks, a relatively fast response of the noise attenuation module contributes to high sensitivity of
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the downstream output. For the A-N networks, the upstream adaption dynamics with relatively slow

response can avoid being largely filtered by the noise attenuation module. In summary, module combina-

tion and timescale matching together overcome the trade-off between noise attenuation and adaptation.

Finally, the examination of seven biological systems suggests that in many adaptive systems a positive

feedback loop or negative feedback loop is coupled with the adaptation module, creating an expanded

dual-function module.

2.3 Mystery of noise in oscillatory systems

Oscillations are ubiquitous in a broad range of biological processes, including circadian clocks [52], NF-κB

dynamics in immune response [76], vertebrate somitogenesis [51]. These oscillations allow organisms to

know the time and govern many biological functions: the daily rhythm enhances the growth of many

organisms; NF-κB is an important transcription factor in inflammatory response; the segmentation clock

is thought to regulate the formation of somites. To design a biochemical oscillator, negative feedback,

time delay and nonlinearity are required. The repressilator (the second network topology in the oscillatory

system in Figure 1(B)), a circle composed of three species each of which acts as a repressor to negatively

regulate the next one, is a relatively simple system to achieve oscillation. The model of this system with

transcriptional regulation is as follows [21]:

dmi

dt
= α0 +

αi

1 + (
pj

Kji
)n

− dimi, (i, j) = {(A,B), (B,C), (C,A)},

dpi
dt

= βimi − γipi, i = A,B,C,

(2.13)

where mi and pi are concentrations of the mRNA and the protein, respectively; di and γi are decay rates;

βi is translation rate; α0 is the basal transcription rate while (α0 + αi) is the transcription rate in the

absence of its repressor; Kji is the repression coefficient. Under proper parameter configurations, the

system described by (2.13) can oscillate regularly. However, biological systems are subject to substantial

noise due to the fluctuating environment and stochasticity of chemical reactions. The presence of the

noise leads to the variability of the oscillation features such as period and amplitude, and thus impairs

the accuracy of oscillation. By introducing the noise term into the deterministic differential equations

(i.e., stochastic differential equations) or directly simulating the system with Gillespie algorithm [28], one

can obtain stochastic trajectories for observed variable x. The accuracy of oscillation can be captured by

the autocorrelation function C(t) for the observed variable x, defined as

C(t) =
⟨(x(t+ s)− ⟨x⟩)(x(s)− ⟨x⟩)⟩s

⟨x2⟩ − ⟨x⟩2
, (2.14)

where ⟨ · ⟩ represents the average and s is a time variable [11]. The autocorrelation function C(t) usually

follows a damped oscillation and the fast decay of C(t) indicates that the oscillation system is not robust

owning to little memory. The peak-time diffusion constant D is another quantity [11], which is defined

as the ratio of peak time variance σ2 to the average peak time t:

D =
σ2

t
. (2.15)

Besides, the coefficient of variation for period or amplitude is also used to measure the oscillation accu-

racy [82].

Understanding how biological systems achieve accurate oscillations remains a challenging work. Efforts

have been made to control the oscillation dynamics in the noisy environment [6,11,23,24,58,73,74,80,83].

The circadian clock driven by only two key elements is slightly affected by the intrinsic fluctuations [83].

In an oscillator incorporating interlinked positive feedback and negative feedback loop, strong positive

feedback strength confers robust amplitude with respect to fluctuations of the synthesis rate [80]. Remov-

ing existing parts in the synthetic repressilator highly improves the regularity of oscillations [58]. Besides
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the important role of kinetic parameters in the accuracy of oscillations, these studies also indicate the

effect of network topology on noise suppression in the oscillatory system [13, 74]. While one negative

feedback loop can generate the oscillation, adding a positive feedback loop seems to provide better accu-

racy of oscillation [13]. Nevertheless, as so far, it seems that a general network design principle for noise

control in oscillatory systems is still lacking (see Figure 1(B)). For example, whether the above strategies

to improve the accuracy of oscillation can be extended to other oscillatory systems is still unclear. Also,

the underlying mechanism is to be further investigated.

3 Stochastic dynamics in spatial patterning

In developmental biology, one goal is to understand how cells execute specific cellular processes pre-

cisely based on their locations to form a robust spatial organization. A diffusive chemical, morphogen,

having non-uniform distribution in space, plays an essential role in governing the pattern formation

[37, 39]. The Turing model [81] and the morphogen gradient model [90] are two major models for ex-

plaining morphogen-mediated pattern formations. The Turing model gives rise to spatial pattern by

a self-organized mechanism through interactions between two morphogens. In the morphogen gradient

model, one morphogen forms a long-range gradient with a localized source and provides positional in-

formation to cells in a concentration-dependent manner. For examples, Turing models reveal intestinal

crypts formations [92], diverse feather shape [41], digits pattern development [63] and the periodic stripe

formation in mammalian palate [18]. The morphogen gradient models are discovered in segmental pattern

formations in vertebrate neural tube, drosophila embryo [5], zebrafish hindbrain [85], cell polarity [87],

auxin transport [69] and skin stratification [14,53].

The simple morphogen gradient model sets a foundation for underlying patterning mechanisms in

various systems. However, multiple sources, including environmental factors (e.g., temperature and

nutrition), individual genetic differences and stochastic nature of biochemical processes, cause uncertainty

in both morphogen and its downstream patterns. Therefore, several mechanisms will be discussed in this

section for reducing the uncertainty in different processes: morphogen formations and readouts, cell fate

decisions and cell-cell interactions.

3.1 Modeling morpohgens and their downstream signals

First, we focus on morphogens formations and readout. Reaction-diffusion equations are usually carried

out to model the morphogen formation in both extracellular and intracellular space [88]:

∂[M ]out
∂t

=

synthesis︷ ︸︸ ︷
V (x) +D

diffusion︷ ︸︸ ︷
∆[M ]out

f︷ ︸︸ ︷
−k[M ]out + k[M ]in −

degradation︷ ︸︸ ︷
d[M ]out +

noise︷︸︸︷
ξout ,

∂[M ]in
∂t

=

f︷ ︸︸ ︷
k[M ]out − k[M ]in −

degradation︷ ︸︸ ︷
S ([M ]in) +

noise︷︸︸︷
ξin ,

(3.1)

where [M ]out and [M ]in are extracellular and intracellular morphogen concentration, respectively. Only

extracellular morphogen has the ability to freely diffuse and the diffusion term is carried out. The spatial

domain is defined on [0, xmax]. The production region of morphogen is a localized source and the synthesis

term V (x) is usually given by the Heaviside unit step function [40]. For example, the source is defined

on [xmin, xmax] and the synthesis term is given by

V (x) =
v

xmax − xmin
H(x− xmin), H(z) =

{
0, z < 0,

1, z > 0.
(3.2)

The term f models the exchange of morphogen between intra and extra cellular forms. The degradation

of extracellular morphogen is a linear term through the natural decay, while complex regulations lead

to a nonlinear intracellular degradation of intracellular morphogen S([M ]in). The noise term is usually

given by white noise η dω(t)
dt or colored noise.



434 Nie Q et al. Sci China Math March 2020 Vol. 63 No. 3

After morphogen enters intracellular environment, morphogen transports to cell nucleus and binds

with corresponding receptor to regulate transcriptions with help from complex signaling cascade. The

final readout of morphogen [M ]signal is the signal cells receive (see Figure 2(B)). In (3.1), the extracellular

morphogen level is linearly proportional to the synthesis rate v in (3.2). The overall morphogen level

is sensitive to the perturbations on synthesis rate. The noise terms in (3.1) lead to noisy gradient

distribution that disrupts precision of morphogen signals.

Many mechanisms, as we discussed in Section 2, such as complex transcriptional regulatory networks

[5,54] and negative feedback [64,67] can also reduce sensitivity and attenuate noise in morphogen signals.

Moreover, an intermediate state in the signaling cascade takes part in both reducing sensitivity and noise

attenuation as well. One example of the intermediate state system is the retinoic acid (RA) signaling net-

work in zebrafish hindbrain development. In this system, RA is synthesized at a local source and diffuses

freely in the extracellular environment. The extracellular RA enters cell through cell membrane and the

intracellular RA binds to an RA-binding protein (the intermediate state). The RA-binding protein trans-

ports RA to the nuclear receptor to form a complex that signals downstream gene expressions. All binding

and unbinding with RA-binding protein are reversible (see Figure 2(B)). With rapider binding and un-

binding, better robustness to fluctuations on synthesis can be achieved in RA signals [10], also lower noise

level can be observed in RA signal without affecting the mean RA level [61,72]. Different from non-spatial
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Figure 2 (Color online) Noise attenuation in multiple processes: An example of the zebrafish hindbrain segmental pattern

formation. (A) Illustration for the segmental pattern formation from the morphogen formation and readout to boundary

sharpening. (B) Illustrations for (i) transcriptional network with intermediate state (i) in morphogen readout and self-

enhanced degradation (ii) in the morphogen formation. (C) Network of a genetic switch which allows noise-induced switching

(left) and an illustration for explaining the noise-induced switching in the view of energy landscape (right). (D) Illustration

for selective intercellular adhesion. [M ]out, [M ]in and [M ]signal are extracellular morphogen, intracellular morphogen and

morphogen signals, respectively. [I] is the intermediate state (binding protein in this example) in morphogen signaling

cascade. [M − I] is the complex formed by the binding between morphogen and intermediate state
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gene regulatory networks, a unique property in morphogen model is that diffusion spreads out morphogen

over the space. The degradation controls the distance that morphogen can travel, and indeed, regulations

on degradation improve the robustness as well. The self-enhanced degradation, where morphogen up-

regulates its own degradation makes gradient level insensitive to synthesis and contributes robustness in

both zebrafish hindbrain [88] and drosophila embryo pattern formations [20].

3.2 Utilizing gene expression noise to battle noise in morphogen

The spatial coordination from morphogen specifies cell fate decisions, leading to tissue stratification and

boundaries between regions with distinct identities. Despite of various noise attenutation mechanisms

in the morphogen formation and readout, signals that cells receive are still noisy, leading to uncertainty

in fate decisions and fuzzy boundaries. Indeed, studies were carried out to investigate how cells make

precise decisions despite receiving noisy signals. The temporal order of the gene appearance may vary in

different system, despite they result in similar spatial alignment [79]. In the study of mandibular arch in

zebrafish development, the temporal order of genes expression is found to modulate the response of the

patterning network to noise and serves as a strategy for noise attenuation [47].

Also, utilizing the intrinsic noise (e.g., noise in downstream gene expressions) to buffer the extrinsic

noise (e.g., noise from signals) is a novel mechanism for noise attenuation. In gene regulatory networks,

the intrinsic noise drives cell identity switching [31] and it is a survival strategy for cells in fluctuating

environment [1,78]. Further studies on spatial pattern formations in multi-cellular organisms also reveal

a proper range of intrinsic noise level is beneficial to obtain a finer spatial pattern. For example, in

the development of zebrafish hindbrain, a stochastic gene expression model mimics a segmental pattern

formation [93]. In this system, a genetic switch containing two genes and their interactions deploys two

possible cell states. The auto-regulation generates a binary switch (ON or OFF) for each gene and the

mutual inhibitions ensure at most one of two genes can be at ON state in each cell. The extracellular

signal, morphogen, acting as an input on the genetic switch, determines the number of cell states. With

high or low level signal, there is only a single state. Within a medium range of signaling level, called

transition region, bistability appears. In the transition region, the cell fate highly depends on initial

gene expressions in deterministic system and extrinsic noise (e.g., noise on morphogen signaling) gives

rise to variability on initial gene expression leading to the co-existence of two cell states in a salt-and-

pepper arrangement. These two states have different potentials from the view of energy landscape. The

intrinsic noise, gene expression noise in the genetic switch, drives cells in the state with high potential

switching to the state with low potential. This noise-induced boundary sharpening process leads to a

homogeneous cells distribution with low potential state in transition region (see Figures 2(A) and 2(C)).

Many theoretical works have been devoted to studying the boundary sharpening process. By utilizing

energy landscape, functions of each gene regulation in this system were demonstrated [42]. Also an

increase level of noise allows switching more rapidly, but increases the rate of spontaneous switching and

thereby decreases the precision of gene expression boundary [57]. Due to this trade-off, a proper level

of intrinsic noise with respect to the extrinsic noise level is essential for robust and precise patterns [61].

This noise induce-switching is also found in mammalian embryo for maintaining cellular plasticity and

organizing the blastocyst [32]. Intuitively, the underlying mechanism of noise-induced switching can be

regarded as a battle between the extrinsic noise and the intrinsic noise. Such noise battle has also been

reported in the stratified epithelial tissue maintenance: a balanced level of different noises is essential to

homeostasis [60]. Cells may tune both intrinsic and extrinsic noise within certain ranges, then an optimal

level of these two noises can be achieved to get robust and precise spatial patterns.

3.3 Cell-cell interactions to reduce variability in the boundary formation

The morphogen-mediated patterning relies on a long-range spatial signal, however, spatial patterns are

fully sharpened within a short-range. It turns out gene expressions are not enough to fully explain

the stratification and boundary formations. In the cellular level, cells movement driven by intercellular

mechanical interactions is able to further refine the pattern.
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To model the dynamics of multicellular systems including the mechanical intercellular interactions, the

sub-cellular method is one cell-based modeling approach [50]. Consider a system with a constant number

Ncell of cells, each cell is composed of Mnode elements (nodes). For the m-th element in the n-th cell, the

equation of motion for its position vector xn,m takes the form

d

dt
xn,m = ηn,m −∇xn,m

Mnode∑
j ̸=m

Φintra(|xn,m − xn,j |)

−∇xn,m

Ncell∑
i̸=n

Mnode∑
j

Φinter(|xn,m − xi,j |). (3.3)

On the right-hand side of the equation, the first term, ηn,m, is a Gaussian-distributed noise. The second

and third terms represent intracelullar and intercellular interactions between the elements, respectively.

These interactions are characterized by potentials Φintra and Φinter. For example, the Morse potential

allows repulsion and adhesion between two elements depending on their distance r:

Φ(r) = U0exp

(
− r

ζ1

)
− V0exp

(
− r

ζ2

)
, (3.4)

where (U0, V0, ζ1, ζ2) are constants for each pair of elements and their values depend on the property

(e.g., cell identity) of those cells they belong to.

The selective intercellular adhesion, where cells with same/different identities have attraction/repulsion

to each other, plays a role in the pattern formation (see Figure 2(D)). This mechanism is regulated by

effectors, such as cadherins or Eph receptors and ephrins, whose expression is related to cell identity [89].

Coupling cell-based models with gene expression models, the multi-scale hybrid models show that selective

intercellular adhesions are crucial to sharpening boundaries in the segmental zebrafish hindbrain pattern

formation [85] and stratification in skin epidermis [17]. Moreover, the asymmetric cell division contributes

to better stratified level in epidermis than the symmetric division [29].

4 Conclusion and perspective

A never-fading topic in biology is how biological functions can be executed accurately and robustly. Noise

attenuation, a general function required for many living systems, has drawn considerable attention of re-

searchers. In this review, we first summarized many common network motifs for controlling extrinsic

noise and discussed corresponding mechanisms especially the important role of timescale. For basic noise

attenuation motifs, long linear cascades can buffer extrinsic noise because of its long response time, but

accumulate intrinsic noise as the length of cascade grows. Other two classes of basic noise attenuation

motifs are negative feedback loops and incoherent feedforward loops, whose noise buffering capabilities

benefit from the low steady-state sensitivity. In systems where high sensitivity or switch-like response

is required, positive feedback loops are preferred to attenuate noise due to the long response time and

large SAT. For adaptive systems, sequentially coupling the noise attenuation module and the adaptation

module, together with matching modules’ response time, can mediate the trade-off between noise buffer-

ing capability and system’s transient sensitivity, and thus favours the simultaneous implementation of

adaptation and noise attenuation. However, a general principle for noise control especially the network

dependence in oscillatory systems is still lacking. The relation between noise attenuation capability and

network configurations helps to identify the complex regulatory networks in nature and provides guidance

for synthesizing networks with robust biological functions. This will also be helpful for specific biological

and medical applications.

While cellular processes can filter the noise to transfer accurate information, noise is also exploited to

achieve desirable functions. A well-studied example is noise utilization in the spatial patterns formation,

which is also reviewed. To form a precise and robust readout from the noise morphogen gradient,

noise attenuation is necessarily needed. Self-enhanced degradation contributes to the robust morphogen
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gradient formation while the transcriptional network with an intermediate state benefits the in morphogen

readout. Besides, a surprising result is that gene expression noise can be utilized to battle noise in

morphogen, which leads to the sharpening of gene expression boundaries. Moreover, cell-cell interaction

is shown to reduce variability in the boundary formation.

Nevertheless, there are several open questions in the topic of noise control and utilization. First,

while principles for buffering extrinsic noise have been well largely explored, how to control intrinsic

noise by modulating network configurations remains unknown. Second, could we use machine learning

to develop more efficient methods to search for the principles for desirable functions, especially those

integrating competing functions with the inherent trade-off? Third, can we apply the learned principles

from regulatory networks to the spatial systems? Fourth, how cell-cell communication affects the cell

decision in space? The investigations of these questions will be of great use.
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